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Abstract. We determine all triples (a, b, n) of integers with gcd(a, b) = 1 and n ≥ 1 such
that nk divides an + bn for k = max(|a|, |b|). In particular, for positive integers m,n we
show that nm | mn+1 if and only if either (m,n) = (2, 3), (m,n) = (1, 2), or n = 1 and
m is arbitrary; this generalizes a couple of problems from the 1990 and 1999 editions of
the International Mathematical Olympiad. Then we solve the same question with an − bn

in place of an + bn. The results are related to a conjecture by K. Győry and C. Smyth on
the finiteness of {n ∈ N+ : nk | an ± bn} when a, b, k are fixed integers with k ≥ 3,
gcd(a, b) = 1, and |a|, |b| not simultaneously equal to 1.
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1 Introduction

It is a problem from the 1990 edition of the International Mathematical Olympiad
(shortly, IMO) to find all integers n ≥ 2 such that n2 | 2n + 1. This is reported
as Problem 7.1.15 (p. 147) in [1], together with a solution by the authors (p. 323),
which shows that the only possible n is 3. On another hand, Problem 4 in the
1999 IMO asks to list all pairs (n, p) of positive integers such that p is a (positive
rational) prime, n ≤ 2p and np−1 | (p − 1)n + 1. This is Problem 5.1.3 (p. 105)
in the same book as above, whose solution by the authors (p. 105) is concluded
with the remark that “With a little bit more work, we can even erase the condition
n ≤ 2p." Specifically, it is found that the required pairs are (1, p), (2, 2) and (3, 3),
where p is an arbitrary prime.

It is now fairly natural to ask whether similar conclusions can be drawn in rela-
tion to the more general problem of determining all pairs (m,n) of positive inte-
gers for which nm | mn + 1. In fact, the question is answered in the positive, and
even in a stronger form, by the following proposition, which represents the main
contribution of the present paper:
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Proposition 1.1. Let a, b, n be integers with gcd(a, b) = 1 and n ≥ 1. Then nk

divides an + bn for k = max(|a|, |b|) if and only if either of the following holds:

(i) a, b are any coprime integers and n = 1.

(ii) a, b ∈ {±1} and n = 2.

(iii) (a, b) = (ε,−ε) for ε ∈ {±1} and n is any positive odd integer ≥ 3.

(iv) (a, b, n) = (2ε, ε, 3) or (a, b, n) = (ε, 2ε, 3) for ε ∈ {±1}.

Proposition 1.1 is proved in Section 2. For what it is worth, let us be explicit
and observe, with the notation as in the above statement, that the result yields a
solution of the IMO problems which have originally stimulated this work in the
case where a ≥ 1 and b = 1. More specifically, the next corollary is immediate
(we omit the obvious proof):

Corollary. Let m,n ∈ N+. Then nm | mn+1 if and only if either (m,n) = (2, 3),
(m,n) = (1, 2), or n = 1 and m is arbitrary.

Also, we use Proposition 1.1 to prove the following:

Proposition 1.2. Let a, b, n be integers with gcd(a, b) = 1 and n ≥ 1. Then nk

divides an − bn for k = max(|a|, |b|) if and only if either of the following holds:

(i) a, b are any coprime integers and n = 1.

(ii) a, b ∈ {±1} and n is any positive even integer.

(iii) (a, b) = (ε, ε) for ε ∈ {±1} and n is any positive odd integer ≥ 3.

(iv) (a, b, n) = (3ε1, ε2, 2) or (a, b, n) = (ε1, 3ε2, 2) for ε1, ε2 ∈ {±1}.

(v) (a, b, n) = (2ε,−ε, 3) or (a, b, n) = (−ε, 2ε, 3) for ε ∈ {±1}.

For the notation and terminology used throughout but not defined, as well as
for material concerning classical topics in number theory, the reader should refer
to [5]. In particular, we write R for the ordered field of real numbers, P for the
set of all (positive rational) primes, Z for the ordered ring of integers, N for the
subsemiring of Z of nonnegative integers, and N+ for N \ {0}. For a, b ∈ Z we
denote by gcd(a, b) the greatest common divisor of a and b if a2 + b2 6= 0, and we
set gcd(a, b) := ∞ otherwise. Lastly, for c ∈ Z \ {0} and p ∈ P we use ep(c) to
mean the greatest exponent k ∈ N such that pk | c, while we let ep(0) := ∞.

We will make use at some point of the following result, which belongs to the
folklore and is typically attributed to É. Lucas [6] and R.D. Carmichael [3] (the
latter having fixed an error in Lucas’ original work in the 2-adic case).
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Lemma 1.3 (Lifting-the-exponent lemma). For all x, y ∈ Z, ℓ ∈ N+ and p ∈ P
such that p ∤ xy and p | x− y, the following conditions are satisfied:

(i) If p ≥ 3, ℓ is odd, or 4 | x− y, then ep(x
ℓ − yℓ) = ep(x− y) + ep(ℓ).

(ii) If p = 2, ℓ is even and e2(x− y) = 1, then e2(x
ℓ − yℓ) = e2(x+ y) + e2(ℓ).

In fact, our proof of Proposition 1.1 is but the result of a meticulous refine-
ment of the solutions already known for the problems mentioned in the preamble.
Hence, our only possible merit, if any at all, has been that of bringing into focus a
clearer picture of (some of) their essential issues.

The study of the congruences an ± bn ≡ 0 mod nk has a very long history,
dating back at least to Euler, who proved that, for all integers a, b with gcd(a, b) =
1 and a > b ≥ 1, every primitive prime divisor of an−bn is congruent to 1 modulo
n; see [2, Theorem I] for a proof and [2, §1] for the terminology. However, since
there are so many results related to the question, instead of trying to summarize
them, we just refer the reader to the paper [4], whose authors provide an account of
the existing literature on the topic. The paper also characterizes, for fixed a, b ∈ Z
and k ∈ N+, the sets R+

k (a, b), respectively R−
k (a, b), of all positive integers n

such that nk divides an + bn, respectively an − bn (note that no assumption is
made about the coprimality of a and b), and addresses the problem of finding
the exceptional cases when R−

1 (a, b) and R−
2 (a, b) are finite; see, in particular, [4,

Theorems 1–2 and 18]. Nevertheless, the related problem of determining, for fixed
a, b ∈ Z with gcd(a, b) = 1, all positive integers n such that nk divides an + bn

(respectively, an − bn) for k = max(|a|, |b|) does not appear to be considered
neither in [4] nor in the references therein.

On another hand, it is suggested in [4] that R+
k (a, b) and R−

k (a, b) are both
finite provided that a, b, k are fixed integers with k ≥ 3, and |a|, |b| are relatively
prime but not simultaneously equal to 1; the authors point out that the question is
probably a difficult one, even assuming the ABC conjecture. Although far from
providing an answer, Propositions 1.1 and 1.2 in the present paper prove in this
respect that, under the same assumptions, R+

k (a, b) and R−
k (a, b) are finite for all

sufficiently large k, and indeed for k ≥ max(|a|, |b|).

2 Proofs

For the sake of exposition, we premise a couple of lemmas.

Lemma 2.1. Let x, y, z ∈ Z and ℓ ∈ N+ such that gcd(x, y) = 1 and z | xℓ + yℓ.

Then xy and z are relatively prime, q ∤ xℓ − yℓ for every integer q ≥ 3 for which

q | z, and 4 ∤ z provided that ℓ is even. Moreover, if there exists an odd prime
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divisor p of z and ℓ such that gcd(ℓ, p − 1) = 1, then p | x + y, ℓ is odd and

ep(z) ≤ ep(x+ y) + ep(ℓ).

Proof. The first part is routine (we omit the details). As for the second, let p be
an odd prime dividing both z and ℓ with gcd(ℓ, p − 1) = 1; also, considering
that z and xy are relatively prime (by the above), denote by y−1 an inverse of y
modulo p and by ω the order of xy−1 modulo p, viz the smallest k ∈ N+ such
that (xy−1)k ≡ 1 mod p; cf. [5, §6.8]. Since (xy−1)2ℓ ≡ 1 mod p, we have
ω | 2ℓ. It follows from Fermat’s little theorem and [5, Theorem 88] that ω divides
gcd(2ℓ, p − 1), whence we get ω | 2, using that gcd(ℓ, p − 1) = 1. This in turn
implies that p | x2 − y2, to the effect that either p | x − y or p | x + y. But
p | x− y would give that p | xℓ− yℓ, which is however impossible by the first part
of the claim (since p ≥ 3). So p | x + y, with the result that ℓ is odd: For if 2 | ℓ
then p | 2xℓ (because p | z | xℓ + yℓ and y ≡ −x mod p), which would lead to
gcd(x, y) ≥ p (again, using that p is odd), that is to a contradiction. The rest is an
immediate application of Lemma 1.3.

Lemma 2.2. Let x, y, z ∈ Z such that x, y are odd. Then x2 − y2 = 2z if and only

if z ≥ 3, x = (2z−2 + 1)ε1 and y = (2z−2 − 1)ε2 with ε1, ε2 ∈ {±1}.

Proof. Since x and y are odd, x2 − y2 is divisible by 8, i.e. z ≥ 3, and there exist
i, j ∈ N+ and ε ∈ {±1} such that i + j = z, x − y = 2iε and x + y = 2jε. It
follows that x = (2j−1 + 2i−1)ε and y = (2j−1 − 2i−1)ε, and then either i = 1 or
j = 1 (otherwise x and y would be even). The rest is straightforward.

We are ready to write down the proof of our main results.

Proof of Proposition 1.1. Let us suppose (by symmetry) that |a| ≥ |b| and n|a|

divides an + bn. The case n = 1 is trivial, so we assume n ≥ 2. Since on the one
hand a and b are relatively prime, while on the other hand n ∤ an + bn if |a| = 1
and b = 0, we then have |a| ≥ |b| ≥ 1. The case |a| = 1 is trivial too, and leads to
points (ii) and (iii) in our claim. Hence, we suppose in the sequel that

|a| ≥ 2 and |a| > |b| ≥ 1. (1)

Considering that 4 | n2 whenever 2 | n, it follows from Lemma 2.1 that n is
odd and gcd(ab, n) = 1. Denote by p the smallest prime divisor of n. Again by
Lemma 2.1, it is found that p | a+ b and

|a| − 1 ≤ (|a| − 1)ep(n) ≤ ep(a+ b). (2)
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Also, a+ b 6= 0 by equation (1), with the result that

a+ b = prs, with r ∈ N+, s ∈ Z \ {0} and p ∤ s. (3)

Then, equations (1) and (3) yield that 2|a| ≥ pr · |s|+ 1. This implies by equation
(2), since r = ep(a+ b), that

3r · |s| ≤ pr · |s| ≤ 2r + 1,

which is possible only if p = 3 and r = |s| = 1. So, by equations (2) and (3),
|a + b| = 3 and |a| = 2, to the effect that either (a, b) = (2, 1) or (a, b) =
(−2,−1). Furthermore, e3(n) = 1, and hence n = 3t for some t ∈ N+ with
gcd(6, t) = 1. It follows that t2 | αt + 1 for α = 23.

Suppose by contradiction that t ≥ 2 and let q be the least prime divisor of t.
Then another application of Lemma 2.1 gives 2eq(t) ≤ eq(α + 1) + eq(t), and
accordingly 1 ≤ eq(t) ≤ eq(α + 1) = eq(32), which is however absurd due to
the fact that gcd(3, t) = 1. Therefore t = 1, i.e. n = 3, and putting all together
completes the proof (once checked that 32 | 23 + 13).

Proof of Proposition 1.2. The case n = 1 is trivial, so suppose in the sequel that
n ≥ 2. Since n | an − bn and gcd(a, b) = 1, this gives in the first place ab 6= 0;
secondly, |a| = |b| only if a, b ∈ {±1}, and then if and only if either a, b ∈ {±1}
and n is any even positive integer, or (a, b) = (ε, ε) for ε ∈ {±1} and n is any odd
integer ≥ 3. Then by symmetry, we also assume for the remainder of the proof
that |a| is greater than |b|, so that (to summarize)

|a| > |b| ≥ 1, n ≥ 2, and n|a| divides an − bn. (4)

With this in hand, write n as 2rs, where r ∈ N, s ∈ N+ and gcd(2, s) = 1. Then,
equation (4) implies that αs + βs is divided by s|a| for α := a2r and β := −b2r

(note that |α| ≥ |β| since |a| > |b|), which leads, by Proposition 1.1, to one of the
following three cases.

CASE 1: s = 1, viz n = 2r with r ∈ N+. Obviously, n is even, and we get (by
coprimality) that both a and b are odd, that is 8 | a2 − b2. It follows from
point (i) of Lemma 1.3 that

e2(a
2r − b2r) = e2(a

2 − b2) + e2(2
r−1) = e2(a

2 − b2) + r − 1.

(We apply Lemma 1.3 with x = a2, y = b2, ℓ = 2r−1 and p = 2, where the
notation is the same as in the statement of the lemma). Since (2r)|a| divides
a2r − b2r in view of equation (4) and our standing assumptions, then

(|a| − 1) · r ≤ e2(a
2 − b2)− 1. (5)
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Now, there exist u, v ∈ N+ with u ≥ 2 and gcd(2, v) = 1 such that a2−b2 =
2u+1v, with the result that |a| > 2u/2√v. Hence, we get by equation (5), also
taking into account that 2x ≥ x+ 1 for every x ∈ R with x ≥ 1, that

(u

2
+ 1

)√
v ≤ 2u/2√v <

u

r
+ 1, (6)

which is possible only if r = 1 and
√
v < 2. Then 2u/2√v < u+ 1, with the

result that 2 ≤ u ≤ 5 and v = 1 (using that v is odd). In the light of Lemma
2.2, all of this implies, in the end, that the conditions in equation (4), when n

is a positive power of two, are satisfied only if a = (2z+1)ε1, b = (2z−1)ε2

and n = 2, where ε1, ε2 ∈ {±1} and z is an integer between 1 and 4; but
now we need 2z ≤ z + 1 by equation (5), so necessarily z = 1, i.e. a = 3ε1

and b = ε2 (and, in fact, 23 | 32 − 12).

CASE 2: s is a positive odd integer ≥ 3 and (α, β) = (ε,−ε) for ε ∈ {±1}.
Then a2r = ε, which is impossible because |a| ≥ 2 by equation (4).

CASE 3: (α, β, s) = (2ε, ε, 3) for ε ∈ {±1} (recall that |α| ≥ |β|). Then a2r =
2ε and b2r = −ε, to the effect that r = 0, and hence (a, b, n) = (2ε,−ε, 3)
for ε ∈ {±1}.

Putting all the pieces together, the proof is thus complete.
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