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We determine all triples (a, b, n) of integers with gcd(a, b) = 1 and n ≥ 1 such that n k divides a n + b n for k = max(|a|, |b|). In particular, for positive integers m, n we show that n m | m n + 1 if and only if either (m, n) = (2, 3), (m, n) = (1, 2), or n = 1 and m is arbitrary; this generalizes a couple of problems from the 1990 and 1999 editions of the International Mathematical Olympiad. Then we solve the same question with a nb n in place of a n + b n . The results are related to a conjecture by K. Győry and C. Smyth on the finiteness of {n ∈ N + : n k | a n ± b n } when a, b, k are fixed integers with k ≥ 3, gcd(a, b) = 1, and |a|, |b| not simultaneously equal to 1.

Introduction

It is a problem from the 1990 edition of the International Mathematical Olympiad (shortly, IMO) to find all integers n ≥ 2 such that n 2 | 2 n + 1. This is reported as Problem 7. 1.15 (p. 147) in [START_REF] Andreescu | Number Theory -Structures, Examples, and Problems[END_REF], together with a solution by the authors (p. 323), which shows that the only possible n is 3. On another hand, Problem 4 in the 1999 IMO asks to list all pairs (n, p) of positive integers such that p is a (positive rational) prime, n ≤ 2p and n p-1 | (p -1) n + 1. This is Problem 5. 1.3 (p. 105) in the same book as above, whose solution by the authors (p. 105) is concluded with the remark that "With a little bit more work, we can even erase the condition n ≤ 2p." Specifically, it is found that the required pairs are (1, p), (2, 2) and [START_REF] Carmichael | On the Numerical Factors of Certain Arithmetic Forms[END_REF][START_REF] Carmichael | On the Numerical Factors of Certain Arithmetic Forms[END_REF], where p is an arbitrary prime.

It is now fairly natural to ask whether similar conclusions can be drawn in relation to the more general problem of determining all pairs (m, n) of positive integers for which n m | m n + 1. In fact, the question is answered in the positive, and even in a stronger form, by the following proposition, which represents the main contribution of the present paper:
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(iv) (a, b, n) = (2ε, ε, 3) or (a, b, n) = (ε, 2ε, 3) for ε ∈ {±1}. Proposition 1.1 is proved in Section 2.
For what it is worth, let us be explicit and observe, with the notation as in the above statement, that the result yields a solution of the IMO problems which have originally stimulated this work in the case where a ≥ 1 and b = 1. More specifically, the next corollary is immediate (we omit the obvious proof): (iii) (a, b) = (ε, ε) for ε ∈ {±1} and n is any positive odd integer ≥ 3.

Corollary. Let m, n ∈ N + . Then n m | m n +1 if and only if either (m, n) = (2, 3), (m, n) = (1,
(iv) (a, b, n) = (3ε 1 , ε 2 , 2) or (a, b, n) = (ε 1 , 3ε 2 , 2) for ε 1 , ε 2 ∈ {±1}. (v) (a, b, n) = (2ε, -ε, 3) or (a, b, n) = (-ε, 2ε, 3) for ε ∈ {±1}.
For the notation and terminology used throughout but not defined, as well as for material concerning classical topics in number theory, the reader should refer to [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]. In particular, we write R for the ordered field of real numbers, P for the set of all (positive rational) primes, Z for the ordered ring of integers, N for the subsemiring of Z of nonnegative integers, and N + for N \ {0}. For a, b ∈ Z we denote by gcd(a, b) the greatest common divisor of a and b if a 2 + b 2 = 0, and we set gcd(a, b) := ∞ otherwise. Lastly, for c ∈ Z \ {0} and p ∈ P we use e p (c) to mean the greatest exponent k ∈ N such that p k | c, while we let e p (0) := ∞.

We will make use at some point of the following result, which belongs to the folklore and is typically attributed to É. Lucas [START_REF] Lucas | Théorie des Fonctions Numériques Simplement Periodiques[END_REF] and R.D. Carmichael [START_REF] Carmichael | On the Numerical Factors of Certain Arithmetic Forms[END_REF] (the latter having fixed an error in Lucas' original work in the 2-adic case).

Lemma 1.3 (Lifting-the-exponent lemma). For all x, y ∈ Z, ℓ ∈ N + and p ∈ P such that p ∤ xy and p | xy, the following conditions are satisfied:

(i) If p ≥ 3, ℓ is odd, or 4 | x -y, then e p (x ℓ -y ℓ ) = e p (x -y) + e p (ℓ).
(ii) If p = 2, ℓ is even and e 2 (xy) = 1, then e 2 (x ℓy ℓ ) = e 2 (x + y) + e 2 (ℓ).

In fact, our proof of Proposition 1.1 is but the result of a meticulous refinement of the solutions already known for the problems mentioned in the preamble. Hence, our only possible merit, if any at all, has been that of bringing into focus a clearer picture of (some of) their essential issues.

The study of the congruences a n ± b n ≡ 0 mod n k has a very long history, dating back at least to Euler, who proved that, for all integers a, b with gcd(a, b) = 1 and a > b ≥ 1, every primitive prime divisor of a n -b n is congruent to 1 modulo n; see [2, Theorem I] for a proof and [2, §1] for the terminology. However, since there are so many results related to the question, instead of trying to summarize them, we just refer the reader to the paper [START_REF] Győry | The divisibility of a nb n by powers of n[END_REF], whose authors provide an account of the existing literature on the topic. The paper also characterizes, for fixed a, b ∈ Z and k ∈ N + , the sets (respectively, a nb n ) for k = max(|a|, |b|) does not appear to be considered neither in [START_REF] Győry | The divisibility of a nb n by powers of n[END_REF] nor in the references therein.

R + k (a, b), respectively R - k (a,
On another hand, it is suggested in [START_REF] Győry | The divisibility of a nb n by powers of n[END_REF] that R + k (a, b) and R - k (a, b) are both finite provided that a, b, k are fixed integers with k ≥ 3, and |a|, |b| are relatively prime but not simultaneously equal to 1; the authors point out that the question is probably a difficult one, even assuming the ABC conjecture. Although far from providing an answer, Propositions 1.1 and 1.2 in the present paper prove in this respect that, under the same assumptions, R + k (a, b) and R - k (a, b) are finite for all sufficiently large k, and indeed for k ≥ max(|a|, |b|).

Proofs

For the sake of exposition, we premise a couple of lemmas.

Lemma 2.1. Let x, y, z ∈ Z and ℓ ∈ N + such that gcd(x, y) = 1 and z | x ℓ + y ℓ . Then xy and z are relatively prime, q ∤ x ℓy ℓ for every integer q ≥ 3 for which q | z, and 4 ∤ z provided that ℓ is even. Moreover, if there exists an odd prime divisor p of z and ℓ such that gcd(ℓ, p -1) = 1, then p | x + y, ℓ is odd and e p (z) ≤ e p (x + y) + e p (ℓ).

Proof. The first part is routine (we omit the details). As for the second, let p be an odd prime dividing both z and ℓ with gcd(ℓ, p -1) = 1; also, considering that z and xy are relatively prime (by the above), denote by y -1 an inverse of y modulo p and by ω the order of xy -1 modulo p, viz the smallest k ∈ N + such that (xy -1 ) k ≡ 1 mod p; cf. [5, §6.8]. Since (xy -1 ) 2ℓ ≡ 1 mod p, we have ω | 2ℓ. It follows from Fermat's little theorem and [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]Theorem 88] that ω divides gcd(2ℓ, p -1), whence we get ω | 2, using that gcd(ℓ, p -1) = 1. This in turn implies that p | x 2y 2 , to the effect that either p | xy or p | x + y. But p | xy would give that p | x ℓy ℓ , which is however impossible by the first part of the claim (since p ≥ 3). So p | x + y, with the result that ℓ is odd: For if 2 | ℓ then p | 2x ℓ (because p | z | x ℓ + y ℓ and y ≡ -x mod p), which would lead to gcd(x, y) ≥ p (again, using that p is odd), that is to a contradiction. The rest is an immediate application of Lemma 1.3.

Lemma 2.2. Let x, y, z ∈ Z such that x, y are odd. Then x 2 -y 2 = 2 z if and only if z ≥ 3, x = (2 z-2 + 1)ε 1 and y = (2 z-2 -1)ε 2 with ε 1 , ε 2 ∈ {±1}.
Proof. Since x and y are odd, x 2y 2 is divisible by 8, i.e. z ≥ 3, and there exist i, j ∈ N + and ε ∈ {±1} such that i + j = z, xy = 2 i ε and x + y = 2 j ε. It follows that x = (2 j-1 + 2 i-1 )ε and y = (2 j-1 -2 i-1 )ε, and then either i = 1 or j = 1 (otherwise x and y would be even). The rest is straightforward.

We are ready to write down the proof of our main results. Furthermore, e 3 (n) = 1, and hence n = 3t for some t ∈ N + with gcd(6, t) = 1. It follows that t 2 | α t + 1 for α = 2 3 . Suppose by contradiction that t ≥ 2 and let q be the least prime divisor of t. Then another application of Lemma 2.1 gives 2e q (t) ≤ e q (α + 1) + e q (t), and accordingly 1 ≤ e q (t) ≤ e q (α + 1) = e q (3 2 ), which is however absurd due to the fact that gcd(3, t) = 1. Therefore t = 1, i.e. n = 3, and putting all together completes the proof (once checked that 3 2 | 2 3 + 1 3 ). (5)

Proposition 1 . 1 .

 11 Let a, b, n be integers with gcd(a, b) = 1 and n ≥ 1. Then n k divides a n + b n for k = max(|a|, |b|) if and only if either of the following holds: (i) a, b are any coprime integers and n = 1. (ii) a, b ∈ {±1} and n = 2. (iii) (a, b) = (ε, -ε) for ε ∈ {±1} and n is any positive odd integer ≥ 3.

Proposition 1 . 2 .

 12 2), or n = 1 and m is arbitrary. Also, we use Proposition 1.1 to prove the following: Let a, b, n be integers with gcd(a, b) = 1 and n ≥ 1. Then n k divides a nb n for k = max(|a|, |b|) if and only if either of the following holds: (i) a, b are any coprime integers and n = 1. (ii) a, b ∈ {±1} and n is any positive even integer.

  b), of all positive integers n such that n k divides a n + b n , respectively a nb n (note that no assumption is made about the coprimality of a and b), and addresses the problem of finding the exceptional cases when R - 1 (a, b) and R - 2 (a, b) are finite; see, in particular, [4, Theorems 1-2 and 18]. Nevertheless, the related problem of determining, for fixed a, b ∈ Z with gcd(a, b) = 1, all positive integers n such that n k divides a n + b n

Proof of Proposition 1 . 1 . 1 )

 111 Let us suppose (by symmetry) that |a| ≥ |b| and n |a| divides a n + b n . The case n = 1 is trivial, so we assume n ≥ 2. Since on the one hand a and b are relatively prime, while on the other hand n ∤ a n + b n if |a| = 1 and b = 0, we then have |a| ≥ |b| ≥ 1. The case |a| = 1 is trivial too, and leads to points (ii) and (iii) in our claim. Hence, we suppose in the sequel that |a| ≥ 2 and |a| > |b| ≥ 1. (Considering that 4 | n 2 whenever 2 | n, it follows from Lemma 2.1 that n is odd and gcd(ab, n) = 1. Denote by p the smallest prime divisor of n. Again by Lemma 2.1, it is found that p | a + b and |a| -1 ≤ (|a| -1)e p (n) ≤ e p (a + b).(2)Also, a + b = 0 by equation (1), with the result that a + b = p r s, with r ∈ N + , s ∈ Z \ {0} and p ∤ s.(3)Then, equations (1) and (3) yield that 2|a| ≥ p r • |s| + 1. This implies by equation (2), since r = e p (a + b), that 3 r • |s| ≤ p r • |s| ≤ 2r + 1, which is possible only if p = 3 and r = |s| = 1. So, by equations (2) and (3), |a + b| = 3 and |a| = 2, to the effect that either (a, b) = (2, 1) or (a, b) = (-2, -1).

Proof of Proposition 1 . 2 . 4 )

 124 The case n = 1 is trivial, so suppose in the sequel that n ≥ 2. Since n | a nb n and gcd(a, b) = 1, this gives in the first place ab = 0; secondly, |a| = |b| only if a, b ∈ {±1}, and then if and only if either a, b ∈ {±1} and n is any even positive integer, or (a, b) = (ε, ε) for ε ∈ {±1} and n is any odd integer ≥ 3. Then by symmetry, we also assume for the remainder of the proof that |a| is greater than |b|, so that (to summarize) |a| > |b| ≥ 1, n ≥ 2, and n |a| divides a nb n . (With this in hand, write n as 2 r s, where r ∈ N, s ∈ N + and gcd(2, s) = 1. Then, equation (4) implies that α s + β s is divided by s |a| for α := a 2 r and β := -b 2 r (note that |α| ≥ |β| since |a| > |b|), which leads, by Proposition 1.1, to one of the following three cases. CASE 1: s = 1, viz n = 2 r with r ∈ N + . Obviously, n is even, and we get (by coprimality) that both a and b are odd, that is 8 | a 2b 2 . It follows from point (i) of Lemma 1.3 that e 2 (a 2 rb 2 r ) = e 2 (a 2b 2 ) + e 2 (2 r-1 ) = e 2 (a 2b 2 ) + r -1. (We apply Lemma 1.3 with x = a 2 , y = b 2 , ℓ = 2 r-1 and p = 2, where the notation is the same as in the statement of the lemma). Since (2 r ) |a| divides a 2 rb 2 r in view of equation (4) and our standing assumptions, then (|a| -1) • r ≤ e 2 (a 2b 2 ) -1.
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Now, there exist u, v ∈ N + with u ≥ 2 and gcd(2, v) = 1 such that a 2b 2 = 2 u+1 v, with the result that |a| > 2 u/2 √ v. Hence, we get by equation ( 5), also taking into account that 2 x ≥ x + 1 for every x ∈ R with x ≥ 1, that

which is possible only if r = 1 and √ v < 2. Then 2 u/2 √ v < u + 1, with the result that 2 ≤ u ≤ 5 and v = 1 (using that v is odd). In the light of Lemma 2.2, all of this implies, in the end, that the conditions in equation ( 4), when n is a positive power of two, are satisfied only if a = (2 z +1)ε 1 , b = (2 z -1)ε 2 and n = 2, where ε 1 , ε 2 ∈ {±1} and z is an integer between 1 and 4; but now we need 2 z ≤ z + 1 by equation ( 5), so necessarily z = 1, i.e. a = 3ε 1 and b = ε 2 (and, in fact,

Then a 2 r = ε, which is impossible because |a| ≥ 2 by equation ( 4).

Then a 2 r = 2ε and b 2 r = -ε, to the effect that r = 0, and hence (a, b, n) = (2ε, -ε, 3) for ε ∈ {±1}.

Putting all the pieces together, the proof is thus complete.
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