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LARGE DEVIATIONS FOR STATISTICS OF JACOBI PROCESS

N. DEMNI ' AND M. ZANTI ?

ABSTRACT. This paper is aimed to derive large deviations for statistics of Jacobi
process already conjectured by M. Zani in her thesis. To proceed, we write in a
simpler way the Jacobi semi-group density. Being given by a bilinear sum involving
Jacobi polynomials, it differs from Hermite and Laguerre cases by the quadratic form
of its eigenvalues. Our attempt relies on subordinating the process using a suitable
random time-change. This will give an analogue of Mehler formula whence we can
recover the desired expression by inverting some Laplace transforms. Once we did, an
adaptation of Zani’s result ([24]) in the non steep case will provide the required large
deviations principle.

1. INTRODUCTION

The Jacobi process is a Markov process on [—1, 1] given by the following infinitesimal

generator:
2

0 0
32(1—$2)%+(p$+q)%, 1‘6[—1,1]

for some real p, q, defined up to the first time when it hits the boundary. It appears as
an interest rate model in finance (see [9]) and in genetics ([11]). One of the important
features is that it belongs to the class of diffusions associated to some families of or-
thogonal polynomials, i.e. the infinitesmal generator admits an orthogonal polynomials
basis as eigenfunctions ([3]) such as Hermite, Laguerre and Jacobi polynomials . More
precisely, if Py # denotes the Jacobi polynomial with parameters «, 3 > —1 defined by :

(a4 1)y
n!

]__
2F1<—n,n+a+ﬂ+1,a+1;x>, x € [-1,1],

PP (z) =
n (x) 2

(see [16] for the definition of 2F7) then we can see that :
ZLPP = —n(n+a+ B +1)P>F

for p = —(B+a+2) and ¢ = f—a. The semi group density of the process first appeared
in [14] then in [22] where the author solved the forward Kolmogorov or Fokker-Planck
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2 LARGE DEVIATIONS FOR STATISTICS OF JACOBI PROCESS

equation
0;[B(y)p) — 0y[A(y)p) = Oip,  p = pe(,y),

where B, A are polynomials of degree 2, 1 respectively, and gave the principal solution
(po(x,y) = d,(y)) using the classical Sturm-Liouville theory. This gives rise to a class of
stationary Markov processes satisfying :

1) tin pueg) = W) = [ Wl

where W is the density function solution of the corresponding Pearson equation ([22]).
In our case, p; has the discrete spectral decomposition :

(2) pi(z,y) = | D (Ra) e M PIP (@) PRP(y) | W(y),  zyel-1,1]
n>0

where

=y +y)”
-~ 20HAHIB(a+ 1,54+ 1)

with B denoting the Beta function and? ([2], p. 99) :

_ Ta+p+2) (et Dn(B+n
C2nta+B+1T(a+B+n+1)n!

An=nn+a+p+1), W(y)

Ry = 1B P12 (11 () )

Interested in total positivity, Karlin and McGregor showed that this kernel is positive
for a, f > —1 ([14]). Few years later, Gasper ([13]) showed that, for o, 5 > —1/2, this
bilinear sum is the transition kernel of a diffusion and a solution of the heat equation
governed by a Jacobi operator, generalizing a previous result of Bochner for ultraspher-
ical polynomials ([7]). It is worth noting that A, has a quadratic form while in the
Hermite (Brownian) and Laguerre (squared Bessel) cases A, = n. Hence, we will try
to subordinate the Jacobi process by the mean of a random time-change in order to
get a Mehler type formula. What is quite interesting is that the subordinated Jacobi
process semi-group, say ¢;(x,y), is the Laplace transform of p /t(x, y). Thus, we deduce
an expression for py(x,y) by inverting some Laplace transforms already computed by
Biane, Pitman and Yor (see [5], [19]). This expression, more handable than (2), will
allow us to compute the normalized cumulant generating function, and then to derive a
LDP for the maximum likelihood estimate (MLE) for p in the ultraspherical case, i.e.
g =0(8 = «), a fact conjectured by Zani in her thesis ([25]). Then, using a skew product
representation of the Jacobi process involving squared Bessel processes, we construct a
family {24 }+ of estimators for the index v of the squared Bessel process based on a Jacobi
trajectory observed till time ¢. This satisfies a LDP with the same rate function derived
for the MLE based on a squared Bessel trajectory.

3(P7‘,’“ﬁ(m))n20 are normalized such that they form an orthogonal basis with respect to the probability
measure W (y)dy which is not the same used in [2].
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1.1. Inverse Gaussian subordinator. By an inverse Gaussian subordinator (see [1]),
we mean the process of the first hitting times of a Brownian motion with drift Bf :=
Bg + ps, > 0, namely,

T/ =inf{s > 0; Bt=46t}, t 6>0.
Using martingale methods, we can show that for each ¢ > 0, u > 0,

E(G*UT#&) _ efté(\/2u+,u27,u)

whence the density f; of T/*° writes ([1]) :

5t _ 1,262
®) o) = =t oxp (=5 (25 4429 ) oo

1.2. The subordinated Jacobi Process. Let us consider a Jacobi process (Xi)¢>o0.
Then the semi-group of the subordinated Jacobi process (X u.s)i>0 is given by:
48 )t

a(zy) = / " el ) fils)ds
= -1 Ooe_A"s +(s)ds | P8 (x) PP
) S (Ra) ( / f()d)Pn () P25 ()

n>0
= W(y) S (Ra) "E(e T ) PO () POO ().
n>0

a+pB+1

Writing A, = (n +7)? — 72 where v = , and substituting 6 = 1/v/2, u = v/2y

for « + 8 > —1 in the expression of f;, one gets :
¥
E(e—)\nTt“ ) — et

so that
a(z,y) = W(y) Y (Ry) e ™ P2l () PP (y).
n>0
The last sum has been already computed ([2], p. 385) :

o0

Z(Rn)ilpﬁ’ﬂ(iv)])ﬁé’ﬁ(y)r": L—r Z ( )m—I—n( 2 )m+n

n=0 (L+7r)2 & (a+ 1B+ 1), m!n!
l-r o aa+l
4 — Fy (2
W TET TR
where || < 1, a = a + 3+ 2, Fy is the Appell function ([12]) and
_=2)(-yr (I +z)1+yr
B (1+7)? B (147)?

The integral representation of Fy (see [12], p 51) yields :

W(y) 1—r a1l s U v o
= a Fila+1;282)0F (8 +1; 25%)ds.
a(x,y) T'(a) (1—1—7“)“/0 s e oy (o + 1S JoF1(8 + ,45) 5
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Now, from a property of the function oF; (see [17], p 214)

P (r)
oFi(eiw(l =) 2o Fa(d:w(l +7)/2) = 3 (B
n>0 VA

w,a=c—1,0=d—1,

one gets :

_Wy) 1—r [ g Pl (2) ng2n
qt(ac,y)— F(a) (1+r)a/(; s le Z;J(Oé—i-l)n(ﬁ“‘l)nA $2" dg

where we set

Cl4ay’ 2(1+1r)2
Applying Fubini’s Theorem gives :

a(z,y) = W(y) (11;:)a > ( (@an PP (z)A",
n>0

T4y A (1 + xy)r

Letting » = e, then

W(y)ea%lt sinh(¢/2) (a)2n o, (1+xy) 1"
201 (cosh(t/2))* 2 (a+1)n(B+1)n PoG) [8 coshz(t/Q)}

q(z,y) =
n>0

~ Wi(y) tanh(t/2)e s ! (a)2n N (1+2y)]" 1 2nta—1
- 201 Z (a4 1)n(B+1)n PoG) [ 8 } (Cosh(t/Z)) '

n>0
Besides, from (3)

rert [0
q(z,y) = ﬁ )
Thus, noting that v = (a — 1) /2, we get :

t e'yt 0o

ﬁ ; p2/r($7 y)r

2 2
_3/2 a2 2 o2y £
ps(z,y) s eV e ds = V2e=27/m e~ 5T dr.

/OOOPQ/r(aU,y) p 1222/ e_érdr = \/falivlv(y) tan?/(;/Q)
(G)Zn . (1—|—9:y) n 1 2n+a—1
Sarnorn 05 (Gaem)

n>0

With regard to the integrand, one easily sees that the RHS is the Laplace transform of
_ _9~2
oy, y)r= 22T,

1.3. The Jacobi semi-group. The following results are due to Biane, Pitman and Yor
(see [5], [19])

(5) /Oooe—ifoCh(s)ds - <Coshl<t/2)>h h>0

(6) /Oooe_tsszh(s)ds _ <targ‘/(;)/2)>h h>0
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where (C}) and (T}) are two families of Lévy processes with respective density functions
fc, and fr, for fixed h > 0. The densities of C}, and T} are given by ([5]):

h
for(s) = %Z(—lvmﬂj’”ﬂ(zﬁh)(s)

p>0
fr(s) = 267%(“) 1is>0)
k>0

where 7(c) = inf{r > 0; B, = ¢} is the Lévy subordinator (the first hitting time of a
standard Brownian motion B) with corresponding density :

(2p+ h) (2p + h)?
fT(?p—l—h)(S) = W exp T 9. Lrssoy
Let «, 3 satisfy a + 8+ 1 > 0, thus:

\/%W(y)ewzﬁ (a)2n o, (1+axy)]"
2070 (et Dn(B+ o, e [8] < (1 x fiad) ()

poyr(T,y) =

or equivalently (Where B stands for the Beta function):

v2 1 " 2
pt(x’w_ 2a+5 )¢ Z a+1 ﬁ+1) i) [(t%xy)] (i % fesmsaran) ()

1
1.4. The ultraspherical case. This case corresponds to a = (§ > 5 and we will

proceed in a slightly different way. Indeed, a = 2« + 2 and

1—7r
(4):WF4(Q+1,a+3/2,a+1,a+1;U,v)
B 1—7r 1 (2a+3 20 + 5 a1 4uv )
TR (L —u— )BT T T (T u—0)?

where the last equality follows from (see [6])

4uv

Fa(b b b o) = (L= u =) 2 Fi(e/2 (e + D/2.b g )
Hence,
2a+1
W(y)e 2 ! sinh(¢ 2043 200+5 1—22)(1 —y?
w(z.y) = (a)—|-1/2 : )a+3/22F1( ’ T L ( )(_ 2)>
2 (cosht — zy) 4 4 (cosht — zy)
_Wle T 3~ (204 3)/4nl(20 £ 5)/4_[(1—ah(1 —y))"
2a+1/2 = (Oé + 1)n (COSht _ xy)2n+a+3/2 ’

Besides, for h > 0, we may write:

1 h:Zm)k (y)*
cosht — xy e k! (cosh t)k+h
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since ’ | Vz,y €] —1,1[, ¥t > 0 and where we used:
cosht
1 Mk &
= h>0 1.
s X gy

Consequently, using Gauss duplication formula,

T(v(n, k,o) +1)(zy)* [(1—22)(1 - y2)} n < 1 >u(n,k,a)
E'n!T(a+n+1) 4 cosh

q(z,y) = KQW(y)e%t tanh(t) Z
n,k>0

where

v(n,k,a) =2n+k+a+1/2, Ko =TD(a+1)/[2°F2D(a + 3/2)).
Thus, since v = o + 1/2 when a = 3, one has:
Z L(v(n, k,a)+1)(zy)* [(1 —z?)(1 — y2)]” < 1 >v(n,k,a)

E'n!T(a+n+1) 4 cosht

W(y)

n,k>0
or equivalently:
> _2? _2.ds  /7l(a+1) tanh(t)
/ P1yas(@,y)e e /5 20T(a+3/2) ¢ Wiy)
3 L(v(n,k,a) +1)(zy)"* [(1—352)(1 —y2)r< 1 >"(”’k’o‘)

Eln!lT(a+n+1) 4 cosht

n,k>0
Using (5), (6), fc, et fr, (we take t?/2 instead of t?/8), the density is written:

p1/2s(xa y) = ;é?ts(l;(ji;_/12))1/1/(3/)6’;j

vin,k,a T — a1 ="
Sty () [

Jry % fcl/(n,k,a) (s).
n,k>

Finally

) et T(v(n, k,a) + 1) (zy)*
(1) pile.y) = VaKa—ZW () > KInll(a +n + 1)

{(1—x2><1—y2>]" 1

n,k>0

4 fT1 *fC'V(n,kya)(%)’

2. APPLICATION TO STATISTICS FOR DIFFUSIONS PROCESSES

2.1. Some properties of the Jacobi process. Usually in probability theory, the
Jacobi process is defined on [—1, 1] as the unique strong solution of the SDE :

dY; = /1 = Y2dW; + (bY; + c)dt.



LARGE DEVIATIONS FOR STATISTICS OF JACOBI PROCESS 7

It is straightforward that (Y):>o0 Z (X, /2),520 where X is the Jacobi process already
defined in section 1 with p = 2b, ¢ = 2¢. Using the variable change y — (y + 1)/2, the
equation above transforms to (t — 4t) :

Jy(1— J)dWy + [d — (d + d)Jy] dt

where d = 2(c—b) =q—p=2(+1) and d = —2(c+b) = —(p+¢q) = 2(a+ 1),
which is the Jacobi process of parameters (d,d’) already considered by Warren and Yor
([21]). Moreover, the authors provide the following skew-product : let Z;, Zs be two
independent Bessel processes of dimensions d, d’ and starting from z, 2’ respectively.
Then :

Z2(t) ) z /t ds z
—_— = (J , A= - Jo=—.
<Z%<t>+2§<t> o TAdizor A= gy =

Using well known properties of squared Bessel processes (see [20]), one deduce that if
d>2(f>0)and z > 0, then J; > 0 almost surely for all £ > 0. Since 1 — J is still
a Jacobi process of parameters (d’,d), then for d > 2, (& > 0) and 2’ > 0, J; < 1
almost surely for all £ > 0. The extension of these results to the matrix Jacobi process
is established in [8] (Theorem 3.3.2, p.36). Since 0 is a reflecting boundary for Z;, Z,
when 0 < d, d <2(—1 < a, 8 <0), then both 0 and 1 are reflecting boundaries for .J.

2.2. LDP in the ultraspherical case. Let us consider the following SDE correspond-
ing to the ultraspherical Jacobi process:

- {dYt = /1= Y2dW, + bY;dt

Yo = o E]—l,l[-

Let ng be the law of (Y, ¢ > 0) on the canonical filtered probability space (€2, (%), F)
where  is the space of | — 1, 1[-valued functions. The parameter b is such that b < —1
(or aw > 0), so that —1 < Y; < 1 for all ¢ > 0. The maximum likelihood estimate of b
based on the observation of a single trajectory (Ys, 0 < s < t) under Q} (see Overbeck
[18] for more details) is given by

t
Ys

1-Y2 d¥s

(9) bt:0—2s

; .
Y,
ds
f it

The main result of this section is the following Theorem.

Theorem 1. When b < —1, the family {l;t}t satisfies a LDP with speed t and good rate
function

1(x—0b)? <
(10) S A
r+2+/(b—2)2+4(x+1) if x>x0>b




8 LARGE DEVIATIONS FOR STATISTICS OF JACOBI PROCESS

where xq is the unique solution of the equation (b — )% = 4x(x +1) =0, z < —1.

Proof of Theorem 1 : we follow the scheme of Theorem 3.1 in [24]. Set :

t t 2
Y, Y,
St = dy, — s d
be = ) 1—y2 @ "”/01—1{92 *

so that for z > b (resp. © < b), P(by > x) = P(S; > 0) (resp. P(b < z) = P(S;, <0)).

Therefore, to derive a large deviation principle on {Bt}, we seek a LDP result for Sy ./t
at 0. Let us compute the normalized cumulant generating function Ay, of Si,:

1
(11) At() = 7 log QG ("),
JFrom Girsanov formula, the generalized densities are given by
dQg ,/t Y Lo ,a/t e
12 = b—>b dYs — =(b"—b ds
( ) ngl £ exp{( ) 0 1_}/52 S 2( ) 0 1—Y2
Let

1
F(Y;) = — log(1 - V).

From It6 formula,

t t 2 t t
Y, 1 1+Y, Y, 1 t
F(Y;) = dYs + = 5_ds = ——dY. ——ds — —.
= [ ey [yt = [ et [ oyt

Let us denote by

Di(z) ={¢ : (b+1)* +2¢(x + 1) > 0}.

For any ¢ € Dj(x), we can define b(¢,z) = —1 — /(b +1)2 + 2¢(x + 1). With the
change of probability defined by (12) taking &’ = b(¢, ), the stochastic integrals simplify
to (see [24] p. 125 for the details):

(13) Mi(6,2) = o Q4 (exp({ 4+ b — b, 2))[F(V) — /2]}).
When starting from yo = 0, (7) reads (t — ¢/2) :
2t/2
5(0,9) = VETK oL > Lentats) _yapmsar o pe (1)),

4pll(n+ o+ 1)
where p = —2(a+1) =2b< -2 and v = —(p+1)/2 = o + 1/2. Denote by
(14) D(z) ={¢ € Di(z) : G(¢,x) = b+ b(¢,x) + ¢ < 0}.
For any ¢ € D(x), the expectation (13) is finite and a simple computation gives :

+b—-b(p,x) 1 . bbb
Ai(9, ) = ¢2(¢) +~ log QUO) (1 — Y2)~(@+o-bs.2)/2)

LIRY 21K o(,2) Ri (@, )

:A((b"r)_‘_% 0og \/7? )
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where

_ I'(2n —b(¢,z) +1/2) ¢+b+b(o,z) 1
Ri(¢,2) ; sl n — b)) <”_ 2 2

a(¢,$) = _b(¢7$) -1
and B stands for the Beta function. With regard to (1), one has for ¢ € D(x) :

1
) 6721%/2fT1 * fCQn-q-»y(*) )

t

1
Jim QLT (1 — y2)-(ro-b6a/2) — ¢y / 1(1 ) letbibeml/2 -1 gy o o

by dominated convergence Theorem. Hence Ay — A as t — oco. The following lemma,
which proof is postponed to the appendix, details the domain D(x) (see (14)) of A;:

Lemma 1. Denote by

o (b+1)?
P = ey

i)If x < (b2 +3)/2(b—1): then D = (—o0, ¢o(x)).

i) If (0 +3)/2(b—1) < x < —1: then D(x) = (—o0, ¢1(x)) where ¢1(x) is solution of
G(¢,z) = 0.

it1) If v > —1: then D(z) = (¢o(x), p1(x)).

In case i) of Lemma above, A is steep, i.e. its gradient is infinite at the boundary of
the domain (for a precise definition, see [10]). It achieves its unique minimum in ¢, (x)
solution of

oA
%(Qb, $) =0 )
ie. b(¢(z),z) = x. It is easy to see that

x4+l (b+1)?
Om(®) = — T2z 1)

Hence, Girtner-Ellis Theorem gives for z < b < (b% + 3)/2(b — 1),

< ¢0($) .

1 R 1 . 1(z—b)?
tlggo " log P(b; < z) tlggo " log P(S; . <0) ¢€}010171£O($)] A(p,z) = AMpm(z), x) R
If b <z < (b +3)/2(b— 1), notice that ¢,,(z) > 0 and

1 R .1 , 1(zx—0b)?

lim = log P(b; > ) = lim ~log P(S;» > 0) = inf A(¢,z) = Al (), z) = —~ .
Aim 3 log P(b 2 2) = lim 2 log P(S0 2 0) = _ inf = A(¢,2) = Mém(),2) = =3 ==

In cases ii) and iii) of Lemma 1, A is not steep. Nevertheless, if the infimum of A is

reached in D(z), we can follow the scheme of Géartner-Ellis theorem for the change of
probability in the infimum bound. This infimum is reached if and only if

OA

(15) 5

(p1(x),z) > 0,1e. if ¢p(z) < P1(2).
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In case z + 1 > 0, we know (see proof of Lemma 1) that ¢1(x) < ¢p,(z). Iff z+1 <0,
we check the sign of G(¢,,(z),z). We get the following dichotomy : Let x denote the
unique solution of g(z) := 4x(x +1) — (b —2)? = 0, # < —1. Since g is decreasing on
]—00, —1] and g(b*+3/(2(b—1)) = (3/4)(b+1)? > 0 = g(x), then z¢ > (b*>+3)/[2(b—1)].
o if (12 +3)/2(b—1) < x < 79 < —1, the derivative A /I¢p(¢p1(x),x) > 0, A achieves its
minimum on ¢,,(z) and

1 - x — b)?
Jim 3 1og P(b > ) = Mon(z).2) =~ 0
eif g <z < —1orax > —1, then 9A/9p(p1(x),z) < 0. We apply Theorem 2 of the
appendix, which is due to Zani [24]. Let us verify that the assumptions are satisfied,
and more precisely that A; can take the form (18). Indeed, the only singularity ¢1(z)
of R; comes from B (n — [¢p+ b+ b(¢,x)]/2,1/2) when n = 0, and more precisely, from
I'(—[p+ b+ b(¢p,x)]/2) . We can write

bt b(<z>,x>) +Liog V21 Ko (.0 Be(@: )

1
(16) Au6.a) = Ana) + logT (- 250 v ol

where

(17) Ri(,2) = Re(¢,2)/T(~[¢ + b+ (4, 2)]/2).

Now

Vi > 0, B<n—¢+b+b(¢’x) 1>/p<_¢>+b+b(¢7$)>

2 P 2
is analytic on some neighbourhood of ¢1(z). Besides,

b+ ¢+ b(o,x)

hm =c> 0)
b—d1(x) p<dr(x) ¢ — P1(x)

and since lim, o+ pI'(p) = 1, then ¢1(x) is a pole of order one of I' (¢ + b+ b(¢, x)/2)
and one writes:

1 ¢+b+b(g,2)\ _ log(di(z) —¢) h(9)
tlogF(— 5 )—— : + .

The function h is analytic on D(z) and can be extended to an analytic function on
lo1(z) — &, ¢1(x) + ][ for some positive &.

Finally, to satisfy Assumption 1 of the appendix, we focus on Ry(¢, 2)/v/t and show
that it is bounded uniformly as ¢ — oo. To proceed, we shall prove that this ratio is
bounded from above and below away from 0. Setting A, (¢) := e""/2fp * fc,, L (1/1),
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one has
An(t)  ert/2 1/t 1[@2n+2k+7)2 o 1,1 ds
< . S e e 0 DA 1§ BV /i
N k;on’ /0 P~y 5 U430 G 9| g
72t/2 1 1 —t.| d
— e Y U [ ey [<2n+2k+w>zs+w2<5+ 3¢ )] N
5 2 2 ts NG
—2n? _op2 [ 1 2 2, Lygs—t | ds
e Ug.ne / exp —— [(2n+2k—|—'y) (s—t)+7 (1 + =)*( )}
k;o t 2 2t vis
S U [Ty [0 2ot )|
S 2 t(t+ s) t(t + s)
with

~ T(@n+k+7)22""7(2n + 2k + 7)

Upn =
& kI (2n 4 7)

Let O(z) = > iz e = 1 4 2> s e~™% denote the Jacobi Theta function ([5]).
Then -

AQ(;) < |5 U [ e [(% = 7)28] © (%(z ; s>> t<i8+ ey

where

1 o2 [ (2n + 2k +7)%s]| ds
C(n,t) = —= Z Uk.ne 2k /0 exp — [ 5 T

Recall that ©(z) = (1//2)0O(1/z) ([5]), which yields :

where

o 2n” 2k? C[@n+2k+9)%s] ds
C(n) k;OUkne /exp [ 5 NG

Since e % < e, then ©(z) < 3 for z > 1. Hence, as 2t/m < 2t(t+ s)/(rs), then for
t large enough:

An( o—2n? o2k ooex B (2n + 2k +7)2s ds .
\[ I;JU” / p [ 5 ]\[+C()<4C( ).
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The upper bound follows since ), C(n) < co. Besides,

Ry(,2) - VrL(1/2 = b(¢, x)) Ao(t)
Vit L(=b(¢,2))T{[1 = (¢ + b+ b(e,2)]/2} Vi
1 s ds

_ €T —1)k OOex —1 s+ m? 5)?
= C(b, ¢, )k%o( 1) Vk/o P35 {(Q’H’Y) 3 Garsy) t(t + )

where Vi (t) := Uk’oe_%(kJ”)t. One may choose t large enough independent of k£ such
that Vi(t) > Viy1(¢) for all & > 0. In fact, such ¢ satisfies:

2R S 2 5 g Uk+10 _ sup (k+7)(2k ++v+2)
T T >0 Ukp k>0 (k+1)(2k+7)

Then:
R

S ds

Cb,6.0)2" Vit Z/ exp—[w+w<z+1>< )| e

= tt+s tt+ s)
_C,¢.7), —2s)2 < s ) ds
AL D) { L e (i) T €
where
s/ 45 ds e 8/2 ds 2
2\// V(t+ ) €= T

for ¢ large enough. Following the same scheme as for the upper bound, one gets:

B, Coon 2{\[/ o 3/2@(2t(t+8)>j{0(t)}
> (2¢’ )72 (\/;c>/ooo ‘“/le/sg>0. O

Jim ~log P(hy > 7) = Agn(x),2) = —(z + 24 /b~ 0 + 4z + 1),

As a result,

which ends the proof of Theorem 1. |

2.3. Jacobi and squared Bessel processes duality. By [to’s formula and Lévy cri-
terion, one claims that (Z; = Y;?);>0 is a [0, 1]-valued Jacobi process of parameters
d=1,d = —2b > 2. Indeed:

dZ; = d(Y}2) = 2Y;dY; + (V) = 2Yiy /1 — Y2dW; + [(2b — 1)Y2 + 1]dt
Zi(1 — Zy)sgn(Yy)dWy + [(2b— 1) Z, + 1]dt
Z1(1 — Zy)dBy + [(2b — 1) Z; + 1]dt.
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Using the skew product previously stated, there exists R, a squared Bessel process of
dimension d’' = 2(v 4+ 1) = —2b and starting from Ry = r so that:
log(1 — Y2) +t
t Y2
2 f T—yzds

is another estimator of v based on a Jacobi trajectory observed till time ¢. Set ¢t = log u,
then

I)tZ:—lA)t—]_:

log[u(1 — Yi5g,)] _ log[u(1 Ylggu)]

Viogu = 1 Y
2 og U dS logs
f 2f1 ST ) ds

and {Djogy o satisfies a LDP with speed log u and rate functlon J_y(=(z +1)).
When starting at Ry = 1, the MLE of v based on a Bessel trajectory is given by (cf
[24], p. 132):

t dx, t ds
S o X -2/ 5 _ log(Xy)

t 2 ft ds 2 j‘t ds
with associated rate function :
(w V)2 ()2l
Iy(l‘) if =z > X1 = 3
1—:c+\/y—:1: —4x i z <.

A glance at both rate functions gives I,,(v) = J_,11)(—(z + 1)) and zg = —(z1 + 1).

3. APPENDIX

3.1. A large deviations principle in a non steep case. Let {Y;};>¢ be a family
of real random variables defined on (2, F, P), and denote by p; the distribution of Y;.
Suppose —oo < my := EY; < 0. We look for large deviations bounds for P(Y; > y). Let
A; be the n.c.g.f. of Yi:

M(9) = 7 log Blexp{otvi))

and denote by D; the domain of A;. We assume that there exists 0 < ¢; < oo such that
for any t

sup{¢: ¢ € D} = 1
and [0, ¢1) C D;. We assume also that for ¢ € Dy

Assumption 1.

where
e >0

e A is analytic on (0, ¢1), convex, with finite limits at endpoints, such that A’(0) < 0,
N (¢1) < 00, and A”(¢1) > 0.

e R, is analytic on (0, ¢1) and admits an analytic extension on a strip Dg = (¢1—0, 01+
B) X (=7,7), where 8 and 7 are independent of t.

e Ri(¢) converges as t — oo to some R(¢) uniformly on any compact of Dg.
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Theorem 2. Under 1
For any A'(0) <y < A'(¢1),

(19) lim %log P, >y)=— sup {yop—A(¢)}.

t—+o00

¢E (07¢1)

For any y > N(61),

(20)

1
lim ~—log P(Y; > y) = —yo1 + A(¢1) .

t——+00

The rate function is continuously differentiable with a linear part.

3.2.

Proof of Lemma 1 : Note first that (% + 3)(2(b— 1)) < —1 if b < —1 and that

the condition ¢ € Dy(z) = ¢ > ¢o(x) if x > —1 and ¢ < ¢p(x) if < —1. To examine
the behaviour of GG, we compute

oG o z+1
07>(¢’$) =1 VO+1)2+26(z + 1)

elfz+1 <0, o > 0 and G(+, ) is increasing. Then we see easily that G(¢o(z),x) <0

o

iff x < (b2 +3)(2(b — 1)), which determines cases i) and ii).
olfr+1>0,¢— o is increasing hence there exists ¢(z) such that %(gb(:v), x) =0.

BL) ¢

We compute

~ T 2
) = —2H - 2(1(73:)1) = om(@).

We see that G(¢(z),x) < 0, and there exists ¢1(z) < ¢(z) such that G(¢(x),z) = 0,
and D(z) = (do(z), 41(z)) . O

(1]

[11]
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