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This paper is aimed to derive large deviations for statistics of Jacobi process already conjectured by M. Zani in her thesis. To proceed, we write in a simpler way the Jacobi semi-group density. Being given by a bilinear sum involving Jacobi polynomials, it differs from Hermite and Laguerre cases by the quadratic form of its eigenvalues. Our attempt relies on subordinating the process using a suitable random time-change. This will give an analogue of Mehler formula whence we can recover the desired expression by inverting some Laplace transforms. Once we did, an adaptation of Zani's result ([24]) in the non steep case will provide the required large deviations principle.

Introduction

The Jacobi process is a Markov process on [-1, 1] given by the following infinitesimal generator:

L = (1 -x 2 ) ∂ 2 ∂ 2 x + (px + q) ∂ ∂x , x ∈ [-1, 1]
for some real p, q, defined up to the first time when it hits the boundary. It appears as an interest rate model in finance (see [START_REF] Delbaen | An interest rate model with upper and lower bound[END_REF]) and in genetics ( [START_REF] Ethier | Markov Processes : Characterization and Convergence[END_REF]). One of the important features is that it belongs to the class of diffusions associated to some families of orthogonal polynomials, i.e. the infinitesmal generator admits an orthogonal polynomials basis as eigenfunctions ( [START_REF] Bakry | Characterization of Markov Semi-groups on R Associated to Some Families of Orthogonal Polynomials[END_REF]) such as Hermite, Laguerre and Jacobi polynomials . More precisely, if P α,β n denotes the Jacobi polynomial with parameters α, β > -1 defined by :

P α,β n (x) = (α + 1) n n! 2 F 1 -n, n + α + β + 1, α + 1; 1 -x 2 , x ∈ [-1, 1],
(see [START_REF] Lebedev | Special Functions And Their Applications[END_REF] for the definition of 2 F 1 ) then we can see that :

L P α,β n = -n(n + α + β + 1)P α,β n for p = -(β + α + 2) and q = β -α. The semi group density of the process first appeared in [START_REF] Karlin | Classical diffusion processes and total positivity[END_REF] then in [START_REF] Wong | The construction of a class of stationnary Markov[END_REF] where the author solved the forward Kolmogorov or Fokker-Planck equation ∂ 2 y [B(y)p] -∂ y [A(y)p] = ∂ t p, p = p t (x, y), where B, A are polynomials of degree 2, 1 respectively, and gave the principal solution (p 0 (x, y) = δ x (y)) using the classical Sturm-Liouville theory. This gives rise to a class of stationary Markov processes satisfying : [START_REF] Applebaum | Quantum Independent Increment Processes I : From Classical Probability to Quantum Stochastic Calculus[END_REF] lim t→∞ p t (x, y) = W (y) =

x 2

x 1 W (x)p t (x, y)dx

where W is the density function solution of the corresponding Pearson equation ( [START_REF] Wong | The construction of a class of stationnary Markov[END_REF]).

In our case, p t has the discrete spectral decomposition :

(2)

p t (x, y) =   n≥0 (R n ) -1 e -λnt P α,β n (x)P α,β n (y)   W (y), x, y ∈ [-1, 1]
where

λ n = n(n + α + β + 1), W (y) = (1 -y) α (1 + y) β 2 α+β+1 B(α + 1, β + 1)
with B denoting the Beta function and3 ([2], p. 99) :

R n = ||P α,β n || 2 L 2 ([-1,1],W (y)dy) = Γ(α + β + 2) 2n + α + β + 1 (α + 1) n (β + 1) n Γ(α + β + n + 1)n! .
Interested in total positivity, Karlin and McGregor showed that this kernel is positive for α, β > -1 ([14]). Few years later, Gasper ([13]) showed that, for α, β ≥ -1/2, this bilinear sum is the transition kernel of a diffusion and a solution of the heat equation governed by a Jacobi operator, generalizing a previous result of Bochner for ultraspherical polynomials ( [START_REF] Bochner | Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical polynomials or associated Bessel functions[END_REF]). It is worth noting that λ n has a quadratic form while in the Hermite (Brownian) and Laguerre (squared Bessel) cases λ n = n. Hence, we will try to subordinate the Jacobi process by the mean of a random time-change in order to get a Mehler type formula. What is quite interesting is that the subordinated Jacobi process semi-group, say q t (x, y), is the Laplace transform of p 2/t (x, y). Thus, we deduce an expression for p t (x, y) by inverting some Laplace transforms already computed by Biane, Pitman and Yor (see [START_REF] Biane | Probability Laws Related To The Jacobi Theta and Riemann Zeta Functions, and Brownian Excursions[END_REF], [START_REF] Pitman | Infinitely Divisible Laws Associated With Hyperbolic Functions[END_REF]). This expression, more handable than (2), will allow us to compute the normalized cumulant generating function, and then to derive a LDP for the maximum likelihood estimate (MLE) for p in the ultraspherical case, i.e. q = 0 (β = α), a fact conjectured by Zani in her thesis ( [START_REF] Zani | Grandes déviations pour des fonctionnelles issues de la statistique des processus[END_REF]). Then, using a skew product representation of the Jacobi process involving squared Bessel processes, we construct a family {ν t } t of estimators for the index ν of the squared Bessel process based on a Jacobi trajectory observed till time t. This satisfies a LDP with the same rate function derived for the MLE based on a squared Bessel trajectory.

1.1. Inverse Gaussian subordinator. By an inverse Gaussian subordinator (see [START_REF] Applebaum | Quantum Independent Increment Processes I : From Classical Probability to Quantum Stochastic Calculus[END_REF]), we mean the process of the first hitting times of a Brownian motion with drift B µ s := B s + µs, µ > 0, namely,

T µ,δ t = inf{s > 0; B µ s = δt}, t, δ > 0.
Using martingale methods, we can show that for each t > 0, u ≥ 0,

E(e -uT µ,δ t ) = e -tδ( √ 2u+µ 2 -µ)
whence the density f t of T µ,δ t writes ( [START_REF] Applebaum | Quantum Independent Increment Processes I : From Classical Probability to Quantum Stochastic Calculus[END_REF]) :

(3)

f t (s) = δt √ 2π e δtµ s -3/2 exp - 1 2 ( t 2 δ 2 s + µ 2 s) 1 {s>0} .
1.2. The subordinated Jacobi Process. Let us consider a Jacobi process (X t ) t≥0 .

Then the semi-group of the subordinated Jacobi process (X T µ,δ t ) t≥0 is given by:

q t (x, y) = ∞ 0 p s (x, y)f t (s)ds = W (y) n≥0 (R n ) -1 ∞ 0 e -λns f t (s)ds P α,β n (x)P α,β n (y) = W (y) n≥0 (R n ) -1 E(e -λnT µ,δ t )P α,β n (x)P α,β n (y).
Writing

λ n = (n + γ) 2 -γ 2 where γ = α + β + 1 2
, and substituting δ = 1/ √ 2, µ = √ 2γ for α + β > -1 in the expression of f t , one gets :

E(e -λnT µ,δ t ) = e -nt so that q t (x, y) = W (y) n≥0 (R n ) -1 e -nt P α,β n (x)P α,β n (y).

The last sum has been already computed ( [START_REF] Andrews | Special functions[END_REF], p. 385) :

∞ n=0 (R n ) -1 P α,β n (x)P α,β n (y)r n = 1 -r (1 + r) a m,n≥0 a 2 m+n a+1 2 m+n (α + 1) m (β + 1) n u m v n m!n! = 1 -r (1 + r) a F 4 ( a 2 , a + 1 2 , α + 1, β + 1; u, v) (4) 
where |r| < 1, a = α + β + 2, F 4 is the Appell function ( [START_REF] Exton | Multiple Hypergeometric Functions And Applications[END_REF]) and

u = (1 -x)(1 -y)r (1 + r) 2 v = (1 + x)(1 + y)r (1 + r) 2 .
The integral representation of F 4 (see [START_REF] Exton | Multiple Hypergeometric Functions And Applications[END_REF], p 51) yields :

q t (x, y) = W (y) Γ(a) 1 -r (1 + r) a ∞ 0 s a-1 e -s 0 F 1 (α + 1; u 4 s 2 ) 0 F 1 (β + 1; v 4 s 2 )ds.
Now, from a property of the function 0 F 1 (see [START_REF] Magnus | Formulas And Theorems for the Special Functions of Mathematical Physics[END_REF], p 214)

0 F 1 (c; w(1 -r)/2) 0 F 1 (d; w(1 + r)/2) = n≥0 P α,β n (r) (c) n (d) n w n , α = c -1, β = d -1,
one gets :

q t (x, y) = W (y) Γ(a) 1 -r (1 + r) a ∞ 0 s a-1 e -s n≥0 P α,β n (z) (α + 1) n (β + 1) n A n s 2n ds
where we set

z = x + y 1 + xy , A = (1 + xy)r 2(1 + r) 2
. Applying Fubini's Theorem gives :

q t (x, y) = W (y) 1 -r (1 + r) a n≥0 (a) 2n (α + 1) n (β + 1) n P α,β n (z)A n .
Letting r = e -t , then

q t (x, y) = W (y)e a-1 2 t 2 a-1 sinh(t/2) (cosh(t/2)) a n≥0 (a) 2n (α + 1) n (β + 1) n P α,β n (z) (1 + xy) 8 cosh 2 (t/2) n = W (y) tanh(t/2)e a-1 2 t 2 a-1 n≥0 (a) 2n (α + 1) n (β + 1) n P α,β n (z) (1 + xy) 8 n 1 cosh(t/2) 2n+a-1 .
Besides, from (3)

q t (x, y) = t e γt 2 √ π ∞ 0 p s (x, y) s -3/2 e -γ 2 s e -t 2 4s ds = t e γt 2 √ 2π ∞ 0 p 2/r (x, y) r -1/2 e -2γ 2
/r e -t 2 8 r dr.

Thus, noting that γ = (a -1)/2, we get :

∞ 0 p 2/r (x, y) r -1/2 e -2γ 2 /r e -t 2 8 r dr = √ 2π W (y) 2 a-1 tanh(t/2) t/2 n≥0 (a) 2n (α + 1) n (β + 1) n P α,β n (z) (1 + xy) 8 n 1 cosh(t/2) 2n+a-1 .
With regard to the integrand, one easily sees that the RHS is the Laplace transform of p 2/r (x, y)r -1/2 e -2γ 2 /r . 1.3. The Jacobi semi-group. The following results are due to Biane, Pitman and Yor (see [START_REF] Biane | Probability Laws Related To The Jacobi Theta and Riemann Zeta Functions, and Brownian Excursions[END_REF], [START_REF] Pitman | Infinitely Divisible Laws Associated With Hyperbolic Functions[END_REF]) :

∞ 0 e -t 2 8 s f C h (s) ds = 1 cosh(t/2) h , h > 0 (5) ∞ 0 e -t 2 8 s f T h (s) ds = tanh(t/2) (t/2) h , h > 0 (6)
where (C h ) and (T h ) are two families of Lévy processes with respective density functions f C h and f T h for fixed h > 0. The densities of C h and T 1 are given by ( [START_REF] Biane | Probability Laws Related To The Jacobi Theta and Riemann Zeta Functions, and Brownian Excursions[END_REF]):

f C h (s) = 2 h Γ(h) p≥0 (-1) p Γ(p + h) p! f τ (2p+h) (s) f T 1 (s) = k≥0 e -π 2 2 (k+ 1 2 ) 2 s 1 {s>0}
where τ (c) = inf{r > 0; B r = c} is the Lévy subordinator (the first hitting time of a standard Brownian motion B) with corresponding density :

f τ (2p+h) (s) = (2p + h) √ 2πs 3 exp - (2p + h) 2 2s 1 {s>0} .
Let α, β satisfy α + β + 1 > 0, thus:

p 2/r (x, y) = √ 2πrW (y)e 2γ 2 /r 2 a-1 n≥0 (a) 2n (α + 1) n (β + 1) n P α,β n (z) (1 + xy) 8 n × f T 1 ⋆ f C 2n+a-1 (r)
or equivalently (where B stands for the Beta function):

p t (x, y) = √ πW (y) 2 α+β e γ 2 t √ t n≥0 (a) 2n (α + 1) n (β + 1) n P α,β n (z) (1 + xy) 8 n f T 1 ⋆ f C 2n+α+β+1 ( 2 t ).
1.4. The ultraspherical case. This case corresponds to α = β > -1 2 and we will proceed in a slightly different way. Indeed, a = 2α + 2 and

(4) = 1 -r (1 + r) 2α+2 F 4 (α + 1, α + 3/2, α + 1, α + 1; u, v) = 1 -r (1 + r) 2α+2 1 (1 -u -v) α+3/2 2 F 1 ( 2α + 3 4 , 2α + 5 4 , α + 1; 4uv (1 -u -v) 2 )
where the last equality follows from (see [START_REF] Yu | Integrals and Series[END_REF])

F 4 (b, c, b, b; u, v) = (1 -u -v) -c 2 F 1 (c/2, (c + 1)/2, b; 4uv (1 -u -v) 2 ).
Hence,

q t (x, y) = W (y)e 2α+1 2 t 2 α+1/2 sinh(t) (cosh t -xy) α+3/2 2 F 1 ( 2α + 3 4 , 2α + 5 4 , α + 1; (1 -x 2 )(1 -y 2 ) (cosh t -xy) 2 ) = W (y)e 2α+1 2 t 2 α+1/2 sinh(t) n≥0 [(2α + 3)/4] n [(2α + 5)/4] n (α + 1) n [(1 -x 2 )(1 -y 2 )] n (cosh t -xy) 2n+α+3/2 .
Besides, for h > 0, we may write:

1 cosh t -xy h = k≥0 (h) k k! (xy) k (cosh t) k+h since xy cosh t < 1 ∀x, y ∈] -1, 1[
, ∀t ≥ 0 and where we used:

1 (1 -r) h = k≥0 (h) k k! r k h > 0, |r| < 1.
Consequently, using Gauss duplication formula,

q t (x, y) = K α W (y)e 2α+1 2 t tanh(t) n,k≥0 Γ(ν(n, k, α) + 1)(xy) k k! n! Γ(α + n + 1) (1 -x 2 )(1 -y 2 ) 4 n 1 cosh t ν(n,k,α) where ν(n, k, α) = 2n + k + α + 1/2, K α = Γ(α + 1)/[2 α+1/2 Γ(α + 3/2)].
Thus, since γ = α + 1/2 when α = β, one has:

∞ 0 p s (x, y) s -3/2 e -γ 2 s e -t 2 4s ds = √ 2πΓ(α + 1) 2 α Γ(α + 3/2) tanh(t) t W (y) n,k≥0 Γ(ν(n, k, α) + 1)(xy) k k! n! Γ(α + n + 1) (1 -x 2 )(1 -y 2 ) 4 n 1 cosh t ν(n,k,α)
or equivalently:

∞ 0 p 1/2s (x, y)e -γ 2 2s e -t 2 2 s ds √ s = √ πΓ(α + 1) 2 α Γ(α + 3/2) tanh(t) t W (y) n,k≥0 Γ(ν(n, k, α) + 1)(xy) k k! n! Γ(α + n + 1) (1 -x 2 )(1 -y 2 ) 4 n 1 cosh t ν(n,k,α)
. Using ( 5), [START_REF] Yu | Integrals and Series[END_REF], f C h et f T 1 (we take t 2 /2 instead of t 2 /8), the density is written:

p 1/2s (x, y) = √ πsΓ(α + 1) 2 α Γ(α + 3/2) W (y)e γ 2 2s
n,k≥0

Γ(ν(n, k, α) + 1) k!n!Γ(α + n + 1) xy 2 k (1 -x 2 )(1 -y 2 ) 4 n f T 1 ⋆ f C ν(n,k,α) (s). Finally (7) p t (x, y) = √ πK α e γ 2 t √ t W (y) n,k≥0 Γ(ν(n, k, α) + 1)(xy) k k!n!Γ(α + n + 1) (1 -x 2 )(1 -y 2 ) 4 n f T 1 ⋆ f C ν(n,k,α) ( 1 2t
).

2. Application to statistics for diffusions processes 2.1. Some properties of the Jacobi process. Usually in probability theory, the Jacobi process is defined on [-1, 1] as the unique strong solution of the SDE :

dY t = 1 -Y 2 t dW t + (bY t + c)dt. It is straightforward that (Y t ) t≥0 L = (X t/2
) t≥0 where X is the Jacobi process already defined in section 1 with p = 2b, q = 2c. Using the variable change y → (y + 1)/2, the equation above transforms to (t → 4t) :

dJ t = 2 J t (1 -J t )dW t + [2(c -b) + 4bJ t ] dt = 2 J t (1 -J t )dW t + [d -(d + d ′ )J t ] dt where d = 2(c -b) = q -p = 2(β + 1) and d ′ = -2(c + b) = -(p + q) = 2(α + 1)
, which is the Jacobi process of parameters (d, d ′ ) already considered by Warren and Yor ([21]). Moreover, the authors provide the following skew-product : let Z 1 , Z 2 be two independent Bessel processes of dimensions d, d ′ and starting from z, z ′ respectively. Then :

Z 2 1 (t) Z 2 1 (t) + Z 2 2 (t) t≥0 L = (J At ) t≥0 , A t := t 0 ds Z 2 1 (s) + Z 2 2 (s) , J 0 = z z + z ′ .
Using well known properties of squared Bessel processes (see [START_REF] Revuz | Continuous Martingales And Brownian Motion[END_REF]), one deduce that if d ≥ 2 (β ≥ 0) and z > 0, then J t > 0 almost surely for all t > 0. Since 1 -J is still a Jacobi process of parameters (d ′ , d), then for d ′ ≥ 2, (α ≥ 0) and z ′ > 0, J t < 1 almost surely for all t > 0. The extension of these results to the matrix Jacobi process is established in [START_REF] Doumerc | Matrix Jacobi Process[END_REF] (Theorem 3.3.2, p.36). Since 0 is a reflecting boundary for Z 1 , Z 2 when 0 < d, d ′ < 2 (-1 < α, β < 0), then both 0 and 1 are reflecting boundaries for J.

2.2. LDP in the ultraspherical case. Let us consider the following SDE corresponding to the ultraspherical Jacobi process:

(8) dY t = 1 -Y 2 t dW t + bY t dt Y 0 = y 0 ∈] -1, 1[. Let Q b
y 0 be the law of (Y t , t ≥ 0) on the canonical filtered probability space (Ω, (F t ), F) where Ω is the space of ] -1, 1[-valued functions. The parameter b is such that b ≤ -1 (or α ≥ 0), so that -1 < Y t < 1 for all t > 0. The maximum likelihood estimate of b based on the observation of a single trajectory (Y s , 0 ≤ s ≤ t) under Q b 0 (see Overbeck [START_REF] Overbeck | Estimation for continuous branching processes[END_REF] for more details) is given by

(9) bt = t 0 Y s 1 -Y 2 s dY s t 0 Y 2 s 1 -Y 2 s ds .
The main result of this section is the following Theorem.

Theorem 1. When b ≤ -1, the family { bt } t satisfies a LDP with speed t and good rate function

(10) J b (x) =    - 1 4 (x -b) 2 x + 1 if x ≤ x 0 x + 2 + (b -x) 2 + 4(x + 1) if x > x 0 > b
where x 0 is the unique solution of the equation (b -x) 2 = 4x(x + 1) = 0, x < -1.

Proof of Theorem 1 : we follow the scheme of Theorem 3.1 in [START_REF] Zani | Large deviations for squared radial Ornestein-Uhlenbeck processes[END_REF]. Set :

S t,x := t 0 Y s 1 -Y 2 s dY s -x t 0 Y 2 s 1 -Y 2 s ds,
so that for x > b (resp. x < b), P ( bt ≥ x) = P (S t,x ≥ 0) (resp. P ( bt ≤ x) = P (S t,x ≤ 0)). Therefore, to derive a large deviation principle on { bt }, we seek a LDP result for S t,x /t at 0. Let us compute the normalized cumulant generating function Λ t,x of S t,x :

(11) Λ t,x (φ) = 1 t log Q b 0 (e φSt,x ).
¿From Girsanov formula, the generalized densities are given by ( 12)

dQ b 0 dQ b ′ 0 Ft = exp (b -b ′ ) t 0 Y s 1 -Y 2 s dY s - 1 2 (b 2 -b ′ 2 ) t 0 Y 2 s 1 -Y 2 s ds .
Let

F (Y t ) = - 1 2 log(1 -Y 2 t ) . From Itô formula, F (Y t ) = t 0 Y s 1 -Y 2 s dY s + 1 2 t 0 1 + Y 2 s 1 -Y 2 s ds = t 0 Y s 1 -Y 2 s dY s + t 0 1 1 -Y 2 s ds - t 2 .
Let us denote by

D 1 (x) = {φ : (b + 1) 2 + 2φ(x + 1) ≥ 0} .
For any φ ∈ D 1 (x), we can define b(φ, x) = -1 -(b + 1) 2 + 2φ(x + 1). With the change of probability defined by [START_REF] Exton | Multiple Hypergeometric Functions And Applications[END_REF] taking b ′ = b(φ, x), the stochastic integrals simplify to (see [START_REF] Zani | Large deviations for squared radial Ornestein-Uhlenbeck processes[END_REF] p. 125 for the details):

(13) Λ t (φ, x) = 1 t log Q b(φ,x) 0 (exp({φ + b -b(φ, x))[F (Y t ) -t/2]}).
When starting from y 0 = 0, (7) reads (t → t/2) :

pt (0, y) = √ 2πK α e γ 2 t/2 √ t n≥0 Γ(2n + α + 3 2 ) 4 n n!Γ(n + α + 1) (1 -y 2 ) n+α f T 1 ⋆ f C 2n+γ (1/t),
where p = -2(α + 1) = 2b ≤ -2 and γ = -(p + 1)/2 = α + 1/2. Denote by ( 14)

D(x) = {φ ∈ D 1 (x) : G(φ, x) = b + b(φ, x) + φ < 0} .
For any φ ∈ D(x), the expectation ( 13) is finite and a simple computation gives :

Λ t (φ, x) = - φ + b -b(φ, x) 2 + 1 t log Q b(φ,x) 0 ((1 -Y 2 t ) -(φ+b-b(φ,x))/2 ) = Λ(φ, x) + 1 t log √ 2πK α(φ,x) R t (φ, x) √ t ,
where

R t (φ, x) = n≥0 Γ(2n -b(φ, x) + 1/2) 4 n n!Γ(n -b(φ, x)) B n - φ + b + b(φ, x) 2 , 1 2 e γ 2 t/2 f T 1 ⋆ f C 2n+γ ( 1 t ) , α(φ, x) = -b(φ, x) -1
and B stands for the Beta function. With regard to (1), one has for φ ∈ D(x) :

lim t→∞ Q b(φ,x) 0 ((1 -Y 2 t ) -(φ+b-b(φ,x))/2 ) = C b,φ,x 1 -1
(1 -y 2 ) -[φ+b+b(φ,x)]/2 -1 dy < ∞ by dominated convergence Theorem. Hence Λ t → Λ as t → ∞. The following lemma, which proof is postponed to the appendix, details the domain D(x) (see ( 14)) of Λ t :

Lemma 1. Denote by

φ 0 (x) = - (b + 1) 2 2(x + 1) . i)If x < (b 2 + 3)/2(b -1): then D = (-∞, φ 0 (x)). ii) If (b 2 + 3)/2(b -1) < x < -1: then D(x) = (-∞, φ 1 (x)) where φ 1 (x) is solution of G(φ, x) = 0. iii) If x > -1: then D(x) = (φ 0 (x), φ 1 (x)).
In case i) of Lemma above, Λ is steep, i.e. its gradient is infinite at the boundary of the domain (for a precise definition, see [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]). It achieves its unique minimum in φ m (x) solution of ∂Λ ∂φ (φ, x) = 0 , i.e. b(φ(x), x) = x. It is easy to see that

φ m (x) = x + 1 2 - (b + 1) 2 2(x + 1) < φ 0 (x) .
Hence, Gärtner-Ellis Theorem gives for x < b < (b 2 + 3)/2(b -1), lim

t→∞ 1 t log P ( bt ≤ x) = lim t→∞ 1 t log P (S t,x ≤ 0) = inf φ∈]∞,φ 0 (x)] Λ(φ, x) = Λ(φ m (x), x) = - 1 4 (x -b) 2 x + 1 . If b < x < (b 2 + 3)/2(b -1), notice that φ m (x) > 0 and lim t→∞ 1 t log P ( bt ≥ x) = lim t→∞ 1 t log P (S t,x ≥ 0) = inf φ∈(0,φ 0 (x)] Λ(φ, x) = Λ(φ m (x), x) = - 1 4 (x -b) 2 x + 1 .
In cases ii) and iii) of Lemma 1, Λ is not steep. Nevertheless, if the infimum of Λ is reached in

• D(x), we can follow the scheme of Gärtner-Ellis theorem for the change of probability in the infimum bound. This infimum is reached if and only if [START_REF] Lassalle | Polynômes de Jacobi généralisés[END_REF] ∂Λ ∂φ (φ 1 (x), x) > 0 , i.e. if φ m (x) < φ 1 (x).

In case x + 1 > 0, we know (see proof of Lemma 1) that φ 1 (x) < φ m (x). If x + 1 < 0, we check the sign of G(φ m (x), x). We get the following dichotomy : Let x 0 denote the unique solution of g(x)

:= 4x(x + 1) -(b -x) 2 = 0, x < -1. Since g is decreasing on ]-∞, -1] and g(b 2 +3/(2(b-1)) = (3/4)(b+1) 2 > 0 = g(x 0 ), then x 0 > (b 2 +3)/[2(b-1)]. • if (b 2 + 3)/2(b -1) < x < x 0 < -1
, the derivative ∂Λ/∂φ(φ 1 (x), x) > 0, Λ achieves its minimum on φ m (x) and lim

t→∞ 1 t log P ( bt ≥ x) = Λ(φ m (x), x) = - (x -b) 2 4(x + 1
) .

• if x 0 < x < -1 or x > -1, then ∂Λ/∂φ(φ 1 (x), x) < 0. We apply Theorem 2 of the appendix, which is due to Zani [START_REF] Zani | Large deviations for squared radial Ornestein-Uhlenbeck processes[END_REF]. Let us verify that the assumptions are satisfied, and more precisely that Λ t can take the form [START_REF] Overbeck | Estimation for continuous branching processes[END_REF]. Indeed, the only singularity

φ 1 (x) of R t comes from B (n -[φ + b + b(φ, x)]/2, 1/
2) when n = 0, and more precisely, from Γ(-[φ + b + b(φ, x)]/2) . We can write

(16) Λ t (φ, x) = Λ(φ, x) + 1 t log Γ - φ + b + b(φ, x) 2 + 1 t log √ 2πK α(φ,x) Rt (φ, x) √ t , where (17) Rt (φ 
, x) = R t (φ, x)/Γ(-[φ + b + b(φ, x)]/2). Now ∀n ≥ 0, B n - φ + b + b(φ, x) 2 , 1 2 /Γ - φ + b + b(φ, x) 2 
is analytic on some neighbourhood of φ 1 (x). Besides,

lim φ→φ 1 (x) ,φ<φ 1 (x) b + φ + b(φ, x) φ -φ 1 (x) = c > 0 ,
and since lim ρ→0 + ρΓ(ρ) = 1, then φ 1 (x) is a pole of order one of Γ (φ + b + b(φ, x)/2) and one writes:

1 t log Γ - φ + b + b(φ, x) 2 = - log(φ 1 (x) -φ) t + h(φ) t .
The function h is analytic on D(x) and can be extended to an analytic function on ]φ 1 (x) -ξ, φ 1 (x) + ξ[ for some positive ξ. Finally, to satisfy Assumption 1 of the appendix, we focus on Rt (φ, x)/ √ t and show that it is bounded uniformly as t → ∞. To proceed, we shall prove that this ratio is bounded from above and below away from 0. Setting A n (t) := e γ 2 t/2 f T 1 ⋆ f C 2n+γ (1/t), one has :

A n (t) √ t ≤ e γ 2 t/2 √ t k,l≥0 U k,n 1/t 0 exp - 1 2 (2n + 2k + γ) 2 s + π 2 (l + 1 2 ) 2 ( 1 t -s) ds s 3/2 = e γ 2 t/2 √ t k,l≥0 U k,n ∞ t exp - 1 2 (2n + 2k + γ) 2 s + π 2 (l + 1 2 ) 2 ( s -t ts ) ds √ s < e -2n 2 k,l≥0 U k,n e -2k 2 ∞ t exp - 1 2 (2n + 2k + γ) 2 (s -t) + π 2 (l + 1 2 ) 2 ( s -t ts ) ds √ ts = e -2n 2 k,l≥0 U k,n e -2k 2 ∞ 0 exp - 1 2 (2n + 2k + γ) 2 s + π 2 l 2 ( s t(t + s) ) ds t(t + s) with U k,n = Γ(2n + k + γ)2 2n+γ (2n + 2k + γ) k!Γ(2n + γ) .
Let Θ(x) = l∈Z e -πl 2 x = 1 + 2 l≥1 e -πl 2 x denote the Jacobi Theta function ( [START_REF] Biane | Probability Laws Related To The Jacobi Theta and Riemann Zeta Functions, and Brownian Excursions[END_REF]). Then

A n (t) √ t < e -2n 2   k≥0 U k,n e -2k 2 ∞ 0 exp - (2n + 2k + γ) 2 s 2 Θ πs 2t(t + s) ds t(t + s) + C(n, t)   where C(n, t) = 1 2 √ t k,l≥0 U k,n e -2k 2 ∞ 0 exp - (2n + 2k + γ) 2 s 2 ds √ t + s .
Recall that Θ(x) = (1/ √ x)Θ(1/x) ( [START_REF] Biane | Probability Laws Related To The Jacobi Theta and Riemann Zeta Functions, and Brownian Excursions[END_REF]), which yields :

A n (t) √ t < e -2n 2 k≥0 U k,n e -2k 2 ∞ 0 exp - (2n + 2k + γ) 2 s 2 Θ 2t(t + s) πs ds √ s + C(n) 2 √ t
where

C(n) = e -2n 2 k,l≥0 U k,n e -2k 2 ∞ 0 exp - (2n + 2k + γ) 2 s 2 ds √ s .
Since e -l 2 z < e -lz , then Θ(z) ≤ 3 for z > 1. Hence, as 2t/π ≤ 2t(t + s)/(πs), then for t large enough:

A n (t) √ t < 3e -2n 2 k≥0 U k,n e -2k 2 ∞ 0 exp - (2n + 2k + γ) 2 s 2 ds √ s + C(n) < 4C(n).
The upper bound follows since n C(n) < ∞. Besides,

Rt (φ, x) √ t > √ πΓ(1/2 -b(φ, x)) Γ(-b(φ, x))Γ{[1 -(φ + b + b(φ, x)]/2} A 0 (t) √ t = C(b, φ, x) k,l≥0 (-1) k V k ∞ 0 exp - 1 2 (2k + γ) 2 s + π 2 (l + 1 2 ) 2 ( s t(t + s) ) ds t(t + s)
where V k (t) := U k,0 e -2k(k+γ)t . One may choose t large enough independent of k such that V k (t) ≥ V k+1 (t) for all k ≥ 0. In fact, such t satisfies:

e 2(2k+γ+1)t ≥ e 2t ≥ sup k≥0 U k+1,0 U k,0 = sup k≥0 (k + γ)(2k + γ + 2) (k + 1)(2k + γ) Then: Rt √ t > C(b, φ, x)[V 0 (t) -V 1 (t)] l≥0 ∞ 0 exp - 1 2 γ 2 s + π 2 (l + 1 2 ) 2 ( s t(t + s) ) ds t(t + s) > C(b, φ, x)[γ2 γ -V 1 (t)] l≥0 ∞ 0 exp - 1 2 γ 2 s + π 2 (l + 1) 2 ( s t(t + s) ) ds t(t + s) = C(b, φ, x) 2 [γ2 γ -V 1 (t)] ∞ 0 e -γ 2 s/2 Θ πs 2t(t + s) ds t(t + s) -C(t)
where

C(t) = 1 2 √ t ∞ 0 e -γ 2 s/2 ds (t + s) < c ∞ 0 e -γ 2 s/2 ds √ s , c < 2 π .
for t large enough. Following the same scheme as for the upper bound, one gets:

Rt √ t > C(b, φ, x) 2 γ2 γ 2 π ∞ 0 e -γ 2 s/2 Θ 2t(t + s) πs ds √ s -C(t) > C(b, φ, x) 2 γ2 γ 2 π -c ∞ 0 e -γ 2 s/2 ds √ s > 0.
As a result, lim

t→∞ 1 t log P ( bt ≥ x) = Λ(φ 1 (x), x) = -(x + 2 + (b -x) 2 + 4(x + 1)),
which ends the proof of Theorem 1.

2.3. Jacobi and squared Bessel processes duality. By Itô's formula and Lévy criterion, one claims that

(Z t = Y 2 t ) t≥0 is a [0, 1]-valued Jacobi process of parameters d = 1, d ′ = -2b ≥ 2. Indeed: dZ t := d(Y 2 t ) = 2Y t dY t + Y t = 2Y t 1 -Y 2 t dW t + [(2b -1)Y 2 t + 1]dt = 2 Z t (1 -Z t )sgn(Y t )dW t + [(2b -1)Z t + 1]dt = 2 Z t (1 -Z t )dB t + [(2b -1)Z t + 1]dt.
Using the skew product previously stated, there exists R, a squared Bessel process of dimension d ′ = 2(ν + 1) = -2b and starting from R 0 = r so that:

νt := -bt -1 = log(1 -Y 2 t ) + t 2 t 0 Y 2 s 1-Y 2 s ds
is another estimator of ν based on a Jacobi trajectory observed till time t. Set t = log u, then with associated rate function :

νlog u = log[u(1 -Y 2 log u )] 2 log u 0 Y 2 s 1-Y 2 s ds = log[u(1 -Y 2 log u )] 2 u 1 Y 2 log s s(1-Y
I ν (x) = (x-ν) 2 4x if x ≥ x 1 := -(ν+2)+2 √ ν 2 +ν+1 3 1 -x + (ν -x) 2 -4x if x < x 1 .
A glance at both rate functions gives I ν (x) = J -(ν+1) (-(x + 1)) and x 0 = -(x 1 + 1).

Appendix

3.1.

A large deviations principle in a non steep case. Let {Y t } t≥0 be a family of real random variables defined on (Ω, F, P ), and denote by µ t the distribution of Y t . Suppose -∞ < m t := EY t < 0. We look for large deviations bounds for P (Y t ≥ y). Let Λ t be the n.c.g.f. of Y t : Λ t (φ) = 1 t log E(exp{φtY t }) , and denote by D t the domain of Λ t . We assume that there exists 0 < φ 1 < ∞ such that for any t sup{φ : φ ∈ D t } = φ 1 and [0, φ 1 ) ⊂ D t . We assume also that for φ ∈ D t Assumption 1. [START_REF] Overbeck | Estimation for continuous branching processes[END_REF] Λ t (φ) = Λ(φ) -α t log(φ 1 -φ) + R t (φ) t where • α > 0 • Λ is analytic on (0, φ 1 ), convex, with finite limits at endpoints, such that Λ ′ (0) < 0, Λ ′ (φ 1 ) < ∞, and Λ ′′ (φ 1 ) > 0.

• R t is analytic on (0, φ 1 ) and admits an analytic extension on a strip D γ β = (φ 1 -β, φ 1 + β) × (-γ, γ), where β and γ are independent of t.

• R t (φ) converges as t → ∞ to some R(φ) uniformly on any compact of D γ β .

Theorem 2. Under 1 For any Λ ′ (0) < y < Λ ′ (φ 1 ), ( 19) lim The rate function is continuously differentiable with a linear part. • If x + 1 < 0, ∂G ∂φ > 0 and G(•, x) is increasing. Then we see easily that G(φ 0 (x), x) < 0 iff x < (b 2 + 3)(2(b -1)), which determines cases i) and ii).

• If x + 1 > 0, φ → ∂G ∂φ is increasing hence there exists φ(x) such that ∂G ∂φ ( φ(x), x) = 0.

We compute

φ(x) = x + 1 2 - (b + 1) 2 2(x + 1) = φ m (x) .
We see that G( φ(x), x) < 0, and there exists φ 1 (x) < φ(x) such that G(φ 1 (x), x) = 0, and D(x) = (φ 0 (x), φ 1 (x)) .

t→+∞ 1 t 1 t

 11 log P (Y t ≥ y) = -sup φ∈(0,φ 1 ) {yφ -Λ(φ)} .For any y ≥ Λ ′ (φ 1 ), log P (Y t ≥ y) = -yφ 1 + Λ(φ 1 ) .

3. 2 .

 2 Proof of Lemma 1 : Note first that (b 2 + 3)(2(b -1)) < -1 if b < -1 and that the condition φ ∈ D 1 (x) ⇒ φ ≥ φ 0 (x) if x > -1 and φ ≤ φ 0 (x) if x < -1. To examine the behaviour of G, we compute ∂G ∂φ (φ, x) = 1 -x + 1(b + 1) 2 + 2φ(x + 1) .

  2 log s ) ds and {ν log u } u satisfies a LDP with speed log u and rate function J -(ν+1) (-(x + 1)).When starting at R 0 = 1, the MLE of ν based on a Bessel trajectory is given by (cf[START_REF] Zani | Large deviations for squared radial Ornestein-Uhlenbeck processes[END_REF], p. 132):

	ν1 t =	t 0	dXs Xs -2 2 t 0 ds Xs	t 0	ds Xs	=	log(X t ) t ds 2 0 Xs

(P α,β n (x)) n≥0 are normalized such that they form an orthogonal basis with respect to the probability measure W (y)dy which is not the same used in[START_REF] Andrews | Special functions[END_REF].