# Sample path large deviations for squares of stationary Gaussian processes

Marguerite Zani \*

#### Abstract

In this paper, we show large deviations for random step functions of type

$$Z_n(t) = \frac{1}{n} \sum_{k=1}^{[nt]} X_k^2,$$

where  $\{X_k\}_k$  is a stationary Gaussian process. We deal with the associated random measures  $\nu_n = \frac{1}{n} \sum_{k=1}^n X_k^2 \delta_{k/n}$ . The proofs require a Szegö theorem for generalized Toeplitz matrices, which is presented in the Appendix and is analogous to a result of Kac, Murdoch and Szegö [10]. We also study the polygonal line built on  $Z_n(t)$  and show moderate deviations for both random families.

AMS classification: primary: 60G15, 60F10, 47B35 secondary: 60G10, 60G17. Keywords: Gaussian processes, Large deviations, Szegö theorem, Toeplitz matrices.

## 1 Introduction

The aim of this paper is to provide a large deviations principle (LDP) for random functions of type

$$Z_n(t) = \frac{1}{n} \sum_{k=1}^{[nt]} X_k^2,$$
 (1)

and the associated polygonal line

$$\tilde{Z}_n(t) = Z_n(t) + \left(t - \frac{[nt]}{n}\right) X_{[nt]+1}^2,$$
(2)

where  $\{X_n\}_n$  is a stationary Gaussian process having spectral density f defined on the torus  $\mathbb{T} = ]-\pi,\pi]$ . We assume f is continuous positive on  $\mathbb{T}$ .

Large deviations for random measures date back to Sanov [19] who showed a LDP for the family of empirical measures

$$\frac{1}{n}\sum_{i=1}^{n}\delta_{X_{i}},\tag{3}$$

<sup>\*</sup>Laboratoire d'Analyse et de Mathématiques Appliquées, CNRS UMR 8050, Université Paris Est Créteil, 61 av du Gal de Gaulle, 94010, Créteil, France. e-mail: zani@u-pec.fr

where  $X_i$  are i.i.d. random variables.

Then, the first results on large deviations for random paths were given by Borovkov [2] and Varadhan [20]. In [2], Borovkov provides a LDP for the random polygonal line joining the points  $(\frac{k}{n}, \frac{S_k}{x})$  where  $S_k = \sum_{i=1}^k X_i$  and x = x(n) is in the range

$$\lim_{n \to \infty} \sup_{n} \frac{x}{n} < \infty, \quad \lim_{n \to \infty} \frac{x}{\sqrt{n \ln n}} = \infty \tag{4}$$

He also showed large deviations for the paths  $\eta(nt)/x$  where  $0 \le t \le 1$  and  $\eta$  is a separable process with independent increments. The large deviations are given in the spaces  $\mathcal{C}([0,1])$  ( the set of continuous functions on [0,1]) or  $\mathcal{D}([0,1])$  ( the set of cadlag functions on [0,1]) endowed with the uniform metric. Meanwhile, Varadhan [20] proved functional large deviations in  $\mathcal{D}([0,1])$  for the random step functions

$$S_n(t) = \frac{1}{n} \sum_{i=1}^{[nt]} X_i \tag{5}$$

where  $t \in [0,T]$  and [nt] denotes the integer part of nt. Later on, Mogulskii ([13]) improved these results: he proved large deviations for the polygonal line  $(\frac{k}{n}, \frac{S_k}{x})$  in the range

$$\lim_{n \to \infty} \sup_{n} \frac{x}{n} < \infty, \quad \lim_{n \to \infty} \frac{x}{\sqrt{n}} = \infty \tag{6}$$

in the space  $\mathcal{D}([0,1])$  endowed with the Skorokhod metric. For more general results on large deviations for processes with independent increments, see also Lynch and Sethuraman [11], de Acosta [3] and Mogulskii [14].

The results of [2, 20, 13] concerning step functions and continuous random polygonal lines built on sums of i.i.d. random variables can be found in the books of Dupuis and Ellis [6] and Dembo and Zeitouni [5].

In our paper, to derive the large deviations, we consider the distribution derivative of  $t \to Z_n(t)$  and  $t \to \tilde{Z}_n(t)$ . Therefore we deal with the random measures  $\nu_n$  and  $\tilde{\nu}_n$  given by

$$\langle \nu_n, h \rangle = \frac{1}{n} \sum_{k=1}^n X_k^2 h(\frac{k}{n}) \tag{7}$$

and

$$\langle \tilde{\nu}_n, h \rangle = \sum_{k=1}^n X_k^2 \int_{(k-1)/n}^{k/n} h(s) ds, \qquad (8)$$

for h in  $\mathcal{C}([0,1])$ . Let  $\mathcal{M}([0,1])$  be the set of positive bouded measures on [0,1] endowed with the weak topology. Therefore  $\nu_n$  and  $\tilde{\nu}_n$  are a.s. in  $\mathcal{M}([0,1])$ .

Analogous random measures have been investigated before by Dembo and Zeitouni [4], and Gamboa and Gassiat [7]. Previous works on LDP for this kind of random functions can be found in Gamboa, Rouault and Zani [8] and Perrin and Zani [16] for stationary Gaussian processes, and in Najim [15] and Maïda, Najim and Péché [12] for

i.i.d. sequences. We provide here a functional LDP for  $\{\nu_n\}$  and  $\{\tilde{\nu}_n\}$ , and derive the associated LDP for  $\{Z_n\}$  and  $\{\tilde{Z}_n\}$ . We also prove moderate deviations. The central limit theorem is known. Although part of this work was already presented in [21] the present work provide a full version with proofs and some extensions.

The remaining of the paper is organized as follows. We present in Section 2 the large and moderate deviations results. Section 3 is devoted to the proofs of Theorems. Deriving the LD result, we needed a Szegö type theorem for generalized Toeplitz matrices. This precise result is unknown to our knowledge and despite a very similar result has been shown in Kac Murdoch and Szego (see [10] and [9]), for seek of completenes we prove it in the Appendix. The remaining of the Appendix gather the proofs of technical lemmas.

## 2 Large and moderate deviations

For any h in  $\mathcal{C}([0,1])$ , define

$$\Lambda(h) = \begin{cases} -\frac{1}{4\pi} \int_{[0,1]} \int_{\mathbb{T}} \log(1 - 2h(t)f(\theta)) d\theta dt & \text{if } \forall (t,\theta) \in [0,1] \times \mathbb{T}, \ h(t)f(\theta) < 1/2 \\ +\infty & \text{otherwise} \end{cases}$$

Let  $\Lambda^*$  be the Legendre dual of  $\Lambda$ . From Rockafellar [18], we can detail this dual function as following:

**Proposition 2.1** Let  $\nu$  be the measure in  $\mathcal{M}([0,1])$  defined for any h in  $\mathcal{C}([0,1])$  by

$$\langle \nu, h \rangle = \frac{1}{2\pi} \int_{\mathbb{T}} f(\theta) d\theta \int_{[0,1]} h(x) dx.$$

Let  $\mu \in \mathcal{M}([0,1])$  having the following Lebesgue decomposition with respect to  $\nu$ :  $\mu = l\nu + \mu^{\perp}$  where  $l \in \mathcal{C}([0,1])$  and  $\mu^{\perp}$  is the singular part. Then

$$\Lambda^*(\mu) = \int_{[0,1]} u^*(l(t)) \, \nu(dt) + \int_{[0,1]} \frac{\mu^{\perp}(dt)}{2M} \,,$$

where

$$u(x) = -\frac{1}{4\pi} \int_{\mathbb{T}} \log(1 - 2x f(\theta)) d\theta,$$

and

$$M = \operatorname{esssup} f$$
.

The function u is  $C^2$  on  $(-\infty, 1/2M)$ , and

$$u'(x) = \frac{1}{2\pi} \int_{\mathbb{T}} \frac{f(\theta)}{1 - 2x f(\theta)} d\theta$$

$$u''(x) = \frac{1}{\pi} \int_{\mathbb{T}} \frac{f(\theta)^2}{(1 - 2xf(\theta))^2} d\theta > 0$$

Hence u' is strictly increasing, and  $\lim_{x\to-\infty} u'(x) = 0$ . On the other hand, we denote  $u'(1/2M) := \lim_{x\to+\infty} u'(x) \le +\infty$  (e.g. if  $f \in \mathcal{C}^2$ ,  $u'(1/2M) = +\infty$ ). The recession function (see Theorem 8.5 of [18]) is  $r(u^*; y) = y/2M$ .

#### 2.1 Large Deviations

We can now state the LDP result:

**Theorem 2.2** The families  $\{\nu_n\}_{n\in\mathbb{N}}$  and  $\{\tilde{\nu}_n\}_{n\in\mathbb{N}}$  satisfy a LDP in  $\mathcal{M}([0,1])$  with speed n and rate function  $\Lambda^*$ .

We can carry the previous LDP to the random functions  $Z_n$  and  $\tilde{Z}_n$ . Following Lynch and Sethuraman [11] and de Acosta [3], we introduce some notations. Let  $D([0,1],\mathbb{R})$  be the space of cadlag real functions on [0,1], and  $bv([0,1],\mathbb{R}) \subset D([0,1],\mathbb{R})$  the space of bounded variation functions. We can identify  $bv([0,1],\mathbb{R})$  with  $\mathcal{M}([0,1])$ : to h in  $bv([0,1],\mathbb{R})$  corresponds  $\mu_h$  in  $\mathcal{M}([0,1])$  characterized by  $\mu_h([0,t]) = h(t)$ . Up to this identification, the topological dual of  $bv([0,1],\mathbb{R})$  is the set  $\mathcal{C}([0,1])$ . We endow  $bv([0,1],\mathbb{R})$  with the  $w^*$ -topology written  $\sigma$ , i.e. the topology induced by  $\mathcal{C}([0,1])$  on  $\mathcal{M}([0,1])$ . Now, let us define the rate function associated to  $Z_n$  and  $\tilde{Z}_n$ : let h be in  $bv([0,1],\mathbb{R})$  and  $\mu_h$  the associated measure in  $\mathcal{M}([0,1])$ ; let  $\mu_h = (\mu_h)_a + (\mu_h)_s$  be the Lebesgue decomposition of  $\mu_h$  in absolutely continuous and singular terms with respect to the Lebesgue measure on [0,1]; let  $h_a(t) = (\mu_h)_a([0,t])$  and  $h_s(t) = (\mu_h)_s([0,t])$ . Set

$$\Phi(h) = \int_{[0,1]} u^*(h'_a)(t) \,\nu(dt) + rh_s(1) \,,$$

where  $u^*$  and r are defined in Proposition 2.1.

**Theorem 2.3** The families of random functions  $\{Z_n\}$  and  $\{\tilde{Z}_n\}$  satisfy a LDP on the space  $(bv([0,1],\mathbb{R}),\sigma)$ , with speed n and rate function  $\Phi$ .

#### 2.2 Moderate deviations

We can state also in this case a moderate deviation principle. We detail it for  $\nu_n$ , it is the same for  $\tilde{\nu}_n$ . Let  $\{a_n\}$  be a sequence of positive real numbers such that  $a_n \to 0$  and  $na_n \to +\infty$  when  $n \to +\infty$ . Set

$$Y_n = \sqrt{na_n}(\nu_n - E(\nu_n)).$$

We have the following moderate deviations principle

**Theorem 2.4**  $\{Y_n\}$  satisfy a LDP with speed  $a_n^{-1}$  and good rate function defined, for all  $\mu \in \mathcal{M}([0,1])$  by

$$I(\mu) = \begin{cases} \frac{\pi}{2\bar{f}^2} \int_{[0,1]} l(x)^2 dx & if \quad \mu(dx) = l(x) dx \\ +\infty & otherwise, \end{cases}$$

where

$$\bar{f}^2 = \frac{1}{2\pi} \int_{\mathbb{T}} f^2 \,.$$

## 2.3 Generalizations

The previous results can be generalized to some other random functions.

## 2.3.1 Weighted random variables

Assume g is a continuous function on [0,1] and define

$$W_n = \frac{1}{n} \sum_{k=1}^{[nt]} g\left(\frac{k}{n}\right) X_k^2, \tag{9}$$

For any h in  $\mathcal{C}([0,1])$ , define

$$\Lambda(h) = \begin{cases} -\frac{1}{4\pi} \int_{[0,1]} \int_{\mathbb{T}} \log(1-2h(t)g(t)f(\theta)) \, d\theta \, dt & \text{if } \forall (t,\theta) \in [0,1] \times \mathbb{T}, \ h(t)g(t)f(\theta) < 1/2 \\ +\infty & \text{otherwise} \end{cases}$$

The previous large deviations results apply with rate function  $\Lambda^*$ .

#### 2.3.2 Quadratic forms built on the stationary process

We define

$$m = \operatorname{essinf} f$$

and assume m > 0. Let F be a continuous positive function on [m, M]. Let O be an orthonormal matrix such that  $O^*T_n(f)O$  is the diagonal matrix whose i-th diagonal element is  $\mu_{i,n}$  the i-th eigenvalue of  $T_n(f)$ . Define

$$F(T_n(f)) = OD_f O^*$$

where  $D_f$  is the diagonal matrix whose *i*-th element is  $F(\mu_{i,n})$ . Define the following quadratic form

$$W_n = \frac{1}{n} X^* F(T_n(f)) X = \frac{1}{n} Y^* Y,$$

where  $Y = (Y_1, \dots Y_n)$  is the vector defined by

$$Y = F(T_n(f))^{1/2}X.$$

In this case,  $W_n$  satisfies a LDP and moderate deviations theorem with rate function  $\Lambda^*$  where for any h in  $\mathcal{C}([0,1])$ 

$$\Lambda(h) = \begin{cases} -\frac{1}{4\pi} \int_{[0,1]} \int_{\mathbb{T}} \log[1 - 2h(t)f(\theta)F[f(\theta)]] d\theta dt & \text{if } \forall (t,\theta) \in [0,1] \times \mathbb{T}, \ h(t)f(\theta) < 1/2 \\ +\infty & \text{otherwise} \end{cases}$$

.

## 3 Proof of the large and moderate deviations

We first give some asymptotic properties for the families  $\{\nu_n\}_n$  and  $\{\tilde{\nu}_n\}_n$ .

## 3.1 Weak convergence of $\nu_n$ and $\{\tilde{\nu}_n\}_n$

**Lemma 3.1** Let h be in C([0,1]).

$$\langle \nu_n, h \rangle \to \langle \nu, h \rangle$$
 in probability as  $n \to +\infty$  (10)

and

$$\langle \tilde{\nu}_n, h \rangle \to \langle \nu, h \rangle$$
 in probability as  $n \to +\infty$ 

where

$$\langle \nu, h \rangle = \bar{f} \int_{[0,1]} h(x) \, dx \,,$$

and

$$\bar{f} = \frac{1}{2\pi} \int_{\mathbb{T}} f(\theta) \, d\theta \, .$$

#### Proof:

 $\overline{\text{Let } h}$  be in  $\mathcal{C}([0,1])$ , and consider

$$\langle \nu_n, h \rangle = \frac{1}{n} \sum_{k=1}^n X_k^2 h(\frac{k}{n}).$$

Set X the Gaussian vector  $(X_1, X_2, \cdots, X_n)$  and  $\Delta_h$  the diagonal matrix

$$\begin{pmatrix} h(\frac{1}{n}) & 0 & 0 & 0 \\ 0 & h(\frac{2}{n}) & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & h(1) \end{pmatrix}$$

Therefore we can write

$$\langle \nu_n, h \rangle = \frac{1}{n} X^* \, \Delta_h \, X \,,$$

where  $X^*$  denote the transpose of X. By an orthonormal change of basis,

$$\langle \nu_n, h \rangle = \frac{1}{n} U_n^* T_n(f)^{1/2} \Delta_h T_n(f)^{1/2} U_n,$$

where  $U_n$  is a standard normal vector and  $T_n(f)$  the order-n Toeplitz matrix associated to f. Therefore

$$\langle \nu_n, h \rangle = \frac{1}{n} \sum_{k=1}^n \lambda_{k,n} Z_{k,n} \tag{11}$$

where  $\{Z_{k,n}\}$  are independent  $\chi^2(1)$ -distributed random variables, and  $\{\lambda_{k,n}\}$  are the eigenvalues of  $T_n(f)^{1/2}\Delta_hT_n(f)^{1/2}$ .

We can write as well

$$\langle \tilde{\nu}_n, h \rangle = \frac{1}{n} \sum_{k=1}^n \tilde{\lambda}_{k,n} Z_{k,n} \tag{12}$$

where  $\{Z_{k,n}\}$  are independent  $\chi^2(1)$ -distributed random variables, and  $\{\tilde{\lambda}_{k,n}\}$  are the eigenvalues of  $T_n(f)^{1/2}A_hT_n(f)^{1/2}$ , and the matrix  $A_h$  is diagonal with k-th diagonal term

 $(A_h)_{k,k} = \int_{(k-1)/n}^{k/n} h(s) ds.$ 

We have the two following results on the distributions  $\{\lambda_{k,n}\}$  and  $\{\tilde{\lambda}_{k,n}\}$ , which proofs are postponed to the Appendix.

**Lemma 3.2** The sequences  $\{\lambda_{k,n}\}$  and  $\{\tilde{\lambda}_{k,n}\}$  are bounded as follows:

$$\forall n \in \mathbb{N}, \ \forall \ 1 \le k \le n, \qquad |\lambda_{k,n}| \le ||h||_{\infty} ||f||_{\infty}$$
$$|\tilde{\lambda}_{k,n}| \le ||h||_{\infty} ||f||_{\infty}$$

**Lemma 3.3** For any p in  $\mathbb{N}$ ,  $p \geq 1$ ,

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{k=1}^n\lambda_{k,n}^p=\frac{1}{2\pi}\int_{[0,1]}\int_{\mathbb{T}}(h(t)f(\theta))^p\,dtd\theta\,.$$

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} (\tilde{\lambda}_{k,n})^p = \frac{1}{2\pi} \int_{[0,1]} \int_{\mathbb{T}} (h(t)f(\theta))^p dt d\theta.$$

With the above lemma,

$$\lim_{n \to +\infty} E(\langle \nu_n, h \rangle) = \langle \nu, h \rangle.$$

Moreover,

$$\lim_{n \to +\infty} n \operatorname{Var} \langle \nu_n, h \rangle = \frac{2}{n} \sum_{k=1}^n \lambda_{k,n}^2 = \frac{1}{\pi} \int_{[0,1]} \int_{\mathbb{T}} (h(t)f(\theta))^2 dt d\theta.$$

We do as well for  $\tilde{\nu}_n$ , and it ends the proof of lemma 3.1.

#### 3.2 Proof of Theorem 2.2:

The proof follows exactly the scheme [8]. We detail here for  $\nu_n$ , it is similar for  $\tilde{\nu}_n$ . With the decomposition (11), we get the n.c.g.f. of  $\nu_n$ : for any  $h \in \mathcal{C}([0,1])$ ,

$$\Lambda_n(h) = \frac{1}{n} \log E(\exp\{n\langle \nu_n, h \rangle\}) = \begin{cases} -\frac{1}{2n} \sum_{k=1}^n \log(1 - 2\lambda_{k,n}) & \text{if } \forall k, \ \lambda_{k,n} < 1/2 \\ +\infty & \text{otherwise} \end{cases}$$
(13)

From Lemma 3.3, we can determine the limit of  $\Lambda_n$  in two cases:

• if  $\forall (t, \theta) \in [0, 1] \times \mathbb{T}$   $h(t)f(\theta) < 1/2$ , then

$$\lim_{n \to +\infty} \Lambda_n(h) = -\frac{1}{4\pi} \int_{[0,1]} \int_{\mathbb{T}} \log(1 - 2h(t)f(\theta)) d\theta dt = \Lambda(h).$$

• if  $\exists (t,\theta) \in [0,1] \times \mathbb{T}$ ;  $h(t)f(\theta) > 1/2$ , then for n large enough,  $\Lambda_n(h) = +\infty$  and

$$\lim_{n \to +\infty} \Lambda_n(h) = +\infty = \Lambda(h).$$

These two cases do not cover the whole set  $\mathcal{C}([0,1])$ . Nevertheless, this will be sufficient for the LDP, since they contain a dense subset of exposing hyperplanes of  $\Lambda^*$ .

## Upper bound

From Theorem 4.5.3 b) of [5], and the following lemma, which proof is postponed to the Appendix, the upper bound holds for compact sets.

**Lemma 3.4** For any  $\delta > 0$  and  $\mu$  in  $\mathcal{M}([0,1])$ , there exists  $h_{\delta}$  in  $\mathcal{C}([0,1])$  such that:

$$\forall (t,\theta), \ h_{\delta}(t)f(\theta) < 1/2$$

$$\int_{[0,1]} h_{\delta}(t) d\mu(t) - \Lambda(h_{\delta}) \ge \Lambda_{\delta}^{*}(\mu)$$
(14)

where

$$\Lambda_{\delta}^{*}(\mu) = \min\{\Lambda^{*}(\mu) - \delta, \frac{1}{\delta}\}.$$

## Exponential tightness

Remark that for a real number a,

$$\{\sup_{\|h\|_{\infty} \le 1} \langle \nu_n, h \rangle \ge a\} \subset \{\nu_n(1) \ge a\}.$$

If  $M = \operatorname{esssup}_{\theta} f(\theta)$ , for any y < 1/2M,

$$\limsup_{n} \frac{1}{n} \log P(\nu_n(1) \ge a) \le -ya - \frac{1}{4\pi} \int_{[0,1]} \int_{\mathbb{T}} \log(1 - 2yf(\theta)) d\theta,$$

and

$$\lim_{a \to +\infty} \limsup_{n} \frac{1}{n} \log P(\nu_n(1) \ge a) = -\infty.$$

Hence the sequence  $(\nu_n)$  is exponentially tight, and the upper bound holds for any closed set of  $\mathcal{M}([0,1])$ .

#### Lower bound

We study the set of exposed points of  $\Lambda^*$  (see [5]). Let

$$\mathcal{H} = \{ \mu \in \mathcal{M}([0,1]); \ \mu = l\nu, \ 0 < l < u'(1/2M), \ l \text{ continuous on } [0,1] \}.$$

The following two lemmas, which proofs are postponed to the Appendix, show that that  $\mathcal{H}$  is a dense subset of the exposed points of  $\Lambda^*$ , which concludes the proof of Theorem 2.2.

**Lemma 3.5** Let  $\mu = l\nu$  be in  $\mathcal{H}$ . There exists  $h_l$  in  $\mathcal{C}([0,1])$  such that

$$\forall (t,\theta) \in [0,1] \times \mathbb{T} \quad h_l(t)f(\theta) < 1/2$$

$$\forall \xi \in \mathcal{M}([0,1]) \quad \Lambda^*(\mu) - \Lambda^*(\xi) < (\mu - \xi)(h_l)$$
(15)

Furthermore, there exists  $\gamma > 1$  such that  $\Lambda(\gamma l) < +\infty$ .

Hence  $\mu$  is an exposed point of  $\Lambda^*$  with exposing hyperplane  $h_l$ .

**Lemma 3.6** Let  $\mu$  be in  $\mathcal{M}([0,1])$  such that  $\Lambda^*(\mu) < +\infty$ . There exists a sequence  $(\mu_n) \in \mathcal{H}$  such that  $\mu_n \Rightarrow \mu$  and  $\lim_{n \to +\infty} \Lambda^*(\mu_n) = \Lambda^*(\mu)$ .

## 3.3 Proof of Theorem 2.4:

The n.c.g.f. of  $Y_n$  is given for any h in  $\mathcal{C}[m, M]$  by

$$\Lambda_n(h) = a_n \log E(\exp\left\{\sqrt{\frac{n}{a_n}}(\langle \nu_n, h \rangle - E(\langle \nu_n, h \rangle))\right\})$$
$$= -\frac{a_n}{2} \sum_{k=1}^n \log\left(1 - \frac{2}{\sqrt{na_n}}\lambda_{k,n}\right) + \frac{2}{\sqrt{na_n}}\lambda_{k,n}$$

We recall that  $\{\lambda_{k,n}\}$  are the eigenvalues of the matrix  $T_n(f)^{1/2}\Delta_h T_n(f)^{1/2}$ . We can assert

$$\Lambda_n(h) = \frac{1}{n} \sum_{k=1}^n \lambda_{k,n}^2 + O\left(\frac{1}{n\sqrt{na_n}} \sum_{k=1}^n |\lambda_{k,n}|^3\right).$$

From the convergence (10), Therefore

$$\lim_{n \to +\infty} \Lambda_n(h) = \Lambda = \bar{f}^2 \int_{[0,1]} h(x)^2 dx \tag{16}$$

This function is defined on all C[0,1], then the rate function is the Legendre dual of  $\Lambda$  which is, from Rockafellar [18],

$$I(\mu) = \frac{\pi}{2\bar{f}^2} \int_{[0,1]} l(x)^2 dx,$$

where  $d_{\mu}(t) = l(x) dx$ .

## 4 Appendix

## 4.1 A Szegő Theorem for generalized Toeplitz matrices

In this paragraph we show a result on the distribution of eigenvalues of some kind of generalized Toeplitz matrices.

Suppose g is a real function defined on  $[0,1] \times \mathbb{T}$  such that for any  $x \in [0,1]$ ,  $g(x,\cdot) \in L^1(\mathbb{T})$ . Define

$$\hat{g}_k(x) = \frac{1}{2\pi} \int_{\mathbb{T}} g(x,\theta) e^{-ik\theta} d\theta$$

and

$$T_n^{\text{gen}}(g)_{k,l} = \hat{g}_{l-k}\left(\frac{k}{n}\right). \tag{17}$$

Denote by

$$\|\hat{g}_k\|_{\infty} = \sup_{x \in [0,1]} |\hat{g}_k(x)|.$$

Theorem 4.1 Under assumption

$$M := \sum_{k} \|\hat{g}_k\|_{\infty} < \infty \,, \tag{18}$$

$$\lim_{n \to \infty} \frac{1}{n} tr(T_n^{gen}(g))^p = \frac{1}{2\pi} \int_0^1 \int_{\mathbb{T}} g(x, \theta)^p d\theta dx.$$
 (19)

<u>Proof:</u> This proof is analogous to the one of [10]. Let  $\varepsilon > 0$  be fixed and  $m \in \mathbb{N}$  chosen such that:

$$\sum_{|k|>m} \|\hat{g}_k\|_{\infty} < \varepsilon$$

Consider the trigonometric polynom of degree m:

$$g^{m}(x,\theta) = \sum_{k=-m}^{m} \hat{g}_{k}(x)e^{ik\theta}$$
(20)

Let  $T_n^{\text{gen}}(g^m)$  be the generalized Topelitz matrix associated to  $g^m$  as in (17). Therefore

$$T_n^{\text{gen}}(g) = T_n^{\text{gen}}(g^m) + R$$

and the sum of the moduli of the elements of any row of R is less than  $\varepsilon$ . Hence the same is true for the eigenvalues of R i.e. for the eigenvalues of  $T_n^{\text{gen}}(g) - T_n^{\text{gen}}(g^m)$ . From the Weyl-Courant Lemma, we can therefore bound

$$|\lambda_{k,n} - \lambda_{k,n}^m| \leq \varepsilon$$
,

where  $\{\lambda_{k,n}\}_k$  and  $\{\lambda_{k,n}^m\}_k$  are the eigenvalues of  $T_n^{\text{gen}}(g)$  and  $T_n^{\text{gen}}(g^m)$  respectively non-decreasingly ordered. From assumption (18),

$$|\lambda_{k,n}| \leq M$$
,  $|\lambda_{k,n}^m| \leq M$ .

Hence for any positive integer s

$$|(\lambda_{k,n})^s - (\lambda_{k,n}^m)^s| \le \varepsilon s M^{s-1}$$
.

We can bound similarly  $|g(x,\theta)^s - g^m(x,\theta)^s|$  and therefore to show (19) it is enough to consider the polynomial  $g^m$ . We derive

$$\lim_{n\to\infty} \frac{1}{n} \operatorname{tr} \left( T_n^{\text{gen}}(g^m) \right)^p = \sum_{D_n} \sum_{j=1}^m \hat{g}_{l_1} \left( \frac{j+l_1}{n} \right) \hat{g}_{l_2} \left( \frac{j+l_1+l_2}{n} \right) \cdots \hat{g}_{l_p} \left( \frac{j}{n} \right) ,$$

where  $D_p = \{(l_1, \dots l_p) \in \mathbb{Z}^p; \sum l_i = 0\}$  and the second sum in the RHS above is on j such that  $j + \sum_{1}^{k} l_i$  – for k from 1 to p – is in the range  $1, \dots, n$ , i.e.  $sp \leq j \leq n - sp$ . Therefore we have to suppress at most 2sp+1 terms. From classical results on Riemann sums,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{D_p} \sum_{j=1}^m \hat{g}_{l_1} \left( \frac{j+l_1}{n} \right) \hat{g}_{l_2} \left( \frac{j+l_1+l_2}{n} \right) \cdots \hat{g}_{l_p} \left( \frac{j}{n} \right)$$

$$= \sum_{D_p} \int_0^1 \hat{g}_{l_1}(x) \hat{g}_{l_2}(x) \cdots \hat{g}_{l_p}(x) dx$$

$$= \sum_{(l_1, \dots l_p) \in \mathbb{Z}^p} \frac{1}{2\pi} \int_{\mathbb{T}} e^{i(l_1+l_2+\dots l_p)} d\theta \int_0^1 g_{l_1}(x) \hat{g}_{l_2}(x) \cdots \hat{g}_{l_p}(x) dx$$

$$= \frac{1}{2\pi} \int_0^1 \int_{\mathbb{T}} g(x, \theta)^p d\theta dx.$$

## 4.2 Proof of Proposition 2.1

This lemma is a consequence of Theorem 5 of Rockafellar [18]. For the sake of clarity, we recall the framework of that paper. Let h be in  $\mathcal{C}([m, M])$ , and

$$\Lambda(h) = \int_{[m,M]} u(t,h(t)) \, d\nu(t) \,,$$

where u(t,x) defined on  $[m,M] \times \mathbb{R} \to \mathbb{R}$  is a function convex in x, and  $\nu$  a non-negative,  $\sigma$ -finite measure. For any  $\mu$  in  $\mathcal{M}([m,M])$  having, with respect to  $\nu$  the Lebesgue decomposition  $\mu = l\nu + \mu^{\perp}$ , where  $l \in \mathcal{C}([m,M])$ , and  $\mu^{\perp}$  is the singular part, then

$$\Lambda^*(\mu) = \int_{[m,M]} u^*(t,l(t)) \, d\nu(t) + \int_{[m,M]} r(u^*(t,\cdot); d\mu^{\perp}/d\eta(t)) \, d\eta(t)$$
 (21)

where  $\eta$  is any nonnegative measure of  $\mathcal{M}([m, M])$  with respect to which  $\mu^{\perp}$  is absolutely continuous, and  $u^*(t, \cdot)$  is the dual function of  $u(t, \cdot)$ :

$$\forall t, \quad u^*(t,y) = \sup_{x \in \mathbb{R}} \{xy - u(t,x)\}.$$

Applying the result of (21) to  $u(t,x) = -(1/t)\log(1-2tx)$ , we have the formula of Proposition 2.1

## 4.3 Proof of Lemma 3.2

From Proposition V 1.8 and Theorem X 1.1 of Bhatia [1], since  $T_n(f)$  is an hermitian positive matrix,

$$||T_n(f)^{1/2}\Delta_h T_n(f)^{1/2}|| \le ||T_n(f)|| ||\Delta_h||$$
(22)

From Grenander and Szegö ([9] p.64)

$$||T_n(f)|| \leq ||f||_{\infty}.$$

In addition,

$$\|\Delta_h\| \le \sup_k \sum_s |(\Delta_h)_{ks}| \le \|h\|_{\infty} \tag{23}$$

Getting together inequalities (22) and (23), we get the result.

#### 4.4 Proof of Lemma 3.3

This lemma is a direct consequence of Theorem 4.1 above, for both random measures.

#### 4.5 Proof of Lemma 3.4

From the definition of  $\Lambda^*$ , for any  $\delta > 0$ , there exists  $h_{\delta}$  in  $\mathcal{C}([0,1])$  such that inequality (14) holds. In case we only have

$$\forall (t,\theta) \in [0,1] \times \mathbb{T} \quad h_{\delta}(t) f(\theta) \leq \frac{1}{2},$$

we choose  $h_{\varepsilon}$  with  $\varepsilon > 0$  such that

$$\int_{[0,1]} h_{\varepsilon}(t) d\mu(t) - \Lambda(h_{\varepsilon}) \ge \Lambda_{\delta}^{*}(\mu) - \varepsilon.$$

(this is possible from the continuity of  $\Lambda$  in a neighborhood of  $h_{\delta}$ ) Then (14) holds with another  $\delta$ . From assumption on f, f > 0, then  $h_{\varepsilon}f < 1/2$ .

#### 4.6 Proof of Lemma 3.5

For all 0 < y < 1/u'(1/2M), there exists a unique  $x_y$  in  $(-\infty, 1/2M)$  such that  $y = u'(x_y)$ . For such a pair  $(y, x_y)$ ,

$$u^*(y) = yx_y - u(x_y).$$

Since u' is strictly increasing and continuous,  $u^*$  is strictly convex on 0 < y < u'(1/2M). For such an y and z > 0,  $z \neq y$ ,

$$u^*(y) - u^*(z) < (y - z)x_y \tag{24}$$

(then y is an exposed point of  $u^*$  with exposing hyperplane  $x_y$ ) If  $\mu = l\nu$  and  $\xi = \tilde{l}\nu + \xi^{\perp}$ . We apply inequality (24) with y = l(t) and  $z = \tilde{l}(t)$ , and then we integrate over [0, 1] against  $\nu$ . We obtain the inequality (15) with  $h_l(t) = x_{l(t)}$ .

#### 4.7 Proof of Lemma 3.6

Following the sketch of proof of [8], we proceed in 4 steps. Assume  $u'(1/2M) = +\infty$ .

Step 1: Let  $\mu = l\nu + \mu^{\perp}$  be in  $\mathcal{M}([0,1])$  such that  $\Lambda^*(\mu) < \infty$  with l continuous and  $l \in (0, u'(\frac{1}{2M}))$ , and such that  $\mu^{\perp}$  is in  $L^1([0,1])$ . Since  $\nu$  has full support on [0,1], there exists a sequence of continuous positive functions on [0,1] such that  $h_n d\nu \Rightarrow \mu^{\perp}$ . From the lower semi-continuity of  $\Lambda^*$ ,

$$\liminf_{n \to +\infty} \Lambda^*((l+h_n)\nu) \ge \Lambda^*(\mu).$$

Since  $u^*$  is a convex function, from Rockafellar (see [17]), for any y > 0 and  $z \ge 0$ ,

$$u^*(y+z) \le u^*(y) + \frac{z}{2M}$$
.

Therefore

$$\Lambda^*((l+\tilde{l})\nu) \le \Lambda^*(l\nu) + \frac{1}{2M} \int \tilde{l}(t)d\nu(t)$$
 (25)

From inequality above,

$$\Lambda^*((l+h_n)\nu) \le \Lambda^*(l\nu) + \frac{1}{2M} \int_{0,1]} h_n \, d\nu$$

And then

$$\liminf_{n \to +\infty} \Lambda^*((l+h_n)\nu) \le \Lambda^*(\mu).$$

We now show that the Lemma is true if  $\mu = l \nu$  with  $l \nu$ -a.s. in  $(0, u'(\frac{1}{2M}))$  and integrable.

## Step 2

We prove the result for  $\mu = l \nu$  assuming that l is in  $(0, u'(\frac{1}{2M}))$  integrable and that for some  $\epsilon > 0$ ,  $l > \epsilon \nu$ -a.s. There exists a sequence  $(l_n)$  of continuous positive functions such that  $l_n$  converges both in  $L^1(\nu)$  norm and  $\nu$ -a.s. to l and  $l_n > \epsilon/2$ . Since on  $(\epsilon/2, u'(\frac{1}{2M}))$  the function  $u^*$  is Lipschitzian, the lemma holds.

#### Step 3

Define  $l_{\epsilon} := l \mathbb{1}_{l > \epsilon} + \epsilon \mathbb{1}_{l \leq \epsilon}$ . Apply second step and inequality (25) noticing that  $l_{\epsilon}$  converges in  $L^{1}(\nu)$  to l and that  $l_{\epsilon} \geq l$ .

#### Step 4

For  $\mu = l\nu + \eta$ , combine first and third step.

If  $u'(1/2M) < +\infty$ , we have to modify the second and third step, introducing an additional truncation at level  $u'(1/2M) - \varepsilon$ .

## References

- [1] Bhatia, R. *Matrix analysis*. Graduate Texts in Mathematics, **169**, Springer, New York, 1996
- [2] Borovkov, A. A. Boundary value problems for random walks and large deviations in function spaces. *Teor. Verojatnost. i Primenen*, **12**, pp 635–654, 1967.
- [3] de Acosta, A. Large deviations for vector-valued Lévy processes. Stoch. Proc. Appl., 51, pp 75–115, 1994.
- [4] Dembo, A. and Zeitouni, O. Large deviations for subsampling from individual sequences. Stat. and Prob. Lett., 27, pp 201–205, 1996.
- [5] Dembo, A. and Zeitouni, O. Large deviations techniques and applications (second edition). Springer, 1998.
- [6] P. Dupuis and R.S. Ellis A weak convergence approach to the theory of large deviations. Wiley Series in Probability and Statistics, Wiley, 1997.
- [7] Gamboa, F. and Gassiat, E. Bayesian methods for ill posed problems. *Annals of Stat*, **25**, pp 328–350, 1997.
- [8] Gamboa, F., Rouault, A. and Zani, M. A functional large deviations principle for quadratic forms of Gaussian stationary processes. *Stat. and Prob. Letters*, **43**, pp299–308, 1999.
- [9] Grenander, U. and Szegö, G. *Toeplitz forms and their applications*. University of California Press, 1958.
- [10] Kac, M., Murdock, W. L. and Szegö, G. On the eigenvalues of certain hermitian forms. *Journal of Rat. Mech. and An.*, **2**, pp 767–800,1953.
- [11] J. Lynch and J. Sethuraman Large deviations for processes with independent increments. Ann. of Probab., 15, pp 610–627,1987.
- [12] Maïda, M., Najim, J. and Péché, S. Large deviations for weighted empirical mean with outliers. *Stochastic Process. Appl.*, 117, pp 1373–1403, 2007.
- [13] Mogulskii, A.A. Large deviations for trajectories of multi dimensional random walks. Th. Prob. Appl., 21, pp 300–315, 1976.
- [14] Mogulskii, A.A. Large deviations for processes with independent increments. *Ann. of Prob..*, **21**, pp 202–215, 1993.
- [15] Najim, J. A Cramér type theorem for weighted random variables. *Electronic Journ. of Prob.*, 7, pp 1–32, 2002.

- [16] Perrin, O. and Zani, M. Large deviations for sample paths of Gaussian processes quadratic variations. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) transl. in J. Math. Sci. (N. Y.), 328 (transl. in 139), pp 169–181 (transl. 6595–6602), 2005 (transl. in 2006).
- [17] Rockafellar, R. T. Convex analysis. Princeton University Press, 1970.
- [18] Rockafellar, R. T. Integrals which are convex functionals II. *Pac. Journ. of Maths*, **39**, pp 439–469, 1971.
- [19] Sanov, I.N. On the probability of large deviations of random magnitudes. *Math. Sb. N. S.*, **42(84)**, pp 11–44, 1957.
- [20] Varadhan, S. R. S. Asymptotic probabilities and differential equations.. Comm. Pure Appl. Math., 19, pp 261–286, 1966.
- [21] Zani, M. Grandes déviations pour des fonctionnelles issues de la statistique des processus Thèse, Orsay, 2000.