Sample path large deviations for squares of stationary Gaussian processes

Marguerite Zani *

Abstract

In this paper, we show large deviations for random step functions of type $$
Z_{n}(t)=\frac{1}{n} \sum_{k=1}^{[n t]} X_{k}^{2},
$$

where $\left\{X_{k}\right\}_{k}$ is a stationary Gaussian process. We deal with the associated random measures $\nu_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}^{2} \delta_{k / n}$. The proofs require a Szegö theorem for generalized Toeplitz matrices, which is presented in the Appendix and is analogous to a result of Kac, Murdoch and Szegö [10]. We also study the polygonal line built on $Z_{n}(t)$ and show moderate deviations for both random families.

AMS classification: primary: 60G15, 60F10, 47B35 secondary: 60G10, 60 G 17.
Keywords: Gaussian processes, Large deviations, Szegö theorem, Toeplitz matrices.

1 Introduction

The aim of this paper is to provide a large deviations principle (LDP) for random functions of type

$$
\begin{equation*}
Z_{n}(t)=\frac{1}{n} \sum_{k=1}^{[n t]} X_{k}^{2} \tag{1}
\end{equation*}
$$

and the associated polygonal line

$$
\begin{equation*}
\tilde{Z}_{n}(t)=Z_{n}(t)+\left(t-\frac{[n t]}{n}\right) X_{[n t]+1}^{2} \tag{2}
\end{equation*}
$$

where $\left\{X_{n}\right\}_{n}$ is a stationary Gaussian process having spectral density f defined on the torus $\mathbb{T}=]-\pi, \pi]$. We assume f is continuous positive on \mathbb{T}.

Large deviations for random measures date back to Sanov [19] who showed a LDP for the family of empirical measures

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}} \tag{3}
\end{equation*}
$$

[^0]where X_{i} are i.i.d. random variables.
Then, the first results on large deviations for random paths were given by Borovkov [2] and Varadhan [20]. In [2], Borovkov provides a LDP for the random polygonal line joining the points $\left(\frac{k}{n}, \frac{S_{k}}{x}\right)$ where $S_{k}=\sum_{i=1}^{k} X_{i}$ and $x=x(n)$ is in the range
\[

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{x}{n}<\infty, \quad \lim _{n \rightarrow \infty} \frac{x}{\sqrt{n \ln n}}=\infty \tag{4}
\end{equation*}
$$

\]

He also showed large deviations for the paths $\eta(n t) / x$ where $0 \leq t \leq 1$ and η is a separable process with independent increments. The large deviations are given in the spaces $\mathcal{C}([0,1])$ (the set of continuous functions on $[0,1])$ or $\mathcal{D}([0,1])$ (the set of cadlag functions on $[0,1])$ endowed with the uniform metric. Meanwhile, Varadhan [20] proved functional large deviations in $\mathcal{D}([0,1])$ for the random step functions

$$
\begin{equation*}
S_{n}(t)=\frac{1}{n} \sum_{i=1}^{[n t]} X_{i} \tag{5}
\end{equation*}
$$

where $t \in[0, T]$ and $[n t]$ denotes the integer part of $n t$. Later on, Mogulskii ([13]) improved these results: he proved large deviations for the polygonal line $\left(\frac{k}{n}, \frac{S_{k}}{x}\right)$ in the range

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{x}{n}<\infty, \quad \lim _{n \rightarrow \infty} \frac{x}{\sqrt{n}}=\infty \tag{6}
\end{equation*}
$$

in the space $\mathcal{D}([0,1])$ endowed with the Skorokhod metric. For more general results on large deviations for processes with independent increments, see also Lynch and Sethuraman [11], de Acosta [3] and Mogulskii [14].

The results of $[2,20,13]$ concerning step functions and continuous random polygonal lines built on sums of i.i.d. random variables can be found in the books of Dupuis and Ellis [6] and Dembo and Zeitouni [5].

In our paper, to derive the large deviations, we consider the distribution derivative of $t \rightarrow Z_{n}(t)$ and $t \rightarrow \tilde{Z}_{n}(t)$. Therefore we deal with the random measures ν_{n} and $\tilde{\nu}_{n}$ given by

$$
\begin{equation*}
\left\langle\nu_{n}, h\right\rangle=\frac{1}{n} \sum_{k=1}^{n} X_{k}^{2} h\left(\frac{k}{n}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\tilde{\nu}_{n}, h\right\rangle=\sum_{k=1}^{n} X_{k}^{2} \int_{(k-1) / n}^{k / n} h(s) d s \tag{8}
\end{equation*}
$$

for h in $\mathcal{C}([0,1])$. Let $\mathcal{M}([0,1])$ be the set of positive bouded measures on $[0,1]$ endowed with the weak topology. Therefore ν_{n} and $\tilde{\nu}_{n}$ are a.s. in $\mathcal{M}([0,1])$.

Analogous random measures have been investigated before by Dembo and Zeitouni [4], and Gamboa and Gassiat [7]. Previous works on LDP for this kind of random functions can be found in Gamboa, Rouault and Zani [8] and Perrin and Zani [16] for stationary Gaussian processes, and in Najim [15] and Maïda, Najim and Péché [12] for
i.i.d. sequences. We provide here a functional LDP for $\left\{\nu_{n}\right\}$ and $\left\{\tilde{\nu}_{n}\right\}$, and derive the associated LDP for $\left\{Z_{n}\right\}$ and $\left\{\tilde{Z}_{n}\right\}$. We also prove moderate deviations. The central limit theorem is known. Although part of this work was already presented in [21] the present work provide a full version with proofs and some extensions.

The remaining of the paper is organized as follows. We present in Section 2 the large and moderate deviations results. Section 3 is devoted to the proofs of Theorems. Deriving the LD result, we needed a Szegö type theorem for generalized Toeplitz matrices. This precise result is unknown to our knowledge and despite a very similar result has been shown in Kac Murdoch and Szego (see [10] and [9]), for seek of completenes we prove it in the Appendix. The remaining of the Appendix gather the proofs of technical lemmas.

2 Large and moderate deviations

For any h in $\mathcal{C}([0,1])$, define
$\Lambda(h)=\left\{\begin{array}{l}-\frac{1}{4 \pi} \int_{[0,1]} \int_{\mathbb{T}} \log (1-2 h(t) f(\theta)) d \theta d t \quad \text { if } \forall(t, \theta) \in[0,1] \times \mathbb{T}, h(t) f(\theta)<1 / 2 \\ +\infty \text { otherwise }\end{array}\right.$
Let Λ^{*} be the Legendre dual of Λ. From Rockafellar [18], we can detail this dual function as following:

Proposition 2.1 Let ν be the measure in $\mathcal{M}([0,1])$ defined for any h in $\mathcal{C}([0,1])$ by

$$
\langle\nu, h\rangle=\frac{1}{2 \pi} \int_{\mathbb{T}} f(\theta) d \theta \int_{[0,1]} h(x) d x
$$

Let $\mu \in \mathcal{M}([0,1])$ having the following Lebesgue decomposition with respect to $\nu: \mu=$ $l \nu+\mu^{\perp}$ where $l \in \mathcal{C}([0,1])$ and μ^{\perp} is the singular part. Then

$$
\Lambda^{*}(\mu)=\int_{[0,1]} u^{*}(l(t)) \nu(d t)+\int_{[0,1]} \frac{\mu^{\perp}(d t)}{2 M}
$$

where

$$
u(x)=-\frac{1}{4 \pi} \int_{\mathbb{T}} \log (1-2 x f(\theta)) d \theta
$$

and

$$
M=\operatorname{esssup} f
$$

The function u is \mathcal{C}^{2} on $(-\infty, 1 / 2 M)$, and

$$
\begin{array}{r}
u^{\prime}(x)=\frac{1}{2 \pi} \int_{\mathbb{T}} \frac{f(\theta)}{1-2 x f(\theta)} d \theta \\
u^{\prime \prime}(x)=\frac{1}{\pi} \int_{\mathbb{T}} \frac{f(\theta)^{2}}{(1-2 x f(\theta))^{2}} d \theta>0
\end{array}
$$

Hence u^{\prime} is strictly increasing, and $\lim _{x \rightarrow-\infty} u^{\prime}(x)=0$. On the other hand, we denote $u^{\prime}(1 / 2 M):=\lim _{x \rightarrow+\infty} u^{\prime}(x) \leq+\infty$ (e.g. if $\left.f \in \mathcal{C}^{2}, u^{\prime}(1 / 2 M)=+\infty\right)$. The recession function (see Theorem 8.5 of [18]) is $r\left(u^{*} ; y\right)=y / 2 M$.

2.1 Large Deviations

We can now state the LDP result:
Theorem 2.2 The families $\left\{\nu_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\tilde{\nu}_{n}\right\}_{n \in \mathbb{N}}$ satisfy a LDP in $\mathcal{M}([0,1])$ with speed n and rate function Λ^{*}.
We can carry the previous LDP to the random functions Z_{n} and \tilde{Z}_{n}. Following Lynch and Sethuraman [11] and de Acosta [3], we introduce some notations. Let $D([0,1], \mathbb{R})$ be the space of cadlag real functions on $[0,1]$, and $b v([0,1], \mathbb{R}) \subset D([0,1], \mathbb{R})$ the space of bounded variation functions. We can identify $b v([0,1], \mathbb{R})$ with $\mathcal{M}([0,1])$: to h in $b v([0,1], \mathbb{R})$ corresponds μ_{h} in $\mathcal{M}([0,1])$ characterized by $\mu_{h}([0, t])=h(t)$. Up to this identification, the topological dual of $b v([0,1], \mathbb{R})$ is the set $\mathcal{C}([0,1])$. We endow $b v([0,1], \mathbb{R})$ with the w^{*}-topology written σ, i.e. the topology induced by $\mathcal{C}([0,1])$ on $\mathcal{M}([0,1])$. Now, let us define the rate function associated to Z_{n} and \tilde{Z}_{n} : let h be in $b v([0,1], \mathbb{R})$ and μ_{h} the associated measure in $\mathcal{M}([0,1])$; let $\mu_{h}=\left(\mu_{h}\right)_{a}+\left(\mu_{h}\right)_{s}$ be the Lebesgue decomposition of μ_{h} in absolutely continuous and singular terms with respect to the Lebesgue measure on $[0,1]$; let $h_{a}(t)=\left(\mu_{h}\right)_{a}([0, t])$ and $h_{s}(t)=\left(\mu_{h}\right)_{s}([0, t])$. Set

$$
\Phi(h)=\int_{[0,1]} u^{*}\left(h_{a}^{\prime}\right)(t) \nu(d t)+r h_{s}(1),
$$

where u^{*} and r are defined in Proposition 2.1.
Theorem 2.3 The families of random functions $\left\{Z_{n}\right\}$ and $\left\{\tilde{Z}_{n}\right\}$ satisfy a LDP on the space $(b v([0,1], \mathbb{R}), \sigma)$, with speed n and rate function Φ.

2.2 Moderate deviations

We can state also in this case a moderate deviation principle. We detail it for ν_{n}, it is the same for $\tilde{\nu}_{n}$. Let $\left\{a_{n}\right\}$ be a sequence of positive real numbers such that $a_{n} \rightarrow 0$ and $n a_{n} \rightarrow+\infty$ when $n \rightarrow+\infty$. Set

$$
Y_{n}=\sqrt{n a_{n}}\left(\nu_{n}-E\left(\nu_{n}\right)\right) .
$$

We have the following moderate deviations principle
Theorem $2.4\left\{Y_{n}\right\}$ satisfy a LDP with speed a_{n}^{-1} and good rate function defined, for all $\mu \in \mathcal{M}([0,1])$ by

$$
I(\mu)=\left\{\begin{array}{l}
\frac{\pi}{2 \overline{f^{2}}} \int_{[0,1]} l(x)^{2} d x \text { if } \mu(d x)=l(x) d x \\
+\infty \quad \text { otherwise, }
\end{array}\right.
$$

where

$$
\bar{f}^{2}=\frac{1}{2 \pi} \int_{\mathbb{T}} f^{2} .
$$

2.3 Generalizations

The previous results can be generalized to some other random functions.

2.3.1 Weighted random variables

Assume g is a continuous function on $[0,1]$ and define

$$
\begin{equation*}
W_{n}=\frac{1}{n} \sum_{k=1}^{[n t]} g\left(\frac{k}{n}\right) X_{k}^{2}, \tag{9}
\end{equation*}
$$

For any h in $\mathcal{C}([0,1])$, define
$\Lambda(h)=\left\{\begin{array}{l}-\frac{1}{4 \pi} \int_{[0,1]} \int_{\mathbb{T}} \log (1-2 h(t) g(t) f(\theta)) d \theta d t \quad \text { if } \forall(t, \theta) \in[0,1] \times \mathbb{T}, h(t) g(t) f(\theta)<1 / 2 \\ +\infty \text { otherwise }\end{array}\right.$
The previous large deviations results apply with rate function Λ^{*}.

2.3.2 Quadratic forms built on the stationary process

We define

$$
m=\operatorname{essinf} f
$$

and assume $m>0$. Let F be a continuous positive function on $[m, M]$. Let O be an orthonormal matrix such that $O^{*} T_{n}(f) O$ is the diagonal matrix whose i-th diagonal element is $\mu_{i, n}$ the i-th eigenvalue of $T_{n}(f)$. Define

$$
F\left(T_{n}(f)\right)=O D_{f} O^{*}
$$

where D_{f} is the diagonal matrix whose i-th element is $F\left(\mu_{i, n}\right)$. Define the following quadratic form

$$
W_{n}=\frac{1}{n} X^{*} F\left(T_{n}(f)\right) X=\frac{1}{n} Y^{*} Y,
$$

where $Y=\left(Y_{1}, \cdots Y_{n}\right)$ is the vector defined by

$$
Y=F\left(T_{n}(f)\right)^{1 / 2} X
$$

In this case, W_{n} satisfies a LDP and moderate deviations theorem with rate function Λ^{*} where for any h in $\mathcal{C}([0,1])$
$\Lambda(h)=\left\{\begin{array}{l}-\frac{1}{4 \pi} \int_{[0,1]} \int_{\mathbb{T}} \log [1-2 h(t) f(\theta) F[f(\theta)]] d \theta d t \quad \text { if } \forall(t, \theta) \in[0,1] \times \mathbb{T}, h(t) f(\theta)<1 / 2 \\ +\infty \text { otherwise }\end{array}\right.$

3 Proof of the large and moderate deviations

We first give some asymptotic properties for the families $\left\{\nu_{n}\right\}_{n}$ and $\left\{\tilde{\nu}_{n}\right\}_{n}$.

3.1 Weak convergence of ν_{n} and $\left\{\tilde{\nu}_{n}\right\}_{n}$

Lemma 3.1 Let h be in $\mathcal{C}([0,1])$.

$$
\begin{equation*}
\left\langle\nu_{n}, h\right\rangle \rightarrow\langle\nu, h\rangle \quad \text { in probability } \quad \text { as } n \rightarrow+\infty \tag{10}
\end{equation*}
$$

and

$$
\left\langle\tilde{\nu}_{n}, h\right\rangle \rightarrow\langle\nu, h\rangle \quad \text { in probability } \quad \text { as } n \rightarrow+\infty
$$

where

$$
\langle\nu, h\rangle=\bar{f} \int_{[0,1]} h(x) d x,
$$

and

$$
\bar{f}=\frac{1}{2 \pi} \int_{\mathbb{T}} f(\theta) d \theta .
$$

Proof:
Let h be in $\mathcal{C}([0,1])$, and consider

$$
\left\langle\nu_{n}, h\right\rangle=\frac{1}{n} \sum_{k=1}^{n} X_{k}^{2} h\left(\frac{k}{n}\right) .
$$

Set X the Gaussian vector $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ and Δ_{h} the diagonal matrix

$$
\left(\begin{array}{cccc}
h\left(\frac{1}{n}\right) & 0 & 0 & 0 \\
0 & h\left(\frac{2}{n}\right) & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & h(1)
\end{array}\right)
$$

Therefore we can write

$$
\left\langle\nu_{n}, h\right\rangle=\frac{1}{n} X^{*} \Delta_{h} X,
$$

where X^{*} denote the transpose of X. By an orthonormal change of basis,

$$
\left\langle\nu_{n}, h\right\rangle=\frac{1}{n} U_{n}^{*} T_{n}(f)^{1 / 2} \Delta_{h} T_{n}(f)^{1 / 2} U_{n},
$$

where U_{n} is a standard normal vector and $T_{n}(f)$ the order- n Toeplitz matrix associated to f. Therefore

$$
\begin{equation*}
\left\langle\nu_{n}, h\right\rangle=\frac{1}{n} \sum_{k=1}^{n} \lambda_{k, n} Z_{k, n} \tag{11}
\end{equation*}
$$

where $\left\{Z_{k, n}\right\}$ are independent $\chi^{2}(1)$-distributed random variables, and $\left\{\lambda_{k, n}\right\}$ are the eigenvalues of $T_{n}(f)^{1 / 2} \Delta_{h} T_{n}(f)^{1 / 2}$.
We can write as well

$$
\begin{equation*}
\left\langle\tilde{\nu}_{n}, h\right\rangle=\frac{1}{n} \sum_{k=1}^{n} \tilde{\lambda}_{k, n} Z_{k, n} \tag{12}
\end{equation*}
$$

where $\left\{Z_{k, n}\right\}$ are independent $\chi^{2}(1)$-distributed random variables, and $\left\{\tilde{\lambda}_{k, n}\right\}$ are the eigenvalues of $T_{n}(f)^{1 / 2} A_{h} T_{n}(f)^{1 / 2}$, and the matrix A_{h} is diagonal with k-th diagonal term

$$
\left(A_{h}\right)_{k, k}=\int_{(k-1) / n}^{k / n} h(s) d s
$$

We have the two following results on the distributions $\left\{\lambda_{k, n}\right\}$ and $\left\{\tilde{\lambda}_{k, n}\right\}$, which proofs are postponed to the Appendix.
Lemma 3.2 The sequences $\left\{\lambda_{k, n}\right\}$ and $\left\{\tilde{\lambda}_{k, n}\right\}$ are bounded as follows:

$$
\forall n \in \mathbb{N}, \forall 1 \leq k \leq n, \quad \left\lvert\, \begin{aligned}
& \left|\lambda_{k, n}\right| \leq\|h\|_{\infty}\|f\|_{\infty} \\
& \\
& \\
& \left|\tilde{\lambda}_{k, n}\right| \leq\|h\|_{\infty}\|f\|_{\infty}
\end{aligned}\right.
$$

Lemma 3.3 For any p in $\mathbb{N}, p \geq 1$,

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{k=1}^{n} \lambda_{k, n}^{p}=\frac{1}{2 \pi} \int_{[0,1]} \int_{\mathbb{T}}(h(t) f(\theta))^{p} d t d \theta \\
& \lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{k=1}^{n}\left(\tilde{\lambda}_{k, n}\right)^{p}=\frac{1}{2 \pi} \int_{[0,1]} \int_{\mathbb{T}}(h(t) f(\theta))^{p} d t d \theta
\end{aligned}
$$

With the above lemma,

$$
\lim _{n \rightarrow+\infty} E\left(\left\langle\nu_{n}, h\right\rangle\right)=\langle\nu, h\rangle
$$

Moreover,

$$
\lim _{n \rightarrow+\infty} n \operatorname{Var}\left\langle\nu_{n}, h\right\rangle=\frac{2}{n} \sum_{k=1}^{n} \lambda_{k, n}^{2}=\frac{1}{\pi} \int_{[0,1]} \int_{\mathbb{T}}(h(t) f(\theta))^{2} d t d \theta
$$

We do as well for $\tilde{\nu}_{n}$, and it ends the proof of lemma 3.1.

3.2 Proof of Theorem 2.2:

The proof follows exactly the scheme [8]. We detail here for ν_{n}, it is similar for $\tilde{\nu}_{n}$. With the decomposition (11), we get the n.c.g.f. of ν_{n} : for any $h \in \mathcal{C}([0,1])$,

$$
\Lambda_{n}(h)=\frac{1}{n} \log E\left(\exp \left\{n\left\langle\nu_{n}, h\right\rangle\right\}\right)= \begin{cases}-\frac{1}{2 n} \sum_{k=1}^{n} \log \left(1-2 \lambda_{k, n}\right) & \text { if } \forall k, \lambda_{k, n}<1 / 2 \tag{13}\\ +\infty & \text { otherwise }\end{cases}
$$

From Lemma 3.3, we can determine the limit of Λ_{n} in two cases:

- if $\forall(t, \theta) \in[0,1] \times \mathbb{T} \quad h(t) f(\theta)<1 / 2$, then

$$
\lim _{n \rightarrow+\infty} \Lambda_{n}(h)=-\frac{1}{4 \pi} \int_{[0,1]} \int_{\mathbb{T}} \log (1-2 h(t) f(\theta)) d \theta d t=\Lambda(h) .
$$

- if $\exists(t, \theta) \in[0,1] \times \mathbb{T} ; \quad h(t) f(\theta)>1 / 2$, then for n large enough, $\Lambda_{n}(h)=+\infty$ and

$$
\lim _{n \rightarrow+\infty} \Lambda_{n}(h)=+\infty=\Lambda(h) .
$$

These two cases do not cover the whole set $\mathcal{C}([0,1])$. Nevertheless, this will be sufficient for the LDP, since they contain a dense subset of exposing hyperplanes of Λ^{*}.

Upper bound

From Theorem 4.5.3 b) of [5], and the following lemma, which proof is postponed to the Appendix, the upper bound holds for compact sets.
Lemma 3.4 For any $\delta>0$ and μ in $\mathcal{M}([0,1])$, there exists h_{δ} in $\mathcal{C}([0,1])$ such that:

$$
\begin{array}{r}
\forall(t, \theta), h_{\delta}(t) f(\theta)<1 / 2 \\
\int_{[0,1]} h_{\delta}(t) d \mu(t)-\Lambda\left(h_{\delta}\right) \geq \Lambda_{\delta}^{*}(\mu) \tag{14}
\end{array}
$$

where

$$
\Lambda_{\delta}^{*}(\mu)=\min \left\{\Lambda^{*}(\mu)-\delta, \frac{1}{\delta}\right\}
$$

Exponential tightness

Remark that for a real number a,

$$
\left\{\sup _{\|h\|_{\infty} \leq 1}\left\langle\nu_{n}, h\right\rangle \geq a\right\} \subset\left\{\nu_{n}(1) \geq a\right\} .
$$

If $M=\operatorname{esssup}_{\theta} f(\theta)$, for any $y<1 / 2 M$,

$$
\underset{n}{\lim \sup } \frac{1}{n} \log P\left(\nu_{n}(1) \geq a\right) \leq-y a-\frac{1}{4 \pi} \int_{[0,1]} \int_{\mathbb{T}} \log (1-2 y f(\theta)) d \theta,
$$

and

$$
\lim _{a \rightarrow+\infty} \limsup _{n} \frac{1}{n} \log P\left(\nu_{n}(1) \geq a\right)=-\infty
$$

Hence the sequence $\left(\nu_{n}\right)$ is exponentially tight, and the upper bound holds for any closed set of $\mathcal{M}([0,1])$.

Lower bound

We study the set of exposed points of Λ^{*} (see [5]). Let

$$
\mathcal{H}=\left\{\mu \in \mathcal{M}([0,1]) ; \mu=l \nu, 0<l<u^{\prime}(1 / 2 M), l \text { continuous on }[0,1]\right\} .
$$

The following two lemmas, which proofs are postponed to the Appendix, show that that \mathcal{H} is a dense subset of the exposed points of Λ^{*}, which concludes the proof of Theorem 2.2.

Lemma 3.5 Let $\mu=l \nu$ be in \mathcal{H}. There exists h_{l} in $\mathcal{C}([0,1])$ such that

$$
\begin{align*}
& \forall(t, \theta) \in[0,1] \times \mathbb{T} \quad h_{l}(t) f(\theta)<1 / 2 \\
& \forall \xi \in \mathcal{M}([0,1]) \quad \Lambda^{*}(\mu)-\Lambda^{*}(\xi)<(\mu-\xi)\left(h_{l}\right) \tag{15}
\end{align*}
$$

Furthermore, there exists $\gamma>1$ such that $\Lambda(\gamma l)<+\infty$.
Hence μ is an exposed point of Λ^{*} with exposing hyperplane h_{l}.
Lemma 3.6 Let μ be in $\mathcal{M}([0,1])$ such that $\Lambda^{*}(\mu)<+\infty$. There exists a sequence $\left(\mu_{n}\right) \in \mathcal{H}$ such that $\mu_{n} \Rightarrow \mu$ and $\lim _{n \rightarrow+\infty} \Lambda^{*}\left(\mu_{n}\right)=\Lambda^{*}(\mu)$.

3.3 Proof of Theorem 2.4:

The n.c.g.f. of Y_{n} is given for any h in $\mathcal{C}[m, M]$ by

$$
\begin{aligned}
\Lambda_{n}(h) & =a_{n} \log E\left(\exp \left\{\sqrt{\frac{n}{a_{n}}}\left(\left\langle\nu_{n}, h\right\rangle-E\left(\left\langle\nu_{n}, h\right\rangle\right)\right)\right\}\right) \\
& =-\frac{a_{n}}{2} \sum_{k=1}^{n} \log \left(1-\frac{2}{\sqrt{n a_{n}}} \lambda_{k, n}\right)+\frac{2}{\sqrt{n a_{n}}} \lambda_{k, n}
\end{aligned}
$$

We recall that $\left\{\lambda_{k, n}\right\}$ are the eigenvalues of the matrix $T_{n}(f)^{1 / 2} \Delta_{h} T_{n}(f)^{1 / 2}$. We can assert

$$
\Lambda_{n}(h)=\frac{1}{n} \sum_{k=1}^{n} \lambda_{k, n}^{2}+O\left(\frac{1}{n \sqrt{n a_{n}}} \sum_{k=1}^{n}\left|\lambda_{k, n}\right|^{3}\right) .
$$

From the convergence (10), Therefore

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \Lambda_{n}(h)=\Lambda=\bar{f}^{2} \int_{[0,1]} h(x)^{2} d x \tag{16}
\end{equation*}
$$

This function is defined on all $\mathcal{C}[0,1]$, then the rate function is the Legendre dual of Λ which is, from Rockafellar [18],

$$
I(\mu)=\frac{\pi}{2 \bar{f}^{2}} \int_{[0,1]} l(x)^{2} d x,
$$

where $d_{\mu}(t)=l(x) d x$.

4 Appendix

4.1 A Szegö Theorem for generalized Toeplitz matrices

In this paragraph we show a result on the distribution of eigenvalues of some kind of generalized Toeplitz matrices.

Suppose g is a real function defined on $[0,1] \times \mathbb{T}$ such that for any $x \in[0,1], g(x, \cdot) \in$ $L^{1}(\mathbb{T})$. Define

$$
\hat{g}_{k}(x)=\frac{1}{2 \pi} \int_{\mathbb{T}} g(x, \theta) e^{-i k \theta} d \theta,
$$

and

$$
\begin{equation*}
T_{n}^{\mathrm{gen}}(g)_{k, l}=\hat{g}_{l-k}\left(\frac{k}{n}\right) . \tag{17}
\end{equation*}
$$

Denote by

$$
\left\|\hat{g}_{k}\right\|_{\infty}=\sup _{x \in[0,1]}\left|\hat{g}_{k}(x)\right| .
$$

Theorem 4.1 Under assumption

$$
\begin{gather*}
M:=\sum_{k}\left\|\hat{g}_{k}\right\|_{\infty}<\infty \tag{18}\\
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(T_{n}^{g e n}(g)\right)^{p}=\frac{1}{2 \pi} \int_{0}^{1} \int_{\mathbb{T}} g(x, \theta)^{p} d \theta d x . \tag{19}
\end{gather*}
$$

$\underline{\text { Proof: }}$ This proof is analogous to the one of [10]. Let $\varepsilon>0$ be fixed and $m \in \mathbb{N}$ chosen such that:

$$
\sum_{|k|>m}\left\|\hat{g}_{k}\right\|_{\infty}<\varepsilon
$$

Consider the trigonometric polynom of degree m :

$$
\begin{equation*}
g^{m}(x, \theta)=\sum_{k=-m}^{m} \hat{g}_{k}(x) e^{i k \theta} \tag{20}
\end{equation*}
$$

Let $T_{n}^{\text {gen }}\left(g^{m}\right)$ be the generalized Topelitz matrix associated to g^{m} as in (17). Therefore

$$
T_{n}^{\mathrm{gen}}(g)=T_{n}^{\mathrm{gen}}\left(g^{m}\right)+R
$$

and the sum of the moduli of the elements of any row of R is less than ε. Hence the same is true for the eigenvalues of R i.e. for the eigenvalues of $T_{n}^{\text {gen }}(g)-T_{n}^{\text {gen }}\left(g^{m}\right)$. From the Weyl-Courant Lemma, we can therefore bound

$$
\left|\lambda_{k, n}-\lambda_{k, n}^{m}\right| \leq \varepsilon,
$$

where $\left\{\lambda_{k, n}\right\}_{k}$ and $\left\{\lambda_{k, n}^{m}\right\}_{k}$ are the eigenvalues of $T_{n}^{\text {gen }}(g)$ and $T_{n}^{\text {gen }}\left(g^{m}\right)$ respectively nondecreasingly ordered. From assumption (18),

$$
\left|\lambda_{k, n}\right| \leq M, \quad\left|\lambda_{k, n}^{m}\right| \leq M .
$$

Hence for any positive integer s

$$
\left|\left(\lambda_{k, n}\right)^{s}-\left(\lambda_{k, n}^{m}\right)^{s}\right| \leq \varepsilon s M^{s-1} .
$$

We can bound similarly $\left|g(x, \theta)^{s}-g^{m}(x, \theta)^{s}\right|$ and therefore to show (19) it is enough to consider the polynomial g^{m}. We derive

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{tr}\left(T_{n}^{\mathrm{gen}}\left(g^{m}\right)\right)^{p}=\sum_{D_{p}} \sum_{j=1}^{m} \hat{g}_{l_{1}}\left(\frac{j+l_{1}}{n}\right) \hat{g}_{l_{2}}\left(\frac{j+l_{1}+l_{2}}{n}\right) \cdots \hat{g}_{l_{p}}\left(\frac{j}{n}\right),
$$

where $D_{p}=\left\{\left(l_{1}, \cdots l_{p}\right) \in \mathbb{Z}^{p} ; \sum l_{i}=0\right\}$ and the second sum in the RHS above is on j such that $j+\sum_{1}^{k} l_{i}$ - for k from 1 to p - is in the range $1, \ldots, n$, i.e. $s p \leq j \leq n-s p$. Therefore we have to suppress at most $2 s p+1$ terms. From classical results on Riemann sums,

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{D_{p}} \sum_{j=1}^{m} \hat{g}_{l_{1}}\left(\frac{j+l_{1}}{n}\right) \hat{g}_{l_{2}}\left(\frac{j+l_{1}+l_{2}}{n}\right) \cdots \hat{g}_{l_{p}}\left(\frac{j}{n}\right) \\
=\sum_{D_{p}} \int_{0}^{1} \hat{g}_{l_{1}}(x) \hat{g}_{l_{2}}(x) \cdots \hat{g}_{l_{p}}(x) d x \\
=\sum_{\left(l_{1}, \cdots l_{p}\right) \in \mathbb{Z}^{p}} \frac{1}{2 \pi} \int_{\mathbb{T}} e^{i\left(l_{1}+l_{2}+\cdots l_{p}\right)} d \theta \int_{0}^{1} g_{l_{1}}(x) \hat{g}_{l_{2}}(x) \cdots \hat{g}_{l_{p}}(x) d x \\
=\frac{1}{2 \pi} \int_{0}^{1} \int_{\mathbb{T}} g(x, \theta)^{p} d \theta d x .
\end{array}
$$

4.2 Proof of Proposition 2.1

This lemma is a consequence of Theorem 5 of Rockafellar [18]. For the sake of clarity, we recall the framework of that paper. Let h be in $\mathcal{C}([m, M])$, and

$$
\Lambda(h)=\int_{[m, M]} u(t, h(t)) d \nu(t),
$$

where $u(t, x)$ defined on $[m, M] \times \mathbb{R} \rightarrow \mathbb{R}$ is a function convex in x, and ν a nonnegative, σ-finite measure. For any μ in $\mathcal{M}([m, M])$ having, with respect to ν the Lebesgue decomposition $\mu=l \nu+\mu^{\perp}$, where $l \in \mathcal{C}([m, M])$, and μ^{\perp} is the singular part, then

$$
\begin{equation*}
\Lambda^{*}(\mu)=\int_{[m, M]} u^{*}(t, l(t)) d \nu(t)+\int_{[m, M]} r\left(u^{*}(t, \cdot) ; d \mu^{\perp} / d \eta(t)\right) d \eta(t) \tag{21}
\end{equation*}
$$

where η is any nonnegative measure of $\mathcal{M}([m, M])$ with respect to which μ^{\perp} is absolutely continuous, and $u^{*}(t, \cdot)$ is the dual function of $u(t, \cdot)$:

$$
\forall t, \quad u^{*}(t, y)=\sup _{x \in \mathbb{R}}\{x y-u(t, x)\}
$$

Applying the result of (21) to $u(t, x)=-(1 / t) \log (1-2 t x)$, we have the formula of Proposition 2.1

4.3 Proof of Lemma 3.2

From Proposition V 1.8 and Theorem X 1.1 of Bhatia [1], since $T_{n}(f)$ is an hermitian positive matrix,

$$
\begin{equation*}
\left\|T_{n}(f)^{1 / 2} \Delta_{h} T_{n}(f)^{1 / 2}\right\| \leq\left\|T_{n}(f)\right\|\left\|\Delta_{h}\right\| \tag{22}
\end{equation*}
$$

From Grenander and Szegö ([9] p.64)

$$
\left\|T_{n}(f)\right\| \leq\|f\|_{\infty}
$$

In addition,

$$
\begin{equation*}
\left\|\Delta_{h}\right\| \leq \sup _{k} \sum_{s}\left|\left(\Delta_{h}\right)_{k s}\right| \leq\|h\|_{\infty} \tag{23}
\end{equation*}
$$

Getting together inequalities (22) and (23), we get the result.

4.4 Proof of Lemma 3.3

This lemma is a direct consequence of Theorem 4.1 above, for both random measures.

4.5 Proof of Lemma 3.4

From the definition of Λ^{*}, for any $\delta>0$, there exists h_{δ} in $\mathcal{C}([0,1])$ such that inequality (14) holds. In case we only have

$$
\forall(t, \theta) \in[0,1] \times \mathbb{T} \quad h_{\delta}(t) f(\theta) \leq \frac{1}{2},
$$

we choose h_{ε} with $\varepsilon>0$ such that

$$
\int_{[0,1]} h_{\varepsilon}(t) d \mu(t)-\Lambda\left(h_{\varepsilon}\right) \geq \Lambda_{\delta}^{*}(\mu)-\varepsilon .
$$

(this is possible from the continuity of Λ in a neighborhood of h_{δ})
Then (14) holds with another δ. From assumption on $f, f>0$, then $h_{\varepsilon} f<1 / 2$.

4.6 Proof of Lemma 3.5

For all $0<y<1 / u^{\prime}(1 / 2 M)$, there exists a unique x_{y} in $(-\infty, 1 / 2 M)$ such that $y=$ $u^{\prime}\left(x_{y}\right)$. For such a pair $\left(y, x_{y}\right)$,

$$
u^{*}(y)=y x_{y}-u\left(x_{y}\right) .
$$

Since u^{\prime} is strictly increasing and continuous, u^{*} is strictly convex on $0<y<u^{\prime}(1 / 2 M)$. For such an y and $z>0, z \neq y$,

$$
\begin{equation*}
u^{*}(y)-u^{*}(z)<(y-z) x_{y} \tag{24}
\end{equation*}
$$

(then y is an exposed point of u^{*} with exposing hyperplane x_{y}) If $\mu=l \nu$ and $\xi=\tilde{l} \nu+\xi^{\perp}$. We apply inequality (24) with $y=l(t)$ and $z=\tilde{l}(t)$, and then we integrate over [0, 1] against ν. We obtain the inequality (15) with $h_{l}(t)=x_{l(t)}$.

4.7 Proof of Lemma 3.6

Following the sketch of proof of [8], we proceed in 4 steps. Assume $u^{\prime}(1 / 2 M)=+\infty$.
Step 1: Let $\mu=l \nu+\mu^{\perp}$ be in $\mathcal{M}([0,1])$ such that $\Lambda^{*}(\mu)<\infty$ with l continuous and $l \in \frac{\left(0, u^{\prime}\left(\frac{1}{2 M}\right)\right.}{}$, and such that μ^{\perp} is in $L^{1}([0,1])$. Since ν has full support on $[0,1]$, there exists a sequence of continuous positive functions on $[0,1]$ such that $h_{n} d \nu \Rightarrow \mu^{\perp}$. From the lower semi-continuity of Λ^{*},

$$
\liminf _{n \rightarrow+\infty} \Lambda^{*}\left(\left(l+h_{n}\right) \nu\right) \geq \Lambda^{*}(\mu) .
$$

Since u^{*} is a convex function, from Rockafellar (see [17]), for any $y>0$ and $z \geq 0$,

$$
u^{*}(y+z) \leq u^{*}(y)+\frac{z}{2 M} .
$$

Therefore

$$
\begin{equation*}
\Lambda^{*}((l+\tilde{l}) \nu) \leq \Lambda^{*}(l \nu)+\frac{1}{2 M} \int \tilde{l}(t) d \nu(t) \tag{25}
\end{equation*}
$$

From inequality above,

$$
\Lambda^{*}\left(\left(l+h_{n}\right) \nu\right) \leq \Lambda^{*}(l \nu)+\frac{1}{2 M} \int_{0,1]} h_{n} d \nu
$$

And then

$$
\liminf _{n \rightarrow+\infty} \Lambda^{*}\left(\left(l+h_{n}\right) \nu\right) \leq \Lambda^{*}(\mu) .
$$

We now show that the Lemma is true if $\mu=l \nu$ with $l \nu$-a.s. in $\left(0, u^{\prime}\left(\frac{1}{2 M}\right)\right.$ and integrable.

Step 2

We prove the result for $\mu=l \nu$ assuming that l is in $\left(0, u^{\prime}\left(\frac{1}{2 M}\right)\right.$ integrable and that for some $\epsilon>0, l>\epsilon \nu$-a.s. There exists a sequence $\left(l_{n}\right)$ of continuous positive functions such that l_{n} converges both in $L^{1}(\nu)$ norm and ν-a.s. to l and $l_{n}>\epsilon / 2$. Since on $\left(\epsilon / 2, u^{\prime}\left(\frac{1}{2 M}\right)\right.$ the function u^{*} is Lipschitzian, the lemma holds.

Step 3

Define $l_{\epsilon}:=l \mathbb{1}_{l>\epsilon}+\epsilon \mathbb{1}_{l \leq \epsilon}$. Apply second step and inequality (25) noticing that l_{ϵ} converges in $L^{1}(\nu)$ to l and that $l_{\epsilon} \geq l$.
Step 4
For $\mu=l \nu+\eta$, combine first and third step.
If $u^{\prime}(1 / 2 M)<+\infty$, we have to modify the second and third step, introducing an additional truncation at level $u^{\prime}(1 / 2 M)-\varepsilon$.

References

[1] Bhatia, R. Matrix analysis. Graduate Texts in Mathematics, 169, Springer, New York, 1996.
[2] Borovkov, A. A. Boundary value problems for random walks and large deviations in function spaces. Teor. Verojatnost. i Primenen, 12, pp 635-654, 1967.
[3] de Acosta, A. Large deviations for vector-valued Lévy processes. Stoch. Proc. Appl., 51, pp 75-115, 1994.
[4] Dembo, A. and Zeitouni, O. Large deviations for subsampling from individual sequences. Stat. and Prob. Lett., 27, pp 201-205, 1996.
[5] Dembo, A. and Zeitouni, O. Large deviations techniques and applications (second edition). Springer ,1998.
[6] P. Dupuis and R.S. Ellis A weak convergence approach to the theory of large deviations. Wiley Series in Probability and Statistics, Wiley, 1997.
[7] Gamboa, F. and Gassiat, E. Bayesian methods for ill posed problems. Annals of Stat, 25, pp 328-350, 1997.
[8] Gamboa, F., Rouault, A. and Zani, M. A functional large deviations principle for quadratic forms of Gaussian stationary processes. Stat. and Prob. Letters,43, pp299-308, 1999.
[9] Grenander, U. and Szegö, G. Toeplitz forms and their applications. University of California Press, 1958.
[10] Kac, M. , Murdock, W. L. and Szegö, G. On the eigenvalues of certain hermitian forms. Journal of Rat. Mech. and An., 2, pp 767-800,1953.
[11] J. Lynch and J. Sethuraman Large deviations for processes with independent increments. Ann. of Probab., 15, pp 610-627,1987.
[12] Maïda, M., Najim, J. and Péché, S. Large deviations for weighted empirical mean with outliers. Stochastic Process. Appl.,117, pp 1373-1403, 2007.
[13] Mogulskii, A.A. Large deviations for trajectories of multi dimensional random walks. Th. Prob. Appl., 21, pp 300-315, 1976.
[14] Mogulskii, A.A. Large deviations for processes with independent increments. Ann. of Prob.., 21, pp 202-215, 1993.
[15] Najim, J. A Cramér type theorem for weighted random variables. Electronic Journ. of Prob., 7, pp 1-32, 2002.
[16] Perrin, O. and Zani, M. Large deviations for sample paths of Gaussian processes quadratic variations. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) transl. in J. Math. Sci. (N. Y.), 328 (transl. in 139), pp 169-181 (transl. 6595-6602), 2005 (transl. in 2006).
[17] Rockafellar, R. T. Convex analysis. Princeton University Press, 1970.
[18] Rockafellar, R. T. Integrals which are convex functionals II. Pac. Journ. of Maths, 39, pp 439-469, 1971.
[19] Sanov, I.N. On the probability of large deviations of random magnitudes. Math. Sb. N. S., 42(84), pp 11-44, 1957.
[20] Varadhan, S. R. S. Asymptotic probabilities and differential equations.. Comm. Pure Appl. Math., 19, pp 261-286, 1966.
[21] Zani, M. Grandes déviations pour des fonctionnelles issues de la statistique des processus Thèse, Orsay, 2000.

[^0]: *Laboratoire d'Analyse et de Mathématiques Appliquées, CNRS UMR 8050, Université Paris Est Créteil, 61 av du Gal de Gaulle, 94010, Créteil, France. e-mail: zani@u-pec.fr

