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Sample path large deviations for squares of stationary

Gaussian processes

Marguerite Zani ∗

Abstract

In this paper, we show large deviations for random step functions of type

Zn(t) =
1

n

[nt]∑
k=1

X2
k ,

where {Xk}k is a stationary Gaussian process. We deal with the associated random
measures νn = 1

n

∑n
k=1X

2
kδk/n. The proofs require a Szegö theorem for generalized

Toeplitz matrices, which is presented in the Appendix and is analogous to a result
of Kac, Murdoch and Szegö [10]. We also study the polygonal line built on Zn(t)
and show moderate deviations for both random families.

AMS classification: primary: 60G15, 60F10, 47B35 secondary: 60G10, 60G17.
Keywords: Gaussian processes, Large deviations, Szegö theorem, Toeplitz matrices.

1 Introduction

The aim of this paper is to provide a large deviations principle (LDP) for random
functions of type

Zn(t) =
1

n

[nt]∑
k=1

X2
k , (1)

and the associated polygonal line

Z̃n(t) = Zn(t) +
(
t− [nt]

n

)
X2

[nt]+1 , (2)

where {Xn}n is a stationary Gaussian process having spectral density f defined on the
torus T =]− π, π]. We assume f is continuous positive on T.

Large deviations for random measures date back to Sanov [19] who showed a LDP
for the family of empirical measures

1

n

n∑
i=1

δXi , (3)
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Créteil, 61 av du Gal de Gaulle, 94010, Créteil, France. e-mail: zani@u-pec.fr
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where Xi are i.i.d. random variables.
Then, the first results on large deviations for random paths were given by Borovkov
[2] and Varadhan [20]. In [2], Borovkov provides a LDP for the random polygonal line
joining the points ( kn ,

Sk
x ) where Sk =

∑k
i=1Xi and x = x(n) is in the range

lim sup
n→∞

x

n
<∞ , lim

n→∞

x√
n lnn

=∞ (4)

He also showed large deviations for the paths η(nt)/x where 0 ≤ t ≤ 1 and η is a
separable process with independent increments. The large deviations are given in the
spaces C([0, 1]) ( the set of continuous functions on [0, 1]) or D([0, 1]) ( the set of cadlag
functions on [0, 1]) endowed with the uniform metric. Meanwhile, Varadhan [20] proved
functional large deviations in D([0, 1]) for the random step functions

Sn(t) =
1

n

[nt]∑
i=1

Xi (5)

where t ∈ [0, T ] and [nt] denotes the integer part of nt. Later on, Mogulskii ([13])
improved these results: he proved large deviations for the polygonal line ( kn ,

Sk
x ) in the

range

lim sup
n→∞

x

n
<∞ , lim

n→∞

x√
n

=∞ (6)

in the space D([0, 1]) endowed with the Skorokhod metric. For more general results on
large deviations for processes with independent increments, see also Lynch and Sethu-
raman [11], de Acosta [3] and Mogulskii [14].

The results of [2, 20, 13] concerning step functions and continuous random polygonal
lines built on sums of i.i.d. random variables can be found in the books of Dupuis and
Ellis [6] and Dembo and Zeitouni [5].

In our paper, to derive the large deviations, we consider the distribution derivative
of t → Zn(t) and t → Z̃n(t). Therefore we deal with the random measures νn and ν̃n
given by

〈νn, h〉 =
1

n

n∑
k=1

X2
kh(

k

n
) (7)

and

〈ν̃n, h〉 =
n∑
k=1

X2
k

∫ k/n

(k−1)/n
h(s)ds , (8)

for h in C([0, 1]). LetM([0, 1]) be the set of positive bouded measures on [0, 1] endowed
with the weak topology. Therefore νn and ν̃n are a.s. in M([0, 1]).

Analogous random measures have been investigated before by Dembo and Zeitouni
[4], and Gamboa and Gassiat [7]. Previous works on LDP for this kind of random
functions can be found in Gamboa, Rouault and Zani [8] and Perrin and Zani [16] for
stationary Gaussian processes, and in Najim [15] and Mäıda, Najim and Péché [12] for
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i.i.d. sequences. We provide here a functional LDP for {νn} and {ν̃n}, and derive the
associated LDP for {Zn} and {Z̃n}. We also prove moderate deviations. The central
limit theorem is known. Although part of this work was already presented in [21] the
present work provide a full version with proofs and some extensions.

The remaining of the paper is organized as follows. We present in Section 2 the large
and moderate deviations results. Section 3 is devoted to the proofs of Theorems. De-
riving the LD result, we needed a Szegö type theorem for generalized Toeplitz matrices.
This precise result is unknown to our knowledge and despite a very similar result has
been shown in Kac Murdoch and Szego (see [10] and [9]), for seek of completenes we
prove it in the Appendix. The remaining of the Appendix gather the proofs of technical
lemmas.

2 Large and moderate deviations

For any h in C([0, 1]), define

Λ(h) =

 − 1

4π

∫
[0,1]

∫
T

log(1− 2h(t)f(θ)) dθ dt if ∀(t, θ) ∈ [0, 1]× T, h(t)f(θ) < 1/2

+∞ otherwise

Let Λ∗ be the Legendre dual of Λ. From Rockafellar [18], we can detail this dual function
as following:

Proposition 2.1 Let ν be the measure in M([0, 1]) defined for any h in C([0, 1]) by

〈ν, h〉 =
1

2π

∫
T
f(θ)dθ

∫
[0,1]

h(x)dx .

Let µ ∈ M([0, 1]) having the following Lebesgue decomposition with respect to ν: µ =
lν + µ⊥ where l ∈ C([0, 1]) and µ⊥ is the singular part. Then

Λ∗(µ) =

∫
[0,1]

u∗(l(t)) ν(dt) +

∫
[0,1]

µ⊥(dt)

2M
,

where

u(x) = − 1

4π

∫
T

log(1− 2xf(θ)) dθ ,

and
M = esssupf .

The function u is C2 on (−∞, 1/2M), and

u′(x) =
1

2π

∫
T

f(θ)

1− 2xf(θ)
dθ

u′′(x) =
1

π

∫
T

f(θ)2

(1− 2xf(θ))2
dθ > 0
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Hence u′ is strictly increasing, and limx→−∞ u
′(x) = 0. On the other hand, we denote

u′(1/2M) := limx→+∞ u
′(x) ≤ +∞ (e.g. if f ∈ C2, u′(1/2M) = +∞). The recession

function ( see Theorem 8.5 of [18]) is r(u∗; y) = y/2M .

2.1 Large Deviations

We can now state the LDP result:

Theorem 2.2 The families {νn}n∈N and {ν̃n}n∈N satisfy a LDP inM([0, 1]) with speed
n and rate function Λ∗.

We can carry the previous LDP to the random functions Zn and Z̃n. Following Lynch
and Sethuraman [11] and de Acosta [3], we introduce some notations. Let D([0, 1],R) be
the space of cadlag real functions on [0, 1], and bv([0, 1],R) ⊂ D([0, 1],R) the space
of bounded variation functions. We can identify bv([0, 1],R) with M([0, 1]): to h
in bv([0, 1],R) corresponds µh in M([0, 1]) characterized by µh([0, t]) = h(t). Up to
this identification, the topological dual of bv([0, 1],R) is the set C([0, 1]). We endow
bv([0, 1],R) with the w∗–topology written σ, i.e. the topology induced by C([0, 1]) on
M([0, 1]). Now, let us define the rate function associated to Zn and Z̃n: let h be in
bv([0, 1],R) and µh the associated measure in M([0, 1]); let µh = (µh)a + (µh)s be the
Lebesgue decomposition of µh in absolutely continuous and singular terms with respect
to the Lebesgue measure on [0, 1]; let ha(t) = (µh)a([0, t]) and hs(t) = (µh)s([0, t]). Set

Φ(h) =

∫
[0,1]

u∗(h′a)(t) ν(dt) + rhs(1) ,

where u∗ and r are defined in Proposition 2.1.

Theorem 2.3 The families of random functions {Zn} and {Z̃n} satisfy a LDP on the
space (bv([0, 1],R), σ), with speed n and rate function Φ.

2.2 Moderate deviations

We can state also in this case a moderate deviation principle. We detail it for νn, it is
the same for ν̃n. Let {an} be a sequence of positive real numbers such that an → 0 and
nan → +∞ when n→ +∞. Set

Yn =
√
nan(νn − E(νn)) .

We have the following moderate deviations principle

Theorem 2.4 {Yn} satisfy a LDP with speed a−1n and good rate function defined, for
all µ ∈M([0, 1]) by

I(µ) =


π

2f̄2

∫
[0,1]

l(x)2 dx if µ(dx) = l(x) dx

+∞ otherwise ,

where

f̄2 =
1

2π

∫
T
f2 .
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2.3 Generalizations

The previous results can be generalized to some other random functions.

2.3.1 Weighted random variables

Assume g is a continuous function on [0, 1] and define

Wn =
1

n

[nt]∑
k=1

g

(
k

n

)
X2
k , (9)

For any h in C([0, 1]), define

Λ(h) =

 − 1

4π

∫
[0,1]

∫
T

log(1− 2h(t)g(t)f(θ)) dθ dt if ∀(t, θ) ∈ [0, 1]× T, h(t)g(t)f(θ) < 1/2

+∞ otherwise

The previous large deviations results apply with rate function Λ∗.

2.3.2 Quadratic forms built on the stationary process

We define
m = essinff

and assume m > 0. Let F be a continuous positive function on [m,M ]. Let O be an
orthonormal matrix such that O∗Tn(f)O is the diagonal matrix whose i–th diagonal
element is µi,n the i–th eigenvalue of Tn(f). Define

F (Tn(f)) = ODfO
∗

where Df is the diagonal matrix whose i-th element is F (µi,n). Define the following
quadratic form

Wn =
1

n
X∗F (Tn(f))X =

1

n
Y ∗Y ,

where Y = (Y1, · · ·Yn) is the vector defined by

Y = F (Tn(f))1/2X .

In this case, Wn satisfies a LDP and moderate deviations theorem with rate function Λ∗

where for any h in C([0, 1])

Λ(h) =

 − 1

4π

∫
[0,1]

∫
T

log[1− 2h(t)f(θ)F [f(θ)]] dθ dt if ∀(t, θ) ∈ [0, 1]× T, h(t)f(θ) < 1/2

+∞ otherwise

.
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3 Proof of the large and moderate deviations

We first give some asymptotic properties for the families {νn}n and {ν̃n}n.

3.1 Weak convergence of νn and {ν̃n}n
Lemma 3.1 Let h be in C([0, 1]).

〈νn, h〉 → 〈ν, h〉 in probability as n→ +∞ (10)

and
〈ν̃n, h〉 → 〈ν, h〉 in probability as n→ +∞

where

〈ν, h〉 = f̄

∫
[0,1]

h(x) dx ,

and

f̄ =
1

2π

∫
T
f(θ) dθ .

Proof :
Let h be in C([0, 1]), and consider

〈νn, h〉 =
1

n

n∑
k=1

X2
kh(

k

n
) .

Set X the Gaussian vector (X1, X2, · · · , Xn) and ∆h the diagonal matrix
h(

1

n
) 0 0 0

0 h(
2

n
) 0 0

0 0
. . . 0

0 0 0 h(1)


Therefore we can write

〈νn, h〉 =
1

n
X∗∆hX ,

where X∗ denote the transpose of X. By an orthonormal change of basis,

〈νn, h〉 =
1

n
U∗n Tn(f)1/2∆hTn(f)1/2 Un ,

where Un is a standard normal vector and Tn(f) the order-n Toeplitz matrix associated
to f . Therefore

〈νn, h〉 =
1

n

n∑
k=1

λk,nZk,n (11)
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where {Zk,n} are independent χ2(1)-distributed random variables, and {λk,n} are the
eigenvalues of Tn(f)1/2∆hTn(f)1/2.
We can write as well

〈ν̃n, h〉 =
1

n

n∑
k=1

λ̃k,nZk,n (12)

where {Zk,n} are independent χ2(1)-distributed random variables, and {λ̃k,n} are the
eigenvalues of Tn(f)1/2AhTn(f)1/2, and the matrix Ah is diagonal with k-th diagonal
term

(Ah)k,k =

∫ k/n

(k−1)/n
h(s) ds .

We have the two following results on the distributions {λk,n} and {λ̃k,n}, which proofs
are postponed to the Appendix.

Lemma 3.2 The sequences {λk,n} and {λ̃k,n} are bounded as follows:

∀n ∈ N , ∀ 1 ≤ k ≤ n , |λk,n| ≤ ‖h‖∞‖f‖∞
|λ̃k,n| ≤ ‖h‖∞‖f‖∞

Lemma 3.3 For any p in N, p ≥ 1,

lim
n→+∞

1

n

n∑
k=1

λpk,n =
1

2π

∫
[0,1]

∫
T
(h(t)f(θ))p dtdθ .

lim
n→+∞

1

n

n∑
k=1

(λ̃k,n)p =
1

2π

∫
[0,1]

∫
T
(h(t)f(θ))p dtdθ .

With the above lemma,
lim

n→+∞
E(〈νn, h〉) = 〈ν, h〉 .

Moreover,

lim
n→+∞

nVar〈νn, h〉 =
2

n

n∑
k=1

λ2k,n =
1

π

∫
[0,1]

∫
T
(h(t)f(θ))2dtdθ .

We do as well for ν̃n, and it ends the proof of lemma 3.1.

3.2 Proof of Theorem 2.2:

The proof follows exactly the scheme [8]. We detail here for νn, it is similar for ν̃n. With
the decomposition (11), we get the n.c.g.f. of νn: for any h ∈ C([0, 1]),

Λn(h) =
1

n
logE(exp{n〈νn, h〉}) =

−
1

2n

n∑
k=1

log(1− 2λk,n) if ∀k, λk,n < 1/2

+∞ otherwise

(13)
From Lemma 3.3, we can determine the limit of Λn in two cases:

7



• if ∀(t, θ) ∈ [0, 1]× T h(t)f(θ) < 1/2 , then

lim
n→+∞

Λn(h) = − 1

4π

∫
[0,1]

∫
T

log(1− 2h(t)f(θ)) dθ dt = Λ(h) .

• if ∃(t, θ) ∈ [0, 1]×T; h(t)f(θ) > 1/2 , then for n large enough, Λn(h) = +∞ and

lim
n→+∞

Λn(h) = +∞ = Λ(h) .

These two cases do not cover the whole set C([0, 1]). Nevertheless, this will be sufficient
for the LDP, since they contain a dense subset of exposing hyperplanes of Λ∗.

Upper bound
From Theorem 4.5.3 b) of [5], and the following lemma, which proof is postponed to the
Appendix, the upper bound holds for compact sets.

Lemma 3.4 For any δ > 0 and µ in M([0, 1]), there exists hδ in C([0, 1]) such that:

∀(t, θ), hδ(t)f(θ) < 1/2∫
[0,1]

hδ(t) dµ(t)− Λ(hδ) ≥ Λ∗δ(µ) (14)

where

Λ∗δ(µ) = min{Λ∗(µ)− δ, 1

δ
} .

Exponential tightness
Remark that for a real number a,

{ sup
‖h‖∞≤1

〈νn, h〉 ≥ a} ⊂ {νn(1) ≥ a} .

If M = esssupθf(θ), for any y < 1/2M ,

lim sup
n

1

n
logP (νn(1) ≥ a) ≤ −ya− 1

4π

∫
[0,1]

∫
T

log(1− 2yf(θ)) dθ ,

and

lim
a→+∞

lim sup
n

1

n
logP (νn(1) ≥ a) = −∞ .

Hence the sequence (νn) is exponentially tight, and the upper bound holds for any closed
set of M([0, 1]).

Lower bound
We study the set of exposed points of Λ∗ (see [5]). Let

H = {µ ∈M([0, 1]); µ = lν, 0 < l < u′(1/2M), l continuous on [0, 1]} .

The following two lemmas, which proofs are postponed to the Appendix, show that that
H is a dense subset of the exposed points of Λ∗, which concludes the proof of Theorem
2.2.
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Lemma 3.5 Let µ = lν be in H. There exists hl in C([0, 1]) such that

∀(t, θ) ∈ [0, 1]× T hl(t)f(θ) < 1/2

∀ ξ ∈M([0, 1]) Λ∗(µ)− Λ∗(ξ) < (µ− ξ)(hl) (15)

Furthermore, there exists γ > 1 such that Λ(γl) < +∞ .

Hence µ is an exposed point of Λ∗ with exposing hyperplane hl.

Lemma 3.6 Let µ be in M([0, 1]) such that Λ∗(µ) < +∞ . There exists a sequence
(µn) ∈ H such that µn ⇒ µ and limn→+∞ Λ∗(µn) = Λ∗(µ) .

3.3 Proof of Theorem 2.4:

The n.c.g.f. of Yn is given for any h in C[m,M ] by

Λn(h) = an log E(exp

{√
n

an
(〈νn, h〉 − E(〈νn, h〉))

}
)

= −an
2

n∑
k=1

log

(
1− 2
√
nan

λk,n

)
+

2
√
nan

λk,n

We recall that {λk,n} are the eigenvalues of the matrix Tn(f)1/2∆hTn(f)1/2. We can
assert

Λn(h) =
1

n

n∑
k=1

λ2k,n +O

(
1

n
√
nan

n∑
k=1

|λk,n|3
)
.

From the convergence (10), Therefore

lim
n→+∞

Λn(h) = Λ = f̄2
∫
[0,1]

h(x)2 dx (16)

This function is defined on all C[0, 1], then the rate function is the Legendre dual of Λ
which is, from Rockafellar [18],

I(µ) =
π

2f̄2

∫
[0,1]

l(x)2 dx,

where dµ(t) = l(x) dx .

4 Appendix

4.1 A Szegö Theorem for generalized Toeplitz matrices

In this paragraph we show a result on the distribution of eigenvalues of some kind of
generalized Toeplitz matrices.

9



Suppose g is a real function defined on [0, 1]×T such that for any x ∈ [0, 1], g(x, ·) ∈
L1(T). Define

ĝk(x) =
1

2π

∫
T
g(x, θ)e−ikθdθ ,

and

T gen
n (g)k,l = ĝl−k

(
k

n

)
. (17)

Denote by
‖ĝk‖∞ = sup

x∈[0,1]
|ĝk(x)| .

Theorem 4.1 Under assumption

M :=
∑
k

‖ĝk‖∞ <∞ , (18)

lim
n→∞

1

n
tr (T gen

n (g))p =
1

2π

∫ 1

0

∫
T
g(x, θ)pdθdx . (19)

Proof: This proof is analogous to the one of [10]. Let ε > 0 be fixed and m ∈ N chosen
such that: ∑

|k|>m

‖ĝk‖∞ < ε

Consider the trigonometric polynom of degree m:

gm(x, θ) =

m∑
k=−m

ĝk(x)eikθ (20)

Let T gen
n (gm) be the generalized Topelitz matrix associated to gm as in (17). Therefore

T gen
n (g) = T gen

n (gm) +R

and the sum of the moduli of the elements of any row of R is less than ε. Hence the
same is true for the eigenvalues of R i.e. for the eigenvalues of T gen

n (g)−T gen
n (gm). From

the Weyl-Courant Lemma, we can therefore bound

|λk,n − λmk,n| ≤ ε ,

where {λk,n}k and {λmk,n}k are the eigenvalues of T gen
n (g) and T gen

n (gm) respectively non-
decreasingly ordered. From assumption (18),

|λk,n| ≤M , |λmk,n| ≤M .

Hence for any positive integer s

|(λk,n)s − (λmk,n)s| ≤ εsM s−1 .

10



We can bound similarly |g(x, θ)s − gm(x, θ)s| and therefore to show (19) it is enough to
consider the polynomial gm. We derive

lim
n→∞

1

n
tr
(
T gen
n (gm)

)p
=
∑
Dp

m∑
j=1

ĝl1

(
j + l1
n

)
ĝl2

(
j + l1 + l2

n

)
· · · ĝlp

(
j

n

)
,

where Dp = {(l1, · · · lp) ∈ Zp;
∑
li = 0} and the second sum in the RHS above is on j

such that j +
∑k

1 li – for k from 1 to p – is in the range 1, . . . , n, i.e. sp ≤ j ≤ n − sp.
Therefore we have to suppress at most 2sp+ 1 terms. From classical results on Riemann
sums,

lim
n→∞

1

n

∑
Dp

m∑
j=1

ĝl1

(
j + l1
n

)
ĝl2

(
j + l1 + l2

n

)
· · · ĝlp

(
j

n

)

=
∑
Dp

∫ 1

0
ĝl1(x)ĝl2(x) · · · ĝlp(x)dx

=
∑

(l1,···lp)∈Zp

1

2π

∫
T
ei(l1+l2+···lp)dθ

∫ 1

0
gl1(x)ĝl2(x) · · · ĝlp(x)dx

=
1

2π

∫ 1

0

∫
T
g(x, θ)pdθdx .

4.2 Proof of Proposition 2.1

This lemma is a consequence of Theorem 5 of Rockafellar [18]. For the sake of clarity,
we recall the framework of that paper. Let h be in C([m,M ]), and

Λ(h) =

∫
[m,M ]

u(t, h(t)) dν(t) ,

where u(t, x) defined on [m,M ] × R → R is a function convex in x, and ν a non–
negative, σ–finite measure. For any µ in M([m,M ]) having, with respect to ν the
Lebesgue decomposition µ = lν + µ⊥, where l ∈ C([m,M ]), and µ⊥ is the singular part,
then

Λ∗(µ) =

∫
[m,M ]

u∗(t, l(t)) dν(t) +

∫
[m,M ]

r(u∗(t, ·); dµ⊥/dη(t)) dη(t) (21)

where η is any nonnegative measure ofM([m,M ]) with respect to which µ⊥ is absolutely
continuous, and u∗(t, ·) is the dual function of u(t, ·):

∀t , u∗(t, y) = sup
x∈R
{xy − u(t, x)} .

Applying the result of (21) to u(t, x) = −(1/t) log (1 − 2tx), we have the formula of
Proposition 2.1

11



4.3 Proof of Lemma 3.2

From Proposition V 1.8 and Theorem X 1.1 of Bhatia [1], since Tn(f) is an hermitian
positive matrix,

‖Tn(f)1/2∆hTn(f)1/2‖ ≤ ‖Tn(f)‖ ‖∆h‖ (22)

From Grenander and Szegö ([9] p.64)

‖Tn(f)‖ ≤ ‖f‖∞ .

In addition,

‖∆h‖ ≤ sup
k

∑
s

|(∆h)ks| ≤ ‖h‖∞ (23)

Getting together inequalities (22) and (23), we get the result.

4.4 Proof of Lemma 3.3

This lemma is a direct consequence of Theorem 4.1 above, for both random measures.

4.5 Proof of Lemma 3.4

From the definition of Λ∗, for any δ > 0, there exists hδ in C([0, 1]) such that inequality
(14) holds. In case we only have

∀(t, θ) ∈ [0, 1]× T hδ(t)f(θ) ≤ 1

2
,

we choose hε with ε > 0 such that∫
[0,1]

hε(t) dµ(t)− Λ(hε) ≥ Λ∗δ(µ)− ε .

(this is possible from the continuity of Λ in a neighborhood of hδ)
Then (14) holds with another δ. From assumption on f , f > 0, then hεf < 1/2 .

4.6 Proof of Lemma 3.5

For all 0 < y < 1/u′(1/2M), there exists a unique xy in (−∞, 1/2M) such that y =
u′(xy) . For such a pair (y, xy),

u∗(y) = yxy − u(xy) .

12



Since u′ is strictly increasing and continuous, u∗ is strictly convex on 0 < y < u′(1/2M).
For such an y and z > 0 , z 6= y,

u∗(y)− u∗(z) < (y − z)xy (24)

(then y is an exposed point of u∗ with exposing hyperplane xy) If µ = lν and ξ = l̃ν+ξ⊥.
We apply inequality (24) with y = l(t) and z = l̃(t), and then we integrate over [0, 1]
against ν. We obtain the inequality (15) with hl(t) = xl(t).

4.7 Proof of Lemma 3.6

Following the sketch of proof of [8], we proceed in 4 steps. Assume u′(1/2M) = +∞.
Step 1: Let µ = lν + µ⊥ be in M([0, 1]) such that Λ∗(µ) <∞ with l continuous and

l ∈ (0, u′( 1
2M ), and such that µ⊥ is in L1([0, 1]). Since ν has full support on [0, 1], there

exists a sequence of continuous positive functions on [0, 1] such that hndν ⇒ µ⊥. From
the lower semi-continuity of Λ∗,

lim inf
n→+∞

Λ∗((l + hn)ν) ≥ Λ∗(µ) .

Since u∗ is a convex function, from Rockafellar (see [17]), for any y > 0 and z ≥ 0,

u∗(y + z) ≤ u∗(y) +
z

2M
.

Therefore

Λ∗((l + l̃)ν) ≤ Λ∗(lν) +
1

2M

∫
l̃(t)dν(t) (25)

From inequality above,

Λ∗((l + hn)ν) ≤ Λ∗(lν) +
1

2M

∫
0,1]

hn dν

And then
lim inf
n→+∞

Λ∗((l + hn)ν) ≤ Λ∗(µ) .

We now show that the Lemma is true if µ = l ν with l ν-a.s. in (0, u′( 1
2M ) and integrable.

Step 2

We prove the result for µ = l ν assuming that l is in (0, u′( 1
2M ) integrable and that for

some ε > 0, l > ε ν-a.s. There exists a sequence (ln) of continuous positive functions such
that ln converges both in L1(ν) norm and ν-a.s. to l and ln > ε/2. Since on (ε/2, u′( 1

2M )
the function u∗ is Lipschitzian, the lemma holds.

Step 3

13



Define lε := l1ll>ε + ε1ll≤ε. Apply second step and inequality (25) noticing that lε con-
verges in L1(ν) to l and that lε ≥ l.

Step 4

For µ = lν + η, combine first and third step.

If u′(1/2M) < +∞, we have to modify the second and third step, introducing an
additional truncation at level u′(1/2M)− ε.
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