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Sample path large deviations for squares of stationary
Gaussian processes

Marguerite Zani *

Abstract

In this paper, we show large deviations for random step functions of type

[nt]

1
Zn(t) = n ZXlg )
k=1

where { X} } is a stationary Gaussian process. We deal with the associated random
measures v, = % ZZ=1 X ,fék /n- The proofs require a Szegd theorem for generalized
Toeplitz matrices, which is presented in the Appendix and is analogous to a result
of Kac, Murdoch and Szego [10]. We also study the polygonal line built on Z,(t)
and show moderate deviations for both random families.

AMS classification: primary: 60G15, 60F10, 47B35 secondary: 60G10, 60G17.
Keywords: Gaussian processes, Large deviations, Szeg6 theorem, Toeplitz matrices.

1 Introduction

The aim of this paper is to provide a large deviations principle (LDP) for random
functions of type

[nt]
1
Zu(t) =3 XE, 1)
k=1
and the associated polygonal line
5 _ [nt]\ (2
Zn(t) = Zn(t) + (t - Y)X[nt]_yl ; (2)

where {X,,}, is a stationary Gaussian process having spectral density f defined on the
torus T =] — 7w, w]. We assume f is continuous positive on T.

Large deviations for random measures date back to Sanov [19] who showed a LDP
for the family of empirical measures

%ZéXi ) (3)
=1
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where X; are i.i.d. random variables.
Then, the first results on large deviations for random paths were given by Borovkov

[2] and Varadhan [20]. In [2], Borovkov provides a LDP for the random polygonal line

joining the points (£, 2£) where S}, = Zle X; and z = z(n) is in the range

n’ x

=0 (4)

lim sup z < oo, lim
n—oo N n—00 \/nlnn
He also showed large deviations for the paths n(nt)/z where 0 < ¢ < 1 and 7 is a
separable process with independent increments. The large deviations are given in the
spaces C([0,1]) ( the set of continuous functions on [0, 1]) or D([0,1]) ( the set of cadlag
functions on [0, 1]) endowed with the uniform metric. Meanwhile, Varadhan [20] proved
functional large deviations in D([0, 1]) for the random step functions

[nt]

Sult) =~ > X, o)
i=1

where ¢t € [0,7] and [nt] denotes the integer part of nt. Later on, Mogulskii ([13])
improved these results: he proved large deviations for the polygonal line ( %, %) in the
range . .
hrILILSolipﬁ<OO7 71151;0%—00 (6)

in the space D([0,1]) endowed with the Skorokhod metric. For more general results on
large deviations for processes with independent increments, see also Lynch and Sethu-
raman [11], de Acosta [3] and Mogulskii [14].

The results of [2, 20, 13] concerning step functions and continuous random polygonal
lines built on sums of i.i.d. random variables can be found in the books of Dupuis and
Ellis [6] and Dembo and Zeitouni [5].

In our paper, to derive the large deviations, we consider the distribution derivative
of t —» Z,(t) and t — Z,(t). Therefore we deal with the random measures v, and 7,
given by

L oo, K
<Vn7h> = g ;X’“h(n) (7)
and
n k/n
Guch) = SXF [ (o), ®)
k=1 (k—1)/n

for h in C(]0,1]). Let M([0,1]) be the set of positive bouded measures on [0, 1] endowed
with the weak topology. Therefore v, and 7, are a.s. in M([0,1]).

Analogous random measures have been investigated before by Dembo and Zeitouni
[4], and Gamboa and Gassiat [7]. Previous works on LDP for this kind of random
functions can be found in Gamboa, Rouault and Zani [8] and Perrin and Zani [16] for
stationary Gaussian processes, and in Najim [15] and Malda, Najim and Péché [12] for



i.i.d. sequences. We provide here a functional LDP for {v,} and {7}, and derive the
associated LDP for {Z,} and {Z,}. We also prove moderate deviations. The central
limit theorem is known. Although part of this work was already presented in [21] the
present work provide a full version with proofs and some extensions.

The remaining of the paper is organized as follows. We present in Section 2 the large
and moderate deviations results. Section 3 is devoted to the proofs of Theorems. De-
riving the LD result, we needed a Szegd type theorem for generalized Toeplitz matrices.
This precise result is unknown to our knowledge and despite a very similar result has
been shown in Kac Murdoch and Szego (see [10] and [9]), for seek of completenes we
prove it in the Appendix. The remaining of the Appendix gather the proofs of technical
lemmas.

2 Large and moderate deviations

For any h in C([0, 1]), define

/ /log (1—2h(t)f(0))dodt if(t,60) € [0,1] x T, h(t)f(6) < 1/2
0.1

+o00 otherwise

A(h) =

Let A* be the Legendre dual of A. From Rockafellar [18], we can detail this dual function
as following;:

Proposition 2.1 Let v be the measure in M([0,1]) defined for any h in C([0,1]) by
1
i) = - [ 10)d8 [ b,
210 Jr [0,1]

Let p € M([0,1]) having the following Lebesgue decomposition with respect to v: p =
lv+ u* where 1 € C([0,1]) and p* is the singular part. Then

s = | U v gt (dt)
NG = [ wao)van+ [0,

7) = —;T/Elog(l—%cf(@))d@

where

and
M = esssupf .

The function u is C? on (—o0,1/2M), and

oy L f(6)
u(x)_%r/qu—Qxf(G) 40

Nk
0 =7 [ e >0

3



Hence v/ is strictly increasing, and lim,_,_o u/(x) = 0. On the other hand, we denote
W' (1/2M) = limg_s 400 v/ (z) < +o0 (e.g. if f € C%, u/(1/2M) = +0c0). The recession
function ( see Theorem 8.5 of [18]) is r(u*;y) = y/2M.

2.1 Large Deviations

We can now state the LDP result:

Theorem 2.2 The families {vy }nen and {Dn }nen satisfy a LDP in M([0,1]) with speed
n and rate function A*.

We can carry the previous LDP to the random functions Z, and Zn. Following Lynch
and Sethuraman [11] and de Acosta [3], we introduce some notations. Let D(]0, 1], R) be
the space of cadlag real functions on [0, 1], and bv([0,1],R) € D([0,1],R) the space
of bounded variation functions. We can identify bv([0,1],R) with M([0,1]): to h
in bu([0,1],R) corresponds pyp, in M([0,1]) characterized by up([0,t]) = h(t). Up to
this identification, the topological dual of bv([0,1],R) is the set C([0,1]). We endow
bu([0,1],R) with the w*~topology written o, i.e. the topology induced by C([0,1]) on
M([0,1]). Now, let us define the rate function associated to Z, and Z,: let h be in
bu([0,1],R) and py, the associated measure in M([0,1]); let pp = (pn)e + (pn)s be the
Lebesgue decomposition of uj in absolutely continuous and singular terms with respect
to the Lebesgue measure on [0, 1]; let hq(t) = (1n)a ([0, t]) and hg(t) = (un)s([0,¢]). Set

o) = [ w0 vid) +rha(1),
[0,1]

where u* and r are defined in Proposition 2.1.

Theorem 2.3 The families of random functions {Z,} and {Z,} satisfy a LDP on the
space (bv([0,1],R), o), with speed n and rate function .

2.2 Moderate deviations

We can state also in this case a moderate deviation principle. We detail it for v,, it is
the same for 7,,. Let {a,} be a sequence of positive real numbers such that a,, — 0 and
na, — +o0o when n — +o0o. Set

Y, = vnap(vn — E(v)) .
We have the following moderate deviations principle

Theorem 2.4 {Y,,} satisfy a LDP with speed a,,' and good rate function defined, for
all p € M([0,1]) by

s

— 2V dx i x) = l(x) dx
um:2ﬂéﬁ”d fp(de) = U(z)d

400 otherwise,

Peg [

where



2.3 Generalizations

The previous results can be generalized to some other random functions.

2.3.1 Weighted random variables

Assume g is a continuous function on [0, 1] and define

1 [nt] k ,
k=1
For any h in C([0, 1]), define

A(R) = _47r/[071] / log(1 —2h(t)g(t)f(0))dodt ifV(t,0) € [0,1] x T, h(t)g(t)f(0) < 1/2

+o00 otherwise

The previous large deviations results apply with rate function A*.

2.3.2 Quadratic forms built on the stationary process

We define
m = essinff

and assume m > 0. Let F' be a continuous positive function on [m, M]. Let O be an
orthonormal matrix such that O*T,(f)O is the diagonal matrix whose i—th diagonal
element is p; p the i-th eigenvalue of T),(f). Define

F(Tu(f)) = ODfO"

where Dy is the diagonal matrix whose i-th element is F'(j;,). Define the following
quadratic form

1 1
Wy ==-X"F(T,(f)X = -Y"Y,
n n
where Y = (Y1, --Y,,) is the vector defined by
Y = F(T(f)"/?X .

In this case, W,, satisfies a LDP and moderate deviations theorem with rate function A*
where for any h in C([0, 1])

—1/ /log[l —2h(t)f(O)F[f(0)]]dodt ifV(t0) € [0,1] x T, h(t)f(0) <1/2
am [0,1] JT

+o0o otherwise

A(h) =



3 Proof of the large and moderate deviations

We first give some asymptotic properties for the families {v,},, and {7, },.

3.1 Weak convergence of v, and {7, },

Lemma 3.1 Let h be in C([0,1]).

(Un, h) — (v, h) in probability asn — 400

and
(Un, h) — (v, h) in probability asn — +oo
where
(v,h)y = f h(z)dz,
[0,1]
and )
F=o [ 1000
TJT
Proof :

Let h be in C([0,1]), and consider
1 ¢ k
b)) ==Y XZh(=-).
et = S XEC)

Set X the Gaussian vector (X1, Xo,---,X,) and Ay the diagonal matrix

M o 0
" P
h _
0 K 0 0
0 0 0
0 0 0 A1)

Therefore we can write

1
(n h) = ~X* Ap X,
n

where X* denote the transpose of X. By an orthonormal change of basis,

| -
<Vn7 h> = EUn Tn(f)l/QAth(f)l/Q Un

where U, is a standard normal vector and T,,(f) the order-n Toeplitz matrix associated

to f. Therefore

1 n
n7h = - A nZ n
(v, h) nkzl k2,

(11)



where {Z),} are independent yx?(1)-distributed random variables, and {\,} are the
eigenvalues of Ty, (f)'/2AL T, (f)V2.
We can write as well

Vm Z)\k nan (12)

where {Zy,} are independent y?(1)-distributed random variables, and {\;,} are the
eigenvalues of T,,(f)/2A,T,,(f)'/?, and the matrix A, is diagonal with k-th diagonal
term

k/n
(An)or = / h(s) ds.
(k—1)/n

We have the two following results on the distributions {\x,} and {S\km}, which proofs
are postponed to the Appendix.

Lemma 3.2 The sequences { g} and { Mg} are bounded as follows:

VneN, VI<k<n, [Aenl < [hllcllflle
Ml < Nllooll Flloo

Lemma 3.3 Foranyp in N, p>1,

1
im = Z ? = /[0 . [ sy aras.

n

1
lim — )\k n) = / / p dtdo .
n—+oo n 27'[' 0,1]

With the above lemma,
lim E((vn,h)) = (v,h).

n—-+o00

Moreover,

P 1
lim nVar(v,,h) = — )\Qn:/ /htf@ 2dtde .
im PPIRSEEY M KCHT)

We do as well for #,, and it ends the proof of lemma 3.1.

3.2 Proof of Theorem 2.2:

The proof follows exactly the scheme [8]. We detail here for v, it is similar for 7,,. With
the decomposition (11), we get the n.c.g.f. of Un: for any h € C(]0,1]),
1 - log(1 —2Xg.p) if VEk, A\ < 1/2
An(h) = —log E(exp{n{vn, h)}) = kzl ! !
+00 otherwise
(13)

From Lemma 3.3, we can determine the limit of A, in two cases:



o ifV(t,0) €[0,1] x T h(t)f(8) < 1/2, then

Hm A /[01 /log (1—20h(t)£(0))d0dt = A(h).

n—-+o0o

e if 3(¢,0) €[0,1] xT; h(t)f(0) > 1/2, then for n large enough, A, (h) = +oo and
lim Ap(h) =400 =A(h).

n—-+00
These two cases do not cover the whole set C([0, 1]). Nevertheless, this will be sufficient
for the LDP, since they contain a dense subset of exposing hyperplanes of A*.

Upper bound
From Theorem 4.5.3 b) of [5], and the following lemma, which proof is postponed to the
Appendix, the upper bound holds for compact sets.

Lemma 3.4 For any 6 > 0 and p in M([0,1]), there exists hs in C([0,1]) such that:
., POt = As) 2 N30 (14)

where

A3() = minfA(u) ~ 6, 53

Exponential tightness
Remark that for a real number a,

{ sup (vn,h) >a} C{v,(1) >a}.
[2lloo<1

If M = esssupyf(0), for any y < 1/2M,
1 1
limsup — log P(v,(1) > a) < —ya — / /log(l —2yf(9))deo
n n 41 [0,1] JT

and ]
lim limsup —log P(v,(1) > a) = —oc0.
n

a——+00 n
Hence the sequence (1) is exponentially tight, and the upper bound holds for any closed
set of M([0, 1]).

Lower bound
We study the set of exposed points of A* (see [5]). Let
H={pe M(0,1]); u=1lv, 0 <l < (1/2M), | continuous on [0, 1]}.

The following two lemmas, which proofs are postponed to the Appendix, show that that
H is a dense subset of the exposed points of A*, which concludes the proof of Theorem
2.2.



Lemma 3.5 Let u = Ilv be in H. There exists hy in C([0,1]) such that

V(t,0) €[0,1] x T hy(t)f(0) <1/2
vEe M([0,1])  A™() = A*(€) < (k= &) (M) (15)

Furthermore, there exists v > 1 such that A(vyl) < +oo.
Hence p is an exposed point of A* with exposing hyperplane h;.

Lemma 3.6 Let p be in M([0,1]) such that A*(u) < 4oo. There exists a sequence
(tn) € H such that py, = p and limy, o0 A* () = A* (1) .

3.3 Proof of Theorem 2.4:
The n.c.g.f. of Y}, is given for any h in C[m, M| by

n
M) = antor Blexp { /() = Bllons ) )
an o 2 2
= —— Zlog (1 — )\k’n> + —Mipn
2 Pt /nay, na,
We recall that {\,} are the eigenvalues of the matrix T,,(f)/2A,T,.(f)/2. We can

assert
1n 1 n
A(R) ==Y "X _+0 Menl? ]
() = 5 2+ (n T%Zrk,\)

k=1

From the convergence (10), Therefore
lim A,(h ——A——fz/ h(z)? dx 16
" (h) o (z) (16)

This function is defined on all C[0, 1], then the rate function is the Legendre dual of A
which is, from Rockafellar [18],

_i 1'2.’13
I(u)—sz/[o’”K 2 d,

where d,(t) = l(x) dx .

4 Appendix

4.1 A Szego Theorem for generalized Toeplitz matrices

In this paragraph we show a result on the distribution of eigenvalues of some kind of
generalized Toeplitz matrices.



Suppose g is a real function defined on [0, 1] x T such that for any x € [0, 1], g(x,) €
LY(T). Define

1 ,
(1) = — 0)e” " dp
iula) = 5= [ aa.0)eMap,
and L
T3 (9t = Gi—k <n> : (17)
Denote by
19klloc = sup [gk()]-
z€(0,1]
Theorem 4.1 Under assumption
M= 3 il < 00, (18)
k
lim 4 (T2 (g))? = — /1/ (, 8)Pd6d (19)
im —tr = — T x.

Proof: This proof is analogous to the one of [10]. Let € > 0 be fixed and m € N chosen

such that:
D llarlleo <e
|k|>m

Consider the trigonometric polynom of degree m:

m
g (@, 0) = D gr(w)e*? (20)
k=—m
Let T2°*(g™) be the generalized Topelitz matrix associated to ¢"* as in (17). Therefore

Tm(g) =T (") + R

and the sum of the moduli of the elements of any row of R is less than €. Hence the
same is true for the eigenvalues of R i.e. for the eigenvalues of T5"(g) — T2 (¢""). From
the Weyl-Courant Lemma, we can therefore bound

Ak = Al < €

where {Ay ;b and {A]", }x are the eigenvalues of T5*"(g) and T5**(¢"™) respectively non-
decreasingly ordered. From assumption (18),

el <M, N < M.
Hence for any positive integer s

[(Aein)” = (\2)°| < esMe71

10



We can bound similarly |g(x,0)° — ¢™(x,0)°| and therefore to show (19) it is enough to
consider the polynomial ¢"*. We derive

1 Jrh\ . (j+hL+1 . (7
- gen E E C. 4
nll—r>rc>lo ntr (T 9n ( n > 9z ( n I\ )

D, j=1

where D, = {(l1,---1,) € ZP; " 1l; = 0} and the second sum in the RHS above is on j
such that j +Zlfll- — for k from 1 to p — is in the range 1,...,n,ie. sp < j < n — sp.
Therefore we have to suppress at most 2sp+ 1 terms. From classical results on Riemann

sums,
1 NS o SRS Sy P (]
7}3{}055 E gh< N N R

D, j=1

/ gll ng g}lp(x)d:c
1 i(li+la+-1p)
= Z 27 e’ 2 gll glg glp(x)dm
lp)€EZ

(l17
1 1
:/ /g(x,@)pdﬁdaﬁ.
mTJo JT

4.2  Proof of Proposition 2.1

This lemma is a consequence of Theorem 5 of Rockafellar [18]. For the sake of clarity,
we recall the framework of that paper. Let h be in C([m, M]), and

Mmzjmmwwmwm

where u(t,z) defined on [m,M] x R — R is a function convex in z, and v a non—
negative, o—finite measure. For any p in M([m, M]) having, with respect to v the
Lebesgue decomposition p = lv + p*, where | € C([m, M]), and p* is the singular part,
then

Nwz/ uwmmww+/ Pt (k) dpt fdn() dn(t)  (21)
[m,M] [m,M]

where 7 is any nonnegative measure of M([m, M]) with respect to which pu* is absolutely
continuous, and u*(¢,-) is the dual function of u(t,-):

Vta U*(tv y) = sup{xy - U(t, :L‘)} :
zeR

Applying the result of (21) to u(t,x) = —(1/t)log (1 — 2tz), we have the formula of
Proposition 2.1

11



4.3 Proof of Lemma 3.2

From Proposition V 1.8 and Theorem X 1.1 of Bhatia [1], since T}, (f) is an hermitian
positive matrix,

ITu ()2 AT ()2 < (TN 1A (22)
From Grenander and Szego ([9] p.64)

1T (A < 11 lloo -

In addition,
[As] < SipZI(Ah)ml < 7l (23)

Getting together inequalities (22) and (23), we get the result.

4.4 Proof of Lemma 3.3

This lemma is a direct consequence of Theorem 4.1 above, for both random measures.

4.5 Proof of Lemma 3.4

From the definition of A*, for any § > 0, there exists hs in C([0, 1]) such that inequality
(14) holds. In case we only have

V(t, 0) S [07 1] xT hé(t)f(g) <

)

N

we choose h. with € > 0 such that
/[ Belt) ) = Afhe) 2 i) <.
0,1

(this is possible from the continuity of A in a neighborhood of hs)
Then (14) holds with another §. From assumption on f, f > 0, then h.f < 1/2.

4.6 Proof of Lemma 3.5

For all 0 < y < 1/u/(1/2M), there exists a unique x, in (—o0o,1/2M) such that y =
u'(zy) . For such a pair (y,zy),

u(y) = yry — uzy) .

12



Since v’ is strictly increasing and continuous, u* is strictly convex on 0 < y < u/(1/2M).
For such an y and z > 0, z # y,

u(y) —u'(z) < (y— 2)zy (24)

(then y is an exposed point of u* with exposing hyperplane ;) If = lv and £ = lv+E+.
We apply inequality (24) with y = [(¢) and z = [(f), and then we integrate over [0, 1]
against v. We obtain the inequality (15) with hy(t) = ;).

4.7 Proof of Lemma 3.6

Following the sketch of proof of [8], we proceed in 4 steps. Assume u/(1/2M) = +oo.

Step 1: Let u = lv + p* be in M(]0, 1]) such that A*(u) < oo with [ continuous and
I € (0,u/(51;7), and such that p* is in L'([0,1]). Since v has full support on [0, 1], there
exists a sequence of continuous positive functions on [0, 1] such that h,dv = p*. From
the lower semi-continuity of A*,

liminf A*((I + hp)v) > A% (1) .

n——+oo

Since u* is a convex function, from Rockafellar (see [17]), for any y > 0 and z > 0,

u(y+2) <u(y)+ -

2M -
Therefore .
A*((I+ D)) < A*(lv) + oI 1(t)dv(t) (25)
From inequality above,
1
N+ hy)v) < A (lv) + — hy, dv
(4 b)) < A°0) + 5 |

And then
liminf A*((I 4 hy)v) < A*(p) .

n—-+4o0o

We now show that the Lemma is true if ;1 = { v with [ v-a.s. in (0, u/(537) and integrable.

Step 2

We prove the result for = v assuming that [ is in (0, v’ (ﬁ) integrable and that for
some € > 0, [ > e v-a.s. There exists a sequence (I,,) of continuous positive functions such
that I, converges both in L'() norm and v-a.s. to l and I, > €/2. Since on (e/2, v/ (537)

the function u* is Lipschitzian, the lemma holds.

Step 3

13



Define [, := [}~ + ellj<.. Apply second step and inequality (25) noticing that [, con-
verges in L'(v) to [ and that I, > I.

Step 4

For p = lv + n, combine first and third step.

If u/(1/2M) < +oo, we have to modify the second and third step, introducing an

additional truncation at level w'(1/2M) — «.
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