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In this paper, we show large deviations for random step functions of type

where {X k } k is a stationary Gaussian process. We deal with the associated random measures

The proofs require a Szegö theorem for generalized Toeplitz matrices, which is presented in the Appendix and is analogous to a result of Kac, Murdoch and Szegö [10]. We also study the polygonal line built on Z n (t) and show moderate deviations for both random families.

Introduction

The aim of this paper is to provide a large deviations principle (LDP) for random functions of type

Z n (t) = 1 n [nt] k=1 X 2 k , (1) 
and the associated polygonal line

Zn (t) = Z n (t) + t - [nt] n X 2 [nt]+1 , (2) 
where {X n } n is a stationary Gaussian process having spectral density f defined on the torus T =] -π, π]. We assume f is continuous positive on T.

Large deviations for random measures date back to Sanov [START_REF] Sanov | On the probability of large deviations of random magnitudes[END_REF] who showed a LDP for the family of empirical measures

1 n n i=1 δ X i , (3) 
where X i are i.i.d. random variables.

Then, the first results on large deviations for random paths were given by Borovkov [START_REF] Borovkov | Boundary value problems for random walks and large deviations in function spaces[END_REF] and Varadhan [START_REF] Varadhan | Asymptotic probabilities and differential equations[END_REF]. In [START_REF] Borovkov | Boundary value problems for random walks and large deviations in function spaces[END_REF], Borovkov provides a LDP for the random polygonal line joining the points ( k n , S k x ) where S k = k i=1 X i and x = x(n) is in the range

lim sup n→∞ x n < ∞ , lim n→∞ x √ n ln n = ∞ (4) 
He also showed large deviations for the paths η(nt)/x where 0 ≤ t ≤ 1 and η is a separable process with independent increments. The large deviations are given in the spaces C([0, 1]) ( the set of continuous functions on [0, 1]) or D([0, 1]) ( the set of cadlag functions on [0, 1]) endowed with the uniform metric. Meanwhile, Varadhan [START_REF] Varadhan | Asymptotic probabilities and differential equations[END_REF] proved functional large deviations in D([0, 1]) for the random step functions

S n (t) = 1 n [nt] i=1 X i (5) 
where t ∈ [0, T ] and [nt] denotes the integer part of nt. Later on, Mogulskii ([13]) improved these results: he proved large deviations for the polygonal line ( k n , S k x ) in the range lim sup

n→∞ x n < ∞ , lim n→∞ x √ n = ∞ (6) 
in the space D([0, 1]) endowed with the Skorokhod metric. For more general results on large deviations for processes with independent increments, see also Lynch and Sethuraman [START_REF] Lynch | Large deviations for processes with independent increments[END_REF], de Acosta [START_REF] De Acosta | Large deviations for vector-valued Lévy processes[END_REF] and Mogulskii [START_REF] Mogulskii | Large deviations for processes with independent increments[END_REF].

The results of [START_REF] Borovkov | Boundary value problems for random walks and large deviations in function spaces[END_REF][START_REF] Varadhan | Asymptotic probabilities and differential equations[END_REF][START_REF] Mogulskii | Large deviations for trajectories of multi dimensional random walks[END_REF] concerning step functions and continuous random polygonal lines built on sums of i.i.d. random variables can be found in the books of Dupuis and Ellis [START_REF] Dupuis | A weak convergence approach to the theory of large deviations[END_REF] and Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF].

In our paper, to derive the large deviations, we consider the distribution derivative of t → Z n (t) and t → Zn (t). Therefore we deal with the random measures ν n and νn given by

ν n , h = 1 n n k=1 X 2 k h( k n ) (7) 
and

νn , h = n k=1 X 2 k k/n (k-1)/n h(s)ds , (8) 
for h in C([0, 1]). Let M([0, 1]) be the set of positive bouded measures on [0, 1] endowed with the weak topology. Therefore ν n and νn are a.s. in M([0, 1]). Analogous random measures have been investigated before by Dembo and Zeitouni [START_REF] Dembo | Large deviations for subsampling from individual sequences[END_REF], and Gamboa and Gassiat [START_REF] Gamboa | Bayesian methods for ill posed problems[END_REF]. Previous works on LDP for this kind of random functions can be found in Gamboa, Rouault and Zani [START_REF] Gamboa | A functional large deviations principle for quadratic forms of Gaussian stationary processes[END_REF] and Perrin and Zani [START_REF] Perrin | Large deviations for sample paths of Gaussian processes quadratic variations[END_REF] for stationary Gaussian processes, and in Najim [START_REF] Najim | A Cramér type theorem for weighted random variables[END_REF] and Maïda, Najim and Péché [START_REF] Maïda | Large deviations for weighted empirical mean with outliers[END_REF] for i.i.d. sequences. We provide here a functional LDP for {ν n } and {ν n }, and derive the associated LDP for {Z n } and { Zn }. We also prove moderate deviations. The central limit theorem is known. Although part of this work was already presented in [START_REF] Zani | Grandes déviations pour des fonctionnelles issues de la statistique des processus Thèse[END_REF] the present work provide a full version with proofs and some extensions.

The remaining of the paper is organized as follows. We present in Section 2 the large and moderate deviations results. Section 3 is devoted to the proofs of Theorems. Deriving the LD result, we needed a Szegö type theorem for generalized Toeplitz matrices. This precise result is unknown to our knowledge and despite a very similar result has been shown in Kac Murdoch and Szego (see [START_REF] Kac | On the eigenvalues of certain hermitian forms[END_REF] and [START_REF] Grenander | Toeplitz forms and their applications[END_REF]), for seek of completenes we prove it in the Appendix. The remaining of the Appendix gather the proofs of technical lemmas.

Large and moderate deviations

For any h in C([0, 1]), define

Λ(h) =    - 1 4π [0,1] T log(1 -2h(t)f (θ)) dθ dt if ∀(t, θ) ∈ [0, 1] × T, h(t)f (θ) < 1/2 +∞ otherwise
Let Λ * be the Legendre dual of Λ. From Rockafellar [START_REF] Rockafellar | Integrals which are convex functionals II[END_REF], we can detail this dual function as following:

Proposition 2.1 Let ν be the measure in M([0, 1]) defined for any h in C([0, 1]) by ν, h = 1 2π T f (θ)dθ [0,1] h(x)dx .
Let µ ∈ M([0, 1]) having the following Lebesgue decomposition with respect to ν: µ = lν + µ ⊥ where l ∈ C([0, 1]) and µ ⊥ is the singular part. Then

Λ * (µ) = [0,1] u * (l(t)) ν(dt) + [0,1] µ ⊥ (dt) 2M , where u(x) = - 1 4π T log(1 -2xf (θ)) dθ ,
and

M = esssupf .
The function u is C 2 on (-∞, 1/2M ), and

u (x) = 1 2π T f (θ) 1 -2xf (θ) dθ u (x) = 1 π T f (θ) 2 (1 -2xf (θ)) 2 dθ > 0
Hence u is strictly increasing, and lim x→-∞ u (x) = 0. On the other hand, we denote u (1/2M ) := lim x→+∞ u (x) ≤ +∞ (e.g. if f ∈ C 2 , u (1/2M ) = +∞). The recession function ( see Theorem 8.5 of [START_REF] Rockafellar | Integrals which are convex functionals II[END_REF]) is r(u * ; y) = y/2M .

Large Deviations

We can now state the LDP result: We can carry the previous LDP to the random functions Z n and Zn . Following Lynch and Sethuraman [START_REF] Lynch | Large deviations for processes with independent increments[END_REF] and de Acosta [START_REF] De Acosta | Large deviations for vector-valued Lévy processes[END_REF], we introduce some notations. Let D([0, 1], R) be the space of cadlag real functions on [0, 1], and bv([

0, 1], R) ⊂ D([0, 1], R) the space of bounded variation functions. We can identify bv([0, 1], R) with M([0, 1]): to h in bv([0, 1], R) corresponds µ h in M([0, 1]) characterized by µ h ([0, t]) = h(t). Up to this identification, the topological dual of bv([0, 1], R) is the set C([0, 1]
). We endow bv([0, 1], R) with the w * -topology written σ, i.e. the topology induced by C([0, 1]) on M([0, 1]). Now, let us define the rate function associated to Z n and Zn : let h be in bv([0, 1], R) and µ h the associated measure in M([0, 1]); let µ h = (µ h ) a + (µ h ) s be the Lebesgue decomposition of µ h in absolutely continuous and singular terms with respect to the Lebesgue measure on

[0, 1]; let h a (t) = (µ h ) a ([0, t]) and h s (t) = (µ h ) s ([0, t]). Set Φ(h) = [0,1] u * (h a )(t) ν(dt) + rh s (1) ,
where u * and r are defined in Proposition 2.1.

Theorem 2.3

The families of random functions {Z n } and { Zn } satisfy a LDP on the space (bv([0, 1], R), σ), with speed n and rate function Φ.

Moderate deviations

We can state also in this case a moderate deviation principle. We detail it for ν n , it is the same for νn . Let {a n } be a sequence of positive real numbers such that a n → 0 and na n → +∞ when n → +∞. Set

Y n = √ na n (ν n -E(ν n )) .
We have the following moderate deviations principle Theorem 2.4 {Y n } satisfy a LDP with speed a -1 n and good rate function defined, for all µ ∈ M([0, 1]) by

I(µ) =    π 2 f 2 [0,1] l(x) 2 dx if µ(dx) = l(x) dx +∞ otherwise , where f 2 = 1 2π T f 2 .

Generalizations

The previous results can be generalized to some other random functions.

Weighted random variables

Assume g is a continuous function on [0, 1] and define

W n = 1 n [nt] k=1 g k n X 2 k , (9) 
For any h in C([0, 1]), define

Λ(h) =    - 1 4π [0,1] T log(1 -2h(t)g(t)f (θ)) dθ dt if ∀(t, θ) ∈ [0, 1] × T, h(t)g(t)f (θ) < 1/2 +∞ otherwise
The previous large deviations results apply with rate function Λ * .

Quadratic forms built on the stationary process

We define m = essinff and assume m > 0. Let F be a continuous positive function on [m, M ]. Let O be an orthonormal matrix such that O * T n (f )O is the diagonal matrix whose i-th diagonal element is µ i,n the i-th eigenvalue of T n (f ). Define

F (T n (f )) = OD f O *
where D f is the diagonal matrix whose i-th element is F (µ i,n ). Define the following quadratic form

W n = 1 n X * F (T n (f ))X = 1 n Y * Y , where Y = (Y 1 , • • • Y n ) is the vector defined by Y = F (T n (f )) 1/2 X .
In this case, W n satisfies a LDP and moderate deviations theorem with rate function Λ * where for any

h in C([0, 1]) Λ(h) =    - 1 4π [0,1] T log[1 -2h(t)f (θ)F [f (θ)]] dθ dt if ∀(t, θ) ∈ [0, 1] × T, h(t)f (θ) < 1/2 +∞ otherwise .

Proof of the large and moderate deviations

We first give some asymptotic properties for the families {ν n } n and {ν n } n .
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Proof :

Let h be in C([0, 1]), and consider

ν n , h = 1 n n k=1 X 2 k h( k n ) .
Set X the Gaussian vector (X 1 , X 2 , • • • , X n ) and ∆ h the diagonal matrix

       h( 1 n ) 0 0 0 0 h( 2 n ) 0 0 0 0 . . . 0 0 0 0 h(1)       
Therefore we can write

ν n , h = 1 n X * ∆ h X ,
where X * denote the transpose of X. By an orthonormal change of basis,

ν n , h = 1 n U * n T n (f ) 1/2 ∆ h T n (f ) 1/2 U n ,
where U n is a standard normal vector and T n (f ) the order-n Toeplitz matrix associated to f . Therefore

ν n , h = 1 n n k=1 λ k,n Z k,n (11) 
where {Z k,n } are independent χ 2 (1)-distributed random variables, and {λ k,n } are the eigenvalues of

T n (f ) 1/2 ∆ h T n (f ) 1/2 .
We can write as well

νn , h = 1 n n k=1 λk,n Z k,n (12) 
where {Z k,n } are independent χ 2 (1)-distributed random variables, and { λk,n } are the eigenvalues of T n (f ) 1/2 A h T n (f ) 1/2 , and the matrix A h is diagonal with k-th diagonal term

(A h ) k,k = k/n (k-1)/n h(s) ds .
We have the two following results on the distributions {λ k,n } and { λk,n }, which proofs are postponed to the Appendix.

Lemma 3.2

The sequences {λ k,n } and { λk,n } are bounded as follows:

∀n ∈ N , ∀ 1 ≤ k ≤ n , |λ k,n | ≤ h ∞ f ∞ | λk,n | ≤ h ∞ f ∞ Lemma 3.3 For any p in N, p ≥ 1, lim n→+∞ 1 n n k=1 λ p k,n = 1 2π [0,1] T (h(t)f (θ)) p dtdθ . lim n→+∞ 1 n n k=1 ( λk,n ) p = 1 2π [0,1] T (h(t)f (θ)) p dtdθ .
With the above lemma, lim

n→+∞ E( ν n , h ) = ν, h . Moreover, lim n→+∞ nVar ν n , h = 2 n n k=1 λ 2 k,n = 1 π [0,1] T (h(t)f (θ)) 2 dtdθ .
We do as well for νn , and it ends the proof of lemma 3.1.

Proof of Theorem 2.2:

The proof follows exactly the scheme [START_REF] Gamboa | A functional large deviations principle for quadratic forms of Gaussian stationary processes[END_REF]. We detail here for ν n , it is similar for νn . With the decomposition [START_REF] Lynch | Large deviations for processes with independent increments[END_REF], we get the n.c.g.f. of ν n : for any

h ∈ C([0, 1]), Λ n (h) = 1 n log E(exp{n ν n , h }) =      - 1 2n n k=1 log(1 -2λ k,n ) if ∀k, λ k,n < 1/2
+∞ otherwise (13) From Lemma 3.3, we can determine the limit of Λ n in two cases:

• if ∀(t, θ) ∈ [0, 1] × T h(t)f (θ) < 1/2 , then lim n→+∞ Λ n (h) = - 1 4π [0,1] T log(1 -2h(t)f (θ)) dθ dt = Λ(h) . • if ∃(t, θ) ∈ [0, 1] × T; h(t)f (θ) > 1/2 , then for n large enough, Λ n (h) = +∞ and lim n→+∞ Λ n (h) = +∞ = Λ(h) .
These two cases do not cover the whole set C([0, 1]). Nevertheless, this will be sufficient for the LDP, since they contain a dense subset of exposing hyperplanes of Λ * .

Upper bound

From Theorem 4.5.3 b) of [START_REF] Dembo | Large deviations techniques and applications[END_REF], and the following lemma, which proof is postponed to the Appendix, the upper bound holds for compact sets.

Lemma 3.4 For any δ > 0 and µ in M([0, 1]), there exists h δ in C([0, 1]) such that:

∀(t, θ), h δ (t)f (θ) < 1/2 [0,1] h δ (t) dµ(t) -Λ(h δ ) ≥ Λ * δ (µ) (14) 
where

Λ * δ (µ) = min{Λ * (µ) -δ, 1 δ } .

Exponential tightness

Remark that for a real number a,

{ sup h ∞≤1 ν n , h ≥ a} ⊂ {ν n (1) ≥ a} .
If M = esssup θ f (θ), for any y < 1/2M , lim sup

n 1 n log P (ν n (1) ≥ a) ≤ -ya - 1 4π [0,1] T log(1 -2yf (θ)) dθ ,
and lim

a→+∞ lim sup n 1 n log P (ν n (1) ≥ a) = -∞ .
Hence the sequence (ν n ) is exponentially tight, and the upper bound holds for any closed set of M([0, 1]).

Lower bound

We study the set of exposed points of Λ * (see [START_REF] Dembo | Large deviations techniques and applications[END_REF]). Let

H = {µ ∈ M([0, 1]); µ = lν, 0 < l < u (1/2M ), l continuous on [0, 1]} .
The following two lemmas, which proofs are postponed to the Appendix, show that that H is a dense subset of the exposed points of Λ * , which concludes the proof of Theorem 2.2.

Lemma 3.5 Let µ = lν be in H. There exists h l in C([0, 1]) such that

∀(t, θ) ∈ [0, 1] × T h l (t)f (θ) < 1/2 ∀ ξ ∈ M([0, 1]) Λ * (µ) -Λ * (ξ) < (µ -ξ)(h l ) (15) 
Furthermore, there exists γ > 1 such that Λ(γl) < +∞ .

Hence µ is an exposed point of Λ * with exposing hyperplane h l .

Lemma 3.6 Let µ be in M([0, 1]) such that Λ * (µ) < +∞ . There exists a sequence

(µ n ) ∈ H such that µ n ⇒ µ and lim n→+∞ Λ * (µ n ) = Λ * (µ) .

Proof of Theorem 2.4:

The n.c.g.f. of Y n is given for any h in C[m, M ] by

Λ n (h) = a n log E(exp n a n ( ν n , h -E( ν n , h )) ) = - a n 2 n k=1 log 1 - 2 √ na n λ k,n + 2 √ na n λ k,n
We recall that {λ k,n } are the eigenvalues of the matrix

T n (f ) 1/2 ∆ h T n (f ) 1/2 . We can assert Λ n (h) = 1 n n k=1 λ 2 k,n + O 1 n √ na n n k=1 |λ k,n | 3 .
From the convergence [START_REF] Kac | On the eigenvalues of certain hermitian forms[END_REF], Therefore

lim n→+∞ Λ n (h) = Λ = f 2 [0,1] h(x) 2 dx ( 16 
)
This function is defined on all C[0, 1], then the rate function is the Legendre dual of Λ which is, from Rockafellar [START_REF] Rockafellar | Integrals which are convex functionals II[END_REF],

I(µ) = π 2 f 2 [0,1] l(x) 2 dx,
where d µ (t) = l(x) dx .

Appendix 4.1 A Szegö Theorem for generalized Toeplitz matrices

In this paragraph we show a result on the distribution of eigenvalues of some kind of generalized Toeplitz matrices.

Suppose g is a real function defined on [0, 1] × T such that for any

x ∈ [0, 1], g(x, •) ∈ L 1 (T). Define ĝk (x) = 1 2π T g(x, θ)e -ikθ dθ ,
and

T gen n (g) k,l = ĝl-k k n . (17) 
Denote by ĝk ∞ = sup

x∈[0,1] |ĝ k (x)| .
Theorem 4.1 Under assumption

M := k ĝk ∞ < ∞ , (18) 
lim n→∞ 1 n tr (T gen n (g)) p = 1 2π 1 0 T g(x, θ) p dθdx . (19) 
Proof: This proof is analogous to the one of [START_REF] Kac | On the eigenvalues of certain hermitian forms[END_REF]. Let ε > 0 be fixed and m ∈ N chosen such that:

|k|>m ĝk ∞ < ε
Consider the trigonometric polynom of degree m:

g m (x, θ) = m k=-m ĝk (x)e ikθ (20) 
Let T gen n (g m ) be the generalized Topelitz matrix associated to g m as in [START_REF] Rockafellar | Convex analysis[END_REF]. Therefore

T gen n (g) = T gen n (g m ) + R
and the sum of the moduli of the elements of any row of R is less than ε. Hence the same is true for the eigenvalues of R i.e. for the eigenvalues of T gen n (g) -T gen n (g m ). From the Weyl-Courant Lemma, we can therefore bound

|λ k,n -λ m k,n | ≤ ε ,
where {λ k,n } k and {λ m k,n } k are the eigenvalues of T gen n (g) and T gen n (g m ) respectively nondecreasingly ordered. From assumption [START_REF] Rockafellar | Integrals which are convex functionals II[END_REF],

|λ k,n | ≤ M , |λ m k,n | ≤ M .
Hence for any positive integer s

|(λ k,n ) s -(λ m k,n ) s | ≤ εsM s-1 .
We can bound similarly |g(x, θ) s -g m (x, θ) s | and therefore to show [START_REF] Sanov | On the probability of large deviations of random magnitudes[END_REF] it is enough to consider the polynomial g m . We derive

lim n→∞ 1 n tr T gen n (g m ) p = Dp m j=1 ĝl 1 j + l 1 n ĝl 2 j + l 1 + l 2 n • • • ĝlp j n ,
where D p = {(l 1 , • • • l p ) ∈ Z p ; l i = 0} and the second sum in the RHS above is on j such that j + k 1 l i -for k from 1 to p -is in the range 1, . . . , n, i.e. sp ≤ j ≤ n -sp. Therefore we have to suppress at most 2sp + 1 terms. From classical results on Riemann sums,

lim n→∞ 1 n Dp m j=1 ĝl 1 j + l 1 n ĝl 2 j + l 1 + l 2 n • • • ĝlp j n = Dp 1 0 ĝl 1 (x)ĝ l 2 (x) • • • ĝlp (x)dx = (l 1 ,•••lp)∈Z p 1 2π T e i(l 1 +l 2 +•••lp) dθ 1 0 g l 1 (x)ĝ l 2 (x) • • • ĝlp (x)dx = 1 2π 1 0 T g(x, θ) p dθdx .

Proof of Proposition 2.1

This lemma is a consequence of Theorem 5 of Rockafellar [START_REF] Rockafellar | Integrals which are convex functionals II[END_REF]. For the sake of clarity, we recall the framework of that paper. Let h be in C([m, M ]), and

Λ(h) = [m,M ] u(t, h(t)) dν(t) ,
where u(t, x) defined on [m, M ] × R → R is a function convex in x, and ν a nonnegative, σ-finite measure. For any µ in M([m, M ]) having, with respect to ν the Lebesgue decomposition µ = lν + µ ⊥ , where l ∈ C([m, M ]), and µ ⊥ is the singular part, then

Λ * (µ) = [m,M ] u * (t, l(t)) dν(t) + [m,M ] r(u * (t, •); dµ ⊥ /dη(t)) dη(t) (21) 
where η is any nonnegative measure of M([m, M ]) with respect to which µ ⊥ is absolutely continuous, and

u * (t, •) is the dual function of u(t, •): ∀t , u * (t, y) = sup x∈R {xy -u(t, x)} .
Applying the result of (21) to u(t, x) = -(1/t) log (1 -2tx), we have the formula of Proposition 2.1

Proof of Lemma 3.2

From Proposition V 1.8 and Theorem X 1.1 of Bhatia [START_REF] Bhatia | Matrix analysis[END_REF], since T n (f ) is an hermitian positive matrix,

T n (f ) 1/2 ∆ h T n (f ) 1/2 ≤ T n (f ) ∆ h (22) 
From Grenander and Szegö ([9] p.64)

T n (f ) ≤ f ∞ . In addition, ∆ h ≤ sup k s |(∆ h ) ks | ≤ h ∞ (23) 
Getting together inequalities ( 22) and ( 23), we get the result.

Proof of Lemma 3.3

This lemma is a direct consequence of Theorem 4.1 above, for both random measures.

Proof of Lemma 3.4

From the definition of Λ * , for any δ > 0, there exists h δ in C([0, 1]) such that inequality (14) holds. In case we only have

∀(t, θ) ∈ [0, 1] × T h δ (t)f (θ) ≤ 1 2 , we choose h ε with ε > 0 such that [0,1] h ε (t) dµ(t) -Λ(h ε ) ≥ Λ * δ (µ) -ε .
(this is possible from the continuity of Λ in a neighborhood of h δ ) Then ( 14) holds with another δ. From assumption on f , f > 0, then h ε f < 1/2 .

Proof of Lemma 3.5

For all 0 < y < 1/u (1/2M ), there exists a unique x y in (-∞, 1/2M ) such that y = u (x y ) . For such a pair (y, x y ), u * (y) = yx y -u(x y ) .

Since u is strictly increasing and continuous, u * is strictly convex on 0 < y < u (1/2M ).

For such an y and z > 0 , z = y,

u * (y) -u * (z) < (y -z)x y (24) 
(then y is an exposed point of u * with exposing hyperplane x y ) If µ = lν and ξ = lν +ξ ⊥ . We apply inequality (24) with y = l(t) and z = l(t), and then we integrate over [0, 1] against ν. We obtain the inequality [START_REF] Najim | A Cramér type theorem for weighted random variables[END_REF] with h l (t) = x l(t) .

Proof of Lemma 3.6

Following the sketch of proof of [START_REF] Gamboa | A functional large deviations principle for quadratic forms of Gaussian stationary processes[END_REF], we proceed in 4 steps. Assume u (1/2M ) = +∞.

Step 1: Let µ = lν + µ ⊥ be in M([0, 1]) such that Λ * (µ) < ∞ with l continuous and l ∈ (0, u ( 1 2M ), and such that µ ⊥ is in L 1 ([0, 1]). Since ν has full support on [0, 1], there exists a sequence of continuous positive functions on [0, 1] such that h n dν ⇒ µ ⊥ . From the lower semi-continuity of Λ * , lim inf n→+∞ Λ * ((l + h n )ν) ≥ Λ * (µ) .

Since u * is a convex function, from Rockafellar (see [START_REF] Rockafellar | Convex analysis[END_REF]), for any y > 0 and z ≥ 0, We now show that the Lemma is true if µ = l ν with l ν-a.s. in (0, u ( 1 2M ) and integrable.

Step 2

We prove the result for µ = l ν assuming that l is in (0, u ( 1 2M ) integrable and that for some > 0, l > ν-a.s. There exists a sequence (l n ) of continuous positive functions such that l n converges both in L 1 (ν) norm and ν-a.s. to l and l n > /2. Since on ( /2, u ( 1 2M ) the function u * is Lipschitzian, the lemma holds.

Step 3 Define l := l1l l> + 1l l≤ . Apply second step and inequality (25) noticing that l converges in L 1 (ν) to l and that l ≥ l.

Step 4

For µ = lν + η, combine first and third step.

If u (1/2M ) < +∞, we have to modify the second and third step, introducing an additional truncation at level u (1/2M ) -ε.

Theorem 2 . 2
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  .1 Weak convergence of ν n and {ν n } n Lemma 3.1 Let h be in C([0, 1]).

		ν n , h → ν, h in probability as n → +∞	(10)
	and			
		νn , h → ν, h in probability as n → +∞
	where			
		ν, h = f	h(x) dx ,
			[0,1]
	and	f =	1 2π T	f (θ) dθ .