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Approximation Complexity
of Additive Random Fields

M.A. Lifshits and M. Zani

August 31, 2012

Abstract

Let X(t), t ∈ [0, 1]d be an additive random field. We investigate the
complexity of finite rank approximation

X(t, ω) ≈
n∑
k=1

ξk(ω)ϕk(t).

The results obtained in asymptotic setting d → ∞, as suggested
H.Woźniakowski, provide quantitative version of dimension curse phe-
nomenon: we show that the number of terms in the series needed to
obtain a given relative approximation error depends on d exponentially
and find the explosion coefficients.

Key words: approximation complexity, dimension curse, Gaussian pro-
cesses, linear approximation error, random fields, tractability

1 Introduction

Let X(t) =
∑∞

k=1 ξkϕk(t), t ∈ T , be a random function represented via ran-
dom variables ξk and the deterministic real functions ϕk. Let Xn(t) =∑n

k=1 ξkϕk(t) be the approximation to X of rank n. How large should be
n in order to make approximation error small enough? Provided a functional
norm ‖ · ‖ is given on the sample paths’ space, the question can be stated in
the average and in the probabilistic setting. Namely, find

navg(ε) := inf
{
n : E||X −Xn||2 ≤ ε2

}
,

1



or
npr(ε, δ) := inf {n : P {||X −Xn|| ≥ ε} ≤ δ} .

In this work we mostly consider the additive random fields X of tensor
product-type with T ⊂ Rd. The word ”additive” means that X can be
represented as a sum of terms depending only of appropriate groups of coor-
dinates.

In the first part of the article we investigate the problem for fixed X,T ,
and d.

In the second part we consider sequences of related tensor product-type
fields X(d)(t), t ∈ T (d) ⊂ Rd, with d→∞ and study the influence of dimen-
sion parameter d. It turns out that the rank n that is necessary to obtain
a relative error ε increases exponentially in d for any fixed ε. The explosion
coefficient admits a simple explicit expression and does not depend on ε.
Interestingly, the phenomenon of exponential explosion does not depend on
the smoothness properties of the underlying fields. Recall that exponential
explosion of the difficulty in approximation problems that include dimension
parameter is well known as ”dimensionality curse” or ”intractability”, see
e.g. [11], For more recent results on tractability and intractability, see [12].
On ideological level, we were much inspired by this work.

Throughout the article, we use the following notation: for integers let
N = {0, 1, 2, . . . } and N∗ = {1, 2, . . . }. We write an ∼ bn iff limn an/bn = 1.

The article is organized as follows. In Section 2 we specify the class
of random fields to work with and introduce the necessary notation. After
recalling some basic known approximation results in Section 3, we handle a
given additive field in Section 4 while Section 5 is devoted to the asymptotic
setting: we deal with a series of random fields with parameter dimension
d→∞. Finally, in Section 6 we give some extensions of our results to more
general class of random field.

2 Additive random fields
s:fields

In this article we investigate additive random fields. The simplest example
of additive field is given by

X(t) =
d∑
l=1

Xl(tl), t ∈ Rd,
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where Xl are independent copies of a one-parametric process. The behavior
of X was studied in [2] and in some other works. During last years, the
additive fields of higher orders also attracted the interest of researchers. In
this general case, the additive d-parametric random field is a sum of i.i.d.
fields, each depending on a smaller number of parameters. To give a precise
definition, we need some notation. Let us fix d, b ∈ N such that d ≥ b ≥ 1,
and let Td = [0, 1]d, Tb = [0, 1]b. We denote by D and Db the following sets
of indexes:

D = {1, · · · , d} , Db = {A ⊂ D , |A| = b} .

For each A = {a1, · · · , ab} ∈ Db, we define the projection ΠA : Td → Tb by
ΠA(t) = (ta1 , · · · , tab) .
We consider the following process defined for every t ∈ Td by

X(t) =
∑
A∈Db

XA (ΠA(t)) ,

where XA are i.i.d. copies of a b-parametric random field and call X an
additive random field of order b.

The additive structure becomes especially important if the order b is much
smaller than time dimension d. Since in this article we are mainly interested
in the role of dimension, we are going to discuss the families of additive
random fields with varying d and b. In this setting, it is quite natural to
assume that X is actually generated by a one-parametric process via taking
tensor degrees.

Recall the notion of tensor product for second order random fields. Given
two centered fields {Y1(t1)}t1∈Td1 and {Y2(t2)}t2∈Td2 with covariances K1(·, ·)
and K2(·, ·), respectively, we define their tensor product {(Y1⊗Y2)(t)}t∈Td1+d2

as a centered second order random field with covariance

K ((t1, t2), (t′1, t
′
2)) := K1(t1, t

′
1)K2(t2, t

′
2).

The definitions of multiple tensor products
⊗b

j=1 Yj and tensor degrees Y ⊗b

are now straightforward.
Let now {Y (u)}u∈[0,1] be a given second order one-parametric process

expanded with respect to an orthonormal basis (ϕi)i∈N ∈ L2([0, 1]):

Y (u) =
∞∑
i=0

λ(i)ϕi(u)ξi ,
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where λ(i) ≥ 0,
∑∞

i=0 λ(i)2 < ∞ and (ξi)i∈N are non-correlated random
variables, E(ξi) = 0 and Var(ξi) = 1. For any integer b ≥ 1 the b-th tensor
degree of Y writes as

X(t) := Y ⊗b(t) =
∑
k∈Nb

b∏
l=1

λ(kl)ϕkl(tl)ξk , t ∈ Tb,

where the variables (ξk)k∈Nb are non-correlated, E(ξk) = 0 and Var(ξk) = 1.
Now the d-parametric additive random field of order b generated by Y

has a form

Xd,b(t) =
∑
A∈Db

∑
k∈Nb

(
b∏
l=1

λ(kl)ϕkl ([ΠA(t)]l)

)
ξAk

=
∑
A∈Db

∑
k∈NA

(∏
a∈A

λ(ka)
∏
a∈A

ϕka(ta)

)
ξAk . (2.1)

If kY denotes the covariance function of Y , i.e. Cov(Y (u), Y (u′)) =
kY (u, u′) we easily see that

Cov(Xd,b(t), Xd,b(t
′)) =

∑
A∈Db

∏
a∈A

kY (ta, t
′
a) .

For the rest of this section, we make the following assumption that substan-
tially simplifies the calculations:

zero Assumption 2.1
∀u ∈ [0, 1] , ϕ0(u) = 1 .

This assumption leads to the principal results in a more direct way. How-
ever, we will show later in Section 6 that it can be dropped, at least some-
times. We are, of course, not the first to notice the advantages of this as-
sumption. See for example a recent work [4] where important random fields
satisfying this property are handled.

Under Assumption 2.1 we have the following lemma.

lem1 Lemma 2.2 Let k, k′ ∈ Nd and A,A′ ⊂ D. If Assumption 2.1 is valid,
then the functions ψ(t) =

∏
a∈A ϕka(ta) and ψ′(t) =

∏
a∈A′ ϕk′a(ta) are either

identical or orthogonal in L2(Td).
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Proof: We are interested in the scalar product

(ψ, ψ′) =

∫
Td

ψ(t)ψ′(t)dλd(t) , (2.2)

where λd is the Lebesgue measure on Td. We can represent this integral as a
product of three factors:

(ψ, ψ′) = Π1Π2Π3

where

Π1 =
∏

a∈A∩A′

∫
[0,1]

ϕka(ta)ϕk′a(ta)dta ,

Π2 =
∏

a∈A\A′

∫
[0,1]

ϕka(ta)dta ,

Π3 =
∏

a∈A′\A

∫
[0,1]

ϕk′a(ta)dta .

In the first factor Π1, whenever ka 6= k′a, the integral is null, since the func-
tions (ϕi) are orthogonal. In the second factor Π2, if ka 6= 0, it follows from
the orthogonality of the family (ϕi) and Assumption 2.1 that the integral∫

[0,1]
ϕka(ta)dta is null. The same argument applies to the third factor Π3.

We see that Π1Π2Π3 does not vanish only if ka = k′a for a ∈ A ∩ A′ and
ka = 0, k′a = 0 elsewhere, and the assertion follows.

Notice that in expression (2.1) different sets A can generate the same
product

∏
a∈A ϕka(ta). Therefore, it is more convenient to write Xd,b in a

different way:

Xd,b(t) =
b∑

h=0

∑
C⊂D
|C|=h

∑
k∈(N∗)C

∏
a∈C

ϕka(ta)
∏
a∈C

λ(ka)
∑

F⊂(D\C)
|F |=b−h

λ(0)b−hξC∪F
k

, (2.3) proces2

where k ⊂ NC∪F is made of k by adding zeros. We can simplify this expression
to

Xd,b(t) =
b∑

h=0

∑
C⊂D
|C|=h

 ∑
k∈(N∗)C

∏
a∈C

ϕka(ta)
∏
a∈C

λ(ka)

 ηC , (2.4) proces3
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where (ηC)C∈D are non-correlated centered random variables of variance

Var(ηC) = Cb−h
d−hλ(0)2(b−h) .

Expression (2.4) is convenient to handle, since by Lemma 2.2 all terms in the
right hand side are orthogonal in L2(Td).

The spectrum of the covariance operator of Xd,b can be described as
follows. For every fixed h ∈ {0, · · · , b}, and every k ∈ (N∗)h take the eigen-

value Cb−h
d−h

[∏h
l=1 λ(kl)

]2

λ(0)2(b−h) of multiplicity Ch
d coming from Ch

d differ-

ent choices of subset C ⊂ D. It is more convenient to us not to identify the
equal eigenvalues generated by permutations of (kl).

3 Approximation of simple tensor products
s:lt

In this section we recall some results of the paper [8] on approximation of
tensor product random fields. In terms of Section 2 the setting of [8] cor-
responds to the ”elementary” case b = d which does not contain additivity
effect. The facts known about this case will be the starting point of our
study. According to (2.1), for b = d let X(t) = Xd,b(t) be a random field
given by

X(t) :=
∑
k∈Nd

d∏
l=1

λ(kl)ξk

d∏
l=1

ϕkl(tl) , t ∈ [0, 1]d,

where (ϕi) is an orthonormal system in L2[0, 1] and ξk are non-correlated
random variables.

3.1 Fixed dimension

Assume that d is fixed and that the assumptions

Λ :=
∞∑
i=1

λ(i)2 <∞, (3.1)

λ(i) ∼ µi−r(log i)q (3.2) rq

are satisfied with µ > 0, r > 1/2, q 6= −r . We approximate X by a finite sum
Xn corresponding to the n maximal eigenvalues. Recall that approximation
cardinality navg(ε) is defined as

navg(ε) = inf{n ; E‖X −Xn‖2
L2(Td) ≤ ε2} .
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Then we have the following theorem:

Theorem 3.1 ([8]) Under assumption (3.2) it is true thatthm_LT1

navgd (ε) ∼
(

Bd√
2(r − 1/2)rβ+1/2

| log ε|rβ

ε

)1/(r−1/2)

, (3.3) asym_LT1

where for α = q/r

Bd = µdΠr
d, β = (d− 1) + dα if α > −1, (3.4)

Bd = µdrS(d−1)r, β = α if α < −1, (3.5)

S =
∞∑
i=1

λ(i)1/r , Πd =
Γ(α + 1)d

Γ(d(α + 1))
.

3.2 Increasing dimension

Suppose d→∞ and assume that

∞∑
i=1

| log λ(i)|2λ(i)2 <∞ . (3.6) Mfinite

The total size of the field X is characterized by

E‖X‖2 = Λd .

As above, define the cardinality associated to the relative error

ñavgd (ε) = inf{n ; E‖X −Xn‖2
L2(Td) ≤ ε2Λ2} .

Then we have

Theorem 3.2 ([8]) Under assumption (3.6) it is true thatthm_LT2

lim
d→∞

log ñavgd (ε)

d
= logA , (3.7) asym_LT2

where A = Λe2M and M = −
∑∞

i=1 log λ(i)λ(i)2

Λ
.

We stress that no regularity assumption like (3.2) is required.
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4 Approximation in fixed dimension
s:fixed

In this section, we fix d and b and consider the quality of approximation to an
additive field Xd,b by means of the processes of rank n, as n→∞. Namely,
we approximate Xd,b with the finite sum Xn from (2.4) corresponding to n
maximal eigenvalues of covariance operator. As a measure of approximation,
we use

navg(ε, d, b) = inf{n ; E‖Xd,b −Xn‖2
L2(Td) ≤ ε2} .

Analogously to (3.2), we will consider here the practically important case
described by the following

valpropre Assumption 4.1 λ(i) ∼ µ i−r(log i)q , i → ∞, for some µ > 0, r > 1/2,
and q 6= −r.

We write α = q/r. For any h ∈ {1, · · · , b} and k ∈ (N∗)h, let us write

λ2
k =

h∏
l=1

λ2(kl) ,

and (λ
2

n,h , n ∈ N) for the decreasing rearrangement of the array (λ2
k) , k ∈

(N∗)h. We know from [8] that

λ
2

n,h ∼ B2
hn
−2r(log n)2rβ , n→∞, (4.1)

where • α > −1 :

{
Bh = µh

(
Γ(α+1)h

Γ(h(α+1))

)r
β = (h− 1) + hα

• α < −1 :

{
Bh = µhr

[∑
i≥1 λ(i)1/r

](h−1)r

β = α

Note that equivalent results can be found e.g. in Csáki [3], Li [7] Papageor-
giou and Wasilkowski [9] (for q = 0) and especially in Karol’, Nikitin, and
Nazarov [5] for even more general case than we need here.

prop1 Proposition 4.2 Under Assumptions 2.1 and 4.1 we have:
a) If α > −1, then

navg(ε, d, b) ∼ [Cb
d]

2r
2r−1

(
Bb√

2(r − 1/2)rβ+1/2

| log ε|rβ

ε

)(r−1/2)−1

, ε→ 0.

(4.2) prop11
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b) If α < −1, then

navg(ε, d) ∼
( √

Q√
2(r − 1/2)rα+1/2

| log ε|rα

ε

)(r−1/2)−1

, ε→ 0, (4.3) prop12

where

Q =

(
b∑

h=1

C(h)
1
2r

)2r

and C(h) = Cb−h
d−h[Ch

d ]2rλ(0)2(b−h)B2
h. (4.4) BCi

Proof:
If α > −1, then β depends on h, hence, in asymptotic setting, the only rele-
vant eigenvalues are those corresponding to the maximal β, i.e. the asymp-
totics is determined by the array of eigenvalues corresponding to h = b. In
this case, λ(0) does not appear in the array and we have∑

m>n

λ
2

m,b ∼ B2
b (2r − 1)−1n1−2r(log n)2rβ , (4.5) ass_err

where β = (b− 1) + bα . We look for

navg(ε, d, b) = Cb
d · inf{n ; Cb

d

∑
m>n

λ
2

m,b ≤ ε2}

and the result follows from (4.5).

If α < −1, then β does not depend on h. Therefore, the eigenvalues λ
2

n,h

have the same order of decay for all h. For a given h ∈ {1, · · · , b}, we have to

consider eigenvalues Cb−h
d−hλ

2

n,hλ(0)2(b−h) of multiplicity Ch
d . We include, say,

nh maximal terms in approximating process of rank n. The contribution of
the non-included terms to approximation error for this given h is

Ch
d ·

∑
m>

nh
Ch
d

Cb−h
d−hλ

2

m,hλ(0)2(b−h) ∼ C(h)(2r − 1)−1n1−2r
h (log nh)

2rβ , nh →∞ ,

where C(h) is defined in (4.4).
Let us denote by f the function defined on [1,∞[b by

f(x1, · · · , xb) =
b∑

h=1

C(h)(2r − 1)−1x1−2r
h (log xh)

2rβ .
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We want to minimize f under the constraint x1 + · · · + xb = n. This leads
to the optimal values n1, · · · , nb. We derive

nh ∼ n · C(h)
1
2r∑b

j=1C(j)
1
2r

which gives

f(n1, · · · , nb) ∼ Q (2r − 1)−1n1−2r(log n)2rβ ,

whereQ is defined in (4.4). The result of Proposition 4.2 b) is now immediate.

5 Approximation in increasing dimension
s:increasing

We study the approximation of Xd,b by a finite sum Xn when the dimension
d is increasing. We still work under Assumption 4.1 and consider two basic
different situations:
a) the case where the additivity order b is fixed,
b) the case where b goes to infinity and the positive limit limd→∞ b/d exists.
In order to deal with relative errors, we compute the total size of the additive
process:

E‖Xd,b‖2
L2(Td) =

b∑
h=0

Ch
d

∑
k∈(N∗)h

h∏
k=1

λ(kl)
2Cb−h

d−hλ(0)2(b−h) (5.1)

= Cb
d

b∑
h=0

Ch
b Λ̃hλ(0)2(b−h)

= Cb
d(λ(0)2 + Λ̃)b = Cb

dΛ
b .

where Λ̃ =
∑∞

i=1 λ(i)2 and Λ =
∑∞

i=0 λ(i)2 We want to evaluate the relative
average approximation complexity:

ñavg(ε, b, d) = inf{n ; E‖Xd,b −Xn‖2
L2(Td) ≤ Cb

dΛ
bε2} . (5.2)

For both cases a) and b), the idea is to compare (in terms of cardinality) the
contribution of each array for a fixed h.
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5.1 Case b fixed

We have the following approximation.

prop_bfixed Proposition 5.1 Let Assumptions 2.1 and 4.1 hold. When b is fixed and
d→∞,

ñavg(ε, b, d) ∼ db

b!
Λ−b/(2r−1) navgb (ε) ,

and the asymptotics of navgb (ε) is given in (3.3).

Proof: Recall that the spectrum of covariance operator of additive process
of order b can be obtained as follows. To any fixed h = 1, · · · , b associate an
array of eigenvalues

{λ2
k =

h∏
l=1

λ(kl)
2 , k ∈ (N∗)h}

to which two operations are applied:
a) every eigenvalue λ2

k is multiplied by Cb−h
d−hλ(0)2(b−h) ,

b) the array is taken with multiplicity Ch
d .

If we forget about all arrays except for the last one corresponding to
h = b, then Theorem 3.1 provides the required lower bound

ñavg(ε, b, d) ≥ Cb
d n

avg
b (εΛb/2) ∼ db

b!
Λ−b/(2r−1) navgb (ε),

as d→∞.
Now we give an approximation construction providing the upper bound

for ñavg(ε, b, d). Fix a small δ and include in approximation part Cb
d n

avg
b (εΛb/2)

terms from the last array (b = h) and Ch
d n

avg
h (Lb,hδεΛ

b/2) terms from every
array with 1 ≤ h ≤ b− 1, where

L2
b,h := [Ch

b ]−1 =
Cb
d

Ch
d C

b−h
d−h

.

The squared approximation error for each h ≤ b− 1 can be evaluated by

Ch
d · L2

b,hδ
2ε2Λb · Cb−h

d−hλ(0)2(b−h) = δ2ε2Cb
dΛ

b · λ(0)2(b−h),

hence the total squared error is bounded by δ2ε2Cb
dΛ

b
∑b−1

h=1 λ(0)2(b−h). Taking
into account the error in the last array, we see that the total squared relative
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error of our procedure does not exceed
(

1 + δ2
∑b−1

h=1 λ(0)2(b−h)
)
ε2 which can

be made arbitrary close to ε as δ → 0.
Finally, let us evaluate the number of terms in approximation part. For

each h ≤ b− 1 there exist constants ci(b, h, δ) such that

Ch
d navgh (Lb,h δεΛ

b/2) ≤ Ch
d c1(b, h, δ) navgh (εΛb/2)

≤ dh

h!
c2(b, h, δ) navgb (εΛb/2)

≤ db−1 c3(b, h, δ) navgb (εΛb/2).

Hence the total number of terms in approximation part is bounded by(
db

b!
+ c3(b, h, δ) db−1

)
navgb (εΛb/2) ∼ db

b!
Λ−b/(2r−1) navgb (ε), d→∞,

as required.

5.2 Case b→∞
In this case it is insightful to look at the relative weight of each array of
eigenvalues for h = 1, · · · , b. Let us fix h and compute the weight of the
array, that is the sum of the eigenvalues, taking into account multiplication
and multiplicity (see the beginning of the proof of Proposition 5.1).

Wh := Ch
d C

b−h
d−h λ(0)2(b−h)

∑
k∈(N∗)h

h∏
l=1

λ(kl)
2 = Cb

d C
h
b λ(0)2(b−h)Λ̃h ,

and the relative weight

Wh

E‖Xd,b‖2
L2(Td)

= Ch
b (1− p)b−hph . (5.3) Bern

where

p =
Λ̃

Λ
.

Recall the notation M =
∑∞

i=0(− log λ(i))
λ(i)2

Λ̃
, A = e2MΛ.

We see from (5.3) that the distribution of the relative weights is the
Binomial distribution B(b, p). If b → ∞, the main contribution is given by
the arrays with h such that h/b ∼ p. This observation yields the following
result:
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prop_bincr Proposition 5.2 Assume b, d → ∞ with b/d → β ∈ [0, 1] and let Assump-
tions 2.1 and (3.6) be valid. Then

lim
d→∞

log ñavg(ε, b, d)

d
= log V, (5.4)

where
V = (1− βp)−1+βpβ−βp(1− p)(1−p)βAβ .

Proof: We first give an appropriate approximation procedure. Let H =
H(d, p) = {h ∈ N : pd− d1/3 ≤ h ≤ pd+ d1/3}. We include in the error term
all arrays with h 6∈ H and include in approximation part Ch

d ñ
avg
h (ε) terms

for any h ∈ H. According to (5.3) the total squared error is∑
h6∈H

Wh + ε2
∑
h∈H

Wh ≤
(
B(b, p)(N\H) + ε2

)
Cb
dΛ

b.

By Moivre-Laplace central limit theorem, B(b, p)(N\H) → 0, as d → ∞.
Hence the relative error of our procedure is at most ε+ o(1).

Now we will evaluate the number N of terms included in the approxima-
tion part. Recall that

N =
∑
h∈H

Ch
d ñ

avg
h (ε).

Under our assumptions on b/d and by the choice of H Stirling formula yields,
uniformly over h ∈ H,

lim
d→∞

(Ch
d )1/d = lim

d→∞
(
d− h
d

)−(d−h)/d(
d

h
)h/d = (1− βp)βp−1(βp)−βp . (5.5) stir

Moreover, Theorem 3.2 yields

ñavgh (ε)1/h → Ã , h→∞

where Ã = e2M̃ Λ̃ and M̃ =
∑∞

i=1(− log λ(i))λ(i)2

Λ̃
. It follows that, uniformly

over h ∈ H,

lim
d→∞

navgh (ε)1/d = lim
d→∞

navgh (ε)
1
h
·h
b
· b
d = Ãpβ.

We obtain

lim
d→∞

(Ch
dn

avg
h (ε))1/d = (1− βp)−1+βp(βp)−βpÃβp.

13



Coming back to the constants associated to the full sequence of eigenvalues,
we obtain

M̃ =
Λ

Λ̃
M + log λ(0) · λ(0)2

Λ̃
=
M

p
+ log λ(0)(

1

p
− 1),

hence

Ãp = e2M̃pΛ̃p = e2M+2(1−p) log λ(0) (pΛ)p

= (e2MΛ) ppΛp−1[λ(0)2]1−p = A ppΛp−1[Λ(1− p)]1−p

= App(1− p)1−p ,

therefore

lim
d→∞

(Ch
dn

avg
h (ε))1/d = (1− βp)−1+βpβ−βp(1− p)(1−p)βAβ (5.6) final

as required. Finally, notice that the size of H grows polynomially and does
not influence the logarithmic limit. Therefore, our approximation procedure
has all required properties.

We will now provide a lower bound for approximation cardinality. Let
the set H be as above and let d be so large that (by Moivre-Laplace theorem)∑

h6∈H

Wh ≤
1

2
Cb
dΛ

d.

Fix ε > 0 and let Xn be an n-term approximation of Xd,b such that

E‖Xd,b −Xn‖2
L2(Td) ≤ ε2Cb

dΛ
d.

Write the expansion Xd,b :=
∑b

h=0X
(h)
d,b , as done in (2.4). Similarly, we can

expand Xn :=
∑b

h=0X
(h)
n . In view of orthogonality we have

ε2Cb
dΛ

d ≥ E‖Xd,b −Xn‖2
L2(Td)

=
b∑

h=0

E‖X(h)
d,b −X

(h)
n ‖2

L2(Td)

≥
∑
h∈H

E‖X(h)
d,b −X

(h)
n ‖2

L2(Td). (5.7)

14



On the other hand,∑
h∈H

E‖X(h)
d,b ‖

2
L2(Td) =

∑
h∈H

Wh ≥
1

2
Cb
d Λd. (5.8) low2

By comparing (5.7) and (5.8) we see that for some h ∈ H

E‖X(h)
d,b −X

(h)
n ‖2

L2(Td) ≤ 2ε2E‖X(h)
d,b ‖

2
L2(Td).

This means that the relative approximation error for X
(h)
d,b is small. Recall

that the spectral structure of X
(h)
d,b differs only by multiplication and multi-

plicity from the field X considered in Section 3 if we put there b = d = h.
Multiplication of eigenvalues does not influence relative approximation error.
Multiplicity of eigenvalues should be taken into account when we compute
approximation cardinality. We see that

n ≥ Ch
d ñ

avg
h (
√

2ε).

By using Theorem 3.2 and (5.5) we get

lim
d→∞

(ñavg(ε, b, d))1/d ≥ lim inf
d→∞

inf
h∈H

(Ch
d )1/d (navgh (

√
2ε))

1
h
·h
b
· b
d

= (1− βp)−1+βpβ−βp(1− p)(1−p)βAβ = V,

as required.

Comments : Let us describe more precisely what happens in some spe-
cial cases:
• If β = 1, we get

(1− p)−1+p(1− p)1−pA1 = A .

This essentially corresponds to the case considered in Section 3.
• It is surprising to note that for β < 1, the result depends on p = Λ̃/Λ. We
can examine some special values of p:

I if p = 0, there is only one eigenvalue, hence A = 1, and V = 1. There
is no exponential explosion.

I if p = 1, then λ(0) = 0 and V = (1− β)β−1β−βAβ.
• If β = 0, then V = 1. There is no exponential explosion, and this includes
the case b fixed and d→∞.

We can prove the following more precise statement:

15



prop_binc0 Proposition 5.3 Assume b, d → ∞ with b/d → 0 and let Assumptions 2.1
and 3.6 be valid. Then

lim
d→∞

log ñavg(ε, b, d)

b log(d/b)
= p. (5.9)

Proof: Since the idea is the same as in the previous statement, we omit
the details. Now Stirling formula yields

logCh
d

h
=

1

2h
[log

(
d

d− h

)
− log(2πh)] +

d− h
h

log

(
d

d− h

)
+ log

d

h
+ o(1).

(5.10) beta00

We have to compare different terms in expression above. Since d/b → ∞,
b, h→∞ and b/h→ p, it is clear that

1

2h
log

(
d

d− h

)
= o(1),

1

2h
log(2πh) = o(1),

d− h
h

log

(
d

d− h

)
= O(1).

Hence the main term is log(d/h) and

logCh
d

h
∼ log(d/h) ∼ log(d/b).

Recall that for any ε > 0 it is true that log ñavgh (ε) ∼ Ãh. Hence,

log
(
Ch
d · ñ

avg
h (ε)

)
∼ h log(d/b) ∼ p b log(d/b),

and the proof is complete along the same lines as above.

6 Some extensions
s:general

6.1 Approximation arguments based on `-numbers

We now briefly remind some precise arguments for elimination of negligible
parts from expansions. Let X be a centered Gaussian vector in a Banach
space L. The `-numbers `n(X) are defined by

`n(X)2 = inf

{
E‖X −

n∑
j=1

ϕjξj‖2, ϕj ∈ L, ξj ∼ N (0, 1)

}
. (6.1) ln

16



It is clear from (6.1) that for any vectors X1 and X2 and any n,m ∈ N

`n+m(X1 +X2) ≤ `n(X1) + `m(X2).

By the same argument,

`n+m(X1) = `n+m((X1 +X2)−X2) ≤ `n(X1 +X2) + `m(X2).

It follows that

`n+m(X1)− `m(X2) ≤ `n(X1 +X2) ≤ `n−m(X1) + `m(X2). (6.2) bilat

Hence the following is true.

x1x2 Lemma 6.1 Let (an) be a regularly varying sequence. Assume that random
vectors X1, X2 satisfy `n(X1) ∼ an and `n(X2) = o (an). Then `n(X1 +X2) ∼
an.

Proof: Let us fix δ > 0 and set m = m(n) = [δn]. Then (6.2) yields

`n(X1 +X2) ≤ `n−[δn](X1) + `[δn](X2).

We have

lim sup
n→∞

`n(X1 +X2)

an

≤ lim sup
n→∞

`n−[δn](X1)

an−[δn]

·
an−[δn]

an
+ lim sup

n→∞

`[δn](X2)

a[δn]

·
a[δn]

an

≤ 1 · (1− δ)α + 0 · δα,

where α is the non-positive regularity index of (an). By letting δ → 0 we
obtain

lim sup
n→∞

`n(X1 +X2)

an
≤ 1.

The lower bound follows along the same lines.

We stress that no independence or any other condition is assumed on
X1, X2 in this lemma.

While the definition of `-numbers applies to any Banach space, in the
Hilbert space case they are particularly easy to handle. Namely, if

X =
∞∑
j=1

λjϕjξj,
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where (ϕj) is an orthonormal system in L, (ξj) i.i.d. standard normal and
λj a non-increasing positive sequence, then (see [1], [6] or [10], p.51)

`n(X)2 = E
∥∥ ∞∑
j=n+1

λjϕjξj
∥∥2

=
∞∑

j=n+1

λ2
j .

We observe that `n(X) is just the inverse sequence to navg(ε) for X. There-
fore, we can restate Lemma 6.1 as follows.

x1x2a Lemma 6.2 Let g be a regularly varying function defined in a neighborhood
of zero. Assume that random vectors X1, X2 satisfy

navg(X1; ε) ∼ g(ε) and navg(X2; ε) = o (g(ε)) as ε→ 0.

Then navg(X1 +X2; ε) ∼ g(ε).

6.2 Approximation without Assumption 2.1

In this subsection we explain how to get rid of restrictive Assumption 2.1.
Let Y (u), u ∈ [0, 1] be arbitrary centered second order process. Let denote

I :=
∫ 1

0
Y (u)du, σ2 = E[I2], and κ(u) := cov (Y (u), I) /σ2. We split Y in

two non-correlated parts; one of them is degenerate (has rank one), while
another satisfies Assumption 2.1. Namely, let

Y (u) = Y0(u) + Ŷ(u) := [Y − κ(u)I] + κ(u)I. (6.3) 0hat

Indeed, Ŷ has rank one and for all u0, u ∈ [0, 1] we have

cov(Y0(u0), Ŷ(u)) = E [(Y (u0)− κ(u0)I)κ(u)I]

= κ(u)
[
cov(Y (u0), I)− κ(u0)σ2

]
= 0

and ∫ 1

0

Y0(u)du = I − σ−2

∫ 1

0

cov(Y (u), I)du · I

=

[
1− σ−2cov

(∫ 1

0

Y (u)du, I

)]
· I = 0.

It follows from the latter identity that Y0 satisfies Assumption 1.1 with λ(0) =
0. The parts of the decomposition (6.3) are not orthogonal in L2[0, 1]. The
same is true for multi-parametric expansions based on (6.3).
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Now we recall some elementary algebra of tensor products. Given a finite
sequence of fields {Yj(t)}t∈Tdj , 1 ≤ j ≤ b, each of them being decomposed in

two non-correlated parts Yj = Yj0 + Yj1, we have

b⊗
j=1

Yj =
∑

i∈{0,1}b

b⊗
j=1

Yjij

where the terms of the right hand side are pairwise non-correlated. This
formula is obvious if we look at the respective covariances.

For tensor degrees of a one-parametric process Y = Y0 + Y1 the above
formula yields

Y ⊗b =
∑

i∈{0,1}b

b⊗
j=1

Yij

=
∑

A⊂{1,...,b}

Y
⊗|A|

0 (ΠA(·))⊗ Y ⊗(b−|A|)
1 (ΠAc(·)).

Applying this to (6.3), we obtain

Y ⊗b =
∑

A⊂{1,...,b}

Y
⊗|A|

0 (ΠA(·))⊗ Ŷ⊗(b−|A|)(ΠAc(·)) :=
∑

A⊂{1,...,b}

ZA.

Now let us consider the approximation properties of each term in this expan-
sion.

Assume that Assumption 4.1 is verified and let α = q/r > −1.
Let us fix A and let h = |A|. Since Ŷ has rank one, the same is true

for Ŷ⊗(b−h). Therefore, the second factor does not influence approximation
properties. On the other hand, since Y0 differs from Y only by a process of
rank one, it inherits from Y the validity of Assumption 4.1 by Weil lemma.
Now we consider separately the main term corresponding to A = {1, . . . , b}
and all other terms (with h < b). Indeed, under h < b Theorem 3.1 yields

navg(ZA, ε) = O

((
| log ε|r(h−1)+hα

ε

)(r−1/2)−1)

= o

((
| log ε|r(b−1)+bα

ε

)(r−1/2)−1)
.
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The main term has a larger cardinality asymptotics of the just mentioned
order.

Let us now consider the additive processes. We can write (2.1) as

Xd,b(t) =
∑
A⊂Db

Y ⊗bA ([ΠA(t)])

where Y ⊗bA are non-correlated copies of Y ⊗b, and introduce its main part
generated by Y0 as

X0
d,b(t) =

∑
A⊂Db

Y ⊗b0,A ([ΠA(t)]) ,

where Y ⊗b0,A are non-correlated copies of Y ⊗b0 . Since Y0 satisfies Assumption
2.1, Proposition 4.2 applies and we get the asymptotics (4.2) for average
cardinalities of X0

d,b. On the other hand, the difference between X0
d,b and

Xd,b is a finite sum of the fields with lower order of average cardinalities.
Therefore, by Lemma 6.2 for Xd,b we get the same result (4.2) as for X0

d,b.
We get the following:

Corollary 6.3 If α = q/r > −1 in Assumption 4.1, Proposition 5.1 is true
without Assumption 2.1.

Our arguments do not apply to the case α < −1, where the secondary
terms bring the contribution of the same order as the main term.

It would be very interesting to understand what happens with the results
about additive process with variable b in absence of Assumption 2.1. Re-
call that the eigenvalue λ(0)2 directly related to this assumption explicitly

appears in the answer via parameter p = 1 − λ(0)2

Λ
. Therefore, we can not

expect that the results like Proposition 5.2 will be the same in absence of
Assumption 2.1.
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We are much indebted to H. Woźniakowski for introduction to this problem.
The work of the first named author was supported by grants RFBR 05-01-
00911 and RFBR/DFG 04-01-04000. He is grateful for hospitality of the
Math Department of Paris-XII University where this work was produced.

20



References

BS [1] Buslaev, A. P., Seleznjev, O. V. (1999) On certain extremal problems
in the theory of approximation of random processes. East J. Approx. 5,
no. 4, 467–481.

ChenLi [2] Chen, X., Li, W.V. Small deviation estimates for some additive pro-
cesses, Proc. Conf. High Dimensional Probability. III. Progress in Prob-
ability, vol. 55, Birkhäuser, 2003, pp. 225–238.
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