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Let X(t), t ∈ [0, 1] d be an additive random field. We investigate the complexity of finite rank approximation

The results obtained in asymptotic setting d → ∞, as suggested H.Woźniakowski, provide quantitative version of dimension curse phenomenon: we show that the number of terms in the series needed to obtain a given relative approximation error depends on d exponentially and find the explosion coefficients.

Introduction

Let X(t) = ∞ k=1 ξ k ϕ k (t), t ∈ T , be a random function represented via random variables ξ k and the deterministic real functions ϕ k . Let X n (t) = n k=1 ξ k ϕ k (t) be the approximation to X of rank n. How large should be n in order to make approximation error small enough? Provided a functional norm • is given on the sample paths' space, the question can be stated in the average and in the probabilistic setting. Namely, find n avg (ε) := inf n : E||X -X n || 2 ≤ ε 2 , or n pr (ε, δ) := inf {n : P {||X -X n || ≥ ε} ≤ δ} .

In this work we mostly consider the additive random fields X of tensor product-type with T ⊂ R d . The word "additive" means that X can be represented as a sum of terms depending only of appropriate groups of coordinates.

In the first part of the article we investigate the problem for fixed X, T , and d.

In the second part we consider sequences of related tensor product-type fields X (d) (t), t ∈ T (d) ⊂ R d , with d → ∞ and study the influence of dimension parameter d. It turns out that the rank n that is necessary to obtain a relative error ε increases exponentially in d for any fixed ε. The explosion coefficient admits a simple explicit expression and does not depend on ε. Interestingly, the phenomenon of exponential explosion does not depend on the smoothness properties of the underlying fields. Recall that exponential explosion of the difficulty in approximation problems that include dimension parameter is well known as "dimensionality curse" or "intractability", see e.g. [START_REF] Woźniakowski | Tractability and strong tractability of linear multivariate problems[END_REF], For more recent results on tractability and intractability, see [START_REF] Woźniakowski | Tractability for multivariate problems for weighted spaces of functions[END_REF]. On ideological level, we were much inspired by this work.

Throughout the article, we use the following notation: for integers let N = {0, 1, 2, . . . } and N * = {1, 2, . . . }. We write a n ∼ b n iff lim n a n /b n = 1.

The article is organized as follows. In Section 2 we specify the class of random fields to work with and introduce the necessary notation. After recalling some basic known approximation results in Section 3, we handle a given additive field in Section 4 while Section 5 is devoted to the asymptotic setting: we deal with a series of random fields with parameter dimension d → ∞. Finally, in Section 6 we give some extensions of our results to more general class of random field.

Additive random fields s:fields

In this article we investigate additive random fields. The simplest example of additive field is given by

X(t) = d l=1 X l (t l ), t ∈ R d ,
where X l are independent copies of a one-parametric process. The behavior of X was studied in [START_REF] Chen | Small deviation estimates for some additive processes[END_REF] and in some other works. During last years, the additive fields of higher orders also attracted the interest of researchers. In this general case, the additive d-parametric random field is a sum of i. For each

A = {a 1 , • • • , a b } ∈ D b , we define the projection Π A : T d → T b by Π A (t) = (t a 1 , • • • , t a b ) .
We consider the following process defined for every t ∈ T d by

X(t) = A∈D b X A (Π A (t)) ,
where X A are i.i.d. copies of a b-parametric random field and call X an additive random field of order b.

The additive structure becomes especially important if the order b is much smaller than time dimension d. Since in this article we are mainly interested in the role of dimension, we are going to discuss the families of additive random fields with varying d and b. In this setting, it is quite natural to assume that X is actually generated by a one-parametric process via taking tensor degrees.

Recall the notion of tensor product for second order random fields. Given two centered fields {Y 1 (t 1 )} t 1 ∈T d 1 and {Y 2 (t 2 )} t 2 ∈T d 2 with covariances K 1 (•, •) and K 2 (•, •), respectively, we define their tensor product {(Y 1 ⊗Y 2 )(t)} t∈T d 1 +d 2 as a centered second order random field with covariance

K ((t 1 , t 2 ), (t 1 , t 2 )) := K 1 (t 1 , t 1 )K 2 (t 2 , t 2 ).
The definitions of multiple tensor products b j=1 Y j and tensor degrees Y ⊗b are now straightforward.

Let now {Y (u)} u∈[0,1] be a given second order one-parametric process expanded with respect to an orthonormal basis (ϕ i ) i∈N ∈ L 2 ([0, 1]):

Y (u) = ∞ i=0 λ(i)ϕ i (u)ξ i ,
where λ(i) ≥ 0, ∞ i=0 λ(i) 2 < ∞ and (ξ i ) i∈N are non-correlated random variables, E(ξ i ) = 0 and Var(ξ i ) = 1. For any integer b ≥ 1 the b-th tensor degree of Y writes as

X(t) := Y ⊗b (t) = k∈N b b l=1 λ(k l )ϕ k l (t l )ξ k , t ∈ T b ,
where the variables (ξ k ) k∈N b are non-correlated, E(ξ k ) = 0 and Var(ξ k ) = 1. Now the d-parametric additive random field of order b generated by Y has a form

X d,b (t) = A∈D b k∈N b b l=1 λ(k l )ϕ k l ([Π A (t)] l ) ξ A k = A∈D b k∈N A a∈A λ(k a ) a∈A ϕ ka (t a ) ξ A k . (2.1) If k Y denotes the covariance function of Y , i.e. Cov(Y (u), Y (u )) = k Y (u, u ) we easily see that Cov(X d,b (t), X d,b (t )) = A∈D b a∈A k Y (t a , t a ) .
For the rest of this section, we make the following assumption that substantially simplifies the calculations:

zero Assumption 2.1 ∀u ∈ [0, 1] , ϕ 0 (u) = 1 .
This assumption leads to the principal results in a more direct way. However, we will show later in Section 6 that it can be dropped, at least sometimes. We are, of course, not the first to notice the advantages of this assumption. See for example a recent work [START_REF] Hickernell | Tractability of linear multivariate problems in the average-case setting[END_REF] where important random fields satisfying this property are handled.

Under Assumption 2.1 we have the following lemma. Proof: We are interested in the scalar product

(ψ, ψ ) = T d ψ(t)ψ (t)dλ d (t) , (2.2) 
where λ d is the Lebesgue measure on T d . We can represent this integral as a product of three factors:

(ψ, ψ ) = Π 1 Π 2 Π 3
where

Π 1 = a∈A∩A [0,1] ϕ ka (t a )ϕ k a (t a )dt a , Π 2 = a∈A\A [0,1] ϕ ka (t a )dt a , Π 3 = a∈A \A [0,1] ϕ k a (t a )dt a .
In the first factor Π 1 , whenever k a = k a , the integral is null, since the functions (ϕ i ) are orthogonal. In the second factor Π 2 , if k a = 0, it follows from the orthogonality of the family (ϕ i ) and Assumption 2.1 that the integral [0,1] ϕ ka (t a )dt a is null. The same argument applies to the third factor Π 3 . We see that Π 1 Π 2 Π 3 does not vanish only if k a = k a for a ∈ A ∩ A and k a = 0, k a = 0 elsewhere, and the assertion follows.

Notice that in expression (2.1) different sets A can generate the same product a∈A ϕ ka (t a ). Therefore, it is more convenient to write X d,b in a different way:

X d,b (t) = b h=0 C⊂D |C|=h k∈(N * ) C a∈C ϕ ka (t a ) a∈C λ(k a ) F ⊂(D\C) |F |=b-h λ(0) b-h ξ C∪F k , (2.3) proces2
where k ⊂ N C∪F is made of k by adding zeros. We can simplify this expression to

X d,b (t) = b h=0 C⊂D |C|=h   k∈(N * ) C a∈C ϕ ka (t a ) a∈C λ(k a )   η C , (2.4) proces3
where (η C ) C∈D are non-correlated centered random variables of variance

Var(η C ) = C b-h d-h λ(0) 2(b-h) . Expression (2.4
) is convenient to handle, since by Lemma 2.2 all terms in the right hand side are orthogonal in L 2 (T d ).

The spectrum of the covariance operator of X d,b can be described as follows. For every fixed h ∈ {0, • • • , b}, and every k ∈ (N * ) h take the eigen-

value C b-h d-h h l=1 λ(k l ) 2 λ(0) 2(b-h) of multiplicity C h d coming from C h d differ- ent choices of subset C ⊂ D.
It is more convenient to us not to identify the equal eigenvalues generated by permutations of (k l ).

Approximation of simple tensor products s:lt

In this section we recall some results of the paper [8] on approximation of tensor product random fields. In terms of Section 2 the setting of [8] corresponds to the "elementary" case b = d which does not contain additivity effect. The facts known about this case will be the starting point of our study. According to (2.1), for b = d let X(t) = X d,b (t) be a random field given by

X(t) := k∈N d d l=1 λ(k l )ξ k d l=1 ϕ k l (t l ) , t ∈ [0, 1] d ,
where (ϕ i ) is an orthonormal system in L 2 [0, 1] and ξ k are non-correlated random variables.

Fixed dimension

Assume that d is fixed and that the assumptions

Λ := ∞ i=1 λ(i) 2 < ∞, (3.1) 
λ(i) ∼ µi -r (log i) q (3.2) rq
are satisfied with µ > 0, r > 1/2, q = -r . We approximate X by a finite sum X n corresponding to the n maximal eigenvalues. Recall that approximation cardinality n avg (ε) is defined as

n avg (ε) = inf{n ; E X -X n
Then we have the following theorem:

Theorem 3.1 ([8]) Under assumption (3.2) it is true that thm_LT1 n avg d (ε) ∼ B d √ 2(r -1/2) rβ+1/2 | log ε| rβ ε 1/(r-1/2) , (3.3) asym_LT1
where for α = q/r

B d = µ d Π r d , β = (d -1) + dα if α > -1, (3.4) B d = µd r S (d-1)r , β = α if α < -1, (3.5) S = ∞ i=1 λ(i) 1/r , Π d = Γ(α + 1) d Γ(d(α + 1)
) .

Increasing dimension

Suppose d → ∞ and assume that

∞ i=1 | log λ(i)| 2 λ(i) 2 < ∞ . (3.6) Mfinite
The total size of the field X is characterized by

E X 2 = Λ d .
As above, define the cardinality associated to the relative error

ñavg d (ε) = inf{n ; E X -X n 2 L 2 (T d ) ≤ ε 2 Λ 2 } .
Then we have

Theorem 3.2 ([8]) Under assumption (3.6) it is true that thm_LT2 lim d→∞ log ñavg d (ε) d = log A , (3.7) asym_LT2
where A = Λe 2M and M = -∞ i=1 log λ(i) λ(i) 2 Λ . We stress that no regularity assumption like (3.2) is required.

Approximation in fixed dimension

s:fixed

In this section, we fix d and b and consider the quality of approximation to an additive field X d,b by means of the processes of rank n, as n → ∞. Namely, we approximate X d,b with the finite sum X n from (2.4) corresponding to n maximal eigenvalues of covariance operator. As a measure of approximation, we use

n avg (ε, d, b) = inf{n ; E X d,b -X n 2 L 2 (T d ) ≤ ε 2 } . Analogously to (3.
2), we will consider here the practically important case described by the following

valpropre Assumption 4.1 λ(i) ∼ µ i -r (log i) q , i → ∞, for some µ > 0, r > 1/2,
and q = -r.

We write α = q/r. For any h ∈ {1, • • • , b} and k ∈ (N * ) h , let us write

λ 2 k = h l=1 λ 2 (k l ) ,
and (λ

2 n,h , n ∈ N) for the decreasing rearrangement of the array (λ 2 k ) , k ∈ (N * ) h . We know from [8] that λ 2 n,h ∼ B 2 h n -2r (log n) 2rβ , n → ∞, (4.1) 
where

• α > -1 : B h = µ h Γ(α+1) h Γ(h(α+1)) r β = (h -1) + hα • α < -1 : B h = µh r i≥1 λ(i) 1/r (h-1)r β = α
Note that equivalent results can be found e.g. in Csáki [3], Li [7] Papageorgiou and Wasilkowski [9] (for q = 0) and especially in Karol', Nikitin, and Nazarov [START_REF] Karol | Tensor products of compact operators and logarithmic L 2 -small ball asymptotics for Gaussian random fields[END_REF] for even more general case than we need here. 

n avg (ε, d, b) ∼ [C b d ] 2r 2r-1 B b √ 2(r -1/2) rβ+1/2 | log ε| rβ ε (r-1/2) -1 , ε → 0. (4.2) prop11 b) If α < -1, then n avg (ε, d) ∼ √ Q √ 2(r -1/2) rα+1/2 | log ε| rα ε (r-1/2) -1 , ε → 0, (4.3) prop12
where

Q = b h=1 C(h) 1 2r 2r and C(h) = C b-h d-h [C h d ] 2r λ(0) 2(b-h) B 2 h . (4.4) BCi
Proof: If α > -1, then β depends on h, hence, in asymptotic setting, the only relevant eigenvalues are those corresponding to the maximal β, i.e. the asymptotics is determined by the array of eigenvalues corresponding to h = b. In this case, λ(0) does not appear in the array and we have

m>n λ 2 m,b ∼ B 2 b (2r -1) -1 n 1-2r (log n) 2rβ , (4.5) ass_err 
where β = (b -1) + bα . We look for

n avg (ε, d, b) = C b d • inf{n ; C b d m>n λ 2 m,b ≤ ε 2 }
and the result follows from (4.5).

If α < -1, then β does not depend on h. Therefore, the eigenvalues λ

2 n,h
have the same order of decay for all h. For a given h ∈ {1, • • • , b}, we have to consider eigenvalues

C b-h d-h λ 2 n,h λ(0) 2(b-h) of multiplicity C h d .
We include, say, n h maximal terms in approximating process of rank n. The contribution of the non-included terms to approximation error for this given h is

C h d • m> n h C h d C b-h d-h λ 2 m,h λ(0) 2(b-h) ∼ C(h)(2r -1) -1 n 1-2r h (log n h ) 2rβ , n h → ∞ , where C(h) is defined in (4.4). Let us denote by f the function defined on [1, ∞[ b by f (x 1 , • • • , x b ) = b h=1 C(h)(2r -1) -1 x 1-2r h (log x h ) 2rβ .
We want to minimize f under the constraint

x 1 + • • • + x b = n. This leads to the optimal values n 1 , • • • , n b . We derive n h ∼ n • C(h) 1 2r b j=1 C(j) 1 2r
which gives

f (n 1 , • • • , n b ) ∼ Q (2r -1) -1 n 1-2r (log n) 2rβ ,
where Q is defined in (4.4). The result of Proposition 4.2 b) is now immediate.

Approximation in increasing dimension

s:increasing

We study the approximation of In order to deal with relative errors, we compute the total size of the additive process:

E X d,b 2 
L 2 (T d ) = b h=0 C h d k∈(N * ) h h k=1 λ(k l ) 2 C b-h d-h λ(0) 2(b-h) (5.1) = C b d b h=0 C h b Λh λ(0) 2(b-h) = C b d (λ(0) 2 + Λ) b = C b d Λ b .
where Λ = ∞ i=1 λ(i) 2 and Λ = ∞ i=0 λ(i) 2 We want to evaluate the relative average approximation complexity:

ñavg (ε, b, d) = inf{n ; E X d,b -X n 2 L 2 (T d ) ≤ C b d Λ b ε 2 } . (5.2)
For both cases a) and b), the idea is to compare (in terms of cardinality) the contribution of each array for a fixed h.

Case b fixed

We have the following approximation. Proof: Recall that the spectrum of covariance operator of additive process of order b can be obtained as follows. To any fixed h = 1, • • • , b associate an array of eigenvalues

{λ 2 k = h l=1 λ(k l ) 2 , k ∈ (N * ) h }
to which two operations are applied: a) every eigenvalue 

λ 2 k is multiplied by C b-h d-h λ(0) 2(b-h) , b)
L 2 b,h := [C h b ] -1 = C b d C h d C b-h d-h
.

The squared approximation error for each h ≤ b -1 can be evaluated by

C h d • L 2 b,h δ 2 ε 2 Λ b • C b-h d-h λ(0) 2(b-h) = δ 2 ε 2 C b d Λ b • λ(0) 2(b-h) ,
hence the total squared error is bounded by h) . Taking into account the error in the last array, we see that the total squared relative error of our procedure does not exceed 1 + δ 2 b-1 h=1 λ(0) 2(b-h) ε 2 which can be made arbitrary close to ε as δ → 0.

δ 2 ε 2 C b d Λ b b-1 h=1 λ(0) 2(b-
Finally, let us evaluate the number of terms in approximation part. For each h ≤ b -1 there exist constants c i (b, h, δ) such that

C h d n avg h (L b,h δεΛ b/2 ) ≤ C h d c 1 (b, h, δ) n avg h (εΛ b/2 ) ≤ d h h! c 2 (b, h, δ) n avg b (εΛ b/2 ) ≤ d b-1 c 3 (b, h, δ) n avg b (εΛ b/2
). Hence the total number of terms in approximation part is bounded by

d b b! + c 3 (b, h, δ) d b-1 n avg b (εΛ b/2 ) ∼ d b b! Λ -b/(2r-1) n avg b (ε), d → ∞,
as required.

Case b → ∞

In this case it is insightful to look at the relative weight of each array of eigenvalues for h = 1, • • • , b. Let us fix h and compute the weight of the array, that is the sum of the eigenvalues, taking into account multiplication and multiplicity (see the beginning of the proof of Proposition 5.1).

W h := C h d C b-h d-h λ(0) 2(b-h) k∈(N * ) h h l=1 λ(k l ) 2 = C b d C h b λ(0) 2(b-h) Λh ,
and the relative weight Recall the notation M = ∞ i=0 (-log λ(i))

W h E X d,b 2 L 2 (T d ) = C h b (1 -p) b-h p h . ( 5 
λ(i) 2 Λ , A = e 2M Λ. We see from (5.3) that the distribution of the relative weights is the Binomial distribution B(b, p). If b → ∞, the main contribution is given by the arrays with h such that h/b ∼ p. This observation yields the following result: 

where V = (1 -βp) -1+βp β -βp (1 -p) (1-p)β A β .
Proof: We first give an appropriate approximation procedure. Let 

H = H(d, p) = {h ∈ N : pd -d 1/3 ≤ h ≤ pd + d 1/3 }.
W h + ε 2 h∈H W h ≤ B(b, p)(N\H) + ε 2 C b d Λ b .
By Moivre-Laplace central limit theorem, B(b, p)(N\H) → 0, as d → ∞.

Hence the relative error of our procedure is at most ε + o(1). Now we will evaluate the number N of terms included in the approximation part. Recall that

N = h∈H C h d ñavg h (ε).
Under our assumptions on b/d and by the choice of H Stirling formula yields, uniformly over h ∈ H,

lim d→∞ (C h d ) 1/d = lim d→∞ ( d -h d ) -(d-h)/d ( d h ) h/d = (1 -βp) βp-1 (βp) -βp . (5.5) stir Moreover, Theorem 3.2 yields ñavg h (ε) 1/h → à , h → ∞ where à = e 2 M Λ and M = ∞ i=1 (-log λ(i)) λ(i) 2 Λ . It follows that, uniformly over h ∈ H, lim d→∞ n avg h (ε) 1/d = lim d→∞ n avg h (ε) 1 h • h b • b d = Ãpβ .
We obtain

lim d→∞ (C h d n avg h (ε)) 1/d = (1 -βp) -1+βp (βp) -βp Ãβp .
Coming back to the constants associated to the full sequence of eigenvalues, we obtain

M = Λ Λ M + log λ(0) • λ(0) 2 Λ = M p + log λ(0)( 1 p -1), hence Ãp = e 2 M p Λp = e 2M +2(1-p) log λ(0) (pΛ) p = (e 2M Λ) p p Λ p-1 [λ(0) 2 ] 1-p = A p p Λ p-1 [Λ(1 -p)] 1-p = Ap p (1 -p) 1-p , therefore lim d→∞ (C h d n avg h (ε)) 1/d = (1 -βp) -1+βp β -βp (1 -p) (1-p)β A β (5.6) final
as required. Finally, notice that the size of H grows polynomially and does not influence the logarithmic limit. Therefore, our approximation procedure has all required properties. We will now provide a lower bound for approximation cardinality. Let the set H be as above and let d be so large that (by Moivre-Laplace theorem)

h ∈H W h ≤ 1 2 C b d Λ d .
Fix ε > 0 and let X n be an n-term approximation of X d,b such that

E X d,b -X n 2 L 2 (T d ) ≤ ε 2 C b d Λ d . Write the expansion X d,b := b h=0 X (h)
d,b , as done in (2.4). Similarly, we can expand

X n := b h=0 X (h)
n . In view of orthogonality we have

ε 2 C b d Λ d ≥ E X d,b -X n 2 L 2 (T d ) = b h=0 E X (h) d,b -X (h) n 2 L 2 (T d ) ≥ h∈H E X (h) d,b -X (h) n 2 L 2 (T d ) .
(5.7)

On the other hand,

h∈H E X (h) d,b 2 
L 2 (T d ) = h∈H W h ≥ 1 2 C b d Λ d . (5.8) low2
By comparing (5.7) and (5.8) we see that for some

h ∈ H E X (h) d,b -X (h) n 2 L 2 (T d ) ≤ 2ε 2 E X (h) d,b 2 
L 2 (T d ) .
This means that the relative approximation error for

X (h) d,b is small. Recall that the spectral structure of X (h)
d,b differs only by multiplication and multiplicity from the field X considered in Section 3 if we put there b = d = h. Multiplication of eigenvalues does not influence relative approximation error. Multiplicity of eigenvalues should be taken into account when we compute approximation cardinality. We see that

n ≥ C h d ñavg h ( √ 2ε). 
By using Theorem 3.2 and (5.5) we get

lim d→∞ (ñ avg (ε, b, d)) 1/d ≥ lim inf d→∞ inf h∈H (C h d ) 1/d (n avg h ( √ 2ε)) 1 h • h b • b d = (1 -βp) -1+βp β -βp (1 -p) (1-p)β A β = V,
as required.

Comments : Let us describe more precisely what happens in some special cases:

• If β = 1, we get (1 -p) -1+p (1 -p) 1-p A 1 = A .
This essentially corresponds to the case considered in Section 3.

• It is surprising to note that for β < 1, the result depends on p = Λ/Λ. We can examine some special values of p: if p = 0, there is only one eigenvalue, hence A = 1, and V = 1. There is no exponential explosion.

if p = 1, then λ(0) = 0 and

V = (1 -β) β-1 β -β A β . • If β = 0, then V = 1.
There is no exponential explosion, and this includes the case b fixed and d → ∞.

We can prove the following more precise statement: (5.9)

Proof: Since the idea is the same as in the previous statement, we omit the details. Now Stirling formula yields

log C h d h = 1 2h [log d d -h -log(2πh)] + d -h h log d d -h + log d h + o(1).
(5.10) beta00 We have to compare different terms in expression above. Since d/b → ∞, b, h → ∞ and b/h → p, it is clear that

1 2h log d d -h = o(1), 1 2h log(2πh) = o(1), d -h h log d d -h = O(1).
Hence the main term is log(d/h) and log C h Recall that for any ε > 0 it is true that log ñavg

h (ε) ∼ Ãh. Hence, log C h d • ñavg h (ε) ∼ h log(d/b) ∼ p b log(d/b
), and the proof is complete along the same lines as above.

6 Some extensions s:general

Approximation arguments based on -numbers

We now briefly remind some precise arguments for elimination of negligible parts from expansions. Let X be a centered Gaussian vector in a Banach space L. The -numbers n (X) are defined by

n (X) 2 = inf E X - n j=1 ϕ j ξ j 2 , ϕ j ∈ L, ξ j ∼ N (0, 1) . ( 6 

.1) ln

It is clear from (6.1) that for any vectors X 1 and X 2 and any n, m ∈ N

n+m (X 1 + X 2 ) ≤ n (X 1 ) + m (X 2 ).
By the same argument,

n+m (X 1 ) = n+m ((X 1 + X 2 ) -X 2 ) ≤ n (X 1 + X 2 ) + m (X 2 ). It follows that n+m (X 1 ) -m (X 2 ) ≤ n (X 1 + X 2 ) ≤ n-m (X 1 ) + m (X 2 ). (6.2) bilat
Hence the following is true.

x1x2 Lemma 6.1 Let (a n ) be a regularly varying sequence. Assume that random vectors X 1 , X 2 satisfy n (X 1 ) ∼ a n and n (X

2 ) = o (a n ). Then n (X 1 +X 2 ) ∼ a n . Proof: Let us fix δ > 0 and set m = m(n) = [δn]. Then (6.2) yields n (X 1 + X 2 ) ≤ n-[δn] (X 1 ) + [δn] (X 2 ).
We have lim sup

n→∞ n (X 1 + X 2 ) a n ≤ lim sup n→∞ n-[δn] (X 1 ) a n-[δn] • a n-[δn] a n + lim sup n→∞ [δn] (X 2 ) a [δn] • a [δn] a n ≤ 1 • (1 -δ) α + 0 • δ α ,
where α is the non-positive regularity index of (a n ). By letting δ → 0 we obtain lim sup

n→∞ n (X 1 + X 2 ) a n ≤ 1.
The lower bound follows along the same lines.

We stress that no independence or any other condition is assumed on X 1 , X 2 in this lemma.

While the definition of -numbers applies to any Banach space, in the Hilbert space case they are particularly easy to handle. Namely, if

X = ∞ j=1 λ j ϕ j ξ j ,
where (ϕ j ) is an orthonormal system in L, (ξ j ) i.i.d. standard normal and λ j a non-increasing positive sequence, then (see [START_REF] Buslaev | On certain extremal problems in the theory of approximation of random processes[END_REF], [START_REF] Kühn | Optimal series representation of fractional Brownian sheets[END_REF] or [START_REF] Ritter | Average-case Analysis of Numerical Problems[END_REF], p.51)

n (X) 2 = E ∞ j=n+1 λ j ϕ j ξ j 2 = ∞ j=n+1 λ 2 j .
We observe that n (X) is just the inverse sequence to n avg (ε) for X. Therefore, we can restate Lemma 6.1 as follows.

x1x2a Lemma 6.2 Let g be a regularly varying function defined in a neighborhood of zero. Assume that random vectors X 1 , X 2 satisfy n avg (X 1 ; ε) ∼ g(ε) and n avg (X 2 ; ε) = o (g(ε)) as ε → 0.

Then n avg (X 1 + X 2 ; ε) ∼ g(ε).

Approximation without Assumption 2.1

In this subsection we explain how to get rid of restrictive Assumption 2. Indeed, Ŷ has rank one and for all u 0 , u ∈ [0, 1] we have

cov(Y 0 (u 0 ), Ŷ(u)) = E [(Y (u 0 ) -κ(u 0 )I) κ(u)I] = κ(u) cov(Y (u 0 ), I) -κ(u 0 )σ 2 = 0 and 1 0 Y 0 (u)du = I -σ -2 1 0 cov(Y (u), I)du • I = 1 -σ -2 cov 1 0 Y (u)du, I • I = 0.
It follows from the latter identity that Y 0 satisfies Assumption 1.1 with λ(0) = 0. The parts of the decomposition (6.3) are not orthogonal in L 2 [0, 1]. The same is true for multi-parametric expansions based on (6.3). Now we recall some elementary algebra of tensor products. Given a finite sequence of fields {Y j (t)} t∈T d j , 1 ≤ j ≤ b, each of them being decomposed in two non-correlated parts

Y j = Y j0 + Y j1 , we have b j=1 Y j = i∈{0,1} b b j=1 Y ji j
where the terms of the right hand side are pairwise non-correlated. This formula is obvious if we look at the respective covariances.

For tensor degrees of a one-parametric process Y = Y 0 + Y 1 the above formula yields Assume that Assumption 4.1 is verified and let α = q/r > -1.

Y ⊗b = i∈{0,
Let us fix A and let h = |A|. Since Ŷ has rank one, the same is true for Ŷ⊗(b-h) . Therefore, the second factor does not influence approximation properties. On the other hand, since Y 0 differs from Y only by a process of rank one, it inherits from Y the validity of .

The main term has a larger cardinality asymptotics of the just mentioned order.

Let us now consider the additive processes. We can write (2.1) as Our arguments do not apply to the case α < -1, where the secondary terms bring the contribution of the same order as the main term.

It would be very interesting to understand what happens with the results about additive process with variable b in absence of Assumption 2.1. Recall that the eigenvalue λ(0) 2 directly related to this assumption explicitly appears in the answer via parameter p = 1 -λ(0) 2 Λ . Therefore, we can not expect that the results like Proposition 5.2 will be the same in absence of Assumption 2.1.

  i.d. fields, each depending on a smaller number of parameters. To give a precise definition, we need some notation. Let us fix d, b ∈ N such that d ≥ b ≥ 1, and let T d = [0, 1] d , T b = [0, 1] b . We denote by D and D b the following sets of indexes: D = {1, • • • , d} , D b = {A ⊂ D , |A| = b} .

prop1 Proposition 4 . 2

 42 Under Assumptions 2.1 and 4.1 we have: a) If α > -1, then

  X d,b by a finite sum X n when the dimension d is increasing. We still work under Assumption 4.1 and consider two basic different situations: a) the case where the additivity order b is fixed, b) the case where b goes to infinity and the positive limit lim d→∞ b/d exists.

prop_bfixed Proposition 5 . 1

 51 Let Assumptions 2.1 and 4.1 hold. When b is fixed and d → ∞, ñavg (ε, b, d) ∼ d b b! Λ -b/(2r-1) n avg b (ε) , and the asymptotics of n avg b (ε) is given in (3.3).

  the array is taken with multiplicity C h d . If we forget about all arrays except for the last one corresponding to h = b, then Theorem 3.1 provides the required lower bound ñavg (ε, b, d) ≥ C b d n avg b (εΛ b/2 ) ∼ d b b! Λ -b/(2r-1) n avg b (ε), as d → ∞. Now we give an approximation construction providing the upper bound for ñavg (ε, b, d). Fix a small δ and include in approximation part C b d n avg b (εΛ b/2 ) terms from the last array (b = h) and C h d n avg h (L b,h δεΛ b/2 ) terms from every array with 1 ≤ h ≤ b -1, where

prop_bincr Proposition 5 . 2

 52 Assume b, d → ∞ with b/d → β ∈ [0, 1] and let Assumptions 2.1 and (3.6) be valid. Then lim d→∞ log ñavg (ε, b, d) d = log V, (5.4)

prop_binc0 Proposition 5 . 3

 53 Assume b, d → ∞ with b/d → 0 and let Assumptions 2.1 and 3.6 be valid. Then lim d→∞ log ñavg (ε, b, d) b log(d/b) = p.

  d h ∼ log(d/h) ∼ log(d/b).

1 .= 1 0

 11 Let Y (u), u ∈ [0, 1] be arbitrary centered second order process. Let denote I :Y (u)du, σ 2 = E[I 2 ], and κ(u) := cov (Y (u), I) /σ 2 . We split Y in two non-correlated parts; one of them is degenerate (has rank one), while another satisfies Assumption 2.1. Namely, let Y (u) = Y 0 (u) + Ŷ(u) := [Y -κ(u)I] + κ(u)I. (6.3) 0hat

1 (

 1 Π A c (•)).Applying this to (6.3), we obtainY ⊗b = A⊂{1,...,b} Y ⊗|A| 0 (Π A (•)) ⊗ Ŷ⊗(b-|A|) (Π A c (•)) := A⊂{1,...,b} Z A .Now let us consider the approximation properties of each term in this expansion.

  Assumption 4.1 by Weil lemma. Now we consider separately the main term corresponding to A = {1, . . . , b} and all other terms (with h < b). Indeed, under h < b Theorem 3.1 yieldsn avg (Z A , ε) = O | log ε| r(h-1)+hα ε (r-1/2) -1 = o | log ε| r(b-1)+bα ε (r-1/2) -1

X

  d,b (t) = A⊂D b Y ⊗b A ([Π A (t)])where Y ⊗b A are non-correlated copies of Y ⊗b , and introduce its main part generated by Y 0 asX 0 d,b (t) = A⊂D b Y ⊗b 0,A ([Π A (t)]) ,where Y ⊗b 0,A are non-correlated copies of Y ⊗b 0 . Since Y 0 satisfies Assumption 2.1, Proposition 4.2 applies and we get the asymptotics (4.2) for average cardinalities of X 0 d,b . On the other hand, the difference between X 0 d,b and X d,b is a finite sum of the fields with lower order of average cardinalities. Therefore, by Lemma 6.2 for X d,b we get the same result (4.2) as for X 0 d,b . We get the following: Corollary 6.3 If α = q/r > -1 in Assumption 4.1, Proposition 5.1 is true without Assumption 2.1.

  Let k, k ∈ N d and A, A ⊂ D. If Assumption 2.1 is valid, then the functions ψ(t) = a∈A ϕ ka (t a ) and ψ (t) = a∈A ϕ k a (t a ) are either identical or orthogonal in L 2 (T d ).

lem1 Lemma 2.2

  We include in the error term all arrays with h ∈ H and include in approximation part C h

	d	ñavg h (ε) terms
	for any h ∈ H. According to (5.3) the total squared error is	

h ∈H

L 2 (T d ) ≤ ε 2 } .
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