Benoît Groz

Staworko

Anne-Cecile Caron

Yves Roos

Sophie Tison

Static Analysis of XML Security Views and Query Rewriting $

Keywords: XML, security views, query rewriting, determinacy

In this paper, we revisit the view based security framework for XML without imposing any of the previously considered restrictions on the class of queries, the class of DTDs, and the type of annotations used to define the view. First, we study query rewriting with views when the classes used to defined queries and views are Regular XPath and MSO. Next, we investigate problems of static analysis of security access specifications (SAS): we introduce the novel class of interval-bounded SAS and we define three different manners to compare views (i.e. on queries), with a security point of view. We provide a systematic study of the complexity for deciding these three comparisons, when the depth of the XML documents is bounded, when the document may have an arbitrary depth but the queries defining the views are restricted to guarantee the interval-bounded property, and in the general setting without restriction on queries and document.

Introduction

The wide acceptance of XML as the format for data representation and exchange clearly demonstrates the need for a general and flexible framework of secure access for XML databases. While security specification and enforcement are well established in relational databases, their methods and approaches cannot be easily adapted to XML databases. This is because an XML document stores information not only in its data nodes but also in the way it is structured. Consequently, the problem of secure access to XML databases has its own particular flavor and requires dedicated solutions.

The view-based security framework for XML databases [START_REF] Stoica | Secure XML views[END_REF] has received an increased attention from both the theoretical and practical angle [START_REF] Fan | Secure XML querying with security views[END_REF][START_REF] Kuper | Generalized XML security views[END_REF][START_REF] Fan | SMOQE: A system for providing secure access to XML[END_REF][START_REF] Rassadko | Policy classes and query rewriting algorithm for XML security views[END_REF][START_REF] Vercammen | Query translation for XPathbased security views[END_REF][START_REF] Rassadko | Query rewriting algorithm evaluation for XML security views[END_REF][START_REF] Fan | Rewriting regular XPath queries on XML views[END_REF]. It can be summarized as follows:

• The administrator provides the schema of the document together with the security access specification (SAS) defining nodes accessible by the user.

• A virtual view comprising all accessible nodes is defined; the view is never materialized but the user is given some knowledge of its schema.

• Every query over the view is rewritten to an equivalent query over the underlying document and then evaluated.

The view-based security framework is parametrized by the class of queries, typically a fragment of XPath, and the type of formalism used to define the schema with the security access specification, typically an annotated DTD. Previous research often imposed various restrictions on these two parameters in order to facilitate the tasks relevant to the framework. For instance, taking the class of downward XPath queries allows to use the knowledge of the document DTD to benefit the query rewriting [START_REF] Fan | Secure XML querying with security views[END_REF]. The task can be further simplified if the node accessibility is downward closed i.e., all descendants of an inaccessible node are inaccessible as well [START_REF] Benedikt | XML subtree queries: Specification and composition[END_REF]. For similar reasons, in some works only non-recursive DTDs are considered [START_REF] Fan | Secure XML querying with security views[END_REF][START_REF] Rassadko | Policy classes and query rewriting algorithm for XML security views[END_REF].

The restrictions may easily limit the versatility of the framework and in this paper we revisit the framework and take two large classes of queries: Regular XPath queries (X Reg) and Monadic Second-order Logic queries (MSO) represented with tree automata. The two formalisms are also used to define accessibility of nodes in the source document. Usually, the schema is assumed to be specified with a DTD. In this paper, the schema could also be described by richer languages, e.g. extended DTDs.

In the first part of the paper, we revisit the problem of rewriting queries over views. Recall that in the case of the standard XPath queries [START_REF] Fan | Secure XML querying with security views[END_REF], there are queries that cannot be rewritten, because the language is not powerful enough to capture node accessibility, and consequently, various restrictions need to be employed. Our work shows that both X Reg and MSO enjoy the closure on rewriting under views. In both cases, the rewritings are quadratic (combined complexity including both the size of the input query and the security access specification).

In the second part of the paper, we study the problem of comparing two security access specifications. This problem is best motivated in situations where the administrator changes the specification of accessible nodes, for instance restricts access to some nodes, and would like to obtain some guarantees that no information has been inadvertently released with the change.

We consider three kinds of comparisons of SAS and investigate their computational implications. The first comparison considers only the accessibility of nodes in a document. Comparing SAS from this perspective is essentially testing the containment of queries used to specify accessible nodes, a problem known to be EXPTIME-complete for both X Reg and tree automata.

Paradoxically, when we restrict the access (i.e. the set of accessible nodes) we can make some new information available about the accessible nodes. E.g., let us suppose that user A sees all the patients of a hospital and user B sees only the patients of service X. For the first comparison, user B has a more restrictive view than user A. However, B gets some information that A does not get: A will a priori be unable to distinguish patients of the service X from the others. In order to capture this phenomenon, the second comparison identifies and compares the information that can be obtained on the underlying document. This information is defined as the set of all queries on the underlying document that can be expressed as queries over the view.

In a nutshell, A will have a more restrictive access than B for that comparison if every query computed by A can be simulated by B. We prove that this can be expressed by "View A can been considered as a view on the view B". So, this notion is related to single-view query rewriting [START_REF] Calvanese | Rewriting of regular expressions and regular path queries[END_REF][START_REF] Cautis | Efficient rewriting of xpath queries using query set specifications[END_REF] as well as to composition of views [START_REF] Benedikt | XML subtree queries: Specification and composition[END_REF].

We prove easily that this second comparison refines the first one. However, both can be considered too strong in some sense. Indeed, even when the view of user A selects nodes outside the view of B, it may still be possible to "reconstruct" the view of A from the view of B with some knowledge from the schema. Consider for instance a list of entries of the form entry(name, phone number). Then entry is just syntactic sugar: the list of pairs (name, phone number) contains the same information as the list of entries entry(name, phone number). So deleting the entry keeps information intact. The third comparison takes into account the possibility to deduce information on the hidden part from the SAS. For this, the third comparison uses all data, visible or not, based on the following idea: view A is more restrictive than view B if every (boolean) information about the source that is certain for A is also certain for B. In other words, the definition is based on the well known notion of certain answers and it can be related to view-based query answering. This can be also related to another approach to guarantee privacy [START_REF] Libkin | Reasoning about XML with temporal logics and automata[END_REF], where the administrator defines the information he considers secret by using a boolean query Q. In this context, being more restrictive can be considered as "keeping more secrets".

The second and third comparisons are very powerful and not surprisingly they turn out to be undecidable in general. Consequently, we introduce a novel class of interval-bounded SAS for which those problems become tractable. Interval-bounded SAS generalize both non-recursive views, and downward closed access specifications: in interval-bounded SAS an inaccessible node may have accessible descendants as long as the number of consecutive inaccessible descendants is bounded by some constant (independent from the document).

Preliminaries

XML Documents.

We assume a finite set of node labels Σ and model XML documents with unranked ordered labeled trees. Formally, a Σ-tree is a finite structure t pN t , root t , child t , next t , λ t q, where N t is a set of nodes, root t N t is a distinguished root node, child t N t ¢N t is the parent-child relation, next t N t ¢N t is the next-sibling relation, and λ t : N t Ñ Σ is the function assigning to every node its label. The set of all Σ-trees is denoted by T Σ . We remark that we do not assume the set of nodes to be a prefix closed subset of N * , owing to our construction of view trees; we shall later define view trees obtained by removing nodes from some tree t and preserving the others: even when the original trees use a prefix-closed subset of identifiers, the resulting view trees need not. Moreover, equality of trees should not be confused with isomorphism: two trees are equal if and only if all the elements of their underlying structure are the same, including the node set.

Example 1. Figure 1 Nt 0 tn0, n1, n2, . . .u, roott 0 n0, λt 0 tpn0, projectsq, pn1, projectq, . . .u, childt 0 tpn0, n1q, pn0, n2q, . . .u, nextt 0 tpn1, n2q, pn2, n3q, pn4, n5q, . . .u. has a name and a type of license (either free or proprietary). Projects under development come with their source codes and documentation, whereas stable projects have also binaries.

Queries and Annotations

A query Q is a mapping from T Σ to tPTΣ PpN t q which satisfies that for each t in T Σ , Q ptq is included in N t . The set of nodes Q ptq is called the set of answers of the query Q on the tree t. The domain dompQq is the set of trees t in T Σ such that Q ptq is not empty. A query is root preserving if for all t in T Σ , either Q ptq is empty, or Q ptq contains (at least) the root of t.

In this article, we only consider queries that are closed by isomorphism: a query Q is said closed by isomorphism if for all trees t and t 1 and all isomorphism φ such that t 1 φptq, Qpt 1 q φpQptqq. As a consequence, the domains of these queries are also closed by isomorphism.

An annotation A is a mapping from T Σ to T Σ¢t0,1u such that Aptq is a relabeling of t, replacing the label λ t pnq of each node n N t by some pλ t pnq, iq where i t0, 1u is the annotation of node n that we denote by Apnq.

Given a query Q, we denote by

A Q the annotation such that dt T Σ , dn N t A Q pnq 1 iff n Q ptq. An annotation A Q is root preserving if Q is root preserving.
Given a tree t in T Σ¢t0,1u , we will denote by Π Σ ptq the relabeling of t replacing for each node of t its label pα, iq Σ ¢ t0, 1u with α. We say that a language L T Σ¢t0,1u is maximal if, for all non-isomorphic trees t and t I in L, it holds that Π Σ ptq & Π Σ pt I q. By definition, for any annotation A, the language ApT Σ q is maximal. Maximal languages allow to represent the result of a query Q over some tree t within a single tree: the unique tree t I in the language such that Π Σ pt I q t. Of course other representations could be considered but that one is quite convenient for view-based reasoning.

Security Views.

In a security framework, we want to hide some nodes of a document. Queries and annotations provide a simple model for security policy. The (security) view defined by a root-preserving query Q maps every document t dompQq to View pQ, tq, the view document obtained from t by removing all the nodes that are not selected by Q. Those are equivalently the nodes labeled with 0 by the annotation A Q . Removing a node causes its children to be adopted by (or linked to) the parent of the node. We assume that a query defining a security policy is always root preserving in order to guarantee that view documents are trees. An example of such a view is given in Fig. 3 in the case of security views defined by annotated DTDs that are a practical and simple way to define security policies. We extend our notation to languages, denoting by View pQ, Lq the set tL View pQ, tq, for any tree language L dompQq.

Regular XPath queries.

A standard manner of expressing queries is to use XPath expressions. In particular, the class X Reg of Regular XPath expressions [START_REF] Marx | XPath with conditional axis relations[END_REF] over Σ-trees is defined by the following grammar (with a varying over Σ and X being the starting symbol):

α :: self | ó | ò | ñ | ð f :: self::a | χ | true | false | not f | f and f | f or f X :: α | rfs | X {X | X X | X *
Essentially, a X Reg expression is a regular expression of base axes and filter expressions. Filter expressions are Boolean combinations of node label tests and existential path tests. We define several macros: α is short for α * {α, X rfs is X {rfs, α::a stands for αrself::as, and α:: * is simply α, where a is a symbol, X a X Reg expression, f a filter expression, and α a base axis or its closure. The semantics of X Reg is defined in Fig. 2 (Boolean connectives are interpreted in the usual manner). For an expression X in X Reg, vX w t is the binary reachability relation on the nodes of t defined by the expression X . By pt, nq |ù f we denote that the filter f is satisfied at the node n of the tree t. We say that an expression X is satisfied in the tree t if pt, root t q |ù X . Then an expression X in X Reg defines a query Q X where the set of answers to the query Q X in a tree t is defined as

vselfw t tpn, nq | n N t u, vów t child t , vòw t child ¡1 t , vñw t next t , vðw t next ¡1 t , vX 1 {X 2 w t vX 1 w t ¥ vX 2 w t , vX 1 X 2 w t vX 1 w t vX 2 w t , vX * w t vX w * t , vrf sw t tpn, nq N t | pt, nq |ù f u pt, nq |ù self::a iff λ t pnq a, pt, nq |ù X iff hn I N t . pn, n I q vX w t .
Q X ptq tn N t | proot t , nq vX w t u.
For instance, ó::projectró::stables{ó::name defines a query Q 0 that selects (the nodes storing) the names of all stable projects. The set of answers to Q 0 in t 0 (Fig. 1) is Q 0 pt 0 q tn 4 , n 11 u.

We recall from [START_REF] Marx | XPath with conditional axis relations[END_REF] that X Reg is closed under inversion, i.e. for every expression X there exists an expression X ¡1 such that vX ¡1 w t vX w ¡1 t for any tree t. Basically, X ¡1 is obtained by reversing the base axes and the order of composition on the top most level (filter expressions are unchanged). Naturally,

|X ¡1 | |X |.

Annotated DTDs.

A Document Type Definition (DTD) over Σ is a triple D pΣ, r, P q where r Σ and P is a function that maps Σ to regular expressions over Σ. We allow regular expressions defined with the grammar

E :: empty § § a § § E ',' E § § E '|' E § § E '*'
where empty defines the empty sequence, a is a symbol of Σ, E, E is the concatenation, E|E is the union, and E * is the Kleene closure. In the sequel, we present DTDs using rules of the form a Ñ E and if for a symbol a the rule is not specified, then a Ñ empty is implicitly assumed. The dependency graph of a DTD D pΣ, r, P q is a directed graph whose node set is Σ and the set of edges contains pa, bq if P paq uses the symbol b. A DTD is recursive iff its dependency graph is cyclic. The size |D| of a DTD D pΣ, r, P q is the sum of the sizes of the regular expressions P pαq appearing in D.

A Σ-tree t satisfies a DTD D pΣ, r, P q if for every natural k and every node n having exactly k children n 1 , . . . , n k (listed in the document order), we have λ t pn 1 q ¤ ¤ ¤ λ t pn k q LpP pλ t pnqqq. By LpDq we denote the set of all Σ-trees that satisfy D.

In [START_REF] Stoica | Secure XML views[END_REF], a security view is defined from a DTD specifying nodes accessible by the user. This framework has been widely studied from both the theoretical and practical angle [START_REF] Fan | Secure XML querying with security views[END_REF][START_REF] Kuper | Generalized XML security views[END_REF][START_REF] Fan | SMOQE: A system for providing secure access to XML[END_REF][START_REF] Rassadko | Policy classes and query rewriting algorithm for XML security views[END_REF][START_REF] Vercammen | Query translation for XPathbased security views[END_REF][START_REF] Rassadko | Query rewriting algorithm evaluation for XML security views[END_REF][START_REF] Fan | Rewriting regular XPath queries on XML views[END_REF].

In this framework, an annotated DTD pD, Xq consists of a DTD D and an access function X. This access function specifies the accessibility of document nodes. Formally, an access function is given by a (possibly partial) function X that maps Σ ¢ Σ to X Reg filter expressions. Its size |X| is simply the sum of the sizes of all filter expressions used in X. The function X defines the security access function of nodes as follows. A node n labelled with b whose parent is labelled with a is accessible w.r.t. X if the filter expression Xpa, bq is satisfied at the node n. If Xpa, bq is not defined, then accessibility of the parent is used (inheritance). Finally, the root node of any tree validating the DTD D is always accessible. Thus, we can associate with each annotated DTD pD, Xq a root preserving query Q pD,Xq with domain LpDq which maps every tree t LpDq to the set of its accessible nodes. For this reason, annotated DTD are used to define security views. The size |A| of the annotated DTD A pD, Xq, is |D| |X|.

Example 2. The DTD D 0 below captures the schema of XML databases described in Example 1. We define here the annotated DTD A 0 pD 0 , X 0 q. The access function X 0 gives access to all projects but in return hides the information whether or not the project is stable (in particular, it hides binaries). Additionally, X 0 hides the source code of all projects developed under proprietary license.

In the tree t 0 from Fig. 1 the root node projects is accessible and all nodes project are accessible by inheritance. The nodes name and license with their children are accessible by inheritance as well. X 0 implicitly states that stable and dev are not accessible, and the nodes bin are inaccessible by inheritance. On the other hand, X 0 overrides the inheritance for nodes doc and makes them accessible. Finally, the accessibility of src nodes is conditional: only n 7 and n 21 are accessible because only those satisfy the specified conditions, X 0 pstable, srcq and X 0 pdev, srcq resp. Figure 3 presents View pQ A0 , t 0 q for t 0 from Fig. Finally, we restate the definition of accessibility using X Reg X X acc prnot X dom s{òq * {rnotpòq or X eval s.

The X Reg expression X X acc associated with an access function X is a filter that can be applied on every node in order to check its visibility. The X Reg expression ó * rX X acc s therefore selects the nodes that are visible for access function X. In the following, given an access function X, we will denote the query Q ó * rX X acc s simply by Q X . From [START_REF] Marx | XPath with conditional axis relations[END_REF], we know that a DTD can effectively be transformed into an equivalent X Reg expression in linear time. From this result and Lemma 1 we get the following lemma: Lemma 2. For any annotated DTD A pD, Xq the query Q pD,Xq can be defined in X Reg. This means we can compute a X Reg query Q A with domain LpDq such that for any tree t P LpDq, a node n P N t is accessible in t w.r.t. X if and only if n P Q A ptq. Moreover, Q A can be constructed in Op|A|q time.

Thanks to Lemma 2, in the case when trees have to be validated against some DTD D and the visibility of the nodes is given by a query V , we assume in the following that a single query Q pD,V q is used to define both validation of trees and visibility of the nodes.

Queries and automata

Instead of X Reg formulas we could alternatively use monadic second order logic (MSO) formulas to represent queries. An MSO formula with n free firstorder variables, interpreted over unranked ordered labeled trees, defines a query that selects tuples of nodes and it is known from [START_REF] Balder Ten | The expressivity of XPath with transitive closure[END_REF][START_REF] Cate | XPath, transitive closure logic, and nested tree walking automata[END_REF] that MSO queries are strictly more expressive than X Reg queries.

In the sequel, instead of MSO formulas, we shall directly use automata since it is well-known from [START_REF] Thatcher | Generalized finite automata with an application to a decision problem of second-order logic[END_REF] that the class of regular ranked tree languages is exactly the class of MSO-definable ranked tree languages and from [START_REF] Hubert Comon | Available online since[END_REF] that this equivalence also holds in the unranked case. Several classes of (unranked) tree automata for XML with the expressive power of MSO have been recently studied. Each could be used in order to define queries in the following way: to any MSO formula φ with one free first-order variable we associate a query Q φ then an annotation A Q φ . The language A Q φ pT Σ q is a regular language over T Σ¢t0,1u and is therefore recognized by some automaton A φ (in the class of automata that has been chosen). Conversely, any automaton A over T Σ¢t0,1u that recognizes a maximal language LpAq is associated with a query Q A defined by:

• Q A ptq r for every tree t that is not in Π Σ pLpAqq • for every tree t in Π Σ pLpAqq, there is a unique t I LpAq that satisfies t Π Σ pt I q. Then Q A ptq is the set of all nodes of t I with label in Σ ¢ t1u.

We extend the notion of root preservation to automata: an automaton A is root preserving if the query Q A is root preserving.

In this paper, we use the class of Visibly Pushdown Automata (VPA). Visibly pushdown automata (VPA) have been introduced by Rajeev Alur and Parthasarathy Madhusudan in [START_REF] Alur | Visibly pushdown languages[END_REF] in order to model program analysis. VPA are special pushdown (word) automata whose stack behavior is driven by the input symbol according to a partition of the alphabet. Although they were not initially defined for this purpose, VPA are very useful for processing XML streams, since they can recognize well-matched languages defined over an input alphabet of opening tags and closing tags.

Let Σ an alphabet. We denote by Σ top, clu ¢ Σ the corresponding tag alphabet, where for any label a Σ, pop, aq is an opening a and pcl, aq is a closing a. Then for any tree t T Σ we can define its linearization as usual by: linpapt 1 , ¤ ¤ ¤ , t n qq pop, aq linpt 1 q ¤ ¤ ¤ linpt n q pcl, aq. So, there is a bijection between the nodes of t and pairs of corresponding opening and closing tag. We extend this notation to tree languages: dL T Σ , linpLq tL linptq. Since a tree language L is regular if and only if linpLq is recognized by some visibly pushdown automaton ([START_REF] Alur | Visibly pushdown languages[END_REF]), these automata provide a suitable formalism for representing MSO-definable queries. Let us define formally visibly pushdown automata.

Definition 1. A visibly pushdown automaton over an alphabet Σ is a tuple

A pΣ, S, Γ, I, F, Rq where

• Σ is the input alphabet,
• S is a finite set of states,

• Γ is a finite alphabet of stack symbols,

• I S is the set of initial states, • F S is the set of final states, • and R S ¢ top, clu ¢ Σ ¢ Γ ¢ S is the set of rules.
The size of A is |S| |Γ| |∆|. A rule pq, ι, a, γ, q I q ∆ is written q pι,aq:γ ÝÝÝÝÑ q I . When ι is equal to op, then q pop,aq:γ ÝÝÝÝÝÑ q I is a push rule. It means that if the current state is q and the input letter is an opening a then one can push γ into the stack and set the current state to q I . Symmetrically, a rule q pcl,aq:γ ÝÝÝÝÑ q I is a pop rule. It means that if the current state is q and the top of the stack is γ and the input letter is a closing a then one can pop γ from the stack and set the current state to q I . We will sometimes define VPAs with ǫ-transitions of the form pq, ǫ, q I q with q, q I Σ in the rules. This does not increase the expressiveness of the VPAs because the ǫ-transitions can be eliminated in polynomial time. To eliminate the ǫ-transitions we can add a new rule pq 0 , ι, a, γ, q I k q in ∆ for every pq, ι, a, γ, q I q ∆ and every j, k ¤ |S|, q 0 , q 1 , . . . , q j S and q I q I 0 , . . . q I k S satisfying the following three conditions: (1) q j q, (2) for every i j, pq i , ǫ, q i 1 q ∆, and (3) for every i k, pq I i , ǫ, q I i 1 q ∆. Let A pΣ, S, Γ, I, F, Rq be a visibly pushdown automaton, then a run of A from q 0 to q m over a word w a 1 a 2 . . . a m ptop, clu ¢ Σq ¦ is a sequence pq 0 , σ 0 q, pq 1 , σ 1 q, . . . pq m , σ m q with q i S and σ i Γ ¦ for every i t0, . . . mu, such that σ 0 σ m ε and for every i m, there are some b Σ and γ Γ such that either a i pop, bq, pq i , op, b, γ, q i 1 q R and σ i 1 σ i ¤ γ, or otherwise a i pcl, bq, pq i , cl, b, γ, q i 1 q R and σ i σ i 1 ¤γ. The run is accepting if q 0 I and q m F . By extension, a run of A over tree t is defined as a run of A over linptq. A word(resp. a tree) s is recognized by A if there is an accepting run of A over s. In this work, we only consider documents represented as trees, so the transitions of the VPA must ensure that every accepted word is the linearization of some tree: for instance, a word like pop, aqpcl, bq is not accepted by any VPA.

We also note that a run ρ of A over a tree t induces a function, which we abusively also denote by ρ, from the nodes of t to a pair of states pq in , q out q. Given n N t , if a i , a j is the pair of opening and closing tag corresponding to node n in the word w linptq above, then ρpnq is defined as pq i , q j¡1 q. Note that we have i j ¡ 1 if n is a leaf of t.

We denote by LpAq Σ¦ the word language accepted (or recognized) by A and we denote by LpAq the tree language accepted (or recognized) by A that is tt T Σ | linptq LpAqu. A query automaton (QA) is a VPA A over alphabet Σ ¢ t0, 1u such that LpAq is a maximal language.

We next write a rough pumping lemma for VPAs. Actually we distinguish a vertical and an horizontal pumping argument, which are both used in the section about policy comparison. Lemma 3. Let A a VPA, t a tree in LpAq and ρ an accepting run of A on t. If there are nodes n n I in t with n I a descendant of n and ρpnq ρpn I q, then the tree t I also belongs to LpAq, where t I is obtained from t by replacing the subtree rooted at n (n included) by the subtree rooted at n I . Moreover, if there is a node n in t with children n 1 , . . . , n k such that for some 1 ¤ i j ¤ k the property ρpn i q ρpn j q is satisfied, then the tree obtained from t by removing n i 1 , . . . , n j and their descendants also belongs to LpAq.

The proof is essentially immediate from the definition of accepting runs for VPAs.

Query rewriting over XML views

In this section, we identify two classes of queries which are closed under query rewriting. A class C of queries is closed under query rewriting if and only if for any query Q 1 P C and for any root preserving query

Q 2 P C, the query RewritepQ 1 , Q 2 q belongs to C, where RewritepQ 1 , Q 2 q is defined by RewritepQ 1 , Q 2 q ptq Q 1 pView pQ 2 ,
tqq for any tree t.

Regular XPath

The rewriting technique for downward queries [START_REF] Fan | Secure XML querying with security views[END_REF] relies on the knowledge of the DTD. Our rewriting method works independently of the DTD. The method uses the fact that accessibility of a node can be defined with a single filter expression (Lemma 1). This filter is used to construct rewritings of the base axes (Lemma 4), which are used to rewrite the user queries.

Lemma 4. For any access function X and any α P tó, ò, ñ, ðu there exists a X Reg expression R X α such that vR X α w t vαw View pQX,tq for every tree t. More- over, |R X α | Op|X|q.

Proof. Essentially, the rewriting R X α defines paths, traversing inaccessible nodes only, from one accessible node to another accessible node in a manner consistent with the axis α. For the vertical axes the task is quite simple:

R X ó rX X acc s{ó{prnot X X acc s{óq * {rX X acc s and R X ò pR X ó q ¡1
Rewritings of the horizontal axes are slightly more complex and we first define auxiliary filter expressions:

f h Ó prnot X X acc s{óq * {rX X acc s, f ∅ Ó not f h Ó , f ∅ Ñ pñ{rf ∅ Ó sq * {rnotpñqs.
f h Ó checks that the current node or any of its descendants is accessible. Con- versely, f ∅ Ó checks whether the current node and all of its descendants are inac- cessible. Similarly, f ∅ Ñ verifies that only inaccessible nodes can be found among the siblings following the current node and their descendants.

The expression R X ñ seeks the next accessible node among the following sib- lings of the current node and their descendants. However, if there are no such nodes but the parent is inaccessible, the next accessible node is sought among the following siblings of the parent. The last step is repeated recursively if needed.

R X ñ rX X acc s{prf ∅ Ñ s{ò{rnot X X acc sq * {ñ{p rpnot X X acc q and f ∅ Ó s{ñ rpnot X X acc q and f h Ó s{ó{r2ðsq * {rX X acc s
and R X ð pR X ñ q ¡1 . We observe that |R X α | Op|X|q for every α tó, ò, ñ, ðu.

Theorem 1. X Reg is closed under query rewriting. Moreover, given a X Reg query Q and a root preserving X Reg query Q I , RewritepQ, Q I q is computable in time Op|Q| * |Q I |q.

Proof. The function RewritepQ, Q I q replaces in Q every occurrence of a base axis α tó, ò, ñ, ðu with R Q 1 α . A simple induction over the size of Q shows that vQw View pQ 1 ,tq vRewritepQ, Q I qw t , Lemma 4 handling the nontrivial base cases. Since the root is always accessible, we get Q pView pQ I , tqq RewritepQ, Q I q ptq. We note that the rewritten query is constructed in time Op|Q| * |Q I |q.

We observe that the asymptotic complexity of our rewriting method is comparable to that of [START_REF] Fan | Secure XML querying with security views[END_REF] but it handles a larger class of queries (not only downward ones) and works independently of the DTDs.

MSO

In this section, queries are defined by query automata defined in section 2 as visibly pushdown automata over T Σ¢t0,1u . The class QA is used both for annotation and for queries.

Theorem 2. QA is closed under query rewriting, i.e. for every root preserving Q v in QA, for every query Q in QA, there exists a query automaton

RewritepQ, Q v q such that Q pView pQ v , tqq RewritepQ, Q v q ptq. The automaton RewritepQ, Q v q is obtained by synchronization of Q and Q v . Proof. From the two automata Q v pΣ ¢ t0, 1u, S v , Γ v , I v , F v , R v q and Q pΣ¢t0, 1u, S, Γ, I, F, Rq, we build automaton Q ¥ pΣ¢t0, 1u, S ¥ , Γ ¥ , I ¥ , F ¥ , R ¥ q RewritepQ, Q v q as follows: • S ¥ S v ¢ S • Γ ¥ Γ v ¢ pΓ t#uq • I ¥ I v ¢ I • F ¥ F v ¢ F • -For every η top, clu, s v , s I v S v , a Σ, γ v Γ v ,
for every transition s v pη,pa,0qq:γv ÝÝÝÝÝÝÝÑ s I v R v , for every s S, we add transition ps v , sq pη,pa,0qq:pγv,#q ÝÝÝÝÝÝÝÝÝÝÑ ps I

v , sq to R ¥ , -For every η top, clu, s v , s I v S v , a Σ, γ v Γ v , s, s I S, γ Γ, t0, 1u,
for every transition s v pη,pa,1qq:γv ÝÝÝÝÝÝÝÑ s I v R v and s pη,pa, qq:γ ÝÝÝÝÝÝÝÑ s I R we add transition ps v , sq pη,pa, qq:pγv,γq ÝÝÝÝÝÝÝÝÝÝÑ ps I v , s I q to R ¥ , This automaton Q ¥ satisfies Q ¥ ptq Q pView pQ v , tqq for every tree t since it satisfies the following invariant.

Invariant: For every word w over top, clu ¢ Σ ¢ t0, 1u and every state ps v , sq S ¥ , there exists some word u over Γ ¥ such that A ¥ reaches pps v , sq, uq after reading w if and only if there exist a word w I over top, clu¢pΣ¢Σ¢t0, 1u Σ ¢ t0u 2 q and two words u 1 and u 2 over Γ v and Γ such that the following three conditions are satisfied:

1. π 1,3 pw I q w 2. Q v reaches ps v , u 1 q after reading π 1,2 pw I q, and 3. Q reaches ps, u 2 q after reading π 2,3 pw I q.

We have defined a framework for non-materialized security views, where the user's queries are rewritten before being evaluated. This framework thus avoids to materialize one view per role, which improves efficiency when there are numerous roles or when the document or policy are updated frequently. We would like to provide the administrator with a few tools to check that the SAS he defines really match her expectations. In particular, we provide the administrator with techniques for comparing access policies, something that may be useful for instance to establish whether a modification of the policy allows to disclose more information than was previously available.

Static analysis of security access specifications: the general case

We wish to provide the administrator with tools for comparing access control policies. A straightforward approach is to compare the nodes made visible by the root preserving queries:

Definition 2. Given two root preserving queries Q 1 and Q 2 with dompQ 1 q dompQ 2 q D, we say that Q 1 ¤ 1 Q 2 if dt D. Q 1 ptq Q 2 ptq
which means that all nodes visible for Q 1 are also displayed by query Q 2 .

Example 3. We consider the DTD D 0 given in example 2, with another access function X 1 . In this access function, nodes src under dev are always hidden (not only where they are under a proprietary licensed project). So the last rule of X 0 is replaced by :

dev Ñ src, doc X1pdev, srcqfalse X1pdev, docqtrue
In this example, access function X 1 hides more nodes than X 0 , so Q pD0 ,X1q ¤ 1 Q pD0 ,X0q (compare figure 3 and figure 4). But hiding nodes may reveal some information. Indeed, for every t valid for the DTD D 0 , the projects with free license that are currently under development can be selected with the following X Reg expression on View pQ X1 , tq : ó::projects{ó::projectrnotpó::srcq and ó::license{ó::frees For this reason, we define now another way to compare root preserving queries. Given a class of queries C and root preserving query Q in C, we define the class of 'expressible queries' over the source document as

Public C pQq tQ 1 P C | DQ 2 P C. @t P dompQq. Q 2 pView pQ, tqq Q 1 ptqu
We fix a class of queries C and assume that 1. query Q all belongs to C where for every tree t, Q all ptq selects all the nodes of t 2. C is closed under query rewriting.

Definition 3. Given two root preserving queries

Q 1 and Q 2 in C with dompQ 1 q dompQ 2 q, we say that Q 1 ¤ 2,C Q 2 if Public C pQ 1 q Public C pQ 2 q
This definition requires further explanation. On the whole, it means that all information we could retrieve from Q 1 using some query from class C could also be retrieved from Q 2 using some query from class C. Thus Q 1 does not disclose information hidden by Q 2 . The following characterization gives a useful alternative to this definition: ¤ 2,C can be expressed in terms of query rewriting. Proposition 1. Given two root preserving queries

Q 1 and Q 2 with dompQ 1 q dompQ 2 q D, Q 1 ¤ 2,C Q 2 if and only if Q 1 P Public C pQ 2 q, i.e. DQ P C. @t P D. QpView pQ 2 , tqq Q 1 ptq. This means that Q 1 ¤ 2,C Q 2 if and only if a user with view induced by Q 2 can simulate view induced by Q 1 . Proof. Suppose Q 1 ¤ 2,C Q 2 . Since we assumed Q all belongs to C, Q 1 P Public C pQ 1 q. So Q 1 P Public C pQ 2 q. Conversely suppose Q 1 P Public C pQ 2 q, and let Q denote some query in C such that for all t in D, QpView pQ 2 , tqq Q 1 ptq. Observe that, since Q 1 is root preserving, so is Q. Fix also Q 1 P Public C pQ 1 q
and let Q 2 denote some query such that for all t in D, Q 2 pView pQ 1 , tqq Q 1 ptq.

Then, since we supposed C to be closed under query rewriting, there exists a query Q r in C such that for all t, Q r ptq Q 2 pView pQ, tqq. Therefore, for all t in D, Q r pView pQ 2 , tqq Q 1 ptq, hence Q 1 P Public C pQ 2 q, which concludes our proof.

When we consider the general case (C is the set of all the queries closed under isomorphism), we denote the comparison by ¤ 2 . In this case, the following proposition makes the link with the notion of determinacy [START_REF] Nash | Views and queries: Determinacy and rewriting[END_REF] :

Q 2 determines Q 1
when @t, t 1 P D, View pQ 2 , tq View pQ 2 , t 1 q ùñ View pQ 1 , tq View pQ 1 , t 1 q.

We shall use the following lemma:

Lemma 5. Let Q 1 and Q 2 be two root preserving queries with dompQ 1 q

dompQ 2 q D. Then Q 1 ¤ 2 Q 2 implies Q 1 ¤ 1 Q 2 . Proof. Let Q 1 and Q 2 be two queries with domain D such that Q 1 ¤ 2 Q 2 . Suppose that Q 1 ¦ 1 Q 2 ,
then there exists a tree t and a node n in Q 1 ptq that is not in Q 2 ptq. Let t 1 be a tree obtained from t by replacing n with a "fresh" node n 1 R N t having the same label as n. As Q 2 and Q 1 are closed by isomorphism, View pQ 2 , t 1 q View pQ 2 , tq and Q 1 pt 1 q Q 1 ptq, in contradiction with our hypothesis. Therefore, we have

Q 1 ¤ 1 Q 2 .
Proposition 2. Given two root preserving queries

Q 1 and Q 2 in X Reg or MSO such that dompQ 1 q dompQ 2 q D, Q 1 ¤ 2 Q 2 if and only if for all t, t 1 P D, View pQ 2 , tq View pQ 2 , t 1 q implies View pQ 1 , tq View pQ 1 , t 1 q. Proof. Assume first that Public C pQ 1 q Public C pQ 2 q for some C that contains Q 1 . In particular, Q 1 P Public C pQ 1 q, hence Q 1 P Public C pQ 2 q
, and therefore for all t, t 1 P D, View pQ 2 , tq View pQ 2 , t 1 q implies View pQ 1 , tq View pQ 1 , t 1 q.

Conversely, let C be the class of all queries, Q 1 be any query in Public C pQ 1 q and Q 2 a query such that for all t P D, Q 2 pView pQ 1 , tqq Q 1 ptq. From hypothesis, for each tree t 2 P View pQ 2 , Dq, there exists a tree t 1 such that for all tree t with View pQ 2 , tq t 2 then View pQ 1 , tq t 1 . Therefore, for all tree t with View pQ 2 , tq t 2 , the value of Q 1 ptq is the same. Moreover, from Lemma 5,

Q 1 ¤ 1 Q 2 and it follows Q 1 ptq Q 1 ptq Q 2 ptq N t2 . Thus, Q 1 ptq is a sub- set of Q 2 ptq
and only depends on View pQ 2 , tq. So, we can define a query Q r that "computes" Q 1 ptq from View pQ 2 , tq (the nodes selected by Q r on tree t 2 are obtained by choosing arbitrarily a tree t such that View pQ 2 , tq t 2 and then se- lecting the nodes in

Q 1 ptq). This query Q r is closed under isomorphism since Q 1 and Q 2 are so. Thus Q 1 P Public C pQ 1 q that implies Public C pQ 1 q Public C pQ 2 q that is Q 1 ¤ 2 Q 2 . Clearly, Q 1 ¤ 2,X Reg Q 2 ùñ Q 1 ¤ 2,MSO Q 2 ùñ Q 1 ¤ 2 Q 2 .
These strong comparisons may be relaxed whenever the node identifier does not really play a role. Furthermore, a natural option would be to take all data, be it visible or invisible, into account when we compare views: the knowledge of the access control policy may allow to deduce some information on the hidden parts of the document from the structure of the view document. We therefore propose a third comparison for policies, based on certain answers [START_REF] Libkin | Reasoning about XML with temporal logics and automata[END_REF] Definition 4. Given a root preserving query Q v , a boolean query Q, and a tree t v in View pQ v , dompQ v qq, we define the set of source documents of t v for

Q v as Src pt v , Q v q tt P dompQ v q | View pQ v , tq t v u. The certain answer of query Q for t v is Certain Qv pQ; t v q © tPSrcptv,Qvq
Qptq.

We can now introduce our comparison, stating that root preserving Q 1 is more restrictive than root preserving Q 2 if for every source document t the certain answers for t with the first view are also certain answers for the second one.

Definition 5. Given a class of queries C and two root preserving Q 1 and Q 2 with dompQ 1 q dompQ 2 q D, we say that

Q 1 ¤ 3,C Q 2 if @t P D. @Q P C. Certain Q1 pQ; View pQ 1 , tqq ùñ Certain Q2 pQ; View pQ 2 , tqq
We define the notion of view inversion in order to prove that in our setting comparison ¤ 3,C does not depend on the class of queries C considered. Definition 6. Given two classes of queries C and C 1 , we say that C permits C 1 -view inversion if for every root preserving query Q 1 P C 1 , any tree t 1 P View pQ 1 , dompQ 1 qq, there is a boolean query Ant pt 1 , Q 1 q in C such that @t P dompQ 1 q. Ant pt 1 , Q 1 q ptq true iff t P Src pt 1 , Q 1 q, i.e., iff View pQ 1 , tq t 1 . This means query Ant pt 1 , Q 1 q is satisfied on trees whose view (for Q 1) is iso- morphic to t 1 . Lemma 6. Every class C P tXReg, MSOu permits C-view inversion.

Proof. Let Q 1 denote a root-preserving X Reg query and let t 1 denote a tree in View pQ 1 , dompQ 1 qq. We can easily define a boolean query f P X Reg such that for every tree t, f | ù t if and only if t t 1 . The construction for the composition of queries in section 3 can be applied to boolean queries as well as root-preserving queries; thus, by rewriting the base axes of f , we obtain a X Reg query Rewritepf, Q 1 q which for every tree t satisfies Rewritepf, Q 1 qptq true if and only if View pQ 1 , tq t 1 . The proof for MSO follows the same lines.

The definition for ¤ 3,C is not very practical, due to the quantification over queries. Therefore we introduce the following characterizations.

Proposition 3. For all classes C, C 1 , if C permits C 1 -view inversion, then for every root preserving queries Q 1 , Q 2 P C 1 with dompQ 1 q dompQ 2 q D: Q 1 ¤ 3,C Q 2 ðñ @t P D. Certain Q2 pAnt pView pQ 1 , tq , Q 1 q ; View pQ 2 , tqq . ðñ @t, t 1 P D. View pQ 2 , tq View Q 2 , t 1 ¨implies View pQ 1 , tq View Q 1 , t 1 Proof. Assume Q 1 ¤ 3,C Q 2 .
Since C permits C 1 -view inversion, for all t in D, Ant pt, Q 1 q exists and Certain Q1 pAnt pView pQ 1 , tq , Q 1 q ; View pQ 1 , tqq holds. Hence, Certain Q2 pAnt pView pQ 1 , tq , Q 1 q ; View pQ 2 , tqq also holds.

Suppose now that Certain Q2 pAnt pView pQ 1 , tq , Q 1 q ; View pQ 2 , tqq for all t in D, and fix some t, t 1 in D such that View pQ 2 , tq View pQ 2 , t 1 q. Then, Ant pView pQ 1 , tq , Q 1 q pt 1 q true, hence View pQ 1 , tq View pQ 1 , t 1 q.

To conclude, suppose that View pQ 2 , tq View pQ 2 , t 1 q ùñ View pQ 1 , tq View pQ 1 , t 1 q for all t, t 1 in D. Then, for every t P D, Src pView pQ 2 , tq , Q 2 q Src pView pQ 1 , tq , Q 1 q. Consequently, every t in D and Q in C satisfy the property Certain Q1 pQ; View pQ 1 , tqq ùñ Certain Q2 pQ; View pQ 2 , tqq. Remark: note that under those assumptions on the classes of queries, ¤ 3,C does not depend upon C. Actually, Proposition 3 characterizes comparisons in terms of determinacy (defined modulo isomorphism). Henceforth, ¤ 3 will denote ¤ 3,C for all class C that permits C-view inversion. The following results describe how the three definitions for policy comparison are related: Proposition 4. Given any class of queries C and root preserving queries

Q 1 and Q 2 in C with dompQ 1 q dompQ 2 q, 1. Q 1 ¤ 2 Q 2 ùñ Q 1 ¤ 1 Q 2 2. Q 1 ¤ 2 Q 2 ùñ Q 1 ¤ 3 Q 2 3. pQ 1 ¤ 1 Q 2 ^Q1 ¤ 3 Q 2 q ÷ Q 1 ¤ 2 Q 2 4. Q 1 ¤ 2 Q 2 ÷ Q 1 ¤ 2,MSO Q 2 .
Proof.

1. This is Lemma 5.

Let

Q 1 ¤ 2 Q 2 .
Let Q be a Boolean query and t in dompQ 1 q such that Certain Q1 pQ; View pQ 1 , tqq. Let t 0 be a tree such that View pQ 2 , tq View pQ 2 , t 0 q. There exists a tree t I with t I t 0 and View pQ 2 , t I q View pQ 2 , tq, because we considered queries closed under isomorphism.

From Proposition 2, it follows View pQ 1 , tq View pQ 1 , t I q and, since t I t 0 , View pQ 1 , tq View pQ 1 , t 0 q. We have proved

Q 1 ¤ 3 Q 2 . 3.
Let D be the DTD defined by r Ñ a*,b,a,a*, let χ 1 órself::a and ð::bs and χ 2 ó::a. Let Q 1 be the query that synthesizes validation against D and XReg expression χ 1 and Q 2 be the query that synthesizes validation against D and XReg expression χ 2 . Those queries satisfy:

pQ 1 ¤ 1 Q 2 Q 1 ¤ 3 Q 2 q but Q 1 ¦ 2 Q 2 .
4. We show a stronger result actually; we prove that determinacy for "simple" annotations does not imply the existence of an MSO query rewriting even when View pQ 2 , Dq is regular. Let D be the DTD defined by r Ñ a,r,a | empty, let X be the access function defined by Xpr, rq false, and Xpr, aq true, let χ 1 ó ¦ rself::a 2ðs. Let Q 1 be the query that synthesizes validation against D and XReg expression χ 1 and Q 2 Q pD,Xq . View pQ 2 , LpDqq consists of all trees of depth 1 with nodes labeled a below root r, in even number.

Any query Q such that RewritepQ, Q 2 q Q 1 would have to select the n first 'a' elements in a 2n , which is beyond the power of regular queries.

We define the following decision problems, parameterized by i t1, 2, 3u and a class of queries C:

Problem: ¤ i,C Input: Root preserving queries Q 1 , Q 2 C with dompQ 1 q dompQ 2 q. Question: Q 1 ¤ i Q 2 ?
Proposition 5. For any class of queries C tXReg, MSOu there is a polynomial time reduction from ¤ 1,C to ¤ 2,C , and a polynomial time reduction from ¤ 1,C to ¤ 3,C .

Proof. Let Q 1 and Q 2 denote two root preserving queries with identical domain D. We denote by Σ I the new alphabet: Σ I ppΣztruq ¢ t1, 2uq t$u tpr, 1qu where r is the label of the root of trees in D. Intuitively, the $ will be used as a tag that marks the positions selected by Q 1 , while the substitution with two copies of each letter will be necessary only for the reduction to ¤ 3,C .

We define a transformation τ that adds a $ symbol as the leftmost child of every node of the trees in D: da Σ, τ papt 1 , t 2 , . . . , t n qq ap$, τ pt 1 q, . . . , τ pt n qq.

We also define morphism φ from Σ I to Σ t$u that projects the labels on their first component. Formally, φp$q $, φppr, 1qq r, and for all a in Σztru, φppa, 1qq φppa, 2qq a. Finally, D I is defined as φ ¡1 pτpDqq.

Given any tree t D I , τ ¡1 ptq returns the tree obtained from t by removing the $ nodes (only leaves may be labeled by a $), and φpτ ¡1 ptqq additionally projects the labels on the first component. We define two queries Q I 1 and Q I 2 as follows. For every i P t1, 2u, Q I i ptqXN τ ¡1 ptq Q i pφpτ ¡1 ptqqq. Q I 1 selects no node with label $, and Q I 2 selects a node with label $ if and only if its parent node is selected by Q I

1 . If C is one of X Reg or MSO (query automata), then queries

Q I 1 and Q I 2 in C can clearly be defined in polynomial time from Q 1 and Q 2 .
To conclude the proof we observe that:

Q 1 ¤ 1 Q 2 ðñ Q I 1 ¤ 2 Q I 2 ðñ Q I 1 ¤ 3 Q I 2 .
Here is a proof for the observation: if Q 1 ¤ 1 Q 2 does not hold, then there exists a tree t I and node n P N t such that n P Q 1 pt I qzQ 2 pt I q. Let t 1 be a tree such that φpτ ¡1 pt 1 qq t I and λ t1 pnq pa, 1q, and t 2 be obtained from t 1 by relabeling n with pa, 2q. From Q I

2 pt 1 q one cannot guess if the label of n is pa, 1q or pa, 2q: View pQ I 2 , t 1 q View pQ I 2 , t 2 q, and yet View pQ I 1 , t 1 q View pQ I 1 , t 2 q.

Therefore, Q I

1 ¤ 3 Q I 2 implies Q 1 ¤ 1 Q 2 . When Q 1 ¤ 1 Q 2 , Q I 1 ¤ 2,C Q I 2 obviously
holds, since in that case we only need to select in the view for Q I

2 the nodes having a child labeled $ to get the nodes selected by

Q I 1 . Moreover, Q I 1 ¤ 2,C Q I 2 implies Q I 1 ¤ 3 Q I 2 by Proposition 4.
We observe that we have used ¤ 2,C instead of ¤ 2 in the previous paragraph, which yields the additional result that

Q 1 ¤ 1 Q 2 ðñ Q I 1 ¤ 2,C Q I 2 .
Consequently we also have a reduction from ¤ 1,C to the problem of deciding comparison ¤ 2,C . Example 4. Figure 5 illustrates the reduction for two X Reg queries. Clearly, the queries

Q 1 and Q 2 from that figure satisfy Q 1 ¤ 1 Q 2 . Therefore, queries Q I 1 and Q I 2 satisfy Q I 1 ¤ 3 Q I 2 and even Q I 1 ¤ 2,X Reg Q I 2 . Query ó ¦ ::ró::$s is a rewriting of Q I 1 in terms of Q I 2 .
When the class of queries C is expressive enough, for instance C P tXReg, MSOu, we can reduce determinacy to the third comparison: Proposition 6. Given two root preserving queries Q 1 , Q 2 in C (where C in tXReg, MSOu) with dompQ 1 q dompQ 2 q, we can compute in polynomial time

two queries Q I 1 and Q I 2 in C such that Q 1 ¤ 2 Q 2 ðñ pQ 1 ¤ 1 Q 2 ^QI 1 ¤ 3 Q I 2 q.
Proof. Fix C P tXReg, MSOu, and root preserving queries Q 1 , Q 2 such that dompQ 1 q dompQ 2 q D. We first test the inclusion, and then we must check not only isomorphism constraints, but also that "the same nodes appear at the same position". For this purpose we modify D, inserting dummy nodes into the first view so as to indicate the positions before we test ¤ 3,C .

Formally, the proof works as follows: let $ represent a new symbol outside Σ. We define D I from D such that for all tree t in D, every subtree apt 1 , . . . , t n q rooted at even depth is replaced by $papt 1 , . . . , t n qq.

Note that if D is expressible in C, D I is expressible in C. Next, we define from Q 1 and Q 2 queries Q I 1 and Q I 2
of domain D I as follows: given a tree t I in D I , let t be the tree obtained from t I by deleting every $-labeled node (so each node of odd depth in t I gets adopted by its grandfather node).

Q I 2 is defined by Q I 2 pt I q Q 2 ptq, i.e. Q I
2 hides all $-labeled nodes and the nodes hidden by Q 2 in t, and Q I 1 pt I q contains exactly Q 1 ptq plus every node n with label $ such that there exists in t I a node n I below n satisfying n I P Q 2 ptq. So, we have constructed two queries Q I At first glance, this looks like a Turing reduction, because we use two instances of ¤ 3 : one for Q 1 1 ¤ 3 Q 1 2 and one for Q 1 ¤ 1 Q 2 (we recall from Proposition 5 that comparison ¤ 1 reduces into ¤ 3). However, it is easy to build a single instance from these two: we can use disjoint alphabets for the two instances by copying the alphabet, and then use as domain the set of trees whose root has two children; each child being devoted to one instance. Theorem 3. Given C P tXReg, MSOu, and two root preserving queries

1 and Q I 2 such that Q 1 ¤ 2 Q 2 ðñ pQ 1 ¤ 1 Q 2 ^QI 1 ¤ 3 Q I 2 q. pr, 1q $ pa, 1q $ pb, 2q $ pb, 1q $ pb, 2q $ r a b b b pr, 1q $ pb, 2q $ pb, 1q pb, 2q pr, 1q pb, 2q t I φpτ ¡1 pt I qq View Q 1 2 , t 1 ¨View Q 1 1 , t 1
Q 1 and Q 2 in C, testing Q 1 ¤ 2,C Q 2 is undecidable.
Proof. We use a reduction from regular separability of two context-free grammars. Recall that two context-free grammars G 1 and G 2 over the alphabet Γ are regularly separable if there exists a regular language R (over Γ) such that LpG 1 q R and LpG 2 q R A , where R A is the complement of R. Checking regular separability of two context-free languages is known to be undecidable [START_REF] Szymanski | Non-canonical parsing[END_REF].

We give the proof for C X Reg; the result for MSO follows the same lines. The reduction constructs a DTD D defining the set of all derivation trees of G 1 and G 2 . The query Q 2 hides all nonterminals from the derivation tree except the root, thus yielding a tree of depth one whose leaves form a word of LpG 1 qYLpG 2 q. The query Q 1 works similarly except that it also hides terminals derived from nonterminals of G 2 ; essentially, it yields only words of LpG 1 q.

If G 1 and G 2 are separable by a regular set R, then the regular expression describing R can be easily rewritten into a X Reg query Q such that for all t in D, QpView pQ 2 , tqq Q 1 ptq, that is Q pD,Q1 q ¤ 2,C Q pD,Q2 q . Conversely, suppose there is a X Reg query Q such that for all t in D, QpView pQ 2 , tqq Q 1 ptq. Essentially, Q selects words from LpG 1 q and hides words from LpG 2 q, hence it separates G 1 and G 2 . Then Q is equivalent to a tree MSO formula ϕ [START_REF] Büchi | Weak second-order arithmetic and finite automata[END_REF], and we remark that ϕ is interpreted on trees of height 1 only. Therefore, there exists a word MSO formula ψ that captures exactly the words consisting of labels of the consecutive children of the root node. This formula ψ can be converted into a regular expression [START_REF] Thatcher | Generalized finite automata with an application to a decision problem of second-order logic[END_REF] which defines a set separating G 1 and G 2 .

We prove similarly that determinacy is undecidable:

Theorem 4. Given root preserving X Reg queries Q 1 and Q 2 , testing Q 1 ¤ 2 Q 2 is undecidable.
Proof. The proof is similar to the one for Theorem 3, hiding derivations of context-free grammars, except that the reduction is toward emptiness of intersection: recall that the problem that takes as input two context-free grammars G 1 and G 2 and answers whether LpG 1 q X LpG 2 q H is undecidable.

The reduction constructs a DTD D defining the set of all derivation trees of G 1 and G 2 . The query Q 2 hides all nonterminals from the derivation tree except the root, thus yielding a tree of depth one whose leaves form a word of LpG 1 q Y LpG 2 q. The query Q 1 works similarly except that it also hides terminals derived from nonterminals of G 2 ; essentially, it yields only words of LpG 1 q. If G 1 and G 2 are disjoint then for any two trees t, t 1 in D such that View pQ 2 , pq tq View pQ 2 , t I q, either t and t I both correspond to derivation trees of G 1 or they both correspond to derivation trees of G 2 . Either way, View pQ 1 , tq View pQ 1 , t I q. Conversely, suppose there exists w P LpG 1 q X LpG 2 q. Then there exist a derivation tree t (resp. t I) of w for G 1 (resp. for G 2). Consequently, Q 1 ¦ 2 Q 2 since View pQ 2 , pq tq View pQ 2 , t I q and View pQ 1 , tq View pQ 1 , t I q. This concludes the proof. Proposition 7. We denote by 3 the equivalence relation

Q 1 3 Q 2 ðñ Q 1 ¤ 3 Q 2 ^Q2 ¤ 3 Q 1 .
In general (and even if the visibility of a node depends only on its label) testing whether

Q 1 3 Q 2 is undecidable, therefore testing whether Q 1 ¤ 3 Q 2 is undecidable.
Proof. Given an instance of PCP P : u 1 , . . . u n , v 1 , . . . v n with u i , v i P Σ ¦ for all i ¤ n, we define as follows a DTD D over alphabet ΣYtu, v, #, 1, . . . nu, together with access functions X 1 , X 2 . The DTD production rules are:

r Ñ u | v, u Ñ pu 1 , u, 1q | . . . | pu n , u, nq | #, and v Ñ pv 1 , v, 1q | . . . | pv n , v, nq | #,
and the access functions are, for all j in t1, 2u and α P Σ Y t#u Y t1, . . . nu: X 1 pr, uq X 1 pr, vq false, X 2 pr, uq X 2 pr, vq true X j pu, uq X j pv, vq false, X j pu, αq X j pv, αq true Note that the view for access function X 1 consists of some tree of depth 2 (hence can be identified with words), see Figure 6 for an illustration of the PCP instance (u 1 aab, u 2 ba, u 3 b, v 1 aa, v 2 bb, v 3 abb) over alphabet Σ ta, bu: the two annotations derived from this instance do not satisfy Q pD,X1q 3 Q pD,X2q . Q pD,X1q ptq can easily be obtained from Q pD,X2q by erasing u or v, so Q pD,X1q ¤ 3 Q pD,X2q trivially holds. Clearly, Q pD,X2q ¤ 3 Q pD,X1q if and only if there is no solution to the PCP problem, because the only difference between Q pD,X1q and Q pD,X2q is that the latter selects the child of the root, so Q pD,X2q ¤ 3 Q pD,X1q if and only if one can distinguish for every sequence i 1 . . . i k and every word w P S tu i1 u i2 . . . u i k , v i1 v i2 . . . v i k u if w has been from the u i or from the v i . In other words, Q pD,X2q ¤ 3 Q pD,X1q if and only if u i1 u i2 . . . u i k v i1 v i2 . . . v i k for every sequence i 1 . . . i k , which is the definition of PCP. Hence, Q pD,X1q 3 Q pD,X2q if and only if the answer of P is negative. Thus testing Q pD,X1q 3 Q pD,X2q is undecidable.

Restrictions on the views

Defining the view with unrestricted X Reg queries or automata raises a major difficulty: the sets of view trees View pV, Dq tView pV, tq t P Du need not be regular. Approximating the view schema may be a solution, yet this nonregularity also makes decision problems such as policy comparison intractable, in addition to preventing the construction of the view schema. Therefore, we investigate a few restrictions on the views that guarantee View pV, Dq is regular and allow for better algorithms. In particular we shall prove in the next sections that the three comparisons we have defined on SAS are all decidable under these restrictions. Bounded depth. A set of trees L has bounded depth if there exists a constant k such that all trees in L have depth at most k. In our setting, it is not the depth of the view trees that we wish to bound, but the depth of the original document. Thus, a query (or view) Q has bounded depth if there exists some k such that every tree in its domain has depth at most k. This implies that View pQ, Dq has bounded depth, but the latter is not a sufficient condition. For any boundeddepth MSO query Q, View pQ, Dq is clearly a regular set of trees; this can also be viewed as a particular case of Proposition 8. Furthermore, X Reg and MSO clearly have the same expressivity on trees of bounded depth.

View Q pD,ann1q , t ¨ View Q pD,ann1q , t I ¨tree t I r v aa 1 v bb 2 v aa 1 v # abb 3

Upward closed views.

A query (or view) is upward-closed if for every document t the parent of every node selected by Q in t is also selected by Q. That means all the ancestors of every visible node are also visible. Equivalently, whenever a node is hidden, all its descendants are hidden as well. For this reason, this requirement is commonly referred to in the literature as the policy's denial downward consistency [START_REF] Murata | XML access control using static analysis[END_REF] 1 .

Interval boundedness. We generalize both bounded depth and upward closed views to allow restricted deletions of internal nodes. Let t be a tree over T Σ¢t0,1u . We say that t is k-interval bounded if 1. the label of the root of t belongs to Σ ¢ t1u

2. on any descending path of t, there are at most k consecutive nodes with label in Σ ¢ t0u between two nodes with label in Σ ¢ t1u. A tree language L T Σ¢t0,1u is k-interval bounded if every tree of L is kinterval bounded and an annotation A is k-interval bounded if ApT Σ q is k-interval bounded. We say that an annotation A is interval bounded (IB) if there exists some k such that A is k-interval bounded. We define k-interval bounded queries and interval bounded queries likewise: query

Q is k-interval bounded iff A Q is.
We observe from the definition that any interval bounded query (or annotation) is always root preserving.

Remark 1. Every upward-closed view is 0-interval bounded, and every view with bounded depth k is pk ¡ 1q-interval bounded.

We state further properties of interval-bounded MSO queries after a few illustrative examples.

Example 5. The security view defined by pD 0 , X 0 q in Example 2 is interval bounded since DTD D 0 is non recursive. It is actually (also) 1-interval bounded. The following DTD D 1 gives informations about the versionning of projects. The DTD D 1 is recursive but query Q pD1,ann1q is also 1-interval bounded, and View Q pD1,ann1q , LpD 1 q ¨is the language validated by the following DTD D I 1 :

projects Ñ project ¦ project Ñ name, src, bin, doc, license license Ñ free | propr
The preceding policy is not upward closed as it hides the version nodes that are children of the project nodes but discloses the files children of those hidden version nodes. If we replace, however, the annotation ann 1 by ann I 1 24 defined by the unique mapping ann 1 pversion, prevq false, then the resulting policy is upward-closed (and therefore interval bounded). The corresponding view DTD is D I 1 given below: The query Q pD2,ann2q is not 1-interval bounded, but it is 2-interval bounded.

projects Ñ project ¦ project Ñ name,
The corresponding view DTD is D 2 given below:

projects Ñ project ¦ project Ñ name, license, project ¦ license Ñ free | propr
As a last example, suppose we only want to store all licenses without further information. This can be achieved, for instance, via annotation ann I 2 : ann I 2 pprojects, projectq false, and ann I 2 pversion, licenseq true. The query Q pD2,ann 1 2 q is not interval bounded. The resulting view DTD contains a single production rule: projects Ñ license ¦ .

Below we are stating the main property of interval bounded views, namely, that interval bounded views preserve regularity.

Proposition 8. For any interval bounded MSO query Q, for any regular language L dompQq, the language View pQ, Lq is regular.

Proof. Let Q be a k-interval-bounded MSO query. It is easy to build a VPA A pΣ ¢ t0, 1u, S A , Γ, I, F, Rq that recognizes A Q pLq from VPAs defining Q and recognizing L, because A Q pLq A Q pT Σ q Π ¡1 Σ pLq. We define the VPA A I as follows, using Γ ¤k to denote the union 0¤i¤k Γ i :

A I pΣ, S I , Γ I , I I , F I , R I q where 1 , w ¤ Γy for all transition q pop,pa,0qq:Γ ÝÝÝÝÝÝÝÑ q 1 in R, and w Γ k -A 1 has transition xq, w ¤ Γy ǫ Ý Ñ xq 1 , wy for all transition q pcl,pa,0qq:Γ ÝÝÝÝÝÝÝÑ q 1 in R, and w Γ k -A 1 has transition xq, wy pop,aq:xw,Γy ÝÝÝÝÝÝÝÝÑ xq 1 , ǫy, for all transition q pop,pa,1qq:Γ ÝÝÝÝÝÝÝÑ q 1 in R, and w Γ ¤k .

• S 1 S A ¢ Γ ¤k • Γ 1 Γ ¤k ¢ Γ • I 1 I ¢ tεu, • F F ¢ tεu • R 1 is defined as follows -A 1 has transition xq, wy ǫ Ý Ñ xq
-A 1 has transition xq, ǫy pcl,aq:xw,Γy ÝÝÝÝÝÝÝÑ xq 1 , wy for all transition q pcl,pa,1qq:Γ ÝÝÝÝÝÝÝÑ q 1 in R, and w Γ ¤k .

-A 1 has transition xq, wy ǫ Ý Ñ xq 1 , wy for all w Γ k and q, q 1 such that there is some tree t over alphabet Σ ¢ t0u accepted by the VPA pΣ ¢ t0, 1u, S A , q, q 1 , Γ, Rq. We claim that LpA 1 q View pQ, Lq.

The last condition corresponds to an epsilon transition from state q to state q 1 whenever there is some tree t such that the second component of any label in t is 0 and some run of the automaton A can exit from t in state q 1 if it enters in state q.

When A 1 reads an hidden element, it uses an epsilon transition and simulates the stack of A within its states. Note that this simulation is complete by our hypothesis of interval-boundedness. When opening visible elements, A 1 records the information of previous simulations in the stack, so that they may be recovered on the corresponding closing tag. This concludes the proof for Proposition 8.

The following result is useful to analyze the complexity of our constructions. Proposition 9. Let Q be a query given by an automaton A over Σ ¢ t0, 1u with N states, then Q is interval bounded iff Q is pN 2 1q-IB. Proof. Let us suppose that Q is k-IB for some k, but not pN 2 1q-IB. Then there is some tree t dompQq such that t 1 A Q ptq is not pN 2 1q-bounded: there is a path in t 1 from some node n to some of its descendants n 1 such that λ t 1 pnq and λ t 1 pn 1 q belong to Σ ¢ t1u, there are at least pN 2 1q nodes on the path between n and n 1 and all these nodes between n and n 1 have label in Σ ¢0.

Since there are at least pN 2 1q such nodes, this implies that on some (as a matter of fact, "on any") accepting run ρ of A on t 1 , there are two nodes n 1 and n 2 such that ρpn 1 q ρpn 2 q. The usual pumping argument contradicts the interval-boundedness of Q. Proposition 10. For any query Q given by an automaton A over Σ ¢ t0, 1u,

testing whether Q is interval bounded is in PTIME.
Proof (outline). Roughly speaking, the set of all k-IB trees can be defined by a deterministic automaton with Opkq states. Hence, it suffices to combine the previous proposition and a simple polynomial algorithm for testing inclusion of tree automata.

Proposition 11. Testing whether a query given by a X Reg expression is interval bounded is Exptime-complete.

Proof. Building an automaton from an X Reg expression is in Exptime (see [START_REF] Calvanese | An automatatheoretic approach to regular XPath[END_REF]). Hence, the Exptime upper bound follows from Proposition 10. To show Exptime-hardness, we reduce satisfiability of X Reg (see [START_REF] Calvanese | An automata-theoretic approach to regular xpath[END_REF][START_REF] Marx | XPath with conditional axis relations[END_REF]) to testing interval boundedness. Let Q be a X Reg expression over an alphabet Σ. We define DTD D as follows: D pΣta, bu, r, P q where P I prq Σ ¦ a | w P prqu, P paq a|b, P pbq ε and, for every α Σztru, P pαq Σ ¦ . We rewrite Q in linear time into an expression Q I that checks whether the tree satisfies D and whether Q can be satisfied using only the elements from Σ. If those checks succeed, then Q I selects the (unique) node labeled b, and selects no other node except the root, otherwise it selects only the root. Because the DTD D allows to have b elements at arbitrary depth, the view defined by query Q I is interval bounded iff Q is not satisfiable.

Here is how we can build Q I . We denote by Q 0 the expression resulting from the addition of a filter rnotpself::a or self::bqs to each elementary axis of Q; every occurrence of ñ, for instance, is replaced by the expression: rnotpself::a or self::bqs {ñ{ rnotpself::a or self::bqs .

We also build in linear time an expression Q D such that for every tree t, t | ù Q D iff t LpDq. The expression Q I can be built in linear time from Q D and Q 0 : Q I ó ¦ rnot ò or pself::b and ò * {rnot ò and Q 0 and Q D sqs

Comparing Security Policies: MSO

Reminder: In this section, we assume the query is given by way of an automaton A over Σ ¢ t0, 1u, that recognizes a maximal language. Notation: Given root preserving annotations A 1 and A 2 , for every tree t pN t , root t , child t , next t , λ t q, we denote by t A 1 A 2 the tree t A 1 A 2 pN t , root t , child t , next t , λ I t q such that for all n N t , λ I t pnq pλ t pnq, A 1 pnq, A 2 pnqq.

For interval-bounded annotations, testing comparison 2 amounts to testing determinacy: Lemma 7. Let Q 1 and Q 2 denote two MSO queries, with dompQ 1 q dompQ 2 q and Q 2 interval-bounded. Then

• Q 1 ¤ 2,M SO Q 2 iff dt, t I , View pQ 2 , tq View pQ 2 , t I q ùñ View pQ 1 , tq View pQ 1 , t I q, • i.e., Q 1 ¤ 2,M SO Q 2 iff Q 1 ¤ 2 Q 2 . Furthermore, if Q 2 is k-interval-bounded and Q 1 ¤ 2 Q 2 , one can compute a query (automaton) Q such that RewritepQ, Q 2 q Q 1 in time exponential in k. Proof. Since Q 1 ¤ 2,M SO Q 2 ùñ Q 1 ¤ 2 Q 2 ,
all we need is to prove that we can compute a query (automaton)

Q such that RewritepQ, Q 2 q Q 1 whenever Q 1 ¤ 2 Q 2 . Let k N be a natural number such that Q 2 is k-interval-bounded. We suppose Q 1 ¤ 2 Q 2 . Then, by Proposition 4, Q 1 ¤ 1 Q 2 .
We define an automaton A pΣ¢t0, 1u 2 , S, Γ, I, F, Rq with language LpAq ttA Q1 A Q2 | t dompQ 1 qu. Note that since we suppose Q 1 ¤ 1 Q 2 , no label pa, 1, 0q can occur in any tree recognized by A. Next, to abstract from elements in t that are not selected by Q 2 , in order to 'rewrite' Q 1 in terms of Q 2 , we use the same construction as in Proposition 8 which computes an automaton for the view. Indeed, A can be considered as defining an interval bounded query on trees labeled by Σ ¢ t0, 1u which will select all the nodes labeled by Σ ¢ t1u as

Q 1 ¤ 1 Q 2 .
Construction of an automaton rewriting Q 1 in terms of Q 2 : the idea is to eliminate transitions q pη,pa,0,0qq:γ ÝÝÝÝÝÝÝÝÑ q I for every q, q I S, η top, clu, q Σ, γ Γ, replacing them with 'ǫ' transitions. The interval-boundedness restriction allows us to eliminate those transitions. First, let E S ¢ S be the set of all pairs pq, q I q such that A accepts some tree with labels in Σ ¢ t0u ¢ t0u from initial state q to final state q I . More formally, pq, q I q E if and only if there is some tree t in L ppΣ, S, Γ, tqu, tq I u, Rqq, with λ t pnq Σ ¢ t0u ¢ t0u for all n N t .

We define a VPA B pΣ¢t0, 1u, S ¢Γ ¤k , Γ ¢Γ ¤k , I ¢tǫu, F ¢tǫu, R I q from A as follows. Basically, B simulates within its state a stack of depth at most k.

• B has transition pq, uq ǫ Ý Ñ pp, γuq for every transition q pop,pa,0,0qq:γ ÝÝÝÝÝÝÝÝÑ p of A and u Γ ¤pk¡1q . • B has transition pq, γuq ǫ Ý Ñ pp, uq for every transition q pcl,pa,0,0qq:γ ÝÝÝÝÝÝÝÝÑ p of A and u Γ ¤pk¡1q . • B has transition pq, uq pop,pa,x1qq:xγ,uy ÝÝÝÝÝÝÝÝÝÝÑ pp, ǫq for every transition q pop,pa,x1,1qq:γ ÝÝÝÝÝÝÝÝÝÑ p of A and u Γ ¤k .

• B has transition pq, ǫq pcl,pa,x1qq:xγ,uy ÝÝÝÝÝÝÝÝÝÝÑ pp, uq for every transition q pcl,pa,x1,1qq:γ ÝÝÝÝÝÝÝÝÝÑ p of A and u Γ ¤k . • B has transition pq, uq ǫ Ý Ñ pp, uq for every u Γ ¤k and pq, pq E.

One can compute B from A in time exponential in k. There is a polynomial

p 1 such that |B| ¤ pp 1 p|Q 1 | ¢ |Q 2 |qq k .
To conclude the proof, we observe that due to our determinacy hypothesis, B recognizes a maximal language, and by construction, it defines a query Q such that RewritepQ, Q 2 q Q 1 , as evidenced by the following invariant.

Let w a word over top, clu ¢ Σ, pq, uq a state in S ¢ Γ ¤k , and σ a word over Γ ¢ Γ ¤k . We denote by σ 1 the same σ considered as a word over Γ. We also define for every word w 1 over top, clu ¢ Σ ¢ t0, 1u ¢ pΣ t0uq the word π 2,3 pw 1 q as the word obtained from w by projecting each letter on its second and third component, and then removing all occurrences of letter p0, 0q. We claim that for all such w, q, and σ, B preserves the following invariant.

Invariant: B can reach configuration ppq, uq, σq after reading w if and only if there exists a word w 1 over top, clu ¢ Σ ¢ t0, 1u ¢ pΣ t0uq such that the following two conditions are satisfied: (1) π 2,3 pw 1 q w, and (2) A can reach configuration pq, σ 1 uq after reading w 1 . From this, since determinacy is co-recursively enumerable, and ¤ 2 is recursively enumerable, we can deduce immediately the decidability of ¤ 2 for intervalbounded annotations, but we can do much better. A first approach for testing ¤ 2 could be to build the "square" of B and test whether there are two trees t $ t 1 accepted by B, with the same projection over Σ; Π Σ ptq Π Σ pt 1 q. We would be able to test this property on B, in terms of accessibility of states.

Corollary 1. Let Q 1 and Q 2 be two MSO queries, such that dompQ 1 q dompQ 2 q. Given a fixed constant k, if Q 2 is k-interval bounded, then we can test in poly- nomial time whether Q 1 ¤ 2 Q 2 This holds in particular for downward closed views.
Similarly, when the depth of the domain is bounded by a fixed constant, the complexity for testing

Q 1 ¤ 2 Q 2 becomes NLogspace. Proof. We first check in polynomial time that Q 1 ¤ 1 Q 2 ; otherwise, Q 1 ¦ 2 Q 2 .
We then build the automaton B above, and eliminate its epsilon transitions, resulting in a VPA pΣ¢t0, 1u, S B , Γ B , I B , F B , R B q. Finally, we build the square B square of this automaton B, namely pΣ¢t0, 1u¢t0, 1u, S 2

B , Γ 2 B , I 2 B , F 2
B , R square q such that B square has rule pq 1 , q 2 q pη,pb,α1 ,α2qq:pγ1,γ2q ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq 1 1 , q 1 2 q R square iff B has rules q 1 pη,pb,α1 qq:γ1 q ÝÝÝÝÝÝÝÝÑ q 1 1 R and q 2 pη,pb,α2 qq:γ2 q ÝÝÝÝÝÝÝÝÑ q 1 2 R. By construction, and as we supposed

Q 1 ¤ 1 Q 2 , it holds that Q 1 ¤ 2 Q 2 if
and only if for all b, α 1 , α 2 with α 1 $ α 2 , the language of B square contains no tree with a node labeled pb, α 1 , α 2 q. This is a problem of reachability, which can be solved in polynomial time for VPAs. Since there is a polynomial p 2 such that B square is built in time at most pp 2 p|Q 1 | ¢ |Q 2 |qq k , we get the polynomial time complexity when k is a fixed constant.

When the depth of the domain is bounded by a fixed constant k, we observe that the stack of any run of B square over a tree of depth k can be represented as a word in pΓ 2 B q ¤k . Therefore, B square is equivalent to a word automaton A w of polynomial size. We cannot afford to build the full B square , and even less A w , but we can simulate A w on-the fly: each transition can be simulated using logarithmic space and if A w accepts a word containing some label pb, α 1 , α 2 q with α 1 $ α 2 , then it accepts such a tree of size polynomial, which gives a NLogspace algorithm for testing

Q 1 ¤ 2 Q 2 .
Observe that it is actually sufficient to assume that Q 2 is k-interval bounded or has domain of bounded depth. Query Q 1 need not be constrained.

However, the full construction of B induces an exponential cost in terms of time and space, so that for general interval-bounded queries, this approach uses exponential time. We provide a polynomial space algorithm instead for intervalbounded queries.

Lemma 8. Let Q 1 , Q 2 be MSO queries, with Q 2 interval bounded. If there are two trees t, t I such that View pQ 2 , tq View pQ 2 , t I q but View pQ 1 , tq $ View pQ 1 , t I q, then there are two such trees of size exponential and depth polynomial in the size of the automata

Q 1 , Q 2 .
Proof. We prove this with a pumping argument, adapting the standard pumping arguments for tree automata in order to preserve the difference between the views for Q 1 (we shall therefore consider three nodes instead of two). Let

A 1 pΣ, S 1 , Γ 1 , I 1 , F 1 , ∆ 1 q and A 2 pΣ, S 2 , Γ 2 , I 2 , F 2 , ∆ 2 q be two query au- tomata, with corresponding queries Q 1 and Q 2 such that Q 2 is an interval bounded query and Q 1 ¤ 1 Q 2 . Let pt, t I q be a pair of trees of minimal size such that View pQ 2 , tq View pQ 2 , t I q but Q 1 ptq $ Q 1 pt I q. Let ρ t 2 (resp. ρ t 1
2) denote accepting runs of the automaton A 2 on A Q2 ptq (resp. A Q2 pt I q), and ρ t 1 (resp. ρ t 1 1) denote accepting runs of the automaton A 1 on A Q1 ptq (resp. A Q1 pt I q). We also denote by pρ t 2 q Ò , pρ t 1 1 q Ò , etc. the corresponding functions that map a node n to the pair of states assigned by the run of the automaton before reading the opening tag and after processing the closing tag of n.

Vertical pumping: We decorate every node n in Q 2 ptq (therefore also in Q 2 pt I q) with the tuple ρpnq pρ t 2 pnq, ρ t 1 2 pnq, ρ t 1 pnq, ρ t 1 1 pnqq. Suppose there is some node in Q 2 ptq at depth strictly greater than pk 1q ¢ 2 ¢ |S 2 | 2 ¢ |S 1 | 2 in t or t I , then there are three distinct nodes n Ò , n ¥ , n Ó in Q 2 ptq such that n Ò is an ancestor of n ¥ , n ¥ an ancestor of n Ó , and ρpn Ò q ρpn ¥ q ρpn Ó q as depicted in Figure 7.

We consider two cases depending on whether there exists below n ¥ a node n that belongs to Q 1 ptq ∆ Q 1 pt I q. In the first case we assume there is some node n below n ¥ that belongs to Q 1 ptq ∆ Q 1 pt I q. Then we could replace the subtree below n Ò with the subtree below n ¥ in t and t I : the two trees thus obtained would have same view for Q 2 and different views for Q 1 , which contradicts minimality of the pair pt, t I q. In the second case there is no node n Q 1 ptq ∆ Q 1 pt I q below n ¥ , but then we could replace the subtree below n ¥ with the subtree below n Ó in t and t I : the two trees thus obtained would have same view for Q 2 and different views for Q 1 , which contradicts minimality of the pair pt, t I q. So either way, our minimality hypothesis enters in contradiction with the existence of a node of

depth greater than pk 1q ¢ 2 ¢ |S 2 | 2 ¢ |S 1 | 2 in Q 2 ptq or in Q 2 pt I q. Hence no node in Q 2 ptq or Q 2 pt I q has depth greater than pk 1q ¢ 2 ¢ |S 2 | 2 ¢ |S 1 | 2 .
Thus, t and t I have polynomial depth. Notice that the pumping argument used to bound the depth of the trees does not increase the size of the trees. Corollary 3. Let Q 1 and Q 2 be two MSO queries. When the domain is a non-recursive DTD, one can test

Q 1 ¤ 2,M SO Q 2 in polynomial space.
In order to establish the complexity of T estcomp 2,MSO , we use a reduction from the Compressed Membership Problem for regular expressions with squares.

The syntax of regular expression with squares is E ::

empty § § a § § E ","E § § E "|"E § § E * § § E 2
, where E 2 represents E, E. A straight line program is a context free grammar G pV, T, S, P q with V the non-terminals, T the terminals, S the initial non-terminal, and P : V Ñ pV Y T q ¦ the productions, such that there is a single production from each non-terminal, and the production relation is acyclic. Thus, each straight line program G represents a single word w G . In that setting, the Compressed Membership Problem is the problem deciding given a regular expression with squares E (over alphabet T), and a word w over T given by a straight line program, whether w belongs to the language of E.

Theorem 5 (Theorem 6 in [START_REF] Lohrey | Compressed membership problems for regular expressions and hierarchical automata[END_REF]). The Compressed Membership Problem is Pspace-complete for regular expressions with squares.

Lemma 9. For MSO queries given by automata, T estcomp 2,MSO is Pspacehard even when the domain is a non-recursive DTD.

Proof. The proof works by reduction from the compressed membership problem for regular expressions with squares. Fix a straight line program G pV, T, S, P q and a regular expression with squares E over T . We can compute in polynomial time a visibly pushdown automaton A recognizing the derivation trees of G, and another one A E whose frontier (the language formed by the leaves of the trees in LpA E q) is the language of E. Furthermore, LpA E q and LpAq can be described by non recursive DTDs.

Let D be the domain that consists of trees with root r, and a unique subtree either in LpA E q or in LpAq below the root. Let Q 1 , Q 2 be queries over D such that

• Q 1 selects all the leaves of t if t consists of a root r and a subtree in LpAq:

(then View pQ 1 , tq represents the word w G), or selects nothing but the root r if t consists of a root r and a subtree in LpA E q.

• Q 2 selects all the leave nodes, irrespective of whether they belong to

LpAqorLpA E q. Q 1 ¤ 2 Q 2 iff
w G does not belong to the language of E. This concludes the proof.

We can conclude from Corollary 2 and Lemma 9 that Theorem 6. T estcomp 2,MSO is Pspace-complete when queries are given by automata and the domain is a non-recursive DTD.

Theorem 7. T estcomp 2,MSO is Pspace-complete for interval-bounded MSO queries given by automata.

Theorem 10. Let Q X and Q X 1 be two root preserving X Reg queries. When the domain of Q X is a non-recursive DTD, deciding Q

X ¤ 1 Q X 1 is Pspace- complete.
Proof. For X Reg, query containment and satisfiability are equivalent problems: Q X ¤ 1 Q X 1 if and only if pX ¡1 {r òsq ^ pX I¡1 {r òsq is not satisfiable.

The Pspace-hardness is obvious since X Reg generalize regular expressions, and containment for regular expressions is Pspace-hard. Moreover, X Reg has the small model property: it is a well known property of PDL, hence of X Reg [START_REF] Blackburn | Modal logic[END_REF] that for every X P X Reg, if there exists a tree t that satisfies X , then there exists such a tree of size at most exponential in X . As a consequence of this, the Pspace-completeness of query containment for X Reg over non-recursive DTDs is not really surprising: [START_REF] Blackburn | Modal logic[END_REF] identifies the possibility of building exponentially deep models as the main reason why PDL (hence X Reg) is Exptimehard. It is therefore natural that classical model-theoretic methods provide a Pspace algorithm when we bound the depth of the trees: we build a tree non-deterministically one branch at a time and check that it satisfies X .

[6] provides a linear-time algorithm to translate a X Reg formula X into a two-way alternating automaton A. A has state space S -roughly corresponding to the subformula of X -of linear size, of course. This alternating automaton A is translated in exponential time into a standard tree automaton A I such that for every tree t, A I accepts t if and only if X is satisfied in t. Actually, the con- struction in [START_REF] Calvanese | An automatatheoretic approach to regular XPath[END_REF] works over first-child-next-sibling encoding, but the translation to VPA is obvious, using [START_REF] Gauwin | StreamingTree automata and XPath[END_REF] for instance, so that we can assume A I to be a VPA pΣ, Q, Γ, I, F, Rq.

We cannot afford the full construction of A I , because it induces an expo- nential cost. However, the states and stack symbols of A I are of the form Γ, Q P t0, 1u pS¢S¢Sq , so that representing a state uses only polynomial space. Furthermore, although this result is not mentionned in [START_REF] Calvanese | An automatatheoretic approach to regular XPath[END_REF], a careful analysis of the rules for constructing R guarantees that we can check the transitions of A I using only polynomial time: in the VPA setting, this means that for every q, q I P Q, γ P Γ, η P top, clu and a P Σ, we can check that q pη,aq:γ ÝÝÝÝÑ q I belongs to R using polynomial time. We non-deterministically guess letter by letter the linearization of the tree and the rule we apply. We only need to remember the stack of the automaton, which is of polynomial size by our hypothesis that the DTD is non-recursive. The result then follows from Savitch's theorem.

Theorem 11. Let Q 1 and Q 2 be two root preserving X Reg queries. When the

domain of Q 1 is a non-recursive DTD, deciding Q 1 ¤ 2,X Reg Q 2 is Pspace- complete.
Proof. Since MSO and X Reg have the same expressivity when the depth of the trees is bounded, Q

1 ¤ 2,X Reg Q 2 if and only if Q 1 ¤ 2,MSO Q 2 . So, by Lemma 7, Q 1 ¤ 2,X Reg Q 2 if and only if Q 1 ¤ 2 Q 2 .
To begin, we first check that Q 1 ¤ 1 Q 2 , in polynomial space by Theorem 10. Using the method in [START_REF] Calvanese | An automatatheoretic approach to regular XPath[END_REF] we can build in exponential time two automata A 1 and A 2 over Σ ¢ t0, 1u such that A 1 (resp. A 2) recognizes the language A Q1 (resp. A Q2). Then, we use a pumping argument similar to Lemma 8: if there are two trees t, t I such that Q 2 ptq Q 2 pt I q but Q 1 ptq $ Q 1 pt I q, then there are two such trees in which the number of children of every node is a polynomial in A 1 and A 2 . Thus, there exists a polynomial p such that the number of children below each node is at most 2 ppnq where n is the sum of the size of Q 1 and Q 2 . Since our hypothesis on the domain bounds the depth of the trees by n, the size of t and t I is at most 2 ppnq¢n . To sum up, we have proved that if there are two trees t, t I such that

Q 2 ptq Q 2 pt I q but Q 1 ptq $ Q 1 pt I q, then
there are two such trees of size at most exponential in Q 1 and Q 2 .

We cannot afford to build automata A 1 and A 2 , but we can simulate their execution on-the-fly: we guess non-deterministically and letter by letter two trees t and t I over Σ ¢ t0, 1u of size exponential in Q 1 and Q 2 , and simulate the execution of A 1 and A 2 , checking Q 2 ptq Q 2 pt I q and Q 1 ptq $ Q 1 pt I q.

We denote by Memb MSO X Reg the problem of deciding, given a query automaton QA, whether there exists a X Reg query Q equivalent to QA. Using product alphabet similarly to the proof of Theorem 11, it is obvious that this problem can be reduced in polynomial time to the Boolean version of the problems which we will therefore also denote by Memb MSO X Reg : Input: A VPA A Question: Is there a X Reg filter f such that for every tree t, pt, root t q | ù f if and only if t LpAq? Proposition 12. The problem of deciding ¤ 2,X Reg for interval bounded X Reg queries can be reduced in exponential time to Memb MSO X Reg .

Proof. Immediate from the construction in Lemma 7 : We compute an automaton A with language LpAq tt A Q1 A Q2 | t dompQ 1 qu, test Q 1 ¤ 2 Q 2 and in this case the construction provides a query Q satisfying RewritepQ, Q 2 q Q 1 . These tests and the construction of Q require at most exponential time. Then, Q 1 ¤ 2,X Reg Q 2 if and only if there exists a X Reg query equivalent to Q.

However, since the exact complexity, or even the decidability of problem Memb MSO X Reg have not been established in the litterature (to the best of our knowledge), this is of little help. Actually, the gap in expressiveness between MSO and X Reg has been established very recently [START_REF] Cate | XPath, transitive closure logic, and nested tree walking automata[END_REF]. Thus, the following result sheds a new light on the problem of deciding ¤ 2,X Reg . Proposition 13. Memb MSO X Reg can be reduced in polynomial time to ¤ 2,X Reg with interval bounded X Reg annotations Proof. Fix A pΣ, Q, Γ, I, F, Rq a VPA, which we assume w.l.o.g. to be complete. That is, we assume A has a run (not necessarily accepting, of course) over all trees t in T Σ . We build a DTD D and interval-bounded queries Q 1 , Q 2 defined by X Reg expressions, such that Q 1 ¤ 2,X Reg Q 2 iff there exists a X Reg filter f such that for every tree t, pt, root t q | ù f if and only if t LpAq. We assume without loss of generality that Σ Q r. We build a DTD D over alphabet Σ Q defined via the following rules. Abusing notations for regular expressions, we use sets, writing S instead of s 1 | s 2 | . . . | s n for a set S consisting of elements s 1 , . . . s n . For all a Σ, a Ñ pQ, Σq ¦ , Q.

The proof works as follows: under r, D simulates a run of automaton A over a tree. Q 1 checks the simulation of the transitions and, when the run is valid and leads to an accepting state, Q 1 selects all nodes from the tree with label in Σ. A contrario, if either the run leads to rejection, or if the elements labeled in Σ simulate no valid run, Q 1 selects only the root. Q 2 selects all nodes from the tree with label in Σ when the run is valid, whether it is accepting or it leads to rejection, but selects only the root if the elements labeled in Σ simulate no valid run. The crux of the proof is to make sure with nodes labeled in Q that View pQ 1 , Dq LpAq, while View pQ 2 , Dq is the set of all trees over Σ. This result is obtained with the following queries: let E be the set of all pq 1 , q I 1 , q 2 , q I 2 , aq in Q 4 ¢Σ such that there exists some γ in Γ that verifies simultaneously q 1 pop,aq:γ ÝÝÝÝÝÑ q I 1 and q I 2 pcl,aq:γ ÝÝÝÝÑ q 2 . We define auxiliary X Reg filters:

f Σ bΣ self::b f root £ ª qiI rórnot ðss{self::q i ¤ ¥ ª q f F rórnot ñss{self::q f f q1,q2 q 1
1 ,q 1 2 pself::aq pð::q 1 q pñ::q 2 q órnot ðs{self::q I 1 ¨ órnot ñs{self::q

I 2 fvalid ! not ¤ ¥ ó ¦ { ! f Σ ¤ ¥ not ª pq1,q 1 1 ,q2,q 1 2 ,aqE f q1,q2 q 1 1 ,q 1 2 () ()
The two X Reg queries are defined as Q 2 rf valid s {ó ¦ {rf Σ s selfrnot òs and From this proof and the expressivity gap between MSO and X Reg [START_REF] Cate | XPath, transitive closure logic, and nested tree walking automata[END_REF], we can deduce that even for downward closed queries,

Q 1 rf valid f root s {ó ¦ {rf Σ s selfrnot òs. It should be clear that Q 1 ¤ 2,X Reg Q 2 if
Q 1 ¤ 2,MSO Q 2 does not imply Q 1 ¤ 2,X Reg Q 2 .
Furthermore, in terms of expressivity, the queries Q 1 and Q 2 used in the proof belong to a small fragment of X Reg in that they do not use the full expressivity of the Kleene star. This means that when the depth of the domain is not bounded, in general, given any fragment C of X Reg and queries

Q I 1 , Q I 2 C, Q I 1 ¤ 2 Q I 2 does not imply Q I 1 ¤ 2,C Q I 2 as soon as C is expressive enough to define Q 1 and Q 2 .

Conclusions and future work

Summary. In this paper, we have first studied the problem of rewriting queries with views, when the classes used to defined queries and views are X Reg and MSO. In a second part, we have defined different manner to compare views (i.e. on queries), with a security point of view. We suggest three comparisons, the first one being essentially containment, while the second and third one respectively decide if a view can be rewritten in terms of another, and if a view determines another (when we do not consider the identifiers). We provide a systematic study of the decidability and complexity for the three comparisons when the depth of the xml documents is bounded, when the document may have an arbitrary depth but the query defining the policies are restricted to guarantee the interval-boundedness property, and in the general setting without restriction on queries and document.

Related work. The closure under query rewriting has been investigated for several xpath query languages. Benedikt and Fundulaki [START_REF] Benedikt | XML subtree queries: Specification and composition[END_REF] define subtree queries and study their closure under composition. A subtree query can be seen as a downward-closed view, with the additional requirement that leaves of the view trees must be leaves also in the original tree. The authors study for which fragment of xpath (with vertical axes) the subtree queries are closed under rewriting. Vercammen et al. [START_REF] Vercammen | Query translation for XPathbased security views[END_REF] study the closure under composition of xpath. Their setting is similar to ours, but the fragments of xpath they consider are different, as they do not allow the transitive closure operator but allow path intersection and path complementation operators. Some of their fragments are not closed under composition: essentially those that exclude path complementation but including recursive axes, or sibling axes, or union. The remaining fragments studied in the paper are closed under composition. What is more, the time complexity for the rewriting are similar to ours. The approach adopted by Vercammen et al. also relies on the rewriting of the base axes, but exploits path intersection instead of the transitive closure operator. Fan et al. [START_REF] Fan | Secure XML querying with security views[END_REF][START_REF] Fan | Rewriting regular XPath queries on XML views[END_REF] show that the downward fragment of xpath is closed under rewriting for non-recursive views, whereas downward regular xpath is closed under query rewriting for arbitrary views (recursive or not). The complexity for rewriting downward regular xpath, though, is exponential. Fan et al. therefore devise an approach, based on alternating automata, to escape the exponential lower bound on rewriting for their fragment of regular xpath.

Our first comparison corresponds to the inclusion of queries, so the results are deduced immediately from the literature. The second comparison was shown to be equivalent to the problem of rewriting some query in terms of another, which means it is related to the rewriting problems studied, among many others, in [START_REF] Calvanese | Rewriting of regular expressions and regular path queries[END_REF][START_REF] Calvanese | View-based query processing: On the relationship between rewriting, answering and losslessness[END_REF] for regular expressions and regular path queries, in [START_REF] Cautis | Efficient rewriting of xpath queries using query set specifications[END_REF] for tree patterns, or mentioned in [START_REF] Nash | Views and queries: Determinacy and rewriting[END_REF] for logical queries on graphs. It is also close to the notion of query rewriting as discussed above.

The third is related to the problems known in the literature as the determinacy problem [START_REF] Nash | Views and queries: Determinacy and rewriting[END_REF] or losslessness [START_REF] Calvanese | View-based query processing: On the relationship between rewriting, answering and losslessness[END_REF] for different query formalisms. While the results are negative in the most general setting, leading to undecidability of those comparisons, natural restrictions like interval boundedness give interesting results: namely, using the terminology of [START_REF] Nash | Views and queries: Determinacy and rewriting[END_REF], Lemma 7 states that MSO is complete for MSO-to IB-MSO rewriting, which means that whenever a view Q V given by an IB-MSO query provides enough information to answer another MSO query Q (posed on the source document), then we can rewrite Q in terms of Q V using another MSO query Q 1 . In other words, given any intervalbounded view Q V and query Q, either there exists a MSO query Q 1 such that RewritepQ 1 , Q V q Q or Q V does not provide enough information to answer query Q and the expressiveness of MSO is not involved in the impossibility to rewrite Q in terms of Q V . In contrast, X Reg queries do not have this property, even with the interval-boundedness restriction. We prove that deciding the second comparison for interval-bounded security access specification can be reduced to testing whether a MSO query can be expressed via an equivalent X Reg query, a problem whose decidability is still open. Moreover, Proposition 13 exhibits a polynomial time reduction from this open problem to the comparison of interval-bounded X Reg access specification. We obtain Pspace-hardness lower bounds, even when interval-boundedness restrictions are enforced. However, reasonable restrictions on the constant k for interval-boundedness provide tractable cases with polynomial algorithms.

Another approach to guarantee privacy is mentioned in [START_REF] Libkin | Reasoning about XML with temporal logics and automata[END_REF], that requires the administrator to define the information he considers secret using a boolean first order query Q. The secret is considered to be revealed by the view Q V if there exists some document t such that Certain Q V pQ; View pQ V , tqq true, i.e. if there is a view document from which we can guess that Q holds. Given a boolean query Q and a view Q V , one has to check whether there exists a such document t that reveals Q. [START_REF] Libkin | Reasoning about XML with temporal logics and automata[END_REF] proves this problem is undecidable in general, and decidable for downward closed views, in polynomial time if the queries are given by an automaton, and exponential time if they are given by a ConditionalXPath formula. Since the proof only requires the regularity of View pQ V , Dq, their proof of decidability can be extended to interval-bounded views. This approach allows more precise verification of the policy, and could replace the comparison of policies, except that this flexibility comes at the price of a weaker guarantee. Actually, this definition of secret might be vulnerable to probabilistic attacks in case of a priori knowledge or assumptions on the source document, while comparison ¤ 2 is so restrictive that it really provides a strong guarantee that view A 1 discloses less information than view A 2 as soon

as A 1 ¤ 2 A 2 .
Bohannon et al. [START_REF] Bohannon | Information preserving XML Schema embedding[END_REF] study related notions though in a very different framework. They consider a function that maps each document satisfying one DTD D 1 to a document satisfying another DTD D 2 . Such a function σ is invertible if the original document can be recovered from the target document. Similarly, the function σ is query preserving with respect to a query language L if there is a computable function F : L Ñ L such that for any Q P L and any document t satisfying D 1 , Qptq F pQqpσptqq. In short, σ is query preserving w.r.t. L if every query from L can be rewritten as the composition of another query from L with σ. The paper considers schema mappings, whereas we consider views. What is more, we distinguish two settings depending on whether identifiers are taken into account or not, a distinction that is absent from [START_REF] Bohannon | Information preserving XML Schema embedding[END_REF]. Their definition of invertibility may be considered under both settings. We observe that when considering identifiers, Q 1 ¤ 2 Q 2 if and only if Q 2 is query-preserving w.r.t. PublicpQ 1 q. Also, Id ¤ 3 V if and only if V is invertible in the sense of [START_REF] Bohannon | Information preserving XML Schema embedding[END_REF], where Id is the identity query, i.e., the view that hides no node. For this, we must consider invertibility without identifiers in our model: if we assume each node has a (unique and arbitrary) identifier, every query V that deletes an unbounded number of nodes would not be invertible due to the impossibility to recover the identifiers of the hidden nodes.

Future work and discussion. MSO views could also be defined differently, for instance by using automata with selecting states, or automata over alphabet Σ¢t0, 1u such that the nodes selected in a tree t T Σ over alphabet Σ are: tn N t | ht I T Σ¢t0,1u . Π Σ pt I q t, λ t 1 pnq Σ ¢ t1uu, without requiring maximality of the languages. However inclusion of queries represented by such automata is already Pspace-complete over non-recursive DTDs.

All results can be generalized to the setting of views and queries that not only select nodes, but also rename some of them: instead of recognizing (maximal) languages over alphabet Σ ¢ t0, 1u, the automata could have been defined over alphabet Σ ¢ Σ, a node labeled with pa, bq representing the relabeling of a into b. We could then adapt the comparisons of security access specifications to this setting, which would lead to similar results using mostly the same constructions. However, dealing with more general cases, where insertions, copying or restructuring are allowed e.g., would require other techniques.

Our model of security view is based on nodes authorizations, whereas administrator could want to express also relationships authorizations [START_REF] Finance | The case for access control on xml relationships[END_REF]. This work could be developed into several directions, like considering views defined by other kinds of transducers allowing to modify the structure of the document instead of monadic queries. Our framework could at least be extended to deal with n-ary queries from the user, while keeping the view defined by a monadic one. One may also study other restrictions that would allow polynomial algorithms.

Regarding the rewriting problem studied in the first part of this paper, it would be interesting to study how the knowledge of the domain -in the case of annotated DTD-could be incorporated to optimize the quadratic query rewriting.

Appendix

In order to prove Theorem 9, we could first think of adapting immediately the proof of Lemma 8 in order to use Proposition 3. Let pt, t I q be a pair of trees of minimal size such that View pQ 2 , tq View pQ 2 , t I q but View pQ 1 , tq View pQ 1 , t I q. Let φ denote an isomorphism between View pQ 2 , tq and View pQ 2 , t I q .

Suppose there are three nodes n Ò t , n), we preserve isomorphic views for Q 2 . However, the views for Q 1 may become isomorphic. One could think that at least one of the combinations for the pumping would make sure the views for Q 1 remain non isomorphic. It so happens that this is not true, as illustrated in Figure 8. In this figure, Q 2 selects all the nodes labeled with d, plus the root, and Q 1 selects all the nodes with label different from d. Clearly, View pQ 2 , tq View pQ 2 , t I q and View pQ 1 , tq View pQ 1 , t I q. We can build the automata for Q 2 and Q 1 such that ρ t (resp. ρ t 1) has the same value on all nodes labeled d in t (resp. t I). However, whatever combination is chosen for the pumping, the views for Q 1 become isomorphic after we replace the subtrees. For instance, if we replace the subtree below n Ò with the subtree below n ¥ in both trees, the views obtained for Q 1 are both isomorphic to rpcpaqq, and if we replace the subtree below n ¥ with the subtree below n Ó in both trees, the views obtained for Q 1 are both isomorphic to rpa, b, aq. So, there is no trivial adaptation from the proof of Lemma 8, and it is not clear how to adapt this pumping lemma. Therefore, we developped a new method, based on alignment of trees, which we discuss hereunder.

t A 1 ptq A 2 ptq n Ò n ¥ n Ó
pr, 1, 1q pd, 0, 1q pa, 1, 0qpb, 1, 0qpd, 0, 1q pc, 1, 0q pd, 0, 1q pa, 1, 0q t I A 1 pt I q A 2 pt I q pr, 1, 1q pd, 0, 1q pd, 0, 1q pc, 1, 0q pd, 0, 1q pa, 1, 0q pb, 1, 0qpa, 1, 0q Caveat: In this whole proof, we consider trees as terms, i.e., we do not consider identifiers.Two trees will be considered equal iff they are isomorphic. We also define an hedge as a sequence of trees.

n Ò n ¥ n Ó
We define alphabet Σ align as Σ align Σ 2 pΣ ¢ t0uq pt0u ¢ Σq. Given two trees t 1 , t 2 over Σ align , we denote by t 1 t 2 the square of t 1 and t 2 , i.e., the tree defined by the recursive algorithm hereunder. Similarly, given two (IB)alignment languages L 1 and L 2 , we define L 1 L 2 as tt 1 t 2 | t 1 L 1 , t 2 L 2 u.

A recursive definition for t 1 t 2 . We define more generally operation as a binary operation on hedges.

We note hedges as follow: ¤ represents the concatenation of hedges, f rhs represents the tree with root f and, such that, if h t 1 ¤ t 2 ¤ . . . ¤ t k , then f rhs is the tree f pt 1 , t 2 , . . . , t k q. Hence, f rarb ¤ cs ¤ ds ¤ g represents the hedge f papb, cq, dq ¤ g. To avoid confusion, we note pairs/triples of symbols (i.e. tags over product alphabets like Σ¢Σ) between " x", "y " instead of usual parenthesis. We fix the following priorities for operations: insertion r s of an hedge under a node has highest priority, next comes the concatenation ¤ of two hedges, and has the lowest priority. The rules are as follows: for every letters a, b Σ, α 1 , α 2 Σ t0u, every hedges h 1 , h 2 , w 1 , w 2 , 1. pxb, α 1 y rh 1 s ¤ w 1 q pxb, α 2 y rh 2 s ¤ w 2 q xb, α 1 , α 2 y rh 1 h 2 s ¤ pw 1 w 2 q 2. px0, ay rh 1 s ¤ w 1 q h 1 is defined as: " x0, a, 0y rT ph 1 qs ¤ pw 1 h 1 q if h 1 is a hedge over t0u ¢ Σ px0, a, opy ¤ h 1 ¤ x0, a, cly ¤ w 1 q h 1 otherwise where T is defined by T px0, cy rhs ¤ wq x0, c, 0y rT phqs ¤ T pwq and the image by T of the empty word(neutral element of the monoid) is the empty word.

3. px0, a, opy ¤ w 1 q h 1 x0, a, 0, opy ¤ pw 1 h 1 q2 . Symmetrically, for closing tags, px0, a, cly ¤ w 1 q h 1 x0, a, 0, cly ¤ pw 1 h 1 q. 4. for the right operand, we add the three symmetrical rules h x0, ay rh 2 s¤w 2 , h px0, a, opy ¤ w 2 q, and h px0, a, cly ¤ w 2 q. The second rule, for instance, is h 1 px0, a, opy ¤ w 1 q x0, 0, a, opy ¤pw 1 h 1 q. However, in order to get at most one result, we fix that rules 2 and 3 have higher priority than their 'right' counterpart. We define two morphisms φ 1 , φ 2 on linearization(and, by abuse, on trees):

• dη top, clu, da Σ, dα 1 , α 2 Σ t0u, di t1, 2u, φ i pη, a, α 1 , α 2 q pη, a, α i q if α i Σ, ǫ3 otherwise .

• dη, η 1 top, clu, da Σ, φ 1 pop, 0, a, 0, η 1 q pη 1 , 0, aq, φ 1 pcl, 0, a, 0, η 1 q ǫ 1 , and φ 1 pη, 0, 0, a, η 1 q ǫ 1 . Similarly, φ 2 pop, 0, 0, a, η 1 q pη 1 , 0, aq, φ 2 pcl, 0, 0, a, η 1 q ǫ 1 , and φ 2 pη, 0, a, 0, η 1 q ǫ 1 . • dη top, clu, da Σ, φ 1 pη, 0, a, 0q pη, 0, aq, and φ 1 pη, 0, 0, aq ǫ 1 .

Similarly, φ 2 pη, 0, 0, aq pη, 0, aq, and φ 2 pη, 0, a, 0q ǫ 1 .

We also denote by π 1 the following morphism on linearization(and, by abuse, on trees). For all a Σ, all β Σ t0u, π 1 pa, βq a and π 1 p0, βq ǫ 1 .

Intuitively, it represents the projection on first component, where nodes with label 0 are deleted (and a node whose father has been deleted is adopted by its closest "non-deleted" ancestor).

Proposition 16. For every two trees t 1 and t 2 over Σ align , t 1 t 2 exists iff π 1 pt 1 q π 1 pt 2 q, in which case it is a unique tree, t 1 φ 1 pt 1 t 2 q and t 2 φ 2 pt 1 t 2 q. Proof. t 1 t 2 exists iff π 1 pt 1 q π 1 pt 2 q(recall that equality means isomorphism) because rule 1 is the only rule that allows a tag in Σ on the first component, and this rule requires that the same letter b occurs at the same position in π 1 pt 1 q and π 1 pt 2 q. Clearly, this is also a sufficient condition for the existence of t 1 t 2 . The priority rules make the algorithm deterministic: only one rule can be applied at any time, which guarantees the uniqueness. As for t 1 φ 1 pt 1 t 2 q and t 2 φ 2 pt 1 t 2 q, it can be proved by induction, analysing each of the rules.

We denote by V 2Ñ1 the function that maps each tree t over Σ to the tree t 1 over Σ align defined by N t 1 tn N t | A 2 pnq 1A 1 pnq 1u, descendants t 1 descendants t N 2 t 1 , f ollowing t 1 f ollowing t N 2 t 1 , 4 and λ t 1 pnq pα, βq where α 0 if A 2 pnq 0, and α 1 otherwise, while β 0 if A 1 pnq 0, and β 1 otherwise. This definition is extended to languages by V 2Ñ1 pLq tPL V 2Ñ1 ptq. Proposition 17. Given two k-interval bounded root preserving queries Q 1 and Q 2 with dompQ 1 q dompQ 2 q D, there is a polynomial p 0 such that one can compute an automaton B that recognizes V 2Ñ1 pDq in time p|A Q1 | |A Q2 |q p0pkq Proof. We can first build an automaton B 0 that recognizes LpB 0 q tt A Q1 A Q2 | t LpDqu in polynomial time. B is built from B 0 by simulating the transitions through the nodes labeled pa, 0, 0q for all a Σ. This can be achieved using tricks similar to the construction for Lemma 7, working in time exponential in k.

Figure 1 :

 1 Figure 1: Tree t 0 .

Figure 2 :

 2 Figure 2: The semantics of X Reg.

Figure 4 :

 4 Figure 4: The view View Q X 1 , t 0 ¨.

Q2ó¦

 ::a{ó ¦ ::b Q I 2 ó ¦ ::rself::pa, 1qor self::pa, 2qs{ó ¦ ::rself::pb, 1qor self::pb, 2qs Y Q I 1 {ó::$ Q 1 ó ¦ ::a{ó::b Q I 1 ó ¦ ::rself::pa, 1qor self::pa, 2qs{ó::rself::pb, 1qor self::pb, 2qs

Figure 5 :

 5 Figure 5: Reduction from ¤ 1 to ¤ 2,X Reg and ¤ 3 for particular Q 1 and Q 2 .

Figure 6 :

 6 Figure 6: PCP encoding for ¤ 3

Figure 8 :

 8 Figure 8: The pumping of Lemma 8 does not work for ¤ 3

Figure 9 :

 9 Figure 9: Two alignment trees and their square

 contains an example of a tree representing an XML database with information on software development projects. Every project

				projects	n 0			
		n 1			n 2				n 3
		project		project			project
	n 4	n 5	n 6	n 11	n 12		n 13	n 18	n 19	n 20
	name stable license	name stable license	name dev license
	n 7 n 8	n 9	n 10	n 14 n 15	n 16	n 17	n 21	n 22	n 23
	src bin doc free	src bin doc propr	src doc free

 1. For any access function X there exists a X Reg filter expression X X acc such that for any tree t P T Σ , a node n P N t is accessible in t w.r.t. X if and only if pt, nq | ù X X acc ptq. Moreover, X X acc can be constructed in Op|X|q time.

					projects	n 0			
		n 1				n 2			n 3	
		project			project		project	
	n 4	n 7	n 9	n 6	n 11	n 16	n 13	n 18	n 21 n 22	n 20
	name src doc license	name doc license	name src doc license
				n 10			n 17			n 23
				free			propr			free
				Figure 3: The view View Q A 0 , t 0	¨.		
	Lemma 1. Proof. By dompXq we denote the set of pairs of symbols for which X is defined.
	We begin by defining two filter expressions. The first checks if X defines a filter
	expression for the current node					
				X dom	pa,bqPdompXq self::b and ò::a	¨,	
	and if it is the case, the second filter expression is used to evaluate it	
			X eval	pa,bqPdompXq self::b and ò::a and Xpa, bq ¨.	
	The following lemma allows us to translate an access function into a X Reg filter:

 So the user can distinguish some projects under development from stable projects, which was not possible with X 0 .

					projects	n 0			
		n 1				n 2			n 3	
		project			project		project	
	n 4	n 7	n 9	n 6	n 11	n 16	n 13	n 18	n 22	n 20
	name src doc license	name doc license	name doc license
				n 10			n 17			n 23
				free			propr			free

 Ñ name, version version Ñ number, files, license, prev prev Ñ version | ε files Ñ src, bin, doc license Ñ free | proprAnnotation ann 1 keeps the last version of each project and hides the others. Moreover, it hides all nodes version, files, number (when no explicit rule is given for an element name, its visibility is inherited from its parent):

	projects Ñ project ¦ project Ñ name, version	files Ñ src, bin, doc ann1pfiles, srcq
	ann1pproject, versionq false version Ñ number, files, license, prev ann1pversion, licenseq prev Ñ version | ε rò::version{ò::projects	ann1pfiles, binq ann1pfiles, docq rò::files{ò::version{ò::projects

projects Ñ project ¦ project license Ñ free | propr

 version version Ñ number, files, license license Ñ free | propr files Ñ src, bin, doc Example 6. Let us consider a slightly more complex example: we allow the previous version of project to be a collection of projects. This corresponds to the following case scenario: projects are allowed to merge over time, but not to branch. We define a new DTD D 2 obtained from D 1 by changing the production of prev for: prev Ñ project ¦ . All other production rules remain the same.Annotation ann 2 keeps licenses together with the name and version of the corresponding project and the project node, and hides every other node.

projects Ñ project ¦ project Ñ name, version ann2pproject, nameq false ann2pproject, versionq false version Ñ number, files, license, prev ann2pversion, licenseq true prev Ñ project ¦ ann2pprev, projectq true files Ñ src, bin, doc license Ñ free | propr

 and only if there exists a X Reg filter f such that for every tree t, pt, root t q | ù f if and only if t LpAq. Actually, the two queries Q 1 and Q 2 are even downward-closed.

 ¥ t , n Ó t in Q 2 ptq, and three nodes n Ò t 1 , n ¥ t 1 , n Ó q n Ó t 1 , ρ t pn Ò t q ρ t pn ¥ t q ρ t pn Ó t q and ρ t 1 pn Ò t 1 q ρ t 1 pn ¥ t 1 q ρ t 1 pn Ó t 1 q, where ρ t , ρ I t are defined similarly to ρ in Lemma 8. Replacing the subtrees below n Ò Ò t 1) with the subtree below n ¥ t (resp. n ¥ t 1

	such that n Ò φpn Ó	t 1 t 1 ,

t is an ancestor of n ¥ t , n ¥ t an ancestor of n Ó t , φpn Ò t q n Ò t 1 , φpn ¥ t q n ¥ t t (resp. n

 Thus, the 'right' rules can be applied only if no left one can. This definition is extended to languages byL 1 L 2 tt 1 t 2 | t 1 L 1 , t 2 L 2 u.Example 7. In figure9, we represent two alignment trees and their square. , a, 0, opq p0, 0, d, opq pb, b, 0q pc, 0, cq p0, a, 0, clq pd, d, d, q p0, 0, d, clq p0, d, 0q

	pr, rq		pr, rq
	p0, aq	pd, dq	p0, dq
	pb, bq pc, 0q	pd, 0q	pb, 0q pc, cq pd, dq
	p0, dq p0, gq		pd, 0q
	tree t 1		tree t 2
		pr, r, rq	
			pd, 0, 0q
		p0, g, 0q	
		tree t t 1 t 2	

p0

The term "upward-closed" is employed by Libkin and Sirangelo[START_REF] Libkin | Reasoning about XML with temporal logics and automata[END_REF], but a variety of other names appear in the litterature.

the construction fails if a node of the form x0, a, opy has a child

the neutral element of the free monoid

for the time being trees are defined using children , not descendants, and next, not following so we need to adapt....

Acknowledgements: The authors thank Iovka Boneva and Yves André for fruitful discussions on access control and security views.

$ This work is partially supported by the INRIA collaboration program (Actions de Recherches Collaboratives de l'INRIA)

We can use another pumping argument, pumping "horizontally" this time, and bound the number of children of every node in t or t I by an exponential.

Horizontal pumping: As before we use a pumping argument over nodes in Q 2 ptq, because this makes it easier to preserve equality of the views for Q 2 . Let n Q 2 ptq. Then n also belongs to Q 2 pt I q. However, it could very well be that no child of n in t or t I belongs to Q 2 ptq, while some descendant of n would still belong to Q 2 ptq. To avoid those difficulties, we consider the children n 1 , n 2 , . . . , n M of n in View pQ 2 , tq, in document order. We decorate each node n i with two tuples ρpn i , opq and ρpn i , clq in pS 1 ¢ Γ ¤k 1 q 2 ¢ pS 2 ¢ Γ ¤k 2 q 2 . Tuple ρpn i , opq is associated to the opening tag of n i and ρpn i , clq to its closing tag. The tuples are defined as follows. Let d t ¤ k denote the number of stack symbols that have been added (and not yet removed) after reading the opening tag of n and before reading the opening tag of n i in t: d t pn i q depth t pn i q ¡ depth t pnq ¡ 1, and similarly d t 1 pn i q depth t 1 pn i q ¡ depth t 1 pnq ¡ 1. The tuples ρpn i , opq and ρpn i , clq are respectively defined as ppq 2 , u 2 q, pq I 2 , u I 2 q, pq 1 , u 2 q, pq I 1 , u I 1 qq and pps 2 , u 2 q, ps I 2 , u I 2 q, ps 1 , u 2 q, ps I 1 , u I 1 qq where pρ t 2 q Ò pn i q pq 2 , s 2 q, pρ t 1 1 q Ò pn i q pq I 1 , s I 1 q, etc. and u 2 pΓ 2 q dtpniq contains the d t pn i q topmost symbols of the stack for run ρ t 2 before processing the opening tag of node n i , u I 1 pΓ 1 q d t 1 contains the d t 1 pn i q topmost symbols of the stack for run ρ t 1 1 before processing the opening tag of node n i etc. We assume that Γ 1 , Γ 2 both contain at least two elements. The other cases can be treated similarly. The number of different tuples ρ that can be con-

there exist 1 ¤ i j l ¤ M such that ρpn i , opq ρpn j , opq ρpn l , opq. This however contradicts the minimality of t and t I : the trees t i,j and t I i,j obtained from t and t I by removing all tags between the opening of n i (included) and the opening of n j (excluded) satisfy View pQ 2 , t i,j q View Q 2 , t I i,j ¨, and likewise the trees t j,l and t I j,l obtained by removing all tags between n j and n l . The contradiction stems from the observation that Q 1 pt i,j q $ Q 1 pt I i,j q or Q 1 pt j,l q $ Q 1 pt I j,l q. This concludes the proof that every node from

View pQ 2 , tq View pQ 2 , t I q View pQ 1 , tq View pQ 1 , t I q tree t tree t I ó ó

Proof. Let Q 1 be an MSO query and Q 2 an MSO k-interval-bounded query. Then, by Lemma 7 it is enough to test whether there are trees t, t I such that

Moreover, Lemma 8 gives a bound on the size and depth of t and t I . This suggests the following algorithm: we guess the size of t, t I , and guess step by step the run of both view automata over t and t I . We only need to store the stack and the current state, which provides a non-deterministic algorithm in polynomial space. The result then follows from Savitch's theorem.

In the following, we are interested in MSO queries whose domain can be expressed by a non recursive DTD. We write that the domain is a non-recursive DTD even if no DTD is manipulated here. Since queries whose domain a nonrecursive DTD are a special case of interval-bounded queries, we get immediately from Corollary 2:

Pspace-complete for MSO queries given by automata, when the domain has bounded depth k.

Proof. We have the hardness by using the same construction as in Lemma 9. Let us prove that this problem can be decided in polynomial space.

Here is a proof following a schema similar to ¤ 2 : we define an automaton A pΣ¢t0, 1u 2 , S, Γ, I, F, Rq with language LpAq ttA Q1 A Q2 | t LpDqu.

We transform A into a word transducer from View pQ 2 , ¡q to View pQ 1 , ¡q. We build a word automaton A w pΣ ¢ t0, 1u 2 , S ¢ Γ k , I ¢ tεu, F ¢ tεu, R w q equivalent to A: for all η Σ ¢ t0, 1u 2 , u Γ ¤pk¡1q , q, q I S, and all γ Γ, A w has rule pq, uq pop,ηq ÝÝÝÝÑ pq I , uγq iff A has rule q pop,ηq:γ ÝÝÝÝÝÑ q I . A w has rule pq, uγq pcl,ηq ÝÝÝÑ pq I , uq iff A has rule q pcl,ηq:γ ÝÝÝÝÑ q I . From A w we build automaton B w pΣ¢t0, 1u 2 , S ¢Γ k , I ¢tεu, F ¢tεu, R B q, such that for all x 1 , x 2 t0, 1u, u Γ ¤pk¡1q , q, q I S, and all γ Γ, B w has rule pq, uq pop,x1,x2q ÝÝÝÝÝÝÑ pq I , uγq iff x 1 1 or x 2 1 and there exists b Σ such that A w has rule pq, uq pop,pb,x1,x2qq Ý ÝÝÝÝÝÝÝÝ Ñ pq I , uγq. B w has rule pq, uq ε Ý Ñ pq I , uγq iff there exists b Σ such that A w has rule pq, uq pop,pb,0,0qq ÝÝÝÝÝÝÝÑ pq I , uγq. We add similar rules for the closing tags. We remark that the number of consecutive transitions in a minimal (accepting) run of B w over some input is bounded by |A w | k . Now, we can see B w as a word transducer of polynomial size (remember that k is a fixed constant), and Q 1 ¤ 2 Q 2 if and only if that transducer is functional.

We use the result from [START_REF] Gurari | The complexity of decision problems for finite-turn multicounter machines[END_REF][START_REF] Gurari | A note on finitely-valued and finitely ambiguous transducers[END_REF] that functionality of word transducers is decidable in NLogspace. Their proof uses result on the emptiness of automata with reversal-bounded counters to prove that whenever there is an input on which a word transducer T can produce two different outputs then there is such an input of size polynomial in T . Here, B w is of exponential size, so that we cannot afford to build it, but we can simulate its transitions on-the-fly, and check for every input v of size polynomial in |B w | -i.e., for every input of exponential size -if B w can produce two different outputs on v. This gives a non-deterministic algorithm in polynomial space: guess the size of the input, and simulate B w on-the-fly on this input. The result then follows from Savitch's theorem.

Theorem 9. T estcomp 3,MSO is in Exptime for interval-bounded queries when queries are given by automata.

Proof. See Appendix

Comparing Security Policies: X Reg

In this section we suppose the queries Q 1 and Q 2 are given by X Reg expressions. Query containment is Exptime-complete [START_REF] Marx | XPath with conditional axis relations[END_REF] for X Reg and since this holds for boolean queries, the interval-boundedness restriction does not help. This complexity can be lowered to Pspace over non-recursive DTDs.

Corollary 4. There exist two downward-closed queries Q 1 and Q 2 given by

Because the third comparison (like ¤ 2) is essentially independent from any query language, these difficulties due to the expressiveness of X Reg do not apply when comparing X Reg queries w.r.t. comparison ¤ 3 . Proposition 14. The problem of deciding ¤ 3 for interval bounded X Reg queries can be decided in exponential time.

Proof. The proof first translates the X Reg expressions into automata using [START_REF] Cate | XPath, transitive closure logic, and nested tree walking automata[END_REF], and proceeds as for Theorem 9: even if the automata that recognize A Q1 and A Q2 have exponential size, the overall complexity remains exponential.

As usual, this complexity drops to Pspace when the depth of the domain is bounded by the size of the query:

Q 2 over non-recursive DTD D can be decided in polynomial space.

Proof. We adapt the proof of Theorem 8. Once more, we use the translation from X Reg expressions into automata, to build an automaton A of exponential size with language LpAq tt b A Q1 b A Q2 | t P LpDqu. Actually, we do not build the automaton, because it is of exponential size. But since the depth is bounded, we can simulate its transitions in polynomial space, which also implies we can simulate in polynomial space the transitions of B w -where B w is defined from A as in the proof of Theorem 8. The proof proceeds as for Theorem 8. Remark 2. Due to the k-interval boundedness of A 2 , V 2Ñ1 pDq presents the following property: for every t in V 2Ñ1 pDq, for every nodes n 1 , n 2 , . . . , n k 1 N t , with pn 1 , n 2 q child t , pn 2 , n 3 q child t . . . , and pn k , n k 1 q child t , if λ t pn 1 q t0u ¢ Σ, λ t pn 2 q t0u ¢ Σ, . . . and λ t pn k 1 q t0u ¢ Σ, then for every descendant n I of n k 1 , λ t pn I q t0u ¢ Σ. Proposition 18. Given two k-interval bounded root preserving queries Q 1 and Q 2 with dompQ 1 q dompQ 2 q D, there is a polynomial p such that one can compute an automaton B align that recognizes

Proof. Actually this holds not only for V 2Ñ1 , but also for every language presenting the property in Remark 2. Let B pΣ align , Q, Γ, I, F, Rq be the automaton recognizing V 2Ñ1 pDq as in Proposition 17. We define automaton B align as pΣ I , Q I , Γ I , I I , F I , R I q where:

Γ pΓ ¢ Γ ¤k ¢ Γ ¤k ¢ tt, uu ¢ Qq • I I tpq l , q r , ε, ε, uq | q l , q r Iu • F I tpq l , q r , ε, ε, uq | q l , q r F u

• the rules in R I are defined as follows: for all q l , q r , q I l , q I r Q, all γ l , γ r Γ, all u l , u r Γ ¤k , all η tu, tu, all C tC l , C r u, all α 1 , α 2 Σ t0u, all θ top, clu and all b Σ; -pq l , q r , u l , u r , η, Cq pop,pb,α1,α2qq:pγ l ,γr,u l ,ur,u,C l q ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq I l , q I r , ε, ε, uq is in R I if there are rules q l pop,pb,α1qq:γ l ÝÝÝÝÝÝÝÝÑ q I l and q r pop,pb,α2qq:γr ÝÝÝÝÝÝÝÝÝÑ q I r in R.

pq l , q r , ε, ε, u, Cq pcl,pb,α1,α2qq:pγ l ,γr,u l ,ur,u,C l q ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq I l , q I r , u l , u r , uq is in R I if there are rules q l pcl,pb,α1qq:γ l ÝÝÝÝÝÝÝÝÑ q I l and q r pcl,pb,α2qq:γr ÝÝÝÝÝÝÝÝÑ q I r in R.

pq l , q r , u l , u r , η, C l q pop,p0,b,0,opqqpcl,p0,b,0,opqq ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq I l , q r , u l ¤ γ l , u r , t, C l q is in R I if there is a rule q l pop,p0,bqq:γ l Ý ÝÝÝÝÝÝÝ Ñ q I l in R and u l Γ ¤k¡1 .

We use a transition that does not modify the stack and reads two symbols at a time for the sake of clarity. Actually, this does not strictly follow the syntax of V P A transitions. However, it is straightforward to introduce a few new states to simulate this behaviour with two transitions, the first transition pushing a symbol into the stack which is immediately removed by the second one.

pq l , q r , u l ¤ γ l , u r , u, C l q pop,p0,b,0,clqqpcl,p0,b,0,clqq ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq I l , q r , u l , u r , u, C l q is in R I if there is a rule q l pcl,p0,bqq:γ l ÝÝÝÝÝÝÝÑ q I l in R and u l Γ ¤k¡1 . -The rules for p0, 0, b, opq and p0, 0, b, clq are symmetric, except for the C l , C r constraints that need to be adapted, yielding rules pq l , q r , u l , u r , η, Cq pop,p0,0,b,opqqpcl,p0,0,b,opqq ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq I l , q r , u l ¤ γ l , u r , t, C r q and pq l , q r , u l ¤ γ l , u r , u, Cq pop,p0,0,b,clqqpcl,p0,0,b,clqq ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq I l , q r , u l , u r , u, C r q. -pq l , q r , u l , u r , η, C l q pop,p0,b,0qq:pγ l ,u l ,ur,η,qrq ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq I l , Uq is in R I if there is a rule q l pop,p0,bqq:γ l Ý ÝÝÝÝÝÝÝ Ñ q I l in R.

pq l , Uq pcl,p0,b,0qq:pγ l ,u l ,ur,η,qrq ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq I l , q r , u l , u r , η, C l q is in R I if there is a rule q l pcl,p0,bqq:γ l ÝÝÝÝÝÝÝÑ q I l in R.

pq l , Uq pθ,p0,b,0qq:γ l ÝÝÝÝÝÝÝÝÑ pq I l , Uq is in R I if rule q l pθ,p0,bqq:γ l ÝÝÝÝÝÝÝÑ q I l is in R.

-Rules for p0, 0, bq are symmetric, using states in tUu ¢ Q instead of Q ¢ tUu, and replacing C l with C r .

Basically, we build a product automaton, and the difficulty stems from the synchronization of the stacks. The stacks are synchronized on transitions that read a letter in Σ 1 . The state and stack use words u l , u r to simulate the runs on letters in Σ 2 . The property in Remark 2 allows to bound by k the required size for u l and u r . To guarantee the uniqueness property, the definition of the operation demands that we read a letter in Σ 1 between an opening tag p0, b, 0, opq and the corresponding closing tag p0, b, 0, clq. We use t to remember this in- formation that one has to read a letter in Σ 1 before reading the next closing tag in Σ 3 . u is used whenever there is no such constraint. Also for uniqueness, rules 2 and 3 have higher priority than their 'right' counterpart. So, no node with label in pt0u ¢ t0u ¢ Σq or pt0u ¢ t0u ¢ Σ ¢ top, cluq can be the left sibling of a node with label in pt0u ¢ Σ ¢ t0uq or pt0u ¢ Σ ¢ t0u ¢ top, cluq. We use C r to remember this information: a tag C r in the state forbids transition labeled by pt0u ¢ Σ ¢ t0uq or pt0u ¢ Σ ¢ t0u ¢ top, cluq. Last, but not least, all descendants of a node of the form p0, 0, bq in t 1 t 2 have label in t0u¢t0u¢Σ.

Therefore, we do not simulate the second part of the run in that subtree, which explains why we use a state of the form pU, qq, using the "U" symbol on the left so as to avoid switching to symbols of the form t0u ¢ Σ ¢ t0u.

Proposition 19. Given two k-interval bounded root preserving queries Q 1 and Q 2 with dompQ 1 q dompQ 2 q D, Q 1 ¤ 3 Q 2 iff morphisms φ 1 and φ 2 are equal over V 2Ñ1 pDq V 2Ñ1 pDq, i.e., iff dt V 2Ñ1 pDq V 2Ñ1 pDq, φ 1 ptq φ 2 ptq.

Finally, we use Plandowski's result [START_REF] Plandowski | Testing equivalence of morphisms on context-free languages[END_REF] stating that equivalence of morphisms on a context-free language is decidable in polynomial time. Using this result for morphisms φ 1 and φ 2 on LpB align q we get an algorithm that works in exponential time that concludes the proof of Theorem 9.