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On empirical processes for Quantitative Trait Locus

mapping under the presence of a selective genotyping

and an interference phenomenon

C-E. Rabiera,∗

aUniversity of Wisconsin-Madison, Statistic and Botany departments, Medical Science
Center, 1300 University Avenue, Madison, WI 53706-1532, USA.

Abstract

We consider the likelihood ratio test (LRT) process related to the test of
the absence of QTL (i.e. a gene with quantitative effect on a trait) on
the interval [0, T ] representing a chromosome. The originality is twofold.
We consider a selective genotyping and an interference phenomenon. We
show that, under the null hypothesis and contiguous alternatives, the LRT
process is asymptotically the square of a “linear interpolated and normalized
Gaussian process ”. We prove that we have to genotype symmetrically and
that the threshold is exactly the same as in the situation without selective
genotyping and without interference.

Keywords: QTL detection, Likelihood Ratio Test, Gaussian process,
Selective Genotyping, Interference Phenomenon

1. Introduction

We study a backcross population: A×(A×B), where A and B are purely
homozygous lines and we address the problem of detecting a Quantitative
Trait Locus, so-called QTL (a gene influencing a quantitative trait which is
able to be measured) on a given chromosome. The trait is observed on n
individuals (progenies) and we denote by Yj, j = 1, ..., n, the observations,
which we will assume to be Gaussian, independent and identically distributed
(i.i.d.). The mechanism of genetics, or more precisely of meiosis, implies that
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among the two chromosomes of each individual, one is purely inherited from
A while the other (the “recombined” one), consists of parts originated from
A and parts originated from B, due to crossing-overs.

The chromosome will be represented by the segment [0, T ]. The distance
on [0, T ] is called the genetic distance, it is measured in Morgans (see for
instance Wu et al. [27] or Siegmund and Yakir [24]). K genetic markers are
located at fixed locations t1 = 0 < t2 < ... < tK = T . These markers will
help us to find the QTL. X(tk) refers to the genetic information at marker k.
For one individual, X(tk) takes the value +1 if, for example, the “recombined
chromosome” is originated from A at location tk and takes the value −1 if it
is originated from B.

We use the Haldane [11] modeling for the genetic information at marker
locations. It can be represented as follows: X(0) is a random sign and
X(tk) = X(0)(−1)N(tk) where N(.) is a standard Poisson process on [0, T ].
Due to the independence of increments of Poisson process, this model al-
lows double recombinations between markers. For instance, if we consider
3 markers (i.e. K = 3), we can have the scenario X(t1) = 1, X(t2) = −1
and X(t3) = 1, which means that there has been a recombination between
markers 1 and 2, and also a recombination between markers 2 and 3. Obvi-
ously, in the same way, we can have the scenario X(t1) = −1, X(t2) = 1 and
X(t3) = −1.

A QTL is lying at an unknown position t? between two genetic markers.
U(t?) is the genetic information at the QTL location. In the same way
as for the genetic information at marker locations, U(t?) takes value +1
if the “recombined chromosome” is originated from A at t?, and −1 if it
is originated from B. Due to Mendel law, U(t?) takes value +1 and −1
with equal probability. We assume an “analysis of variance model” for the
quantitative trait :

Y = µ + U(t?) q + σε (1)

where ε is a Gaussian white noise.
The first originality of this paper is that, inside the marker interval which

contains the QTL, we consider an interference phenomenon : a recombina-
tion event inhibits the formation of another recombination event nearby. This
phenomenon was noticed by geneticists working on the Drosophila (Sturte-
vant [25], Muller [16]). In McPeek and Speed [15], the authors study several
interference models and also mention the importance of modeling interfer-
ence. We will focus here on the model proposed by Rebäı et al. [23] for
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which double recombination between the QTL and its flanking markers is
not allowed (see in particular their Section 2). This model was extended to
a whole chromosome in Rebäı et al. [22]. For instance, if the QTL is lying
between the first two markers (i.e. t? ∈]t1, t2[), we can not have the scenario
X(t1) = 1, U(t?) = −1 and X(t2) = 1, which would have supposed that
there had been a recombination between the first marker and the QTL, and
also a recombination between the second marker and the QTL. In particu-
lar, the model considers that if we have a recombination between the QTL
and one of its flanking marker, we could not have a recombination between
the QTL and the other flanking marker. In other words, if X(t1) = 1 and
U(t?) = −1, then we have automatically X(t2) = −1. In the same way, if
X(t2) = 1 and U(t?) = −1, then we have automatically X(t1) = −1. We
will explain in details this model in Section 2 and present the law of U(t?),
given its flanking markers.

On the other hand, our model presents another originality. Usually, in
the problem of detecting a QTL on a chromosome, the genome information
is available only at fixed locations t1 = 0 < t2 < ... < tK = T , called genetic
markers. So, usually an observation is

(Y, X(t1), ..., X(tK)) ,

and the challenge is that the location t? of the QTL is unknown.
So, the second originality of this paper is that we consider the classical

problem, but this time, in order to reduce the costs of genotyping, a selective
genotyping has been performed : we consider two real thresholds S− and S+,
with S− ≤ S+ and we genotype (i.e. we collect the genome information at
markers) if and only if the phenotype Y is extreme, that is to say Y ≤ S−
or Y ≥ S+ . If we call X(t) the random variable such as

X(t) =

{
X(t) if Y /∈ [S− , S+]

0 otherwise ,

then, in our problem, one observation will be now(
Y, X(t1), ..., X(tK)

)
.

Note that with our notations :

• when Y /∈ [S− , S+], we have X(t1) = X(t1), ..., X(tK) = X(tK).
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• when Y ∈ [S− , S+], we have X(t1) = 0, ..., X(tK) = 0, which means
that the genome information is missing at the marker locations.

We will observe n observations
(
Yj, Xj(t1), ..., Xj(tK)

)
i.i.d.

It can be proved that
(
Y, X(t1), ..., X(tK)

)
obeys to a mixture model

with known weights, times a function g(.) (fully given in Section 2) which
does not depend of the parameters µ, q and σ :[

p(t∗) f(µ+q,σ)(y) 1y/∈[S−,S+] + {1− p(t∗)} f(µ−q,σ)(y) 1y/∈[S−,S+]

+
1

2
f(µ+q,σ)(y) 1y∈[S−,S+] +

1

2
f(µ−q,σ)(y) 1y∈[S−,S+]

]
g(.) (2)

where f(m,σ) is the Gaussian density with parameters (m,σ) and where the
function p(t?) is fully given in Section 2.

As said before, the challenge is that t∗ is unknown. So, at every location
t ∈ [0, T ], we perform a Likelihood Ratio Test (LRT), Λn(t), of the hypothesis
“q = 0”. It leads to a LRT process Λn(.) and taking as test statistic the
maximum of this process comes down to perform a LRT in a model when
the localisation of the QTL is an extra parameter.

In the classical problem of detecting a QTL on a chromosome, that is
to say in the situation where all the individuals are genotyped (i.e. without
selective genotyping) and without interference, the asymptotic distribution
of the LRT statistic has been given under some approximations by Rebäı et
al. [23], Rebäı et al. [22], Cierco [7], Azäıs et al. [1], Azäıs and Wschebor [4],
Chang et al. [5]. Recently, Azäıs et al. [2] have shown that the distribution
of the LRT statistic is asymptotically that of the maximum of the square
of a “non linear normalized interpolated process”. Under an interference
phenomenon (but still without selective genotyping), I have shown in Rabier
[20] that the LRT statistic is asymptotically that of the maximum of the
square of a “linear normalized interpolated process”.

On the other hand, selective genotyping has been studied theoretically by
many authors : for instance Lebowitz and al. [13], Lander and Botstein [12],
Darvasi and Soller [8], Muranty and Goffinet [17], Rabier [19]... However,
in all these articles, the focus is only on one fixed location of the genome.
In Rabbee et al. [18], the authors compare different strategies for analyzing
data in selective genotyping. This simulation study is very interesting since
the focus is on the whole chromosome and not only one given location of the
genome. As a consequence, in Rabier [21], I address the problem of detecting
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a QTL on a chromosome, under the presence of a selective genotyping. I
show that the distribution of the LRT statistic is asymptotically that of the
maximum of the square of a “non linear normalized interpolated process”.
This result has been obtained for a model without interference. This way,
the originality of this paper is in the fact that we study a problem which
has never been studied theoretically before : the detection of a QTL on a
chromosome under the presence of a selective genotyping and an interference
phenomenon.

The main result of the paper (Theorems 1 and 2) is that the distribution
of the LRT statistic is asymptotically that of the maximum of the square
of a “linear normalized interpolated process”. This is a generalization of
the results obtained in Rabier [20] only under interference. Under the null
hypothesis, despite the selective genotyping, our process is exactly the same
as the one obtained in Rabier [20]. However, under the alternative, we show
that the mean functions of the two processes are not the same anymore.

Some important results are also introduced in Theorem 3. We give the
Asymptotic Relative Efficiency (ARE) with respect to the oracle situation
(i.e. without selective genotyping). Note that we show that we have exactly
the same ARE with respect to the oracle situation, if we look for a QTL on
a whole chromosome or if we focus only on one locus (even if the QTL is
not located on this locus). Another interesting result of Theorem 3 is the
following : if we want to genotype only a percentage γ of the population,
we should genotype symmetrically, that is to say the γ/2% individuals with
the largest phenotypes and γ/2% individuals with the smallest phenotypes.
This is a generalization of Rabier [19], where it is proved that we have to
genotype symmetrically, when we focus only on one genetic marker.

Furthermore, we have an easy formula (see Lemma 3 and formula 18)
to compute the maximum of the square of the linear interpolated process.
This formula is original. Usually when we look for a QTL on a chromosome
with a selective genotyping, we have to compute an EM algorithm at each
location, so it is quite challenging. With our formula, we don’t need to
perform any EM algorithm and we only have to focus on given locations
on the chromosome. Note that in this paper, we also prove that the non
extreme phenotypes (for which the genotypes are missing) don’t bring any
extra information for statistical inference (same result as in Rabier [19] but
for the whole chromosome). In other words, we give theoretical answers to
the previous study of Rabbee et al. [18].

To conclude, we will illustrate our theoretical results with the help of
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simulated data. Note that, a consequence of Theorems 1 and 2 and Lemma
3, the threshold (i.e. critical value) for our model, is exactly the same as
the classical threshold obtained without selective genotyping and without
interference. So, in order to obtain our threshold, the Monte Carlo Quasi
Monte-Carlo methods of Azäıs et al. [2], based on Genz [10] is still suit-
able here. This is an alternative to the permutation method proposed by
Manichaikul et al. [14] and inspired by Churchill and Doerge [6], which is
very time consuming and not easy to compute in selective genotyping be-
cause of the missing genotypes.

We refer to the book of Van der Vaart [26] for elements of asymptotic
statistics used in proofs.

2. Main results : two genetic markers

To begin, we suppose that there are only two markers (K = 2) located
at 0 and T : 0 = t1 < t2 = T . Furthermore, a QTL is lying between these
two markers at t? ∈]t1, t2[. Note that in order to make the reading easier, we
consider that the QTL is not located on markers. However, the result can
be prolonged by continuity at marker locations.

Let r(t1, t2) be the probability that there is a recombination between the
two markers. Calculations on the Poisson distribution show that :

r(t1, t2) = P {X(t1)X(t2) = −1} = P {|N(t1)−N(t2)| odd} =
1

2
(1− e−2|t1−t2|).

We will call rt1(t
?) (resp. rt2(t

?)) the probability of recombination between
the first (resp. second) marker and the QTL. So,

rt1(t
?) = P {X(t1)U(t?) = −1} , rt2(t?) = P {X(t2)U(t?) = −1} .

As explained in Section 1, only one recombination is allowed between the
QTL and the two markers. We have :

{X(t1)X(t2) = −1} ⇔ {X(t1)U(t?) = −1} ∪ {X(t2)U(t?) = −1} .

Indeed, X(t1)U(t?) = −1 means that there has been a recombination be-
tween the first marker and the QTL, so the second marker is not allowed
to recombine with the QTL. As a consequence, X(t2) = U(t?) and we have
X(t1)X(t2) = −1. Same remark for X(t2)U(t?) = −1 but this time, it is the
first marker which is not allowed to recombine with the QTL.
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Note that since {X(t1)U(t?) = −1} ∩ {X(t2)U(t?) = −1} = �, we have

r(t1, t2) = rt1(t
?) + rt2(t

?). (3)

In the same way as in Rebäı et al. [23], we consider :

rt1(t
?) =

t? − t1
t2 − t1

r(t1, t2) , rt2(t
?) =

t2 − t?

t2 − t1
r(t1, t2).

This way, the probability of recombination between the marker and the QTL
is proportional to the probability of recombination between the two markers,
and also proportional to the distance between the QTL and the marker. Note
that formula (3) stands with these expressions of rt1(t

?) and rt2(t
?).

Let’s define now

p(t?) = P
{
U(t?) = 1

∣∣X(t1), X(t2)
}
.

Obviously, since U(t?) takes value +1 or −1, we have

1− p(t?) = P
{
U(t?) = −1

∣∣X(t1), X(t2)
}
.

Since only one recombination is allowed between the QTL and its flanking
markers, we have

P
{
U(t?) = 1

∣∣X(t1) = 1, X(t2) = 1
}

= 1 , P
{
U(t?) = 1

∣∣X(t1) = −1, X(t2) = −1
}

= 0.

Besides, according to Bayes rules

P
{
U(t?) = 1

∣∣X(t1) = 1, X(t2) = −1
}

=
P
{
X(t1) = 1

∣∣U(t?) = 1, X(t2) = −1
}
P {U(t?) = 1, X(t2) = −1}

P {X(t1) = 1, X(t2) = −1}

=
rt2(t

?)/2

r(t1, t2)/2
=

rt2(t
?)

r(t1, t2)
=
t2 − t?

t2 − t1
.

In the same way,

P
{
U(t?) = 1

∣∣X(t1) = −1, X(t2) = 1
}

=
rt1(t

?)

r(t1, t2)
=
t? − t1
t2 − t1

.

As a consequence,

p(t?) = 1X(t1)=11X(t2)=1 +
t2 − t?

t2 − t1
1X(t1)=11X(t2)=−1 +

t? − t1
t2 − t1

1X(t1)=−11X(t2)=1 .

(4)
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Note that, using properties of conditional expectation, it is easy to check
that we have P {U(t?) = 1} = 1/2, so U(t?) takes values +1 and −1 with
equal probability (as explained in Section 1).

As said before, since we consider a selective genotyping, we don’t ob-
serve (Y, X(t1), X(t2)) but

(
Y, X(t1), X(t2)

)
. As a consequence, in order

to compute the likelihood, we have to study the corresponding probability
distributions. We will use the following notations :

Notations 1. U(t?) is the random variable such as

U(t?) =

{
U(t?) if Y /∈ [S− , S+]

0 otherwise.

Notations 2. Pt? {l | i} is the quantity such as ∀ i ∈ {−1, 1} and ∀ l ∈
{−1, 0, 1},

Pt? {l | i} = P(U(t?) = l | U(t?) = i) .

To begin, let’s compute P(Y ∈ [y , y + dy] ∩ X(t1) = 1 ∩ X(t2) = 1)
for instance. We have, according to Bayes rules,

P(Y ∈ [y , y + dy] ∩ X(t1) = 1 ∩ X(t2) = 1)

=
∑

i∈{−1,1}

P(Y ∈ [y , y + dy] | U(t?) = i) P(U(t?) = i ∩ X(t1) = 1 ∩ X(t2) = 1) .

Besides,

P(Y ∈ [y , y + dy] | U(t?) = i) =
P(Y ∈ [y , y + dy] ∩ U(t?) 6= 0 | U(t?) = i)

P(U(t?) 6= 0 | U(t?) = i)

=
f(µ+iq,σ)(y) 1y/∈[S−,S+]

Pt? {i | i}

and

P(U(t?) = i ∩ X(t1) = 1 ∩ X(t2) = 1)

= P(U(t?) 6= 0 ∩ U(t?) = i ∩ X(t1) = 1 ∩ X(t2) = 1)

= Pt? {i | i} P(U(t?) = i ∩ X(t1) = 1 ∩ X(t2) = 1)

=
1

2
Pt? {1 | 1} r(t1, t2) 1i=1 .
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In the same way,

P(U(t?) = i ∩ X(t1) = −1 ∩ X(t2) = −1) =
1

2
Pt? {−1 | −1} r(t1, t2) 1i=−1 .

Furthermore,

P(U(t?) = i ∩ X(t1) = 1 ∩ X(t2) = −1)

= Pt? {i | i} P(U(t?) = i ∩ X(t1) = 1 ∩ X(t2) = −1)

=
t2 − t?

2(t2 − t1)
Pt? {1 | 1} r(t1, t2) 1i=1 +

t? − t1
2(t2 − t1)

Pt? {−1 | −1} r(t1, t2) 1i=−1 ,

and

P(U(t?) = i ∩ X(t1) = −1 ∩ X(t2) = 1)

= Pt? {i | i} P(U(t?) = i ∩ X(t1) = −1 ∩ X(t2) = 1)

=
t? − t1

2(t2 − t1)
Pt? {1 | 1} r(t1, t2) 1i=1 +

t2 − t?

2(t2 − t1)
Pt? {−1 | −1} r(t1, t2) 1i=−1 .

It comes:

P(Y ∈ [y , y + dy] ∩ X(t1) = 1 ∩ X(t2) = 1) =
1

2
f(µ+q,σ)(y) 1y/∈[S−,S+] r(t1, t2) ,

P(Y ∈ [y , y + dy] ∩ X(t1) = −1 ∩ X(t2) = −1) =
1

2
f(µ−q,σ)(y) 1y/∈[S−,S+] r(t1, t2) ,

P(Y ∈ [y , y + dy] ∩ X(t1) = 1 ∩ X(t2) = −1)

=
t2 − t?

2(t2 − t1)
r(t1, t2) f(µ+q,σ)(y) 1y/∈[S−,S+] +

t? − t1
2(t2 − t1)

r(t1, t2) f(µ−q,σ)(y) 1y/∈[S−,S+],

and

P(Y ∈ [y , y + dy] ∩ X(t1) = −1 ∩ X(t2) = 1)

=
t? − t1

2(t2 − t1)
r(t1, t2) f(µ+q,σ)(y) 1y/∈[S−,S+] +

t2 − t?

2(t2 − t1)
r(t1, t2) f(µ−q,σ)(y) 1y/∈[S−,S+].

Finally, when the genome information is missing at marker locations (i.e.
the phenotype is not extreme), we have

P(Y ∈ [y , y + dy] ∩ X(t1) = 0 ∩ X(t2) = 0)

=
1

2
f(µ+q,σ)(y) 1y∈[S−,S+] +

1

2
f(µ−q,σ)(y) 1y∈[S−,S+] .
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As explained previouly, since the location t? of the QTL is unknown, we will
have to perform tests at each position t between the two genetic markers.
Note that we consider only positions t distinct of the marker locations and
the result can be prolonged by continuity on markers. Let θ = (q, µ, σ) be
the parameter of the model at t fixed. As a consequence, the likelihood of
the triplet

(
Y, X(t1), X(t2)

)
with respect to the measure λ⊗N⊗N , λ being

the Lebesgue measure, N the counting measure on N, is :

Lt(θ) =
[
p(t) f(µ+q,σ)(y)1y/∈[S−,S+] + {1− p(t)} f(µ−q,σ)(y)1y/∈[S−,S+] (5)

+
1

2
f(µ+q,σ)(y)1y∈[S−,S+] +

1

2
f(µ−q,σ)(y)1y∈[S−,S+]

]
g(t)

where the function

g(t) =
1

2

{
r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}
+

1

2

{
r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}
+ 1X(t1)=01X(t2)=0

can be removed because it does not depend on the parameters. Note that,
for t = t? we find our formula (2) of the introduction where p(t?) is described
in formula (4).

Notations 3. γ, γ+ and γ− are respectively the quantities
PH0 (Y /∈ [S−, S+]), PH0 (Y > S+) and PH0 (Y < S−).

Notations 4. A is the quantity such as
A = σ2

{
γ + zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
, where ϕ(x) and zα denote re-

spectively the density of a standard normal distribution taken at the point x,
and the quantile of order 1− α of a standard normal distribution.

Our main result is the following :

Theorem 1. Suppose that the parameters (q, µ, σ2) vary in a compact and
that σ2 is bounded away from zero. Let H0 be the null hypothesis q = 0 and
define the following local alternative

Hat? : “the QTL is located at the position t? with effect q = a/
√
n where a 6= 0 ”.
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With the previous defined notations,

Sn(.)⇒ D(.) , Λn(.)
F.d.−→ D2(.) , sup Λn(.)

L−→ supD2(.)

as n tends to infinity, under H0 and Hat? where :

• ⇒ is the weak convergence,
F.d.→ is the convergence of finite-dimensional

distributions and
L−→ is the convergence in distribution

• D(.) is the Gaussian process with unit variance such as :

D(t) =
α(t)D(t1) + β(t)D(t2)√
V {α(t)D(t1) + β(t)D(t2)}

where

Cov {D(t1), D(t2)} = ρ(t1, t2) = exp(−2|t1 − t2|) ,

α(t) =
t2 − t
t2 − t1

, β(t) =
t− t1
t2 − t1

and with expectation :

– under H0, m(t) = 0

– under Hat?

mt?(t) =
α(t) mt?(t1) + β(t) mt?(t2)√
V {α(t)D(t1) + β(t)D(t2)}

where

mt?(t1) =
a
√
A

σ2
{α(t?) + β(t?)ρ(t1, t2)} , mt?(t2) =

a
√
A

σ2
{α(t?)ρ(t1, t2) + β(t?)} .

In the sense of this equation, D(.) will be called a “linear normalized
interpolated process”. We can see that under the null hypothesis, despite the
selective genotyping, D(.) is exactly the same process as the process W (.)
of Theorem 2.1 of Rabier [20] obtained for the oracle situation (i.e. without
selective genotyping). However, under the alternative, the mean functions
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of the two processes are not the same anymore : the mean functions are
proportional of a factor

√
A/σ. Note also that D(.) is the generalization

of W (.). Indeed, if we choose S− = S+, that is to say we genotype all the
individuals, the factor

√
A/σ is equal to 1, and D(.) is the same process as

W (.).

Proof of Theorem 1

Fisher Information Matrix

Let t ∈]t1, t2[ and let lt(θ) be the loglikelihood. We first compute the
Fisher information at a point θ0 that belongs to H0. We have

∂lt
∂q
|θ0 =

y − µ
σ2

{2p(t)− 1} 1y/∈[S−,S+] (6)

∂lt
∂µ
|θ0 =

y − µ
σ2

,
∂lt
∂σ
|θ0= −

1

σ
+

(y − µ)2

σ3
.

Then,

EH0

{(
∂lt
∂q
|θ0
)2
}

= EH0

{(
y − µ
σ2

)2

{2p(t)− 1}2 1y/∈[S−,S+]

}
.

Let’s introduce two key lemmas.

Lemma 1. We have the following relationship :

{2p(t)− 1} 1y/∈[S−,S+] = α(t)X(t1) + β(t)X(t2)

with α(t) = t2−t
t2−t1 and β(t) = t−t1

t2−t1 .

To prove this lemma, use formula (4) and check that both sides coincide
when y /∈ [S−, S+].

Lemma 2. Let V ∼ N(µ, σ2), then :

i) E
(
V 21V /∈[S−, S+]

)
= (µ2 + σ2) P(V /∈ [S−, S+]) + σ (S+ + µ) ϕ

(
S+−µ
σ

)

12



− σ (S− + µ) ϕ
(
S−−µ
σ

)
ii) E

(
V 1V /∈[S−, S+]

)
= µ P(V /∈ [S−, S+]) + σ ϕ

(
S+−µ
σ

)
− σ ϕ

(
S−−µ
σ

)
iii) E

{
(V − µ)21V /∈[S−, S+]

}
= σ2 P(V /∈ [S−, S+]) + σ (S+ − µ) ϕ

(
S+−µ
σ

)
− σ (S− − µ) ϕ

(
S−−µ
σ

)
iv) E

{
(V − µ)1V /∈[S−, S+]

}
= σ ϕ

(
S+−µ
σ

)
− σ ϕ

(
S−−µ
σ

)
v) E

{
(V − µ)21V ∈[S−, S+]

}
= σ2 − σ2P(V /∈ [S−, S+])− σ(S+ − µ) ϕ

(
S+−µ
σ

)
+ σ (S− − µ) ϕ

(
S−−µ
σ

)
.

To prove this lemma, use integration by parts.
According to iii) of Lemma 2, we have A = EH0

{
(y − µ)21y/∈[S−,S+]

}
. It

comes, according to Lemma 1:

EH0

{(
∂lt
∂q
|θ0
)2
}

= EH0

[(
y − µ
σ2

)2 {
α(t)X(t1) + β(t)X(t2)

}2]

= EH0

[(
y − µ
σ2

)2

{α(t)X(t1) + β(t)X(t2)}2 1y/∈[S−,S+]

]

= EH0

{(
y − µ
σ2

)2

1y/∈[S−,S+]

}
EH0

[
{α(t)X(t1) + β(t)X(t2)}2

]
= A

{
α2(t) + β2(t) + 2α(t)β(t)e−2(t2−t1)

}
/σ4 .

To conclude, after some calculations, we find

Iθ0 = Diag

[
A
{
α2(t) + β2(t) + 2α(t)β(t)e−2(t2−t1)

}
/σ4 ,

1

σ2
,

2

σ2

]
. (7)

Only the computation of EH0

{
− ∂lt
∂q∂µ
|θ0
}

and EH0

{
− ∂lt
∂q∂σ
|θ0
}

, were not

easy. Let’s prove now why these two terms are equal to zero. We have

∂lt
∂q∂µ

|θ0= −
2p(t)− 1

σ2
1y/∈[S−,S+] .

13



It comes, using Lemma 1,

EH0

{
− ∂lt
∂q∂µ

|θ0
}

= − 1

σ2
EH0

[
α(t)X(t1) + β(t)X(t2)

]
= − 1

σ2
EH0 [α(t)X(t1) + β(t)X(t2) | y /∈ [S−, S+] ] PH0(y /∈ [S−, S+])

= − 1

σ2
EH0 {α(t)X(t1) + β(t)X(t2)} PH0(y /∈ [S−, S+]) = 0 .

Besides,

∂lt
∂q∂σ

|θ0= −
2

σ3
(y − µ) {2p(t)− 1} 1y/∈[S−,S+] .

It comes

EH0

(
∂lt
∂q∂σ

|θ0
)

= − 2

σ3
EH0

{
(y − µ)1y/∈[S−,S+]

}
EH0 {α(t)X(t1) + β(t)X(t2)} = 0 .

It concludes the proof for the Fisher Information matrix.

Study of the score process under H0

Let lnt (θ) be the log likelihood for n observations. Since the Fisher Infor-
mation matrix is diagonal, the score statistic of the hypothesis “q = 0” will
be defined as

Sn(t) =

∂lnt
∂q
|θ0√

V
(
∂lnt
∂q
|θ0
) .

Now using formula (6) and using Lemma 1, it is clear that

∂lnt
∂q
|θ0 =

n∑
j=1

yj − µ
σ2

{2pj(t)− 1} 1yj /∈[S−,S+]

=
α(t)

σ

n∑
j=1

εj Xj(t1) +
β(t)

σ

n∑
j=1

εj Xj(t2) (8)

this proves that D(.) is a linear interpolated process.
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On the other hand, we have ∀k = 1, 2 :

Sn(tk) =
n∑
j=1

σεj Xj(tk)√
nA

.

We have :

E
{
σε X(tk)

}
= E

(
σ ε 1y/∈[S−,S+] | X(tk) = 1

)
P {X(tk) = 1}

− E
(
σ ε 1y/∈[S−,S+] | X(tk) = −1

)
P {X(tk) = −1}

= E
(
σ ε 1y/∈[S−,S+]

)
/2 − E

(
σ ε 1y/∈[S−,S+]

)
/2

= 0 .

Besides :

E
[
σ2 ε2

{
X(tk)

}2 ]
= E(σ2 ε2 1y/∈[S−,S+]) = A .

According to the Central Limit Theorem, it comes

Sn(tk)
L−→ N(0, 1) .

Let’s compute the covariance of the score statistics on markers, i.e. Cov {Sn(t1), Sn(t2)}.
Since E

{
(y − µ)21y/∈[S−,S+]

}
= A, we have :

E {Sn(t1)Sn(t2)} =
1

A
E
{

(y − µ)2 X(t1) X(t2) 1y/∈[S−,S+]

}
=

1

A
E
{

(y − µ)21y/∈[S−,S+]

}
E {X(t1)X(t2)} = e−2(t2−t1) .

As a consequence, Cov {Sn(t1), Sn(t2)} = ρ(t1, t2). The weak convergence of
the score process, Sn(.), is then a direct consequence of (8), the convergence
of (Sn(t1), Sn(t2)) and the Continuous Mapping Theorem.

Study under the local alternative

Let’s consider a local alternative defined by t∗ and q = a/
√
n.

It remains to compute the asymptotic distribution of Sn(.) under this
alternative. Since we have already proved that Sn(.) is a linear interpolated
process (see formula 8), we only need to compute the distribution of Sn(t1)
and Sn(t2) under the alternative. The mean function of the process is obvi-
ously a linear interpolated function (same interpolation as previously).
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So, let’s consider the score statistic at location tk ∀k = 1, 2. We have

Sn(tk) =
n∑
j=1

(yj − µ) Xj(tk)√
nA

=
n∑
j=1

qU j(t
?) Xj(tk)√
nA

+
n∑
j=1

σεj Xj(tk)√
nA

.

We will see, that we can apply the Law of Large Numbers for the first
term and the Central Limit Theorem for the second term. To begin, let’s
focus on the second term. So, first we compute

E
{
σε X(tk)

}
(9)

=
1

2
E
{
σε X(tk) | U(t?) = 1

}
+

1

2
E
{
σε X(tk) | U(t?) = −1

}
.

We have

E
{
σε X(tk) | U(t?) = 1

}
= E

{
σε 1y/∈[S−,S+] | U(t?) = 1

}
P(X(tk) = 1 | U(t?) = 1)

− E
{
σε 1y/∈[S−,S+] | U(t?) = 1

}
P(X(tk) = −1 | U(t?) = 1)

Let’s compute P {X(tk) = 1 | U(t?) = 1} and P {X(tk) = −1 | U(t?) = 1}. We
have :

P {X(tk) = 1 | U(t?) = 1} =
P {X(tk) = 1 ∩ U(t?) = 1}

P {U(t?)}
= 2P {X(tk) = 1 ∩ U(t?) = 1 ∩X(tk+1) = 1}+ 2P {X(tk) = 1 ∩ U(t?) = 1 ∩X(tk+1) = −1}
= {1− r(t1, t2)} P {U(t?) = 1 | X(tk) = 1 ∩X(tk+1) = 1}
+ r(t1, t2) P {U(t?) = 1 | X(tk) = 1 ∩X(tk+1) = −1}

= 1− r(t1, t2) + r(t1, t2)
t2 − t?

t2 − t1
= 1− r(t1, t2)

t? − t1
t2 − t1

= 1− β(t?)r(t1, t2) . (10)

It comes :

P {X(tk) = −1 | U(t?) = 1} = β(t?)r(t1, t2) .
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Besides, according to iv) of Lemma 2,

E
{
σε 1y/∈[S−,S+] | U(t?) = 1

}
= σϕ

(
S+ − µ− q

σ

)
− σϕ

(
S− − µ− q

σ

)
.

Using the relationship

1− 2β(t?)r(t1, t2) = α(t?) + β(t?) ρ(t1, t2) ,

it comes

E
{
σε X(tk) | U(t?) = 1

}
= {1− β(t?)r(t1, t2)} σ

{
ϕ

(
S+ − µ− q

σ

)
− ϕ

(
S− − µ− q

σ

)}
− β(t?) r(t1, t2) σ

{
ϕ

(
S+ − µ− q

σ

)
− ϕ

(
S− − µ− q

σ

)}
= {α(t?) + β(t?) ρ(t1, t2)} σ

{
ϕ

(
S+ − µ− q

σ

)
− ϕ

(
S− − µ− q

σ

)}
.

(11)

In the same way, after some calculations, we obtain :

E
{
σε X(tk) | U(t?) = −1

}
= −{α(t?) + β(t?) ρ(t1, t2)} σ

{
ϕ

(
S+ − µ+ q

σ

)
− ϕ

(
S− − µ+ q

σ

)}
.

(12)

Since we consider q small, using a Taylor expansion at first order, we obtain
for instance :

ϕ

(
S− − µ+ q

σ

)
=

1√
2π

e
− 1

2

(
S−− µ

σ

)2
{

1− (S− − µ) q

σ2
+ o(q)

}
.

Finally, using Taylor expansions in formulae (11) and (12), we have :

E
{
σε X(tk)

}
= {α(t?) + β(t?)ρ(t1, t2)} q {zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)} + o(q) .

It comes

E

{
n∑
j=1

σεj Xj(tk)√
nA

}
→ α(t?) + β(t?)ρ(t1, t2)√

A
a {zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)} .
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We have now just to remark that

E
({
σε X(tk)

}2)
= E

{
σ2 ε2 1y/∈[S−,S+]

}
= E

{
σ2 ε2 1y/∈[S−,S+] | U(t?) = 1

}
/2 + E

{
σ2 ε2 1y/∈[S−,S+] | U(t?) = −1

}
/2

→ A/2 + A/2→ A .

It comes

V

{
n∑
j=1

σεj Xj(tk)√
nA

}
→ 1 ,

and according to the Central Limit Theorem

n∑
j=1

σεj Xj(tk)√
nA

L−→ N

[
α(t?) + β(t?)ρ(t1, t2)√

A
a {zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)} , 1

]
.

(13)

Besides,

E
{
U(t?) X(tk)

}
=

1

2
Pt? {1 | 1} P(X(tk) = 1 | U(t?) = 1) − 1

2
Pt? {1 | 1} P(X(tk) = −1 | U(t?) = 1)

− 1

2
Pt? {−1 | −1} P(X(tk) = 1 | U(t?) = −1) +

1

2
Pt? {−1 | −1} P(X(tk) = −1 | U(t?) = −1)

=
1

2
Pt? {1 | 1} {1− 2β(t?)r(t1, t2)} −

1

2
Pt? {−1 | −1} {2β(t?)r(t1, t2)− 1}

=
1

2
{α(t?) + β(t?)ρ(t1, t2)} (Pt? {1 | 1} + Pt? {−1 | −1}) .

Using Taylor expansion and after some work on integrals, we have :

Pt? {1 | 1} = Φ

(
S− − µ
σ

)
− q

σ
ϕ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+

q

σ
ϕ

(
S+ − µ
σ

)
+ o(q)

(14)

where Φ(.) is the cumulative distribution of the standard normal distribu-
tion.

18



Note that we can replace q by −q in order to obtain the expression of
Pt? {−1 | −1}. It comes

E
{
U(t?) X(tk)

}
= {α(t?) + β(t?)ρ(t1, t2)}

{
1 + Φ

(
S− − µ
σ

)
+ Φ

(
S+ − µ
σ

)}
+ o(q)

= {α(t?) + β(t?)ρ(t1, t2)} γ + o(q) .

As a consequence, according to the Law of Large Numbers,

n∑
j=1

qU j(t
?) Xj(tk)√
nA

→ a {α(t?) + β(t?)ρ(t1, t2)} γ√
A

. (15)

Finally, using formulae (13) and (15), we obtain

Sn(tk)
L−→ N

[
a
√
A

σ2
{α(t?) + β(t?)ρ(t1, t2)} , 1

]
. (16)

Study of the supremum of the LRT process

Let lnt (θ̂) be the maximized log likelihood and let lnt (θ̂|H0) be the maxi-

mized log likelihood under H0, with θ̂|H0 =
(
0, Y =

∑
Yj/n, 1/n

∑
(Yj−Y )2

)
(the genetic markers are useless under H0). The likelihood ratio statistics
will be defined as

Λn(t) = 2
[
lnt (θ̂)− lnt (θ̂|H0)

]
,

on n independent observations.
Since the model with t fixed is regular, it is easy to prove that for fixed t

Λn(t) = S2
n(t) + oP (1)

under the null hypothesis. Our goal is now to prove that the rest above is
uniform in t.

Let us consider now t as an extra parameter. Let t∗, θ∗ be the true
parameter that will be assumed to belong to H0. Note that t∗ makes no sense
for θ belonging to H0. It is easy to check that at H0 the Fisher information
relative to t is zero so that the model is not regular.

It can be proved that assumptions 1, 2 and 3 of Azäıs et al. [3] holds. So,
we can apply Theorem 1 of Azäıs et al. [3] and we have

sup
(t,θ)

lt(θ)− lt∗(θ∗) = sup
d∈D

{ 1√
n

n∑
j=1

d(Xj)

}2

1d(Xj)≥0

+ oP (1) (17)
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where the observation Xj stands for Yj, Xj(t1), Xj(t2) and where D is the set
of scores defined in Azäıs et al. [3], see also Gassiat [9]. A similar result is
true under H0 with a set D0. Let us precise the sets of scores D and D0. This
sets are defined at the sets of scores of one parameter families that converge
to the true model pt∗,θ∗ and that are differentiable in quadratic mean.

It is easy to see that

D =
{ 〈V, l′t(θ∗)〉√

V(〈V, l′t(θ∗)〉)
, V ∈ R3, t ∈ [t1, t2]

}
where l′ is the gradient with respect to θ. In the same manner

D0 =
{ 〈V, l′t(θ∗)〉√

V(〈V, l′t(θ∗)〉)
, V ∈ R2

}
,

where now the gradient is taken with respect to µ and σ only. Of course this
gradient does not depend on t.

Using the transform V → −V in the expressions of the sets of score, we
see that the indicator function can be removed in formula (17). Then, since
the Fisher information matrix is diagonal (see formula (7)) , it is easy to see
that

sup
d∈D

{ 1√
n

n∑
j=1

d(Xj)

}2
− sup

d∈D0

{ 1√
n

n∑
j=1

d(Xj)

}2


= sup
t∈[t1,t2]


 1√

n

n∑
j=1

∂lt
∂q

(Xj) |θ0√
V
{
∂lt
∂q

(Xj) |θ0
}


2 .

This is exactly the desired result. Note that the model with t∗ fixed is
differentiable in quadratic mean, this implies that the alternative defines a
contiguous sequence of alternatives. By Le Cam’s first lemma, relation (17)
remains true under the alternative. It concludes the proof.

Remark 1. According to the Law of Large Numbers, under the null hypoth-
esis H0 and under the local alternative Hat?,

1
n

∑
1yj /∈[S+,S−] → γ. So, γ

corresponds asymptotically to the percentage of individuals genotyped. In the
same way, γ+ (resp. γ−) corresponds asymptotically to the percentage of
individuals genotyped with the largest (resp. the smallest) phenotypes.
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3. An easy way to perform the statistical test

Since D(.) is a ”linear normalized interpolated process”, we can use
Lemma 2.2 of Azäıs et al. [2] in order to compute easily the supremum of
D2(.). Indeed, if we replace γ1(.) by α(.), γ2(.) by β(.), and ρ̃ by ρ(t1, t2), we
can remark that all the conditions for applying Lemma 2.2 are fulfilled.

It comes

max
t∈[t1,t2]

{α(t)D(t1) + β(t)D(t2)}2

α2(t) + β2(t) + 2ρ(t1, t2)α(t)β(t)

= max

(
D2(t1) , D

2(t2) ,
D2(t1) +D2(t2)− 2ρ(t1, t2)D(t1)D(t2)

1− ρ2(t1, t2)
1D(t2)
D(t1)

∈ ] ρ(t1,t2) ,
1

ρ(t1,t2)
[

)
.

(18)

Before interpreting this formula, we have to remind that in Azäıs et al.
[2], the authors prove that, under a model without interference and without
selective genotyping, the LRT process converges to the square of a “non lin-
ear interpolated process”, called Z(.). Here, we can remark that the formula
above is exactly the same if we want to compute the supremum of D2(.)
or the supremum of Z2(.). Besides, under H0, the processes D(.) and Z(.)
discretized at markers locations, are both the squeleton of an Ornstein Uh-
lenbeck process. As a consequence, we will have exactly the same threshold
if we consider a selective genotyping and an interference phenomenon, or if
we deal with a model without selective genotyping and without interference.
So, the Monte-Carlo Quasi Monte-Carlo method of Azäıs et al. [2] and based
on Genz [10], is still suitable here.

Let’s focus now on the data analysis. Which test statistic should we use
in order to make the data analysis easy ? It is well known that under selective
genotyping, when we focus only on one location of the genome which is a
marker location, performing a LRT or a Wald test is time consuming : an
EM algorithm is required to obtain the maximum likelihood estimators. In
Rabier [19], I focus on only one location of the genome, and I propose a
very easy test which is almost a comparison of means and which has the
same asymptotic properties as LRT and Wald tests. So, the idea now is to
adapt this comparison of means to our problem which focus on the whole
chromosome.

As a consequence, ∀k = 1, 2 , let’s define now the test statistic Tn(tk) such
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as

Tn(tk) =

∑n
j=1(Yj − Y ) Xj(tk)√∑n
j=1(Yj − Y )2 1Yj /∈[S−,S+]

.

We introduce the following lemma.

Lemma 3. Let Tn(.) be the process such as

Tn(t) =
α(t)Tn(t1) + β(t)Tn(t2)√

α2(t) + β2(t) + 2ρ(t1, t2)α(t)β(t)
, then Tn(.)⇒ D(.) and T 2

n(.)⇒ D2(.) .

Then, for the data analysis, we just have to consider as a test statistic
supT 2

n(.), which can be obtained easily using formula (18) and replacing
D(t1) and D(t2) by respectively Tn(t1) and Tn(t2). Note that, according to
Lemma 3, this test has the same asymptotic properties as the test based
on the test statistic sup Λn(.), which corresponds to a LRT on the whole
chromosome. So, Lemma 3 is an answer to the work of Rabbee et al. [18]
where the authors study different strategies for analyzing data in selective
genotyping.

On the other hand, a consequence of Lemma 3 is that the non extreme
phenotypes (for which the genotypes are missing) don’t bring any information
for statistical inference. Indeed, our test statistics Tn(t) are based only on
the extreme phenotypes, as soon as we replace the empirical mean Y by µ̂,
an estimator

√
n consistent based only on the extreme phenotypes (µ̂ can be

obtained by the method of moments for instance). This is a generalization
of Rabier [19], where I proved that the non extreme phenotypes don’t bring
any information for statistical inference, when we look for a QTL only on
one genetic marker.

Proof of Lemma 3
For k = 1, 2, we define T̃ (tk) such as

T̃n(tk) =

∑n
j=1(Yj − Y ) Xj(tk)√

nA
.

To begin, in order to make the proof easier, let’s consider that we are under
H0. Since Y = µ+OP (1/

√
n), we have

T̃n(tk) =

∑n
j=1(Yj − µ) Xj(tk)√

nA
+ OP

(
1√
n

)∑n
j=1Xj(tk)√
nA

.
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Let’s focus on the second term under H0. We have

E
[
X(tk)

]
= E [X(tk) | Y /∈ [S−, S+]] P(Y /∈ [S−, S+])

= E [X(tk)] γ = 0 .

By Prohorov, it comes
∑n

j=1Xj(tk) = OP (1/
√
n) .

It comes T̃n(tk) = Sn(tk) + OP (1/
√
n) and as a consequence T̃n(tk) =

Sn(tk) + oP (1). As said before, the model with t∗ fixed is differentiable
in quadratic mean, this implies that the alternative defines a contiguous se-
quence of alternatives. By Le Cam’s first lemma, the remainder converges
also to 0 in probability under the alternative.

So, if we apply the Multivariate Central Limit Theorem, we have now
(
T̃n(t1), T̃n(t2)

)
L−→

(D(t1), D(t2)) whatever the hypothesis. We set in addition

Â =
1

n

n∑
j=1

(Yj − Y )2 1Yj /∈[S−,S+] .

We have the relationship (Tn(t1), Tn(t2)) =
√
A
Â

(
T̃n(t1), T̃n(t2)

)
. Since

Â L−→ A whatever the hypothesis, according to Slutsly and then Con-

tinuous Mapping theorem, we have
√
A
Â

L−→ 1. Using Slutsky, it comes

(Tn(t1), Tn(t2))
L−→ (D(t1), D(t2)). To conclude the proof, we just have

to use the Continuous Mapping Theorem : Tn(.) ⇒ D(.) and obviously
T 2
n(.)⇒ D2(.). It concludes the proof.

4. Several markers : the “genome scan”

We suppose now that there are K markers 0 = t1 < t2 < ... < tK = T .
A QTL is lying at a position t?. So, in order to find the QTL, we will
perform tests at every positions t on the chromosome. Note that we use the
terminology “genome scan” instead of “interval mapping”, since the “interval
mapping” of Lander and Botstein [12] is usually computed by geneticists with
a model without interference. We consider values t or t? of the parameters
that are distinct of the markers positions, and the result will be prolonged
by continuity at the markers positions. For t ∈ [t1, tK ]\TK where TK =
{t1, ..., tK}, we define t` and tr as :

t` = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .
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In other words, t belongs to the “Marker interval” (t`, tr).

Since we use the Haldane modeling for the genome information at marker
locations (cf. Section 1), in order to infer the value of U(t?), we just need to
keep the flanking markers. In others words, the information brought by the
other markers is useless. So, we have

P
{
U(t?) = 1

∣∣X(t1), ..., X(tK)
}

= P
{
U(t?) = 1

∣∣X(t?`), X(t?r)
}
.

As a consequence, our problem becomes the same as the one with two genetic
markers (see Section 2). In order to perform our tests at every positions t,
we simply have to consider all the different marker intervals.

Theorem 2. We have the same results as in Theorem 1 except that the
following functions must be redefined :

• t1 becomes t` and t2 becomes tr in all the expressions, except in the
expressions α(t?) and β(t?), where t1 becomes t?` and t2 becomes t?r

• mt?(t
`) = a

√
A ρ(t`, t?`)

{
α(t?) + β(t?)ρ(t?`, t?r)

}
/σ2 if t? > t`

• mt?(t
`) = a

√
A ρ(t`, t?r)

{
α(t?)ρ(t?r, t?`) + β(t?)

}
/σ2 if t? < t`

• mt?(t
r) = a

√
A ρ(tr, t?`)

{
α(t?) + β(t?)ρ(t?`, t?r)

}
/σ2 if t? > tr

• mt?(t
r) = a

√
A ρ(tr, t?r)

{
α(t?)ρ(t?r, t?`) + β(t?)

}
/σ2 if t? < tr .

Proof of Theorem 2
The proof of the theorem is the same as the proof of Theorem 1 as soon as
we can limit our attention to the interval (t`, tr) when considering a unique
instant t. So, under H0, the result is straightforward and our process D(.) is
still a linear interpolated process. However, under the local alternative, the
proof is more complicated than the proof of Theorem 1. Indeed, the location
t? of the QTL and the location t, can belong to a different marker interval.

In order to make the proof easier, instead of considering one location
t inside a marker interval, we will focus on one genetic marker located at
tk. Indeed, since we deal with an interpolated process, we can obtain by
interpolation the value of our process at t as soon as we know the values at
the flanking markers.
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According to the proof of Theorem 1, under the alternative

Sn(tk) = q

n∑
j=1

U j(t
∗)Xj(tk)√
nA

+
n∑
j=1

σεjXj(tk)√
nA

. (19)

Note that in this proof, we will only consider the case tk < t? and the result
corresponding to t? < tk will be deduced by symmetry.

Let’s focus on the first term. We have :

E
{
U(t?)X(tk)

}
= P

{
U(t?) = 1 ∩X(tk) = 1

}
+ P

{
U(t?) = −1 ∩X(tk) = −1

}
− P

{
U(t?) = 1 ∩X(tk) = −1

}
− P

{
U(t?) = −1 ∩X(tk) = 1

}
.

Besides, since P
{
X(t?`) = 1 | U(t? = 1)

}
= 1 − β(t?)r(t?`, t?r) (cf. formula

10), we have

P
{
U(t?) = 1 ∩X(tk) = 1

}
= Pt? {1 | 1}P

{
U(t?) = 1 ∩X(tk) = 1 ∩X(t?`) = 1

}
+ Pt? {1 | 1}P

{
U(t?) = 1 ∩X(tk) = 1 ∩X(t?`) = −1

}
=

1

2
Pt? {1 | 1}

{
1− r(tk, t?`)

} {
1− β(t?)r(t?`, t?r)

}
+

1

2
Pt? {1 | 1} r(tk, t?`) β(t?) r(t?`, t?r) .

In the same way, after some calculations, we obtain

P
{
U(t?) = −1 ∩X(tk) = −1

}
=

1

2
Pt? {−1 | −1} r(tk, t?`) β(t?)r(t?`, t?r)

+
1

2
Pt? {−1 | −1}

{
1− r(tk, t?`)

} {
1− β(t?) r(t?`, t?r)

}
,

P
{
U(t?) = 1 ∩X(tk) = −1

}
=

1

2
Pt? {1 | 1} r(tk, t?`)

{
1− β(t?)r(t?`, t?r)

}
+

1

2
Pt? {1 | 1}

{
1− r(tk, t?`)

}
β(t?) r(t?`, t?r) ,

P
{
U(t?) = −1 ∩X(tk) = 1

}
=

1

2
Pt? {−1 | −1}

{
1− r(tk, t?`)

}
β(t?)r(t?`, t?r)

+
1

2
Pt? {−1 | −1} r(tk, t?`)

{
1− β(t?)r(t?`, t?r)

}
.
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As a consequence,

E
{
U(t?)X(tk)

}
= −1

2
Pt? {1 | 1} ρ(tk, t

?`)
{

2β(t?)r(t?`, t?r)− 1
}

+
1

2
Pt? {−1 | −1} ρ(tk, t

?`)
{

1− 2β(t?)r(t?`, t?r)
}

=
1

2
ρ(tk, t

?`)
{

1− 2β(t?)r(t?`, t?r)
}

(Pt? {1 | 1}+ Pt? {−1 | −1}) .

Using a Taylor expansion of Pt? {1 | 1} and Pt? {−1 | −1} (cf. formula 14),
it comes

E
{
U(t?)X(tk)

}
= ρ(tk, t

?`)
{

1− 2β(t?)r(t?`, t?r)
}{

1 + Φ

(
S− − µ
σ

)
+ Φ

(
S+ − µ
σ

)}
+ o(q)

= ρ(tk, t
?`)
{

1− 2β(t?)r(t?`, t?r)
}
γ + o(q) ,

and finally, according to the Law of Large Numbers

q
n∑
j=1

U j(t
∗)Xj(tk)√
nA

→ aρ(tk, t
?`)√
A

{
1− 2β(t?)r(t?`, t?r)

}
γ . (20)

Let’s focus now on the second term of formula (19). First, according to iv)
of Lemma 2

E
{
σε 1y/∈[S−,S+] | U(t?) = 1

}
= σϕ

(
S+ − µ− q

σ

)
− σϕ

(
S− − µ− q

σ

)
,

(21)

E
{
σε 1y/∈[S−,S+] | U(t?) = −1

}
= σϕ

(
S+ − µ+ q

σ

)
− σϕ

(
S− − µ+ q

σ

)
.

(22)

Besides,

P {X(tk) = 1 | U(t?) = 1} =
P {X(tk) = 1 ∩ U(t?) = 1}

P {U(t?)}
= 2P

{
X(tk) = 1 ∩ U(t?) = 1 ∩X(t?`) = 1

}
+ 2P

{
X(tk) = 1 ∩ U(t?) = 1 ∩X(t?`) = −1

}
=
{

1− r(tk, t?`)
}{

1− β(t?)r(t?`, t?r)
}

+ r(tk, t
?`)β(t?)r(t?`, t?r) .

It comes

2P {X(tk) = 1 | U(t?) = 1} − 1 = ρ(tk, t
?`)
{

1− 2β(t?)r(t?`, t?r)
}

.
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In the same way, after some calculations,

2P {X(tk) = 1 | U(t?) = −1} − 1 = −ρ(tk, t
?`)
{

1− 2β(t?)r(t?`, t?r)
}

.

It comes

E
[
σεX(tk) | U(t?) = 1

]
=
[
ρ(tk, t

?`)
{

1− 2β(t?)r(t?`, t?r)
}]

E
[
σε1y/∈[S−,S+] | U(t?) = 1

]
.

Besides,

E
[
σεX(tk) | U(t?) = −1

]
=
[
−ρ(tk, t

?`)
{

1− 2β(t?)r(t?`, t?r)
}]

E
[
σε1y/∈[S−,S+] | U(t?) = −1

]
.

Using a Taylor expansion in formulae (21) and (22), and using the relation-
ship 1− 2β(t?)r(t?`, t?r) = α(t?) + β(t?)ρ(t?`, t?r), it comes

E
[
σεX(tk)

]
= q

[
ρ(tk, t

?`)
{

1− 2β(t?)r(t?`, t?r)
}] {

zγ+ϕ(zγ+)− z1−γ−ϕ(z1−γ−)
}

+ o(q)

= q
[
ρ(tk, t

?`)
{
α(t?) + β(t?)ρ(t?`, t?r)

}] {
zγ+ϕ(zγ+)− z1−γ−ϕ(z1−γ−)

}
+ o(q) .

As in the proof of Theorem 1

E
({
σε X(tk)

}2)→ A and V

{
n∑
j=1

σεj Xj(tk)√
nA

}
→ 1 .

So, according to the Central Limit Theorem

n∑
j=1

σεj Xj(tk)√
nA

L−→ N

[
ρ(tk, t

?`)
{
α(t?) + β(t?)ρ(t?`, t?r)

}
√
A

a {zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)} , 1

]
.

(23)

Finally, according to formulae (20) and (23) :

Sn(tk)
L−→ N

[
ρ(tk, t

?`)
{
α(t?) + β(t?)ρ(t?`, t?r)

}
a
√
A/σ2, 1

]
.

As said before, the result for t? < tk is deduced by symmetry. It concludes
the proof.

We introduce now our Theorem 3.
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Theorem 3. Let κ be the Asymptotic Relative Efficiency (ARE) with respect
to the oracle situation where all the genotypes are known. Then, we have

i) κ = γ + zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

ii) κ reaches its maximum for γ+ = γ− = γ/2 .

According to i) of Theorem 3, the ARE with respect to the oracle situation
(i.e. without selective genotyping), does not depend on the constant a linked
to the QTL effect, and does not depend on the location of the QTL t?.
Besides, we can remark that we have exactly the same ARE with respect to
the oracle situation, if we scan the chromosome or if we focus only on one
locus (even if the QTL is not on this locus). Indeed, since the mean functions
(oracle situation and selective genotyping) are proportional of a factor

√
A/σ,

it is obvious that the ARE will be the same if we scan the chromosome
or if we focus only on one locus. On the other hand, according to ii) of
Theorem 3, if we want to genotype only a percentage γ of the population,
we should genotype the γ/2% individuals with the largest phenotypes and
γ/2% individuals with the smallest phenotypes. It confirms by the theory
what geneticists do in practice. It is also a generalization of Rabier [19] where
I prove that we have to genotype symmetrically when we look for a QTL on
only one genetic marker.

Proof of Theorem 3
The proof of i) is obvious since the mean functions of the selective genotyping
and the oracle situation, are proportional of a factor

√
A/σ. Let’s now prove

that the maximum is reached for γ+ = γ− = γ/2. We have to answer the
following question : how must we choose γ+ and γ− to maximize the efficiency
? We remind that γ++γ− = γ and that ϕ(.) and Φ(.) denote respectively the
density and the cumulative distribution of the standard normal distribution.
Let u(.) be the function such as : u(zγ+) = Φ−1

{
γ − 1 + Φ(zγ+)

}
. Then,

z1−γ− = u(zγ+).

Let k1(.) be the following function : k1(zγ+) = zγ+ϕ(zγ+)−u(zγ+) ϕ
{
u(zγ+)

}
.

In order to maximize κ, we have to maximize the function k1(.). Let k′1(.),
u′(.) and ϕ′(.) be respectively the derivative of k1(.), u(.) and ϕ(.). We have

k′1(zγ+) = ϕ(zγ+) + zγ+ϕ
′(zγ+) − u′(zγ+) ϕ

{
u(zγ+)

}
− u(zγ+) u′(zγ+) ϕ′

{
u(zγ+)

}
,

u′(zγ+) =
ϕ(zγ+)

ϕ(z1−γ−)
.Then
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k′1(zγ/2) = ϕ(zγ/2) −
{
zγ/2

}2
ϕ(zγ/2) − ϕ(z1−γ/2) +

{
z1−γ/2

}2
ϕ(z1−γ/2) = 0

. It can be proved that it corresponds to a maximum. As a result, the
efficiency κ reaches its maximum when γ+ = γ− = γ

2
. It concludes the proof.

5. Applications

In this Section, we propose to illustrate the theoretical results obtained
in this paper. For all the following applications, we will consider statistical
tests at the 5% level. If we call

hn(tk, tk+1) =
T 2
n(tk) + T 2

n(tk+1)− 2ρ(tk, tk+1)Tn(tk)Tn(tk+1)

1− ρ2(tk, tk+1)
1Tn(tk+1)

Tn(tk)
∈]ρ(tk,tk+1),

1
ρ(tk,tk+1)

[
,

as explained before, an easy way to perform our statistical test is to use the
test statistic

Mn = max
{
T 2
n(t1), T

2
n(t2), hn(t1, t2), ..., T

2
n(tK−1), T

2
n(tK), hn(tK−1, tK)

}
.

Our first result is that the threshold (i.e. critical value) is exactly the
same as the classical threshold obtained without selective genotyping and
without interference. So, in order to obtain our threshold, the Monte Carlo
Quasi Monte-Carlo methods of Azäıs et al. [2], based on Genz [10] is still
suitable here. The advantage of this method is that it is very fast and it can
be performed very easily (just download the Matlab package with graphical
user interface, called “imapping.zip”, on www.stat.wisc.edu/∼rabier ). This
is an alternative to the permutation method proposed by Manichaikul et al.
[14] and inspired by Churchill and Doerge [6], which is very time consuming
and not easy to compute in selective genotyping because of the missing geno-
types. This way, in Figure 1, we propose to check these asymptotic results on
simulated data. We consider a chromosome of length T = 3M and a sparse
map : seven genetic markers are equally spaced every 50cM. For such a con-
figuration, if we choose a level 5%, the corresponding threshold of Azäıs et
al. [2] is 7.75. We consider here γ = 0.4, and different ways of performing the
selective genotyping : genotyping symmetrically (i.e. γ+ = γ/2), genotyping
only the individuals with the largest phenotypes (i.e. γ+ = γ) .... We can
see that, whatever the value of γ+, the Percentage of False Positives is close
to the true level of the test (i.e. 5% ) as soon as the number of individuals
n is at least 100. Note that for small values of n (see n = 50), the threshold

29



seems to be too conservative. In Figure 2, we consider a smaller chromo-
some T = 1M and a denser map : 11 genetic markers are equally spaced
every 10cM. Besides, we consider now γ = 0.3. We obtain the same kind of
conclusions as previously.

In Figures 3 and 4, we focus on the alternative hypothesis. In Figure
3, we consider the sparse map. For the QTL effect q, we consider a = 4 :
we remind that q = a/

√
n. We focus on different locations t? of the QTL

and different values of γ+. As expected (cf. Theorem 3), we can see that
the Theoretical Power is maximum when we genotype symmetrically (i.e.
γ+ = γ/2). Note that, we also give in brackets the Empirical Power obtained
for n = 1000, just to confirm our asymptotic results. Finally, in Figure 4, we
focus on our dense genetic map. We obtain the same kind of conclusions as
before. This result was expected since all the theoretical results obtained in
this paper, are suitable for any kind of genetic map.

To conclude, we present in this paper easy ways to analyze data under
selective genotyping and interference. That’s why it must be interesting for
geneticists.
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HH
HHHHγ+

n
1000 200 100 50

γ 4.89% 4.71% 4.48% 3.51%
γ/2 5.18% 5.14% 4.70% 3.95%
γ/4 5.07% 4.89% 4.61% 3.63%
γ/8 4.69% 4.98% 4.46% 3.71%

Figure 1: Percentage of False Positives as a function of n and the percentage γ+ of indi-
viduals genotyped in the right tail. The chromosome is of length T = 3M and 7 markers
are equally spaced every 50cM (γ = 0.4, a = 0, µ = 0, σ = 1, 10000 samples of size n).

30



HHH
HHHγ+

n
1000 200 100 50

γ 5.05% 4.58% 4.20% 3.47%
γ/2 4.94% 4.73% 4.59% 4.21%
γ/4 4.82% 4.56% 4.65% 3.83%
γ/8 5.02% 4.87% 4.31% 3.40%

Figure 2: Percentage of False Positives as a function of n and the percentage γ+ of indi-
viduals genotyped in the right tail. The chromosome is of length T = 1M and 11 markers
are equally spaced every 10cM (γ = 0.3, a = 0, µ = 0, σ = 1, 10000 samples of size n).

HH
HHHHγ+

t?
80cM 130cM 205cM 265cM

γ
45.08% 45.26% 54.66% 46.34%

(45.20%) (44.71%) (53.92%) (46%)

γ/2
72.12% 72.05% 82.13% 74.27%

(71.50%) (71.41%) (82.21%) (73.78%)

γ/4
68.06% 68.08% 78.79% 70.49%

(67.35%) (67.98%) (78.88%) (69.73%)

γ/8
61.78% 61.75% 72.74% 64.07%

(61.51%) (60.98%) (72.20%) (63.61%)

Figure 3: Theoretical power and Empirical Power (in brackets) as a function of the location
of the QTL t? and the percentage γ+ of individuals non genotyped in the right tail. The
chromosome is of length T = 3M and 7 markers are equally spaced every 50cM (γ = 0.4,
a = 4, σ = 1, µ = 0, 10000 samples of n = 1000 individuals, 100000 paths for the
Theoretical Power).
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HH
HHHHγ+

t?
12cM 36cM 52cM 75cM

γ
61.37% 62.03% 62.82% 61.68%

(60.74%) (61.36%) (62.23%) (61.10%)

γ/2
83.83% 83.70% 84.61% 83.28%

(83.54%) (83.15%) (84.49%) (83.79%)

γ/4
80.97% 80.86% 81.85% 80.67%

(80.95%) (80.18%) (81.10%) (80.61%)

γ/8
76.15% 75.98% 76.75% 75.63%

(75.70%) (75.36%) (76.75%) (75.14%)

Figure 4: Theoretical power and Empirical Power (in brackets) as a function of the location
of the QTL t? and the percentage γ+ of individuals non genotyped in the right tail. The
chromosome is of length T = 1M and 11 markers are equally spaced every 10cM (γ = 0.3,
a = 4, σ = 1, µ = 0, 10000 samples of n = 1000 individuals, 100000 paths for the
Theoretical Power).
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