
HAL Id: hal-00796246
https://hal.science/hal-00796246

Submitted on 2 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic matching to achieve software component
discovery and composition

Sofien Khemakhem, Khalil Drira, Mohamed Jmaiel

To cite this version:
Sofien Khemakhem, Khalil Drira, Mohamed Jmaiel. Semantic matching to achieve software component
discovery and composition. International Conference on Web Information Systems and Technologies
(WEBIST), May 2013, Aachen, Germany. 6p. �hal-00796246�

https://hal.science/hal-00796246
https://hal.archives-ouvertes.fr

Semantic matching to achieve software

component discovery and composition

Sofien KHEMAKHEM1 , Khalil DRIRA2,3 and Mohamed JMAIEL1

1 University of Sfax, National School of Engineers,

Laboratory ReDCAD, P.B.W. 3038 Sfax, Tunisia

e-mail: Khemakhem sofien@yahoo.fr, Mohamed.jmaiel@enis.rnu.tn
2 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

3 Université de Toulouse, LAAS, F-31400 Toulouse, France

e-mail: Khalil@laas.fr

Abstract

In CBSE, current approaches based on software component are in short of

flexibility because of lacking semantic. In this paper, we introduce an extended

semantic discovery of software components in which non functional properties of

components are considered. We also introduce an ontology supported automatic

component composition method to realize the integration of the adequate compo-

nent composite in the current project.

1 INTRODUCTION

Since the middle of 1990’s, object-oriented programming becomes a key component

in software engineering. Many reserach in software development focus on software

reuse, (KDJ11) while the software composition becomes an important component in

software engineering. To resolve the difficulty of manually building a composite com-

ponent, there have been many studies on the automated composition of software com-

ponents (SCLK06). Previous works specify the semantic description of a component

using service specification languages such as OWL-S (CTJD13), WSMO (dBBD+05),

and SAWSDL (ABD+07) based on a domain ontology, which is built by an ontolog-

ical language such as OWL (SWM04). Likewise, a developer’s request is specified

in terms of inputs, outputs, preconditions and effects. From these specifications, they

automatically build composite components using various AI (Artificial Intelligence)

techniques. Previous methods construct composite components, which take the inputs

entered by a developer and return the outputs requested, by repeatedly discovering and

chaining appropriate components. When two components are chained, the preceding

component should satisfy the precondition of the following component. Generally,

two components with identical inputs, outputs, preconditions, and effects are regard

as identical components. Therefore, if a composite software component satisfies the

inputs, outputs, preconditions, and effects requested by a developer, it is regarded as

satisfying the user requirement. However, when components or user requirements do

not have pre-conditions and effects, the conventional methods may generate composite

components, which differ from a developer’s needs. In general, two components with

1

the same IOPE (input, output, pre-condition and effect) are considered to be identical

each other (CF12). However, non-functional properties (JA10), which provide certain

information about component constraint to users, may not need any preconditions and

have no effects after execution. In previous works query is based on IOPE, cannot

compose correctly if the non-functional aspect of the disred composite component is

not specified. In several cases, the non-functional constraints play a decisive role in

the choice of the most powerful composite component. previous works have expo-

nential time complexity in proportion to the number of available components, since

they have to consider every possible combination of available components. In this

paper we aim to define a unified and a complete approach to ameliorate the reuse of

software components in the CBD. Our approach encompasses the functional and the

non-functional aspect in different stage: description, discovering, composition and in-

tegration. To achieve our objective we develop three ontologies. Two ontologies are

used to discover atomic and composite components which are the discovery and the

shared ontology. The third ontology is the integration ontology which describes the

component’s internal structure to facilitate its integration in the current work after its

selection. To improve the integration process we also use, Output-Matching-Service

and Input-Output-convertor are service types used in matching parameters. This paper

is organized as follows: Section 2 presents the discovery and the integration ontology.

We will devote section 3 to detail the shared ontology for composite component dis-

covery. We explain in section 4 how mapping is done between the discovery ontology

and the shared ontology. In conclusion, we will suggest some openings and prospects

related to this study.

2 THE DISCOVERY AND THE INTEGRATION ON-

TOLOGY

We describe the semantics of components to express knowledge about functional and

non-functional aspects of a component. This knowledge comprises:

• The structural aspects that specify the component’s internal structure. The de-

veloper uses these aspects to determine if interaction exists between component

operations and other components used to build the current project.

• The functional aspects that identify the functionalities of the component is ex-

pected to provide through many features. These features include methods that

are used to adapt the behavior of the component to his context. The adaptation is

made by specializing and customizing. The other kinds of features are used by

the application specific part of a component-based software. Generally this type

of information is specified by the component’s methods.

• The non functional aspect specifies the component constraints related to com-

munication or computation. The non functional aspect includes features such

as performance, availability, reliability, security, adaptability and dependability.

We distinguish static and dynamic categories of non functional features. Static

features, such as security-related constraints, do not change during component

execution. Dynamic features, such as performance-related properties, depend on

the deployment environment.

2

All these features represent different and complementary views of a component.

The feature set used to describe a component, depends on the developer action: dis-

covery and integration. The discovery of a component is made by sending a query to

the repository manager. Once a set of components has been selected, additional fea-

tures are specified to select a component before integration. For the discovery action,

the query includes functional and/or non functional features. For integration action, the

structural features have to be specified.

The underlying approach for SEC++ is based on the following ontologies(see Fig-

ure 1): (KDJ10)

• The discovery ontology that specifies functional and non functional features.

• The integration ontology that describes the problem solving method (PSMs) used

to specify the component’s structural features.

Figure 1: Discovery and integration ontologies

3 THE SHARED ONTOLOGY FOR COMPOSITE COM-

PONENT DISCOVERY

This approach exploits the advantages of semantic composition approaches, powered

by ontologies at both component discovery and integration levels. Building on top

of that, we introduce an ontology-based semantic approach. First, the semantic com-

ponent specification provides a mechanism to enrich atomic components with more

semantics than the syntactical method. Second, mapping atomic components and other

relevant concepts into a centralized shared ontology offers a knowledge repository for

software components (see Figure 2). The objective of semantic enhancement is to sup-

port ontological heuristics in order to enable automated and dynamic component com-

position. When our enhanced search engine SEC++ receives a query from a consumer,

it first searches the discovery ontology. Our approach enhances the discovery ontol-

ogy with a shared ontology. This centralized ontology represents relevant components

3

and concepts in a specific domain, constructed by mapping and integrating individual

discovery ontologies for software components. Here, the ontological heuristics serves

as guidelines to respond to a developer request. After using ontological heuristics on

the shared ontology, SEC++ generates a number of alternative solutions to component

composition. These alternatives are then evaluated by a decision engine using a set of

criteria specified by the developer. Such criteria may include QoS-based optimization

of component composition, business rules and strategies. A selected optimal composi-

tion scheme is then executed.

As for the integration ontology, we employ problem solving method to develop a lo-

cal ontology for component. In the integration ontology we try to divide the component

process into tasks. Tasks are either solved directly (by means of primitive methods),

or are decomposed into subtasks (by means of decomposition methods). We use the

Unified Problem-Solving Method Language (UPML) to describe the components of

PSMs (task, method and adapter). Similarly, the component model subclass is espe-

cially beneficial for composition (see Figure 1). The proposed approach utilizes the

component model class in two ways. For base components, a component model keeps

information about composability, which specifies when the component can be used in

a composite component. For composite components, a component model maintains

alternative composite solutions incrementally for reuse. This semantic enrichment pro-

vides a self-learning capability of component composition.

� �

�����������	A��
��A��ABA�C

��DE���F�A��ABA�C DA��������A��A�����

�	��A���C�
��A��ABA�C

�����F���

���ABA�	��B�E���	��	�

Figure 2: An ontology-supported system for component composition

Local integration ontologies are consolidated in a server by ontology mapping and

integration. As a result, all relevant concepts and components in a domain are in the

shared ontology, local discovery ontology for a component is mapped into the shared

ontology, appearing as a node in the ontology tree. How to organize all components

into the repository depends on domains and application requirements. For example,

for calculating Matrix we can maintain semantic relationships (e.g., hierarchical and

sibling relationships) between Matrix operations. The shared ontology also represents

other application-specific concepts for mapping and integrating components. The map-

ping and integration not only unite component descriptions and concepts but also add

more semantics. Moreover, the shared ontology enables ontological heuristics, thus fa-

cilitating dynamic component composition. For example, we can study composability

of components based on some generic concepts. As a simple example, when com-

posing component C2 that calculates the determinant of a real matrix by receiving the

output parameters of a component C1 that calculates the sum of two matrix which have

a natural type. At first glance, these two components cannot be composed. However,

4

Figure 3: mapping the discovery ontology individual instances into shared ontology

the relationship between real and natural is revealed in the type ontology: natural is

included in real.

4 MAPPING THE DISCOVERY ONTOLOGY INTO

INTEGRATION ONTOLOGY

In this section, we present a prototype system for mapping a discovery ontology of

mathematical service into integration ontology, which is developed based on the pro-

posed ontology-supported software component integration. Our prototype system em-

ploys W3C-recommended standards (i.e., RDF+OWL) for semantic description and

ontological engineering. The software utilized for this task is Protégé 3.4.4. At the

discovery ontology description level, the prototype system translates component de-

scriptions and then adds more semantics in the component model class. The compos-

ability property of the component model class can have values denoting possible ways

for component composition.

Taking the Linear system resolution component as an example, its composability

contains a list of possible parameter flows (from inputs to outputs), each of which

can be a part of an alternative path in a composite component (Complex Matrix −→

Complex Matrix), (Real Matrix −→ Real Matrix).

Another way to exploit composability is first to attach composability to other prop-

erties with concrete meanings, then associate composability with composition rules.

all individual discovery ontologies are mapped together, appearing as nodes or sub-

classes in the shared ontology. For example, the LSR component is a subclass of the

LS class (see Figure 3). The prototype can extract some metadata from individual dis-

covery ontologies and map into the shared one. After organizing those base Matrix

Operation services into a shared knowledge repository, the prototype adds other con-

cepts relevant to Matrix operations, either domain-specific or generic, such as Type.

5

5 CONCLUSION

In this paper, we presented the latest version of SEC: SEC++, which cover the whole

set of ontologies. It is a persistent component for discovering atomic and composite

components. It delivers services and helps the developer to locate appropriate com-

ponents for integration into the current work. To ensure the successfulness of this

process, we developed the discovery, the integration and the shared ontologies. The

ontological heuristics in used to enable automated and dynamic component composi-

tion. To improve the integration process we have used Output-Matching-Service and

Input-Output-convertor service types used in matching parameters. In the future work,

we plan to develop a fuzzy search system that aims to discover component which is

most relevant to the user according to his/her perception.

REFERENCES

Rama Akkiraju, Carine Bournez, J.B. Domingue, Joel Farrell, Laura Ferrari, and Lau-

rent Henocque. Semantic Annotations for WSDL and XML Schema, W3C rec-

ommendation edition, 2007.

Tarak Chaari and Kaouthar Fakhfakh. Semantic modeling and reasoning at runtime for

autonomous systems engineering. In 9th International Conference on Ubiquitous

Intelligence and Computing & Autonomic Trusted Computing(UIC/ATC), 2012.

Tarak Chaari, Said Tazi, Mohamed Jmaiel, and Khalil Drira. ODACE SLA: Ontology

driven approach for automatic establishment of service level agreements. IJSSOE,

1(3), 2013.

Jos de Bruijn, Christoph Bussler, John Domingue, Dieter Fensel, Martin Hepp, Uwe

Keller, and Michael Kife. Web Service Modeling Ontology (WSMO), W3C rec-

ommendation edition, 2005.

Martin Junghans and Sudhir Agarwal. Web service discovery based on unified view on

functional and non-functional properties. In Proceedings of the 4th IEEE Interna-

tional Conference on Semantic Computing (ICSC 2010). IEEE Computer Society,

2010.

Sofien Khemakhem, Khalil Drira, and Mohamed Jmaiel. An integration ontology for

components composition. In International Journal of Web Portals, 2(3):35–42,

2010.

Sofien Khemakhem, Khalil Drira, and Mohamed Jmaiel. Modern Software Engineer-

ing Concepts and Practices: Advanced Approaches, chapter Description, classifi-

cation and discovery approaches for software components: a comparative study.

IGI publisher, 2011.

Seog-Chan, Dongwon Lee, and Soundar R. T. Kumara. A comparative illustration of

AI planning-based web services composition. SIGecom Exch., 5(5):1–10, January

2006.

Michael K. Smith, Chris Welty, and Deborah L. McGuinness. OWL Web Ontology

Language Guide, W3C recommendation edition, 2004.

6

