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Abstract

This paper studies three notions of fuzzy dominance based on cred-
ibility measure, namely, the fuzzy mean-risk dominance, the first cred-
ibilistic dominance and the second credibilistic dominance.
More precisely, we introduce and examine some properties of the Fuzzy
Lower Partial Moments (FLPM) of a fuzzy variable and, we deduce
the Fuzzy Kappa index (FK) of a fuzzy variable, that is, a risk-
adjusted performance measure of an asset or a portfolio with fuzzy
return. Based on the aforementioned notion, we introduce the fuzzy
mean-risk dominance of two fuzzy variables and we characterize it in
three specific and interesting cases. We recall the first credibilistic
dominance and the second credibilistic dominance for fuzzy variables

∗Corresponding author: Email: sadefo@yahoo.fr

1



introduced earlier by Peng et al. [20]. We characterize the first credi-
bilistic dominance and determine some of its properties. We introduce
and characterize the notion of crossing points of distributions of two
fuzzy numbers and use them to characterize the second credibilistic
dominance for fuzzy numbers. We justify that the first credibilistic
dominance is stronger than the fuzzy mean-risk dominance and the
second credibilistic dominance, and neither of these two later implies
the other.

Key Words: Credibility measure; Fuzzy variable; Fuzzy Lower partial mo-
ment; Fuzzy mean-Risk dominance; First credibilistic dominance; Second
credibilistic dominance; crossing points.

1 Introduction

In traditional decision theory and decision analysis, there are some situations
where one lottery (such as probability distribution over possible outcomes)
can be ranked as superior to another lottery. In such situations, following
[7] and [2], we can use the term stochastic dominance as a form of stochastic
ordering (see [23], section 1.E). It is based on preferences regarding out-
comes. A preference might be a simple ranking of outcomes from the best
to the least favored, or it might also employ a value measure (e.g., a number
associated with each outcome that allows comparison of one outcome with
another, such as two instances of winning a euro vs. one instance of winning
two euros). In many theoretical or as well practical situations, one has a
desirability to make a prediction about a decision-maker preference between
given pairs of risky variables (random variables or fuzzy variables) without
having knowledge of the decision maker utility function. In the literature,
two main approaches have been proposed in the literature to compare two
or multiple risky variables.

For the first approach, from seminal works of Markowitz [17] and Tobin
[25], many scholars suggested to use the characteristics of such variables,
(that are in general k-moments of a variable and in particular mean, vari-
ance, semi-variance, skewness, kurtosis, semi-kurtosis) to determine optimal
portfolio when asset return is a (random or fuzzy) variable. One limitation
of their analysis is due to the utilization of only the (first) moments (mean
and variance) of the distribution, since the expected utility is in general, a
function of all moments of the (probability or credibility) distribution. In

2



this paper, we do not consider this approach.

The second approach we consider, first works are based on dominance
of random variables. Therefore, we have three main alternatives to [17]
and [25]. Firstly, the possibility to focus on downside stochastic dominance
namely mean-downside risk dominance, that is, a stochastic dominance of
two variables under certain threshold. One example is the so-called lower
partial moment (LPM) introduced by Bawa [2]. There are several applica-
tions of the mean-LPM for portfolio selection (see [3] and [11]). Notice that
the mean-risk dominance is generally used in finance and economics for asset
allocation (see [3], [9] and [18]). The role of the lower partial moment in
economics can be seen in [24].
Secondly, in the case where the utility function of a decision-maker is un-
known, a general stochastic dominance of any order that is based in com-
parison of two or multiple random variables can be possible and valuable for
any utility function in a certain class which exhibits non-increasing marginal
utility everywhere. Every expected utility maximizer with an increasing util-
ity function will prefer lottery A over lottery B if A first-order stochastically
dominates B. Thirdly, the other commonly used type of stochastic dominance
is second-order stochastic dominance. Roughly speaking, for two lotteries A
and B, lottery A has second-order stochastic dominance over lottery B if
the former is more predictable (i.e. involves less risk) and has at least as
high a mean. All risk-averse expected-utility maximizers (that is, those with
increasing and concave utility functions) prefer a second-order stochastically
dominant gamble to a dominated gamble. Since portfolio analysis typically
assumes that all investors are risk averse, no investor would choose a port-
folio that is second-order stochastically dominated by some other portfolio.

However, in order to complement this approach, we are sometimes faced
with the situation where the values of random variables are not completely
known. There are many other information and knowledge that cannot gen-
erally be described well by random variables because of the lack of historical
data. For instance, investors in energy sector would like to estimate the coal
reserves in some area, but even so after exploration analysis drawn by apprais-
ers will always be “about billions of tons”. The precede estimation “billions
of tons” is a value expert’s estimation rather than observations because the
coal reserve has on exact true value that we don’t know but estimate. In
such a situation, because statistics and probability theory are unsuitable and
Possibility theory proposed by Zadeh [26] is not self-dual, Liu [16] suggested
to deal with it by introducing a self-dual credibility measure that is the av-
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erage of possibility measure and necessity measure. The credibility measure
theory provides an alternative framework for modeling economics and finan-
cial problems. Recently, Peng et al. [13, 20] also provided an extension of
stochastic dominance to fuzzy variables based on credibility distributions.
Apart from economics and Finance, it is of interest to define such extension
to solve the problem of extending the natural ordering of the real line to
fuzzy intervals has produced a large and scattered literature.
In this paper, we use the credibility theory to study and characterize some
dominance relations between fuzzy variables.

In this paper, we consider a risk factor as a fuzzy variable based on
credibility theory of Liu [16].

In this paper, after the introduction of the so-called Fuzzy lower partial
moment (FLPM) based on credibility measure, we propose some of its prop-
erties. We also deduced the n-th order fuzzy kappa index (FK) as a the
quotient between risk premium and the n-th squared root of the FLPM of
a fuzzy variable. The precede, is a risk-adjusted performance measure of a
given fuzzy variable. The fuzzy kappa index can be a helpful tool to classified
assets or portfolios with different risk factors. We complete our credibility
fuzzy dominance with a general analysis of the mean-risk dominance based
on FLPM, the first and second order dominance of fuzzy variables. Our
analysis complements the one of Peng et al. [13] and [20] in different ways.
Because in some situations, it is not absolutely possible to compare two or
multiple fuzzy variables, following Osuna [19] and in order to characterize
the second order fuzzy dominance, we also introduce and characterize the
crossings points between two fuzzy variables distributions.

After the introduction in Section 1, the paper is planned as follows: Sec-
tion 2 reviews notions on credibility measure of [16], introduces FLPM, gives
some of its examples for illustration, justifies that it becomes some well-
known notions in some specific cases. We end this section by determining
some interesting properties of the FLPM. Section 3 analyzes three dominance
relations on fuzzy variables based on credibility theory. More precisely, we
introduce and characterize the Mean-risk dominance relation based on FLPM
on the set of fuzzy variables. We recall the first credibilistic dominance rela-
tion and the second credibilistic dominance relation on fuzzy variables intro-
duced recently by Li et Peng [13]. We characterize and determine some of
the properties of the first credibilistic dominance relation for fuzzy numbers.
We introduce fuzzy counterparts of the two notions of Interval of Coincidence
and Crossing Points of two random variables introduced by Osuna [19]. We
use these two notions to characterize the second credibilistic dominance re-
lation and, we characterize crossing points for fuzzy numbers. We establish
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the relationship between the three relations.

2 PRELIMINARIES

2.1 Review on credibility measure

Let ξ be a fuzzy variable with membership function µ where for any x ∈ R,
µ(x) represents the possibility that ξ takes value x. ξ is normal if ∃x0/µ(x0) =
1. ξ is non-negative fuzzy variable if ∀x < 0, µ(x) = 0. A support of ξ is the
crisp subset of R defined by Supp(ξ) = {x ∈ R, µ(x) > 0} and its core is also
a crisp subset of R defined by Cor(ξ) = {x ∈ R, µ(x) = 1}.

Throughout this paper, we assume that all fuzzy variables are normal,
that is, ∃x0 ∈ R, µ(x0) = 1.

In Section 3.2, we will use a fuzzy number ξ which is a fuzzy variable sat-
isfying: ∃a, b, c, d ∈ R with a ≤ b ≤ c ≤ d and (i) µ is upper semi-continuous,
(ii) ∀r 6∈ [a, d], µ(r) = 0, (iii) µ is increasing on [a, b], (iv) ∀r ∈ [b, c], µ(r) = 1
and (v) µ is decreasing on [c, d].
We denote a fuzzy number by ξ = (a, b, c, d) with a ≤ b ≤ c ≤ d and its
support is the bounded interval Supp(ξ) = Supp((a, b, c, d)) = [a, d].

In the particular case where µ is a straight line on [a, b] and [c, d], then
ξ = (a, b, c, d) is the usual and well-known trapezoidal fuzzy number. If b = c,
then ξ = (a, b, d) is a triangular fuzzy number.

Note that for ξ taking values in B, Zadeh [26] has defined the possibility
measure of B by

Pos({ξ ∈ B}) = sup
x∈B

µ(x)

and the necessity measure of ξ by

Nec({ξ ∈ B}) = 1− sup
x∈Bc

µ(x).

But neither of these measures are self-dual. Therefore, Liu and Liu [16]
introduced the credibility measure as the average of possibility measure and
necessity measure as follows: for any set B,

Cr({ξ ∈ B}) =
1

2

(

sup
x∈B

µ(x) − sup
x∈Bc

µ(x) + 1

)

. (1)
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It is easy to show that credibility measure is self-dual. That is,

Cr({ξ ∈ B}) + Cr({ξ ∈ Bc}) = 1.

Liu and Liu [16] introduced the expected value of ξ defined as follows

E[ξ] = e =

∫ +∞

0

Cr{ξ ≥ r} dr −

∫ 0

−∞
Cr{ξ ≤ r} dr (2)

provided that at least one of the above integrals is finite. Note that, expected
value is one of the most important concept for a fuzzy variable which gives
the center of its distribution.
Liu [14] also defined the credibility distribution Φ : R → [0, 1] of a fuzzy
variable ξ as follows:

∀t ∈ R,Φ(t) = Cr{ξ ≤ t} =
1

2
[1 + sup

x∈]−∞;t]

µ(x)− sup
x∈]t;+∞[

µ(x)]. (3)

When Φ is absolutely continuous, we have the credibility density function
φ : R → [0,∞[ such that

∀t ∈ R,Φ(t) =
∫ t

−∞
φ(u)du. (4)

Obviously, we have
∫ +∞
−∞ φ(u)du = 1.

A distribution function Φ of ξ is a non-degenerate distribution function
if ∀t ∈ R, t 6= E[ξ] ⇒ Φ(t) 6= 0.

The distribution function Φ of a fuzzy number ξ = (a, b, c, d) is defined
by:

∀r ∈ R,Φ(r) =























0 if r < a
1
2
µ(r) if a ≤ r < b

1
2
if b ≤ r < c

1− 1
2
µ(r) if c ≤ r < d

1 if d ≤ r

. (5)

It is an increasing function, that means, ∀x ∈ [a, b], ∀y ∈ [b, c], ∀z ∈ [c, d],
Φ(x) ≤ Φ(y) ≤ Φ(z).

In the next Paragraph, we will introduce the lower partial moment of a
fuzzy variable, namely, the Fuzzy Lower Partial Moment (FLPM) of ξ and
examine some of its properties.
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2.2 Lower Partial Moments of fuzzy variables

In the following, we define the FLPM of a fuzzy variable and deduce some
of its properties that seem similar to some well-known properties of lower
partial moment (LPM) of a random variable under a probability measure.
For illustration, we particularly focus on the determination of the FLPM for
trapezoidal and triangular fuzzy variables.

2.2.1 Definitions, specific cases and examples

Definition 1. Let ξ be a fuzzy variable, τ ∈ R and α ∈ R∗
+. The Fuzzy Lower

Partial Moment (FLPM) of ξ with order α and target value τ is defined as

FLPMα,τ [ξ] = E[max(τ − ξ, 0)α] (6)

where the expectation operator E is defined by (2).

Following the paper of Kaplan and Knowles [11], we introduce the Fuzzy
Kappa index which is a fuzzy risk-adjusted performance measure by using the
fuzzy lower partial moment (FLPM) as a risk measure for a fuzzy variable.

Definition 2. For τ ∈ R and α ∈ R∗
+, the fuzzy Kappa index (FK) of the

fuzzy variable ξ is:

FKα,τ [ξ] =
E[ξ]− τ

(FLPMα,τ [ξ])
1
α

. (7)

Throughout this paper, we will simply say “The Fuzzy Lower Partial Mo-
ment (FLPM) of ξ” instead of “The Fuzzy Lower Partial Moment (FLPM)
of ξ with order α and target value τ.”

Let us deduce from the previous definition some notions that are fuzzy
counterpart of some well-known notion on LPM of a random variable under
probability theory. We also provide an alternative definition of the FLPM of
ξ based on its credibility density function.

Remark 1. Let ξ be a fuzzy variable, τ ∈ R and α ∈ R∗
+.

1. If the target value τ = E[ξ] = µ, then we obtain the following known
notions:

• For α ∈ 2N− {0}, FLPMα,µ[ξ] is the semi-moment of order α of
ξ introduced earlier by Sadefo Kamdem et al.[21].

• For α = 4, FLPMα,µ[ξ] becomes the fuzzy semi-kurtosis of ξ intro-
duced by Sadefo Kamdem et al.[21].
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• For α = 2, FLPMα,µ[ξ] becomes the fuzzy semi-variance of ξ in-
troduced by Huang [10].

2. For some specific values of α, we obtain fuzzy counterparts of some
well-known notions of the downside risk under probability theory:

• We introduce the so-called credibility of loss equals to the 0th order
FLPM0,τ of ξ.

• In the case where α = 1, FLPM1,τ = E[max(τ − ξ, 0)] is called
the expected loss of ξ. Here the constant target value τ can be
considered as the threshold point separating returns in two parts
(downside returns and upside returns depending of the threshold).

• For α = 2, FLPM2,τ = E[max(τ − ξ, 0)2] is the Credibilistic Fuzzy
Target Semi-Variance (CFTSV).

• By setting α = 4, we obtain FLPM4,τ) which is the Credibilistic
Fuzzy Target Semi-Kurtosis (CFTSV).

3. The FLPM of ξ can be defined by means of the density function of ξ as
follows:

FLPMα,τ [ξ] =

∫ +∞

0

Cr{max(τ − ξ, 0)α ≥ r} dr = α

∫ τ

−∞
(τ − u)α−1Φ(u)du

=

∫ τ

−∞
(τ − u)αdΦ(u) =

∫ τ

−∞
(τ − u)αφ(u)du. (8)

The previous definition of FLPMα,τ shows that it is a function of the
credibility distribution function and, it is a non-decreasing function of
its target τ return. As τ increases, FLPMα,τ also increases.

We end this Section with the expressions of FLPM of trapezoidal and
triangular fuzzy numbers.

Corollary 1. 1. The FLPM of the trapezoidal fuzzy variable ξ = (a, b, c, d)
is:

FLPMα,τ [ξ] =































0 if τ < a
(τ−a)α+1

2(α+1)(b−a)
if a ≤ τ < b

[(τ−a)α+1−(τ−b)α+1]
2(α+1)(b−a)

if b ≤ τ < c
[(τ−a)α+1−(τ−b)α+1]

2(α+1)(b−a)
+ (τ−c)α+1

2(α+1)(d−c)
if c ≤ τ < d

[(τ−a)α+1−(τ−b)α+1]
2(α+1)(b−a)

+ [(τ−c)α+1−(τ−d)α+1]
2(α+1)(d−c)

if τ ≥ d

.

(9)
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2. The FLPM of the triangular fuzzy number (a,b,d) is:

FLPMα,τ [ξ] =























0 if τ < a
(τ−a)α+1

2(α+1)(b−a)
if a ≤ τ < b

[(τ−a)α+1−(τ−b)α+1]
2(α+1)(b−a)

+ (τ−b)α+1

2(α+1)(d−b)
if b ≤ τ < d

[(τ−a)α+1−(τ−b)α+1]
2(α+1)(b−a)

+ [(τ−b)α+1−(τ−d)α+1]
2(α+1)(d−b)

if τ ≥ d

.

(10)

In the appendix, we give some examples of FLPM of trapezoidal fuzzy
number and, we introduce and study the Fuzzy Kappa index of such numbers.

In the next Paragraph, we determine some properties of FLPM of a fuzzy
variable ξ based on its absolutely continuous credibility distribution function.

2.2.2 Some results on FLPMα,τ

The following result determines the credibility distribution function of ξ in
term of derivatives of its FLPM when α ∈ N∗. More precisely, it estab-
lishes that we can determine the credibility distribution Φ(τ) uniquely given
FLPMα,τ with α ∈ N∗.

Proposition 1. The credibility distribution function Φ of a fuzzy variable ξ
satisfies the following relation:

dα

dτα
FLPMα,τ = α! Φ(τ), that is, Φ(τ) =

1

α!

dα

dτα
FLPMα,τ (11)

Proof : Let Φ be the credibility distribution function of the fuzzy variable
ξ. We have:

dα

dτα
FLPMα,τ =

dα

dτα
[

∫ τ

−∞
(τ − u)αdΦ(u)]

=

∫ τ

−∞

dα

dτα
[(τ − u)αdΦ(u)].

It is easy to check that ∀α ∈ N∗, dα

dτα
(τ − u)α = α! and finally, we have:

dα

dτα
FLPMα,τ =

∫ τ

−∞
α!dΦ(u) = α!

∫ τ

−∞
dΦ(u) = α![Φ(τ)− lim

u→−∞
Φ(u)]

= α![Φ(τ)− 0] = α!Φ(τ).
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Hence the result. �

The following result determines necessary and sufficient condition on a
FLPM under which the density function φ of ξ belongs to exponential family.

Proposition 2. Let φ be the credibility density function of a non-negative
fuzzy variable ξ.
φ belongs to exponential family, that means,

φ(x) = eγ x+K(x)+D(γ), x ∈ (0,∞), γ > 0, (12)

where K(·) and D(·) are arbitrary functions, if and only if, its FLPMα,τ

satisfy a recurrence relationship

FLPMα+1,τ = (τ +D
′

(γ))FLPMα,τ −
d

dγ
FLPMα,τ , (13)

where D
′

(γ) is the derivative of D(γ) with respect to γ.

Proof : (⇒) Assume that the credibility density function φ is defined
by: φ(x) = eγ x+K(x)+D(γ) where x ∈ (0,∞), γ > 0, and, K and D are
arbitrary functions. Let us prove that FLPMα+1,τ = (τ +D

′

(γ))FLPMα,τ −
d
dγ
FLPMα,τ . We have:

d

dγ
FLPMα,τ =

d

dγ
[

∫ τ

0

(τ−u)αeγ u+K(u)+D(γ)du] =

∫ τ

0

(τ−u)α
d

dγ
eγ u+K(u)+D(γ)du

i.e
d

dγ
FLPMα,τ =

∫ τ

0

(τ − u)α(u+D′(γ))eαu+K(u)+D(α)du

i.e

d

dγ
FLPMα,τ =

∫ τ

0

u(τ−u)αeαu+K(u)+D(γ)du+

∫ τ

0

D′(γ)(τ−u)αeγ u+K(u)+D(γ)du

i.e

d

dγ
FLPMα,τ =

∫ τ

0

(u− τ + τ)(τ − u)αeγ u+K(u)+D(γ)du+D′(γ)FLPMα,τ

i.e

d

dγ
FLPMα,τ = −

∫ τ

0

(τ−u)α+1eγ u+K(u)+D(γ)du+τ

∫ τ

0

(τ−u)αeγ u+K(u)+D(γ)du+D′(γ)FLPMα,τ
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i.e
d

dγ
FLPMα,τ = −FLPMα+1,τ + (τ +D′(γ))FLPMα,τ .

Hence the result.

(⇐) Now we prove the sufficient condition.

We have FLPMα+1,τ = (τ +D
′

(γ))FLPMα,τ −
d
dγ
FLPMα,τ and

d
dγ

FLPMα,τ

FLPMα,τ
=

(τ + D
′

(γ)) − FLPMα+1,τ

FLPMα,τ
. By integrating each part of this last equality with

respect to γ, we obtain:

∫ τ

0

(τ − u)αφ(u)du = e
ατ+D(γ)−

∫ τ

0

FLPMα+1,τ
FLPMα,τ

dγ

By setting k(τ) = −
∫ τ

0

FLPMα+1,τ

FLPMα,τ
dγ, we get:

∫ τ

0

(τ − u)αφ(u)du = eγτ+D(γ)+k(τ) (14)

Let us explicit the left member of relation (14).
A first integration by parts gives:

∫ τ

0

(τ − u)αφ(u)du = α

∫ τ

0

(τ − u)α−1φ(u)du

with Φ(0) = 0, where Φ is the primitive function of φ and the credibility
distribution of a nonnegative fuzzy variable.
A second integration by parts gives:

α

∫ τ

0

(τ − u)α−1φ(u)du = α(α− 1)

∫ τ

0

(τ − u)α−2φ(u)du

By using inductive method, a αth integration by parts gives:

∫ τ

0

(τ − u)αφ(u)du = α!Φ(τ)

By replacing this last result in relation (14), we get:

α!Φ(τ) = eγτ+D(γ)+k(τ) ⇔ Φ(τ) =
1

α!
eγτ+D(γ)+k(τ).

So, we can set the function Φ as follows: Φ(u) = 1
α!
eγu+D(γ)+k(u). The deriva-

tive of this function with respect to γ gives: φ(u) = γ+k
′

(u)
α!

eγu+D(γ)+k(u)
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which can also be written as: φ(u) = eγu+D(γ)+k(u)+ln | γ+k
′

(u)
α!

|. Finally, we take

K(u) = k(u) + ln |γ+k
′

(u)
α!

| and we get φ(u) = eγu+D(γ)+K(u). �

We end this paragraph with the following useful result. For that, we need
the following useful notation:
Φ(x−) = sup{Φ(y), y < x} which means the credibility of getting a value of
ξ not exceeding x.

Proposition 3. Let ξ be a fuzzy variable, Φ its credibility distribution func-
tion, α ∈ R∗

+ and τ ∈ R.

1.
FLPMα,τ [ξ] = 0 ⇔ Φ(τ−) = 0. (15)

2.
If α = 1, then Φ(τ) = FLPMα,τ [ξ]. (16)

Proof : 1) (⇒) Assume that FLPMα,τ [ξ] = 0, then (8) implies ∀r ∈
R, r < τ =⇒ Φ(r) = 0, that means, Φ(τ−) = sup{Φ(r), r < τ} = 0.
(⇐) If Φ(τ−) = 0, then the inequality Φ(r) ≥ 0 implies ∀r ∈ R, r < τ =⇒
Φ(r) = 0. According to the relation (8), the previous implication leads to
FLPMα,τ [ξ] = 0.

2) Assume that α = 1.
According to the relation (8), we have: FLPMα,τ [ξ] = α

∫ τ

−∞ φ(u)du =
αΦ(τ) = Φ(τ). �

In the following Section, we introduce and analyze three dominance rela-
tions on fuzzy variables. For that, we proceed as follows:

1. We introduce and characterize the Mean-risk dominance relation based
on FLPM on the set of fuzzy variables. We remark that this relation
is not complete on the set of fuzzy variables.

2. We recall the first credibilistic dominance relation introduced recently
by Li et Peng [13]. We characterize and determine some of its properties
for fuzzy numbers.

3. We recall the second credibilistic dominance relation on fuzzy variables
introduced by Peng et al. [20]. We introduce fuzzy counterparts of the
two notions of Interval of Coincidence and Crossing Points of two ran-
dom variables introduced by Osuna [19] and, we characterize crossing
points for fuzzy numbers. We use these two notions to characterize the
second credibilistic dominance relation.
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4. We establish the relationship between the three relations.

3 Dominance relations of fuzzy variables

In the following Subsection, we study Mean-risk dominance for fuzzy vari-
ables.

3.1 Mean-risk dominance based on FLPMα,τ

We now define the fuzzy mean-risk dominance relation based on FLPM.

Definition 3. Let α ∈ R∗
+ and τ ∈ R.

The fuzzy mean-risk dominance is the binary relation on the set of fuzzy
variables denoted by �α,τ and defined as follows: For two fuzzy variables ξ1
and ξ2,

ξ1 �α,τ ξ2 if

{

E[ξ1] ≥ E[ξ2]
FLPMα,τ [ξ1] ≤ FLPMα,τ [ξ2]

with at least one strict inequality .

(17)

Our first main result characterizes the dominance �α,τ in the three fol-
lowing cases: (1) the two fuzzy variables have disjoint supports and τ is
less than the minimum of the two supports, (2) the two fuzzy variables are
symmetric and τ is between the minimum of the two supports and (3) one
of the two fuzzy variables is a crisp one and the other one is a fuzzy vari-
able with unbounded support on left and bounded on right at the threshold τ.

Notice that, intuitively speaking we can interpret the three results of this
theorem as follows:

1. The first case means that �α,τ is completely determined by expected
returns when all possible returns for Φ1 and Φ2 lie at or above the
target τ.

2. The second case means that if two distributions have equal means and
one is certain to give a return as good as τ, then the former dominates
the latter.

3. The third case reveals that the model may have a risk-seeking or “gam-
bling” aspect when α < 1 and all returns for Φ1 and Φ2 are at or below
the target.

Theorem 1. Assume that (17) holds. Then:
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1. If Φ1(τ
−) = Φ2(τ

−) = 0, then ξ1 �α,τ ξ2 if and only if E[ξ1] > E[ξ2].

2. If







E[ξ1] = E[ξ2]
Φ1(τ

−) = 0
Φ2(τ

−) > 0
then ξ1 �α,τ ξ2.

3. If E[ξ1] = E[ξ2] = τ − r (with r > 0), Φ1 is a degenerate distribution
that assigns credibility 1 to τ−r with r > 0, and Φ2 is a non-degenerate
distribution that has Φ2(τ) = 1, then:

{

ξ1 �α,τ ξ2 if and only if α > 1
ξ2 �α,τ ξ1 if and only if α < 1

. (18)

To establish this proof, we recall the Jensen’s Inequality for fuzzy variable
introduced earlier by Liu [15] (Theorem 1.59, page 68):

“ Jensen’s Inequality: Let ξ be a fuzzy variable and f : R → R a strictly
convex function. If E[ξ] and E[f(ξ)] are finite, then f(E[ξ]) < E[f(ξ)].”

We establish our proof:
Proof : 1) Let us assume that Φ1(τ

−) = Φ2(τ
−) = 0.

By the relation (15), we have FLPMα,τ [ξ1] = FLPMα,τ [ξ2] = 0.
(⇒) We assume that ξ1 �α,τ ξ2.
If E[ξ1] ≤ E[ξ2], then by the fact that FLPMα,τ [ξ1] = FLPMα,τ [ξ2] = 0,
there is not any strict inequality between the means or the fuzzy lower par-
tial moments of the fuzzy variables ξ1 and ξ2; so by the definition of �α,τ ,
we have ξ1 �α,τ ξ2 and this contradicts the assumption. Therefore, we have:
E[ξ1] > E[ξ2].
(⇐) We assume that E[ξ1] > E[ξ2]. Therefore, by the fact that FLPMα,τ [ξ1] =
FLPMα,τ [ξ2] = 0, and the definition of �α,τ , we have ξ1 �α,τ ξ2.

2) Let us assume that E[ξ1] = E[ξ2],Φ1(τ
−) = 0,Φ2(τ

−) > 0.
By the relation (15), FLPMα,τ [ξ1] = 0 and FLPMα,τ [ξ2] > 0 and this leads
to FLPMα,τ [ξ2] > FLPMα,τ [ξ1]. So, by the definition of �α,τ , we have:
{

E[ξ1] = E[ξ2]
FLPMα,τ [ξ1] < FLPMα,τ [ξ2]

⇒ ξ1 �α,τ ξ2.

3) Let us assume that Φ1 is a degenerate distribution that assigns credi-
bility 1 to τ − r with r > 0, and Φ2 is a non-degenerate distribution that has
Φ2(τ) = 1 and E[ξ1] = E[ξ2] = τ − r.
Let us set f(y) = (τ − y)α for y ≤ τ, and r > 0.
According to the fact that Φ1 is a degenerate distribution function that as-
signs credibility 1 to τ−r, we have the following equality

∫ τ

−∞(τ−y)αdΦ1(y) =
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rα. We also have: f(E[ξ1]) = rα.
- If 0 < α < 1 then −f is strictly convexe. By the Inequality of Jensens and
the fact that E[ξ1] = E[ξ2], we have: E[−f(ξ2)] = −

∫ τ

−∞(τ − y)αdΦ2(y) >
−f(E[ξ1]), that means,
∫ τ

−∞(τ − y)αdΦ2(y) < rα. Finally, we have:
∫ τ

−∞(τ − y)αdΦ2(y) <
∫ τ

−∞(τ − y)αdΦ1(y) and we conclude that ξ2 �n,τ ξ1.
The converse case is obvious.
- If α > 1 then f is strictly convexe. By the Inequality of Jensens and the
fact that E[ξ1] = E[ξ2], we have: E[f(ξ2)] =

∫ τ

−∞(τ − y)αdΦ2(y) > f(E[ξ1]),

that means,
∫ τ

−∞(τ − y)αdΦ2(y) > rα. Finally, we have
∫ τ

−∞(τ − y)αdΦ2(y) >
∫ τ

−∞(τ − y)αdΦ1(y) and we conclude that ξ1 �α,τ ξ2.
The converse case is obvious. �

Let us end this Paragraph by justifying that �α,τ is not a complete rela-
tion on the set of fuzzy variables.

Remark 2. If α = 1, then according to the previous assumptions related to
Φ1 and Φ2, Φ1(τ) = Φ2(τ) = 1 and by the relation (16), we have FLPMα,τ [ξ1] =
FLPMα,τ [ξ2] = 1. Moreover, by the fact that E[ξ1] = E[ξ2], neither ξ1 nor ξ2
satisfies one of the following relations: ξ1 �α,τ ξ2 and ξ2 �α,τ ξ1.

In the following Subsection, we recall the first credibilistic dominance
relation on the set of fuzzy variables. We characterize and determine some
of its properties.

3.2 The First Credibilistic Dominance: �1

3.2.1 Definition and characterization

Definition 4. (See Li et Peng [13], page 178, Definition 4) Let ξ1 and ξ2 be
two fuzzy numbers and Φ1,Φ2 their credibility distribution functions respec-
tively.
The first credibilistic dominance is the binary relation on fuzzy variables de-
noted �1 and defined by: for all ξ1 and ξ2, ξ1 �1 ξ2 if ∀r ∈ R,Φ1(r) ≤ Φ2(r).

From the previous definition, we deduce the strict component of �1 de-
noted by ≻1 and its symmetric component denoted by ∼1 defined as follows:

• ξ1 ≻1 ξ2 if ∀r ∈ R,Φ1(r) < Φ2(r).

• ξ1 ∼1 ξ2 if ∀r ∈ R,Φ1(r) = Φ2(r).
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Consequently, we have ξ1 �1 ξ2, means that, ξ1 �1 ξ2 if (ξ1 ≻1 ξ2 or ξ1 ∼1 ξ2).

Our second main result characterizes �1 for two fuzzy numbers.

Theorem 2. Let ξ1 = (a1, b1, c1, d1) and ξ2 = (a2, b2, c2, d2) be two fuzzy
numbers. Then

ξ1 �1 ξ2 ⇔















a1 ≥ a2
b1 ≥ b2
c1 ≥ c2
d1 ≥ d2

. (19)

In other words, ξ1 �1 ξ2 if and only if (a1 < a2 or b1 < b2 or c1 < c2 or
d1 < d2).
Figure 1 illustrates that the trapezoidal fuzzy number ξ2 = (a2, b2, c2, d2)
dominates ξ1 = (a1, b1, c1, d1) by means of �1 while Figure 2 illustrates that
neither dominates another by means of �1 .

Figure 1: fuzzy number (a1, b1,c1,d1) dominated by (a2, b2,c2,d2) by means
of ≥1

Proof: (⇐) Assume that a1 < a2 or b1 < b2 or c1 < c2 or d1 < d2
and let us prove that ξ1 �1 ξ2, that is, there exists some r0 ∈ R such that
Φ1(r0) > Φ2(r0). We distinguish four cases:
1) Assume that a1 < a2. Let r ∈]a1; a2[; r > a1 ⇒ Φ1(r) > Φ1(a1) = 0
and r < a2 ⇒ Φ2(r) = 0, so we have Φ1(r) > 0 and Φ2(r) = 0. So,
∃r ∈ R/Φ1(r) > Φ2(r) which can be traduced by ⌉(∀r ∈ R,Φ1(r) ≤ Φ2(r)).
2) Assume that b1 < b2. Let r ∈]b1; b2[; r > b1 ⇒ Φ1(r) > Φ1(b1) = 1

2

and r < b2 ⇒ Φ2(r) < Φ2(b2) = 1
2
, so we have Φ1(r) > Φ2(r). So,
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Figure 2: Incomparable fuzzy numbers by means of ≥1

∃r ∈ R/Φ1(r) > Φ2(r) which can be traduced by ⌉(∀r ∈ R,Φ1(r) ≤ Φ2(r)).
3) Assume that c1 < c2. Let r ∈]c1; c2[; r > c1 ⇒ Φ1(r) > Φ1(c1) = 1

2

and r < c2 ⇒ Φ2(r) < Φ2(c2) = 1
2
, so we have Φ1(r) > Φ2(r). So,

∃r ∈ R/Φ1(r) > Φ2(r) which can be traduced by ⌉(∀r ∈ R,Φ1(r) ≤ Φ2(r)).
4) Assume that d1 < d2. Let be r ∈]d1; d2[; r > d1 ⇒ Φ1(r) = 1 and
r < d2 ⇒ Φ2(r) < Φ2(d2) = 1, so we have Φ1(r) = 1 and Φ2(r) < 1. So,
∃r ∈ R/Φ1(r) > Φ2(r) which can be traduced by ⌉(∀r ∈ R,Φ1(r) ≤ Φ2(r)).
We conclude that ξ1 ⊁1 ξ2.

(⇒) We use the method of contraposition.
Assume that that a1 ≥ a2 and b1 ≥ b2 and c1 ≥ c2 and d1 ≥ d2 and let us
show that ξ2 is dominated by ξ1, that is, ∀r ∈ R,Φ1(r) ≤ Φ2(r).
We consider the following cases:
- ∀r ∈]−∞; a2], r ≤ a2 < a1, so Φ2(r) = Φ1(r) = 0.
- ∀r ∈]a2; a1], a2 < r ≤ a1, and Φ1(r) = 0,Φ2(r) > 0. If a1 ≥ b2, we have the
same result else: by the fact that µ1, µ2 increase on [a1 ∨ a2, b1 ∧ b2], we have
∀r ∈]a1; b2], Φ1(r) =

1
2
µ1(r), Φ1(r) =

1
2
µ1(r). As a2 < a1, b2 < b1 and µ1, µ2

strictly increase on [a1, b2] where the minimum value of ξ1 (respectively of ξ2)
is reached on a1 (respectively on a2) and the maximum value of ξ1 (respec-
tively of ξ2) is reached on b1 (respectively on b2) , we have µ1(r) ≤ µ2(r),
which involves Φ1(r) ≤ Φ2(r).
- ∀r ∈]b2; b1], b2 < r ≤ b1,Φ2(r) >

1
2
,Φ1(r) <

1
2
so Φ2(r) > Φ1(r). If b1 ≥ c2,

we have the same result else:∀r ∈]b1; c2],Φ2(r) = Φ1(r) =
1
2
.

- ∀r ∈]c2; c1], c2 < r ≤ c1,Φ2(r) > Φ1(r). If c1 ≥ d2, we have the same result
else: by the fact that µ1, µ2 decrease on [c1∨ c2, d1∧d2], we have ∀r ∈]c1; d2],
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Φ1(r) = 1 − 1
2
µ1(r), Φ1(r) = 1 − 1

2
µ1(r). As c2 < c1, d2 < d1 and µ1, µ2

strictly decrease on [c1, d2] where the minimum value of ξ1 (respectively of
ξ2) is reached on d1 (respectively on d2) and the maximum value of ξ1 (re-
spectively of ξ2) is reached on c1 (respectively on c2) , we have µ2(r) ≤ µ1(r),
which involves Φ1(r) ≤ Φ2(r).

- ∀r ∈]d2; d1], d2 < r ≤ d1,Φ2(r) = 1,Φ1(r) > 1.
- ∀r ∈]d1; +∞],Φ2(r) = Φ1(r) = 1.
In all the cases, we have: Φ1(r) ≤ Φ2(r). �

From the previous result, we deduce the characterization of ∼1 .

Corollary 2. Let ξ1 and ξ2 be two fuzzy numbers. Then
ξ1 ∼1 ξ2 if and only if ξ1 = ξ2.

Let us end this section by giving some properties on �1 . The two first
properties are satisfied for a given fuzzy number (a, b, c, d) and the other
properties are satisfied on the particular family of trapezoidal fuzzy numbers.

3.2.2 Some properties of �1

Proposition 4. Let ξi, ξj, ξk and ξl be four fuzzy numbers denoted respectively
by ∀t ∈ {i, j, k, l} ξt = (at, bt, ct, dt). We have the following properties:

1. If ξi �1 ξj and ξj �1 ξk, then ξi �1 ξk.

2. If inf Supp(ξi) ≥ supSupp(ξj), then ξi �1 ξj.

3. Furthermore, if ∀t ∈ {i, j, k, l} ξt = (at, bt, ct, dt) is a trapezoidal fuzzy
number, then

• If ξi �1 ξj then −ξi �1 −ξj.

• If ξi �1 ξj and ξk �1 ξl, then ξi + ξk �1 ξj + ξl.
In particular, if ξj = ξk, we have: ξi + ξj �1 ξj + ξl.

• If ξi �1 ξj, then ∀λ ∈ R∗,

{

λξi �1 λξj, if λ > 0
λξi �1 λξj, if λ < 0

.

Proof: 1) Assume that ξi �1 ξj and ξj �1 ξk. Let us prove that ξi �1 ξk.
The two assertions ξi �1 ξj and ξj �1 ξk give (ai ≥ aj, bi ≥ bj, ci ≥ cj and
di ≥ dj) and, (aj ≥ ak, bj ≥ bk, cj ≥ ck and dj ≥ dk).
These two relations involve that ai ≥ ak, bi ≥ bk, ci ≥ ck, di ≥ dk. Then
(ai ≥ ak, bi ≥ bk, ci ≥ ck, di ≥ dk) and we deduce ξi �1 ξk.
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2) Assume that inf Supp(ξi) ≥ supSupp(ξj). Let us prove that ξi ≻1 ξj.
inf Supp(ξi) ≥ supSupp(ξj) means that ai ≥ dj.
This last inequality also means that di ≥ ci ≥ bi ≥ ai ≥ dj ≥ cj ≥ bj ≥ aj
and we have: ai ≥ aj, bi ≥ bj, ci ≥ cj, di ≥ dj. And this allows us to conclude
that: (ai ≥ aj, bi ≥ bj, ci ≥ cj, di ≥ dj). Thus ξi �1 ξj.

3) Assume that ∀t ∈ {i, j, k, l}, ξt = (at, bt, ct, dt) is a trapezoidal fuzzy
number. We distinguish three cases.

3-1) Assume that ξi �1 ξj. Let us show that −ξi �1 −ξj.
The assertion ξi �1 ξj implies (ai ≥ aj, bi ≥ bj, ci ≥ cj, di ≥ dj) and this
leads to −ai ≤ −aj,−bi ≤ −bj,−ci ≤ −cj,−di ≤ −dj. By the Exten-
sion Principle of Zadeh, we have: −ξj = (−aj,−bj,−cj,−dj) and −ξi =
(−ai,−bi,−ci,−di). Since (−ai ≤ −aj,−bi ≤ −bj,−ci ≤ −cj,−di ≤ −dj),
then −ξi �1 −ξj.

3-2) Assume that ξi �1 ξj and ξk �1 ξl. Let us show that ξi+ξk �1 ξj+ξl.
The two assertions ξi �1 ξj and ξk �1 ξl imply (ai ≥ aj, bi ≥ bj, ci ≥ cj, di ≥
dj) and (ak ≥ al, bk ≥ bl, ck ≥ cl, dk ≥ dl).
These two relations involve that ai + ak ≥ aj + al, bi + bk ≥ bj + bl, ci + ck ≥
cj+cl, di+dk ≥ dj+dl. By the Extension Principle of Zadeh, we have: ξi+ξk =
(ai + ak, bi + bk, ci + ck, di + dk) and ξj + ξl = (aj + al, bj + bl, cj + cl, dj + dl).
Thus ξi + ξk �1 ξj + ξl.

3-3) Assume that ξi �1 ξj and let λ be a real number different of zero.
The assertion ξi �1 ξj implies (ai ≥ aj, bi ≥ bj, ci ≥ cj, di ≥ dj) and
this leads to λai ≤ λaj, λbi ≤ λbj, λci ≤ λcj, λdi ≤ λdj if λ < 0 and
λai ≥ λaj, λbi ≥ λbj, λci ≥ λcj, λdi ≥ λdj if λ > 0. By the Extension Princi-
ple of Zadeh, we have: λξj = (λaj, λbj, λcj, λdj) and λξi = (λai, λbi, λci, λdi)
if λ > 0 and λξj = (λdj, λcj, λbj, λaj) and λξi = (λdi, λci, λbi, λai) if λ < 0.

We can conclude that

{

λξi �1 λξj, if λ > 0
λξi �1 λξj, if λ < 0

. �

In the following subsection, we recall the second credibilistic dominance
relation on fuzzy variables introduced by Peng et al. [20]. We write fuzzy
counterparts of the two notions of Interval of Coincidence and Crossing Points
of two random variables introduced by Osuna [19] and, we characterize cross-
ing points for fuzzy numbers. We use these two notions to characterize the
second credibilistic dominance relation.
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3.3 The Second Credibilistic Dominance: �2

3.3.1 Definition, crossing points and characterization

Definition 5. (Peng et al. [20], page 299, Definition 10) Let ξ1 and ξ2 be two
fuzzy numbers with Φ1,Φ2 their respective cumulative credibility distribution
functions, φ1 and φ2 their respective density function with φ1 6= φ2.

ξ1 �2 ξ2 if

{

∀t ∈ R,
∫ t

−∞[Φ2(r)− Φ1(r)]dr ≥ 0

∃t0 ∈ R,
∫ t0

−∞[Φ2(r)− Φ1(r)]dr > 0
.

We note that
∫ t

−∞[Φ2(r)−Φ1(r)]dr represents a balance of areas between
Φ1 and Φ2 that means the difference of areas resulting from integrating each
function from −∞ to t, with the following order: the area below Φ2 minus
the area below Φ1.

In the following, we will characterize the second credibilistic dominance
�2 by writing the fuzzy counterpart of second order stochastic dominance’s
characterization for random variables proposed recently by Osuna [19]. There-
fore, we introduce, analogously as did Osuna [19] for random variables (see
Definition 3.1 P 760), the two notions of Interval of coincidence and crossing
points for two fuzzy variables.

The Intervals of coincidence of two fuzzy variables is the half open inter-
val, open at the right, where the two curves of their distributions functions
coincide. For example, in Figure 3, the two straight lines entitled I.C. are
the two intervals of coincidence of Φ1 and Φ2. Formally, we have:

Definition 6. Intervals of coincidence (IC)
The half-open interval [a, b), with a < b is an interval of coincidence (IC) for
Φ1 and Φ2 if Φ1(t) = Φ2(t) for all t ∈ [a, b).

From this definition we can deduce that any value t0 belongs to an interval
of coincidence if there exists some ǫ > 0 such that the interval [t0, t0+ǫ) is IC.

We now introduce two types of crossing points for fuzzy variables, namely,
crossing point of type I and crossing point of type II. Analogously to Defini-
tion 3.2 of page 760 in Osuna [19], the crossing point of type II of ξ1 and ξ2 is
the point where the two curves of their distribution functions intersect and
the curve which strictly minimizes before that point strictly majorizes after
that point. The crossing point of type I of ξ1 and ξ2 is the upper bound of a
given interval of coincidence (point where the two curves of their distribution
functions coincide before it and are distinct after it). Formally, we have the
following Definition:
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Definition 7. Crossing points (CP)

1. If t0 does not belong to an IC, but [a, t0) is an IC of type I and a = min t
such that [a, t0) is an IC, t0 corresponds to a CP if there exists some
ǫ > 0 such that for all s ∈]0, ǫ[, we have






















Φ1(a− s) 6= Φ2(a− s)
Φ1(t0 + s) 6= Φ2(t0 + s)




Φ1(a− s)− Φ2(a− s) < 0 and Φ1(t0 + s)− Φ2(t0 + s) > 0
or

Φ1(a− s)− Φ2(a− s) > 0 and Φ1(t0 + s)− Φ2(t0 + s) < 0





.

2. Any other value t0 corresponds to a CP or type II if there exists some
ǫ > 0 such that for all s ∈]0, ǫ[, we have






















Φ1(t0 − s) 6= Φ2(t0 − s)
Φ1(t0 + s) 6= Φ2(t0 + s)




Φ1(t0 − s)− Φ2(t0 − s) < 0 and Φ1(t0 + s)− Φ2(t0 + s) > 0
or

Φ1(a− s)− Φ2(a− s) > 0 and Φ1(t0 + s)− Φ2(t0 + s) < 0





.

3. Convention: (a) if t0 belongs to an IC, it does not correspond to a CP;
(b) let m1 = min{t/Φ1(t) > 0} and m2 = min{t/Φ2(t) > 0}, and
let t1 = min(m1,m2) : the interval (−∞, t1[ is an IC and t1 does not
correspond to a CP.

Our third main result establishes a characterization of the second credi-
bilistic dominance.

Theorem 3. Let ξ1 and ξ2 be two fuzzy variables, Φ1 and Φ2 their respective
absolutely continuous credibility distribution and t01, ..., t0k be their k (k ≥ 1)
crossing points (ordered so increasing) such that t01 > min{min{t : Φ1(t) >
0},min{t : Φ2(t) > 0}}. Then
ξ1 �2 ξ2 if and only if














∀i = {1, ..., k},
∫ t0i

−∞[Φ2(r)− Φ1(r)]dr ≥ 0




∫ +∞
−∞ [Φ2(r)− Φ1(r)]dr = 0 and ∃t0h ∈ {t01, ..., t0k},

∫ t0h

−∞[Φ2(r)− Φ1(r)]dr > 0

or
∫∞
−∞[Φ2(r)− Φ1(r)]dr > 0





.

Proof: According to the fact that the cumulative distribution functions
(with respect to the credibility distribution) Φ1 and Φ2 have the same prop-
erties as the classical stochastic ones, we can refer to the proof proposed in
Osuna [19], Theorem 4.1, page 761. �
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Figure 3: : Intervals of coincidence (I.C.) of two fuzzy variables based on
their distribution functions

Figure 4: Crossing point (CP) of two fuzzy variables based on their distri-
bution functions

3.3.2 Characterization of Crossing Points of two fuzzy numbers

The following result characterizes crossing points of two fuzzy numbers in
the following six cases: (i) the three first cases are illustrated by Figure 5
and (ii) the three last cases allow us to find crossing points when the core of
one of at least one of the fuzzy number is reduced to a single point, that is
a crisp number.

Proposition 5. Let ξi = (ai, bi, ci, di) and ξj = (aj, bj, cj, dj) be two fuzzy
numbers satisfying [ai∨aj, bi∧bj] 6= ∅, [bi∨bj, ci∧cj] 6= ∅ and [ci∨cj, di∧dj] 6= ∅.
Let µi and µj be their respective membership functions, Φi and Φj be their
respective credibility distribution functions. Then we have:
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1.

(

∃ǫ > 0, ∃r0 ∈ R, ∀s ∈]0, ǫ[,

{

µi(r0 − s) < µj(r0 − s), µi(r0 + s) > µj(r0 + s)
r0 − s, r0 + s ∈ [ai ∨ aj, bi ∧ bj]

)

⇔ r0 is a crossing point of type II.

2.

(

∃ǫ > 0, ∃r0 ∈ R, ∀s ∈]0, ǫ[,

{

µi(r0 − s) < µj(r0 − s), µi(r0 + s) > µj(r0 + s)
r0 − s, r0 + s ∈ [ci ∨ cj, di ∧ dj]

)

⇔ r0 is a crossing point of type II.

3. ([bi, ci] ⊆ [bj, cj] and [ai, di] ⊆ [aj, dj], bi 6= ci, bj 6= cj) ⇔ ci is a crossing
point of type I and bi = min{t/[t, ci) is I.C}.

4. ([ai, di] ⊆ [aj, dj], bi = ci, bj 6= cj, bi ∈ [bj, cj]) ⇔ ci is a crossing point
of type II .

5. ([ai, di] ⊆ [aj, dj], bi 6= ci, bj = cj, bj ∈ [bi, ci]) ⇔ cj is a crossing point
of type II.

6. ([ai, di] ⊆ [aj, dj], bi = ci = bj = cj, ai 6= aj, di 6= dj) ⇔ cj is a crossing
point of type II.

To establish our result, we need the following Lemma.

Lemma 1. Let ξi = (ai, bi, ci, di) and ξj = (aj, bj, cj, dj) be two fuzzy numbers
satisfying [ai ∨ aj, bi ∧ bj] 6= ∅, [bi ∨ bj, ci ∧ cj] 6= ∅ and [ci ∨ cj, di ∧ dj] 6= ∅. Let
µi and µj be their respective membership functions and, Φi and Φj be their
respective credibility distribution functions. Then we have:

1.

(

∃ǫ > 0, ∃r0 ∈ R, ∀s ∈]0, ǫ[,

{

µi(r0 − s) < µj(r0 − s), µi(r0 + s) > µj(r0 + s)
r0 − s, r0 + s ∈ [ai ∨ aj, bi ∧ bj]

)

⇔ Φi(r0 − s) < Φj(r0 − s),Φi(r0 + s) > Φj(r0 + s).

Figure 5: Crossings points of type I and type II of two fuzzy numbers based
on their membership functions
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2.

(

∃ǫ > 0, ∃r0 ∈ R, ∀s ∈]0, ǫ[,

{

µi(r0 − s) < µj(r0 − s), µi(r0 + s) > µj(r0 + s)
r0 − s, r0 + s ∈ [ci ∨ cj, di ∧ dj]

)

⇔ Φi(r − s) > Φj(r − s),Φi(r + s) < Φj(r + s).

3. ∀r ∈ R, (r ∈ [bi ∨ bj, ci ∧ cj]) ⇒ Φi(r) = Φj(r).

Proof of the Lemma: Let us recall that Φ is given by (5). We suppose
that: [ai ∨ aj, bi ∧ bj] 6= ∅, [bi ∨ bj, ci ∧ cj] 6= ∅, [ci ∨ cj, di ∧ dj] 6= ∅.
1) Let us suppose that ∃ǫ > 0, ∃r0 ∈ R and let be s : 0 < s < ǫ, µi(r0 − s) <
µj(r − s), µi(r0 + s) > µj(r0 + s) and r0 − s, r0 + s ∈ [ai ∨ aj, bi ∧ bj], then
µi(r0− s) < µj(r0− s) ⇒ Φi(r0− s) = 1

2
µi(r0− s) < Φj(r0− s) = 1

2
µj(r0− s)

and
µi(r0+s) > µj(r0+s) ⇒ Φi(r0+s) = 1

2
µi(r0+s) > Φj(r0+s) = 1

2
µj(r0+s).

The converse case is proved in the same manner.

2) Let us suppose that ∃ǫ > 0, ∃r0 ∈ R and let be s : 0 < s < ǫ, µi(r0−s) <
µj(r0 − s), µi(r + s) > µj(r0 + s) and r0 − s, r0 + s ∈ [ci ∨ cj, di ∧ dj], then
µi(r0 − s) < µj(r0 − s) ⇒ Φi(r0 − s) = 1 − 1

2
µi(r0 − s) > Φj(r0 − s) =

1− 1
2
µj(r0 − s) and

µi(r0 + s) > µj(r0 + s) ⇒ Φi(r0 + s) = 1 − 1
2
µi(r0 + s) < Φj(r0 + s) =

1− 1
2
µj(r0 + s).

The converse case is proved in the same manner.

3) If r ∈ [bi ∨ bj, ci ∧ cj], then Φi(r) = Φj(r) =
1
2
. �

Remark 3. We have an analogous result if ∃ǫ > 0, ∃r0 ∈ R, ∀s ∈]0, ǫ[, µi(r0−
s) > µj(r0 − s) and µi(r0 + s) < µj(r0 + s).

We now give the proof of our Proposition.
Proof of the Proposition: 1) Let us suppose that ∃ǫ > 0, ∃r0 ∈ R and let
be s : 0 < s < ǫ such that µi(r0− s) < µj(r0− s) and µi(r0+ s) > µj(r0+ s),
with r0 − s, r0 + s ∈ [ai ∨ aj, bi ∧ bj. According to the Lemma 1, we have
Φi(r0 − s) < Φj(r0 − s) and Φi(r0 + s) > Φj(r0 + s) and by Definition 7, we
can conclude that r0 is a crossing point of type II.
We prove the converse case by the same manner.

2) We use the same method as in 1.
3) Let us show that ci is a crossing point of type I.
[bi, ci] ⊆ [bj, cj] ⇒ [bi ∨ bj, ci ∧ cj] = [bi, ci] and by Lemma 1 and Definition 5,
we have:
bi = min{t/[t, ci)isI.C}.
Now, let us find ǫ > 0 such that ∀s : 0 < s < ǫ,Φi(bi − s) < Φj(bi − s) and
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Φi(ci + s) > Φj(ci + s).
i) If bi 6= bj and ci 6= cj
then we set ǫ = (bi − bj) ∧ (cj − ci) and we easily check that ǫ > 0 according
to the fact that [bi, ci] ⊂ [bj, cj] and bi 6= bj, ci 6= cj. We have two cases:
1st case: bi − bj < cj − ci
We have ǫ = bi − bj, and bi − ǫ = bj, ci + ǫ = ci + bi − bj.
Φi(bi−ǫ)−Φj(bi−ǫ) = Φi(bj)−Φj(bj) < 0; indeed, on one hand, Φi(bi−s) <
Φi(bi) =

1
2
because bi − s < bi, Φi increases; on the other hand Φj(bj − s) >

Φj(bj − ǫ) = Φj(bj) =
1
2
.

Furthermore, Φi(ci + s) > Φi(ci) =
1
2
because Φi increases and

Φj(ci + s) < Φj(cj) =
1
2
because ci + s < ci + ǫ < ci + cj − ci = cj and Fj

increases.
2nd case: cj − ci < bi − bj
We have ǫ = cj − ci, and ci + ǫ = cj, bi − ǫ = bi − cj + ci.
Φi(bi − s) − Φj(bi − s) < 0 because: Φi(bi − s) < Φi(bi) = 1

2
and bi − ǫ =

2bi− bj > bj, (bi > bj) so Φj(bi− s) > Φj(bi− ǫ) > Φj(bj) =
1
2
as Φj increases

and bi − ǫ > bj.
Furthermore, Φi(ci + s) − Φj(ci + s) > 0 ; indeed, ci + s < ci + ǫ = cj, so
Φj(ci + s) < Φj(cj) = 1

2
. On the other hand Φi increases and Φi(ci + s) >

Φi(ci) =
1
2
.

ii) If bi = bj and ci 6= cj
Then ǫ = cj − ci and we easily conclude as in i).
iii) If ci = cj and bi 6= bj
Then ǫ = bi − bj and we easily conclude as in i).
iv) If ci = cj and bi = bj.
Then we take ǫ = (bj − aj) ∧ (dj − cj).
It is easy to check that for all s : 0 < s < ǫ, bj−s ∈ [aj, bi[ and cj+s ∈ [ci, dj[.
(ci = cj, bi = bj) ⇒ [bj, cj] = [bi, ci]; thus the support of ξi is included in
the support of ξj and their cores coincide that means µj and µi coincide
only in [bj, cj], and this allow us to say that ∀s ∈ [aj, bi[, µj(s) > µi(s) and
∀s ∈ [ci, dj[, µi(s) < µj(s).
Furthermore, ∀s ∈ [aj, bi[,Φj(s) > Φi(s) by the fact that µj(s) > µi(s)
and ∀s ∈ [ci, dj[,Φj(s) < Φi(s) by the fact that µi(s) < µj(s); these last
inequalities lead us to Φi(cj + s) > Φj(cj + s),Φi(bj − s) < Φj(bj + s).
The converse case can be proved easily.

4) By taking ǫ = min(bi − bj, cj − bi), we can easily check that: ∀s : 0 <
s < ǫ,Φi(ci − s) < Φj(ci − s),Φi(ci + s) > Φj(ci + s).
The converse case is obvious.

5) By taking ǫ = min(bj − bi, ci − bj, ) we can easily check that: ∀s : 0 <
s < ǫ,Φj(cj − s) < Φi(cj − s),Φj(cj + s) > Φi(cj + s).
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Figure 6: Incomparable fuzzy numbers by means of ≥2

The converse case is obvious.

6) By taking ǫ = max(ai − aj, dj − di), we can easily check that: ∀s : 0 <
s < ǫ,Φj(cj − s) > Φi(cj − s),Φj(cj + s) < Φi(cj + s).
The converse case is obvious. �

Remark 4. • We have an analogous result if ∃ǫ > 0, ∃r0, ∀s ∈]0, ǫ[, µi(r0−
s) > µj(r0 − s) and µi(r0 + s) < µj(r0 + s).

• The binary relation �2 on the set of fuzzy numbers is not complete.
Let us take the triangular fuzzy numbers ξ1 = (1, 3, 8) and ξ2 = (2, 3, 4)
drawn in Figure 6 and, Φ1 and Φ2 are their respective credibility dis-
tributions.
By Proposition 5, we can prove that the only crossing point is obtained
at r0 = 3. Then, we have:
∫ 3

−∞[Φ1(r)− Φ2(r)]dr =
1
4
> 0,

∫ +∞
−∞ [Φ1(r)− Φ2(r)]dr =

−1
5

< 0 and by

Theorem 3 we conclude that ξ1 �2 ξ2 and ξ2 �2 ξ1.

We establish the relationship between the three relations.

3.4 Relations between �α,τ ,�1 and �2 .

The following result shows that �1 is stronger than �α,τ and �2 .

Proposition 6. Let ξ1 and ξ2 be two fuzzy variables. Then

ξ1 �1 ξ2 ⇒

{

(∀α ∈ R∗
+, ∀τ ∈ R, ξ1 �α,τ ξ2)

ξ1 �2 ξ2
.
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Proof: Let ξ1 and ξ2 be two fuzzy variables with uncertainty distributions
Φ1 and Φ2 respectively, α and τ some given reals.
1) Assume that ξ1 �1 ξ2 and we prove that ξ1 �α,τ ξ2.
ξ1 �1 ξ2 ⇒ ∀r ∈ R,Φ1(r) ≤ Φ2(r), that is,

∀r ∈ R, Cr{ξ1 ≤ r} ≤ Cr{ξ2 ≤ r} (20)

and
∀r ∈ R, Cr{ξ1 ≥ r} ≥ Cr{ξ2 ≥ r} (21)

According to the definition of �1 .
In the other hand, we have: E[ξ1] =

∫ +∞
0

Cr{ξ1 ≥ r} dr −
∫ 0

−∞ Cr{ξ1 ≤

r} dr and E[ξ2] =
∫ +∞
0

Cr{ξ2 ≥ r} dr −
∫ 0

−∞Cr{ξ2 ≤ r} dr
According to (20) and (21), we conclude that E[ξ1] ≥ E[ξ2].
In the same manner, according to Remark 1 we have: FLPMα,τ [ξ1] = α

∫ τ

−∞(τ−

x)α−1Cr{ξ1 ≤ x}dx and FLPMα,τ [ξ2] = α
∫ τ

−∞(τ − x)α−1Cr{ξ2 ≤ x}dx
These last relations allow us to conclude that FLPMα,τ [ξ1] < FLPMα,τ [ξ2].
Finally, we can conclude that ξ1 �α,τ ξ2.

2) Since ∀r ∈ R,Φ1(r) ≤ Φ2(r) then ∀t ∈ R,
∫ t

−∞Φ2(r)− Φ1(r) dr ≥ 0. We
can easily obtain the proof. �

Now we use the following example to justify that the converse of the two
previous implications are not true.

Example 1. Let us consider the triangular fuzzy numbers ξ1 = (1, 3, 5) and
ξ2 = (2, 3, 4).

• By Proposition 5, we can prove that the only crossing point is obtained
at r0 = 3. Then, we have:
∫ 3

−∞[Φ1(r)− Φ2(r)]dr = 1
4
> 0,

∫ +∞
−∞ [Φ1(r)− Φ2(r)]dr = 0 and by The-

orem 3 we conclude that ξ2 �2 ξ1.
But by Proposition 6, ξ2 �1 ξ1.

• By using this same example, we have:
E[ξ1] = E[ξ2] = 3, FLPM2,3[ξ1] = 2

3
and FLPM2,3[ξ2] = 1

6
. And

FLPM2,3[ξ2] < FLPM2,3[ξ1] and hence Φ2 �2,3 Φ1.
But by Proposition 6, ξ2 �1 ξ1.

We end with the two following examples which specify that there is not
a link between �2 and �α,τ (See Figure 7).

27



Example 2. 1. Let us consider the triangular fuzzy numbers ξ1 = (1.5, 4, 5)
and ξ2 = (2, 3, 4).
By Proposition 5, we can prove that the only crossing point is obtained
at r0 = 4. Then, we have:
∫ 4

−∞[Φ2(r) − Φ1(r)]dr = 1
10

> 0,
∫ +∞
−∞ [Φ2(r) − Φ1(r)]dr = −11

5
< 0 and

by Theorem 3, we conclude that ξ1 �2 ξ2.
But, E[ξ1] = 3.625, E[ξ2] = 3, i.e., E[ξ1] > E[ξ2], FLPM2,4[ξ1] ≈ 1.042
and FLPM2,4[ξ2] =

4
3
, ie FLPM2,4[ξ1] < FLPM2,4[ξ2] so ξ1 �2,4 ξ2.

2. Let us consider the triangular fuzzy numbers ξ3 = (1, 4, 5) and ξ4 =
(2, 3, 4) and, Φ3 and Φ4 are their respective credibility distribution func-
tions.
By Proposition 5, we can prove that the only crossing point is obtained
at r0 = 4. Then, we have:
∫ 4

−∞[Φ3(r)− Φ4(r)]dr = 1
12

> 0,
∫ +∞
−∞ [Φ3(r)− Φ4(r)]dr = 7

3
> 0 and by

Theorem 3, we conclude that ξ2 �2 ξ1.
But, E[ξ3] =

7
2
and E[ξ4] = 3. Thus E[ξ3] > E[ξ4], FLPM2,4[ξ3] =

3
2

and FLPM2,4[ξ4] =
4
3
. Then FLPM2,4[ξ4] < FLPM2,4[ξ3] and ξ4 �2,4 ξ3.

4 Concluding remarks

In this paper, we introduce Fuzzy lower partial moment (FLPM) based on
credibility measure and propose some of its properties. We also introduce the
n-th order fuzzy kappa index (FK) which a fuzzy risk adjusted performance
measure that can be useful to classified fuzzy variables (e.g. portfolio returns
performance). We complete our credibility fuzzy dominance with a general
analysis of the mean-risk dominance based on FLPM, the first and second

Figure 7: Links between the three fuzzy dominances
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order dominance of fuzzy variables. We also characterize the obtained fuzzy
mean-risk dominance. Because in some situations, it is not absolutely possi-
ble to compare two or multiple fuzzy variable, we introduce and characterize
the crossing points between two fuzzy variables distributions and propose a
theorem that relates them to second order fuzzy dominance.

5 Appendix on some examples of FLPM

5.1 Some examples of FLPM and of Fuzzy Kappa In-
dex of a trapezoidal fuzzy number

In the following example, we compute from Corollary 1 the FLPMs and the
Kappa index for a trapezoidal fuzzy number ξ = (a, b, c, d) for some values
of α and τ.

Example 3. 1. For α = 0 we have:

FLPM0,τ [ξ] =



























0 if τ < a
(τ−a)
2(b−a)

if a ≤ τ < b
1
2
if b ≤ τ < c

1
2
+ (τ−c)

2(d−c)
if c ≤ τ < d

1 if τ ≥ d

.

The credibility of loss FLPM0,τ coincides with the cumulative distribu-
tion of credibility Φ.

2. For α = 1 we have:

FLPM1,τ [ξ] =































0 if τ < a
(τ−a)2

4(b−a)
if a ≤ τ < b

[(τ−a)2−(τ−b)2]
4(b−a)

if b ≤ τ < c
[(τ−a)2−(τ−b)2]

4(b−a)
+ (τ−c)2

4(d−c)
if c ≤ τ < d

[(τ−a)2−(τ−b)2]
4(b−a)

+ [(τ−c)2−(τ−d)2]
4(d−c)

if τ ≥ d

and

FK1,τ [ξ] =



























(b−a)(a+b+c+d−4τ)
(τ−a)2

if a ≤ τ < b
(b−a)(a+b+c+d−4τ)
[(τ−a)2−(τ−b)2]

if b ≤ τ < c
(a+b+c+d−4τ)

[
[(τ−a)2−(τ−b)2]

(b−a)
+

(τ−c)2

(d−c)
]
if c ≤ τ < d

(a+b+c+d−4τ)

[
[(τ−a)2−(τ−b)2]

(b−a)
+

[(τ−c)2−(τ−d)2]
(d−c)

]
if τ ≥ d

.
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The following table gives Fuzzy Kappa index of first order for seven
triangular fuzzy numbers when the threshold τ ∈ { e

10
, e
5
, e
4
, e
3
, e
2
}.

τ e
10

e
5

e
4

e
3

e
2

FK1,τ [(−0.3, 1.8, 2.3)] 54.6 27.9 20.8 13.3 5.8
FK1,τ [(−0.4, 2.0, 2.2)] 42.5 23.3 17.9 11.8 5.4
FK1,τ [(−0.5, 1.9, 2.7)] 29.2 18.0 14.1 9.6 4.6
FK1,τ [(−0.6, 2.2, 2.8)] 28.1 17.0 13.5 9.3 4.5
FK1,τ [(−0.7, 2.4, 2.7)] 25.2 15.5 12.4 8.7 4.3
FK1,τ [(−0.8, 2.5, 3.0)] 22.6 14.1 11.4 8.0 4.1
FK1,τ [(−0.6, 1.8, 3.0)] 23.0 14.2 11.3 7.9 3.9

3. For α = 2 we have:

FLPM2,τ [ξ] =































0 if τ < a
(τ−a)3

6(b−a)
if a ≤ τ < b

[(τ−a)3−(τ−b)3]
6(b−a)

if b ≤ τ < c
[(τ−a)3−(τ−b)3]

6(b−a)
+ (τ−c)3

6(d−c)
if c ≤ τ < d

[(τ−a)3−(τ−b)3]
6(b−a)

+ [(τ−c)3−(τ−d)3]
6(d−c)

if τ ≥ d

.

and

FK2,τ [ξ] =



































√
6(b−a)

1
2 (a+b+c+d−4τ)

4(τ−a)
3
2

if a ≤ τ < b
√
6(b−a)

1
2 (a+b+c+d−4τ)

4[(τ−a)3−(τ−b)3]
1
2

if b ≤ τ < c

(a+b+c+d−4τ)

4[
[(τ−a)3−(τ−b)3]

6(b−a)
+

(τ−c)3

6(d−c)
]
1
2
if c ≤ τ < d

(a+b+c+d−4τ)

4[
[(τ−a)3−(τ−b)3]

6(b−a)
+

[(τ−c)3−(τ−d)3]
6(d−c)

]
1
2
if τ ≥ d

.

• For α = 2, we have the following table which gives Fuzzy Kappa
index of the second order for the same seven triangular fuzzy num-
bers.
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τ e
10

e
5

e
4

e
3

e
2

FK2,τ [(−0.3, 1.8, 2.3)] 15.3 9.0 7.1 4.9 2.4
FK2,τ [(−0.4, 2.0, 2.2)] 12.3 7.6 6.1 4.4 2.3
FK2,τ [(−0.5, 1.9, 2.7)] 9.7 6.3 5.2 3.7 2.0
FK2,τ [(−0.6, 2.2, 2.8)] 9.0 6.0 4.9 3.6 1.9
FK2,τ [(−0.7, 2.4, 2.7)] 8.1 5.5 4.6 3.4 1.89
FK2,τ [(−0.8, 2.5, 3.0)] 7.4 5.1 4.2 3.22 1.80
FK2,τ [(−0.6, 1.8, 3.0)] 7.8 5.3 4.4 3.28 1.81

• For α = 2 and τ = e (e is the mean), we obtain semi-variances of
the seven triangular numbers (see Sadefo Kamdem et al. [21]).

τ e
FLPM2,τ [(−0.3, 1.8, 2.3)] 0.74
FLPM2,τ [(−0.4, 2.0, 2.2)] 0.96
FLPM2,τ [(−0.5, 1.9, 2.7)] 0.96
FLPM2,τ [(−0.6, 2.2, 2.8)] 1.3
FLPM2,τ [(−0.7, 2.4, 2.7)] 1.6
FLPM2,τ [(−0.8, 2.5, 3.0)] 1.82
FLPM2,τ [(−0.6, 1.8, 3.0)] 0.96

4. For α = 3 we have:

FLPM3,τ [ξ] =































0 if τ < a
(τ−a)4

8(b−a)
if a ≤ τ < b

[(τ−a)4−(τ−b)4]
8(b−a)

if b ≤ τ < c
[(τ−a)4−(τ−b)4]

8(b−a)
+ (τ−c)4

8(d−c)
if c ≤ τ < d

[(τ−a)4−(τ−b)4]
8(b−a)

+ [(τ−c)4−(τ−d)4]
8(d−c)

if τ ≥ d

and

FK3,τ [ξ] =



































8
1
3 (b−a)

1
3 (a+b+c+d−4τ)

4(τ−a)
4
3

if a ≤ τ < b

8
1
3 (b−a)

1
3 (a+b+c+d−4τ)

4[(τ−a)4−(τ−b)4]
1
3

if b ≤ τ < c

(a+b+c+d−4τ)

4[
[(τ−a)4−(τ−b)4]

8(b−a)
+

(τ−c)4

8(d−c)
]
1
3
if c ≤ τ < d

(a+b+c+d−4τ)

4[
[(τ−a)4−(τ−b)4]

8(b−a)
+

[(τ−c)4−(τ−d)4]
8(d−c)

]
1
3
if τ ≥ d

The following tabular gives Fuzzy Kappa index of the third order for
seven triangular fuzzy numbers when the threshold τ ∈ { e

10
, e
5
, e
4
, e
3
, e
2
}.
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τ e
10

e
5

e
4

e
3

e
2

FK3,τ [(−0.3, 1.8, 2.3)] 9.6 5.9 4.7 3.4 1.7
FK3,τ [(−0.4, 2.0, 2.2)] 7.8 5.0 4.1 3.0 1.6
FK3,τ [(−0.5, 1.9, 2.7)] 6.4 4.3 3.59 2.6 1.49
FK3,τ [(−0.6, 2.2, 2.8)] 5.9 4.0 3.4 2.5 1.45
FK3,τ [(−0.7, 2.4, 2.7)] 5.37 3.7 3.17 2.4 1.38
FK3,τ [(−0.8, 2.5, 3.0)] 4.9 3.5 2.9 2.2 1.32
FK3,τ [(−0.6, 1.8, 3.0)] 5.30 3.6 3.1 2.3 1.34

5. For α = 4 we have:

FLPM4,τ [ξ] =































0 if τ < a
(τ−a)5

10(b−a)
if a ≤ τ < b

[(τ−a)5−(τ−b)5]
10(b−a)

if b ≤ τ < c
[(τ−a)5−(τ−b)5]

10(b−a)
+ (τ−c)5

10(d−c)
if c ≤ τ < d

[(τ−a)5−(τ−b)5]
10(b−a)

+ [(τ−c)5−(τ−d)5]
10(d−c)

if τ ≥ d

and

FK4,τ [ξ] =



































10
1
4 (b−a)

1
4 (a+b+c+d−4τ)

4(τ−a)
5
4

if a ≤ τ < b

10
1
4 (b−a)

1
4 (a+b+c+d−4τ)

4[(τ−a)5−(τ−b)5]
1
4

if b ≤ τ < c

(a+b+c+d−4τ)

4[
[(τ−a)5−(τ−b)5]

10(b−a)
+

(τ−c)5

10(d−c)
]
1
4
if c ≤ τ < d

(a+b+c+d−4τ)

4[
[(τ−a)5−(τ−b)5]

10(b−a)
+

[(τ−c)5−(τ−d)5]
10(d−c)

]
1
4
if τ ≥ d

• For α = 4, the following table gives Fuzzy Kappa index of the
fourth order of the seven triangular fuzzy numbers.

τ e
10

e
5

e
4

e
3

e
2

FK4,τ [(−0.3, 1.8, 2.3)] 7.5 4.7 3.8 2.7 1.4
FK4,τ [(−0.4, 2.0, 2.2)] 6.1 4.0 3.3 2.4 1.3
FK4,τ [(−0.5, 1.9, 2.7)] 5.1 3.51 2.9 2.2 1.25
FK4,τ [(−0.6, 2.2, 2.8)] 4.7 3.3 2.8 2.1 1.21
FK4,τ [(−0.7, 2.4, 2.7)] 4.2 3.0 2.5 1.9 1.15
FK4,τ [(−0.8, 2.5, 3.0)] 3.9 2.8 2.4 1.8 1.11
FK4,τ [(−0.6, 1.8, 3.0)] 4.2 3.0 2.5 1.9 1.14

• For α = 4 and τ = e (e is the mean), we obtain the semi-kurtosis
of the seven triangular fuzzy numbers (see Sadefo Kamdem, Tas-
sak et Fono [21]).
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τ e
FLPM4,τ [(−0.3, 1.8, 2.3)] 3.24
FLPM4,τ [(−0.4, 2.0, 2.2)] 5.53
FLPM4,τ [(−0.5, 1.9, 2.7)] 5.53
FLPM4,τ [(−0.6, 2.2, 2.8)] 10.24
FLPM4,τ [(−0.7, 2.4, 2.7)] 15.39
FLPM4,τ [(−0.8, 2.5, 3.0)] 19.77
FLPM4,τ [(−0.6, 1.8, 3.0)] 5.53

5.2 Some examples of Fuzzy Lower partial Moments
of a fuzzy portfolio return

From (9), it is straightforward to obtain the following proposition:

Remark 5. 1. Let ξp = (γa, γb, γc, γd) be a trapezoidal fuzzy return of a
portfolio. Then the fuzzy lower partial moment of the portfolio return
ξp is given by:

FLPMα,τ [ξ] =































0 if τ < γa(x)
(τ−γa(x))n+1

2(n+1)(γb(x)−γa(x))
if γa(x) ≤ τ < γb(x)

[(τ−γa(x))n+1−(τ−γb(x))
n+1]

2(n+1)(γb(x)−γa(x))
if γb(x) ≤ τ < γc(x)

[(τ−γa(x))n+1−(τ−γb(x))
n+1]

2(n+1)(γb(x)−γa(x))
+ (τ−γc(x))n+1

2(n+1)(γd(x)−γc(x))
if γc(x) ≤ τ < γd(x)

[(τ−γa(x))n+1−(τ−γb(x))
n+1]

2(n+1)(γb(x)−γa(x))
+ [(τ−γc(x))n+1−(τ−γd(x))

n+1]
2(n+1)(γd(x)−γc(x))

if τ ≥ γd(x)

(22)
where γz(x) =

∑n

i=1 xizi for z = a, b, c, d ∈ R with a < b < c < d.

2. When τ = E[ξ], we can deduce that:
-FLPM2,τ [ξ] is the semi-variance of the portfolio return ξ
-FLPM4,τ [ξ] is the semi-kurtosis of the portfolio return ξ. For more
details, see Sadefo Kamdem et al. [21]).

Example 4. 1. τ = e
10
,

FK4,τ =
10

1
4 (2.1x1+2.4x2+2.4x3+2.8x4+3.1x5+3.3x6+2.4x7)

1
4 (

9(5.6x1+5.8x2+6x3+6.6x4+6.8x5+7.2x6+6x7)
10

)

4(
−39

∑7
i=1

aixi+2
∑7

i=1
bixi+

∑7
i=1

cixi

40
)
5
4

2. τ = e
5
,

FK4,τ =
10

1
4 (2.1x1+2.4x2+2.4x3+2.8x4+3.1x5+3.3x6+2.4x7)

1
4 (

4(5.6x1+5.8x2+6x3+6.6x4+6.8x5+7.2x6+6x7)
5

)

4(
−19

∑7
i=1

aixi+2
∑7

i=1
bixi+

∑7
i=1

cixi

20
)
5
4
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3. τ = e
4
,

FK4,τ =
10

1
4 (2.1x1+2.4x2+2.4x3+2.8x4+3.1x5+3.3x6+2.4x7)

1
4 (

3(5.6x1+5.8x2+6x3+6.6x4+6.8x5+7.2x6+6x7)
4

)

4(
−15

∑7
i=1

aixi+2
∑7

i=1
bixi+

∑7
i=1

cixi

16
)
5
4

4. τ = e
3
,

FK4,τ =
10

1
4 (2.1x1+2.4x2+2.4x3+2.8x4+3.1x5+3.3x6+2.4x7)

1
4 (

2(5.6x1+5.8x2+6x3+6.6x4+6.8x5+7.2x6+6x7)
3

)

4(
−11

∑7
i=1

aixi+2
∑7

i=1
bixi+

∑7
i=1

cixi

12
)
5
4

5. τ = e
2
,

FK4,τ =
10

1
4 (2.1x1+2.4x2+2.4x3+2.8x4+3.1x5+3.3x6+2.4x7)

1
4 (

(5.6x1+5.8x2+6x3+6.6x4+6.8x5+7.2x6+6x7)
2

)

4(
−7

∑7
i=1

aixi+2
∑7

i=1
bixi+

∑7
i=1

cixi

8
)
5
4
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