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This paper studies three notions of fuzzy dominance based on credibility measure, namely, the fuzzy mean-risk dominance, the first credibilistic dominance and the second credibilistic dominance. More precisely, we introduce and examine some properties of the Fuzzy Lower Partial Moments (FLPM) of a fuzzy variable and, we deduce the Fuzzy Kappa index (FK) of a fuzzy variable, that is, a riskadjusted performance measure of an asset or a portfolio with fuzzy return. Based on the aforementioned notion, we introduce the fuzzy mean-risk dominance of two fuzzy variables and we characterize it in three specific and interesting cases. We recall the first credibilistic dominance and the second credibilistic dominance for fuzzy variables

Introduction

In traditional decision theory and decision analysis, there are some situations where one lottery (such as probability distribution over possible outcomes) can be ranked as superior to another lottery. In such situations, following [START_REF] Hadar | Rules for Ordering Uncertain Prospects[END_REF] and [START_REF] Bawa | Optimal Rules for Ordering Uncertain Prospects[END_REF], we can use the term stochastic dominance as a form of stochastic ordering (see [START_REF] Shaked | Stochastic orders[END_REF], section 1.E). It is based on preferences regarding outcomes. A preference might be a simple ranking of outcomes from the best to the least favored, or it might also employ a value measure (e.g., a number associated with each outcome that allows comparison of one outcome with another, such as two instances of winning a euro vs. one instance of winning two euros). In many theoretical or as well practical situations, one has a desirability to make a prediction about a decision-maker preference between given pairs of risky variables (random variables or fuzzy variables) without having knowledge of the decision maker utility function. In the literature, two main approaches have been proposed in the literature to compare two or multiple risky variables.

For the first approach, from seminal works of Markowitz [START_REF] Markowitz | Portfolio Selection[END_REF] and Tobin [START_REF] Tobin | The theory of portfolio selection[END_REF], many scholars suggested to use the characteristics of such variables, (that are in general k-moments of a variable and in particular mean, variance, semi-variance, skewness, kurtosis, semi-kurtosis) to determine optimal portfolio when asset return is a (random or fuzzy) variable. One limitation of their analysis is due to the utilization of only the (first) moments (mean and variance) of the distribution, since the expected utility is in general, a function of all moments of the (probability or credibility) distribution. In this paper, we do not consider this approach.

The second approach we consider, first works are based on dominance of random variables. Therefore, we have three main alternatives to [START_REF] Markowitz | Portfolio Selection[END_REF] and [START_REF] Tobin | The theory of portfolio selection[END_REF]. Firstly, the possibility to focus on downside stochastic dominance namely mean-downside risk dominance, that is, a stochastic dominance of two variables under certain threshold. One example is the so-called lower partial moment (LPM) introduced by Bawa [START_REF] Bawa | Optimal Rules for Ordering Uncertain Prospects[END_REF]. There are several applications of the mean-LPM for portfolio selection (see [START_REF] Brogan | Non-separation in the meanlower-partial-moment portfolio optimization problem[END_REF] and [START_REF] Kaplan | A generalised downside-risk performance measure[END_REF]). Notice that the mean-risk dominance is generally used in finance and economics for asset allocation (see [START_REF] Brogan | Non-separation in the meanlower-partial-moment portfolio optimization problem[END_REF], [START_REF] Fishburn | Mean-Risk with risk associated with belowreturns[END_REF] and [START_REF] Ogryczak | From stochastic dominance to mean-risk models: Semideviations as risk measures[END_REF]). The role of the lower partial moment in economics can be seen in [START_REF] Sunoj | The role of lower partial moments in stochastic modeling[END_REF]. Secondly, in the case where the utility function of a decision-maker is unknown, a general stochastic dominance of any order that is based in comparison of two or multiple random variables can be possible and valuable for any utility function in a certain class which exhibits non-increasing marginal utility everywhere. Every expected utility maximizer with an increasing utility function will prefer lottery A over lottery B if A first-order stochastically dominates B. Thirdly, the other commonly used type of stochastic dominance is second-order stochastic dominance. Roughly speaking, for two lotteries A and B, lottery A has second-order stochastic dominance over lottery B if the former is more predictable (i.e. involves less risk) and has at least as high a mean. All risk-averse expected-utility maximizers (that is, those with increasing and concave utility functions) prefer a second-order stochastically dominant gamble to a dominated gamble. Since portfolio analysis typically assumes that all investors are risk averse, no investor would choose a portfolio that is second-order stochastically dominated by some other portfolio. However, in order to complement this approach, we are sometimes faced with the situation where the values of random variables are not completely known. There are many other information and knowledge that cannot generally be described well by random variables because of the lack of historical data. For instance, investors in energy sector would like to estimate the coal reserves in some area, but even so after exploration analysis drawn by appraisers will always be "about billions of tons". The precede estimation "billions of tons" is a value expert's estimation rather than observations because the coal reserve has on exact true value that we don't know but estimate. In such a situation, because statistics and probability theory are unsuitable and Possibility theory proposed by Zadeh [START_REF] Zadeh | Fuzzy Set as a basis of theory of possibility[END_REF] is not self-dual, Liu [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF] suggested to deal with it by introducing a self-dual credibility measure that is the av-erage of possibility measure and necessity measure. The credibility measure theory provides an alternative framework for modeling economics and financial problems. Recently, Peng et al. [START_REF] Li | A new approach to risk comparison via uncertain measure[END_REF][START_REF] Peng | Fuzzy Dominance Based on Credibility Distributions[END_REF] also provided an extension of stochastic dominance to fuzzy variables based on credibility distributions. Apart from economics and Finance, it is of interest to define such extension to solve the problem of extending the natural ordering of the real line to fuzzy intervals has produced a large and scattered literature. In this paper, we use the credibility theory to study and characterize some dominance relations between fuzzy variables.

In this paper, we consider a risk factor as a fuzzy variable based on credibility theory of Liu [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF].

In this paper, after the introduction of the so-called Fuzzy lower partial moment (FLPM) based on credibility measure, we propose some of its properties. We also deduced the n-th order fuzzy kappa index (FK) as a the quotient between risk premium and the n-th squared root of the FLPM of a fuzzy variable. The precede, is a risk-adjusted performance measure of a given fuzzy variable. The fuzzy kappa index can be a helpful tool to classified assets or portfolios with different risk factors. We complete our credibility fuzzy dominance with a general analysis of the mean-risk dominance based on FLPM, the first and second order dominance of fuzzy variables. Our analysis complements the one of Peng et al. [START_REF] Li | A new approach to risk comparison via uncertain measure[END_REF] and [START_REF] Peng | Fuzzy Dominance Based on Credibility Distributions[END_REF] in different ways. Because in some situations, it is not absolutely possible to compare two or multiple fuzzy variables, following Osuna [START_REF] Osuna | Crossing points of distribution and a theorem that relates them to second order stochastic dominance[END_REF] and in order to characterize the second order fuzzy dominance, we also introduce and characterize the crossings points between two fuzzy variables distributions.

After the introduction in Section 1, the paper is planned as follows: Section 2 reviews notions on credibility measure of [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF], introduces FLPM, gives some of its examples for illustration, justifies that it becomes some wellknown notions in some specific cases. We end this section by determining some interesting properties of the FLPM. Section 3 analyzes three dominance relations on fuzzy variables based on credibility theory. More precisely, we introduce and characterize the Mean-risk dominance relation based on FLPM on the set of fuzzy variables. We recall the first credibilistic dominance relation and the second credibilistic dominance relation on fuzzy variables introduced recently by Li et Peng [START_REF] Li | A new approach to risk comparison via uncertain measure[END_REF]. We characterize and determine some of the properties of the first credibilistic dominance relation for fuzzy numbers. We introduce fuzzy counterparts of the two notions of Interval of Coincidence and Crossing Points of two random variables introduced by Osuna [START_REF] Osuna | Crossing points of distribution and a theorem that relates them to second order stochastic dominance[END_REF]. We use these two notions to characterize the second credibilistic dominance relation and, we characterize crossing points for fuzzy numbers. We establish the relationship between the three relations.

PRELIMINARIES

Review on credibility measure

Let ξ be a fuzzy variable with membership function µ where for any x ∈ R, µ(x) represents the possibility that ξ takes value

x. ξ is normal if ∃x 0 /µ(x 0 ) = 1. ξ is non-negative fuzzy variable if ∀x < 0, µ(x) = 0. A support of ξ is the crisp subset of R defined by Supp(ξ) = {x ∈ R, µ(x) > 0} and its core is also a crisp subset of R defined by Cor(ξ) = {x ∈ R, µ(x) = 1}.
Throughout this paper, we assume that all fuzzy variables are normal, that is,

∃x 0 ∈ R, µ(x 0 ) = 1.
In Section 3.2, we will use a fuzzy number ξ which is a fuzzy variable sat-

isfying: ∃a, b, c, d ∈ R with a ≤ b ≤ c ≤ d and (i) µ is upper semi-continuous, (ii) ∀r ∈ [a, d], µ(r) = 0, (iii) µ is increasing on [a, b], (iv) ∀r ∈ [b, c], µ(r) = 1 and (v) µ is decreasing on [c, d].
We Note that for ξ taking values in B, Zadeh [START_REF] Zadeh | Fuzzy Set as a basis of theory of possibility[END_REF] has defined the possibility measure of B by P os({ξ

∈ B}) = sup x∈B µ(x)
and the necessity measure of ξ by

N ec({ξ ∈ B}) = 1 -sup x∈B c µ(x).
But neither of these measures are self-dual. Therefore, Liu and Liu [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF] introduced the credibility measure as the average of possibility measure and necessity measure as follows: for any set B,

Cr({ξ ∈ B}) = 1 2 sup x∈B µ(x) -sup x∈B c µ(x) + 1 . (1) 
It is easy to show that credibility measure is self-dual. That is,

Cr({ξ ∈ B}) + Cr({ξ ∈ B c }) = 1.
Liu and Liu [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF] introduced the expected value of ξ defined as follows

E[ξ] = e = +∞ 0 Cr{ξ ≥ r} dr - 0 -∞ Cr{ξ ≤ r} dr (2) 
provided that at least one of the above integrals is finite. Note that, expected value is one of the most important concept for a fuzzy variable which gives the center of its distribution.

Liu [START_REF] Liu | Uncertainty Theory: An Introduction to its Axiomatics Foundations[END_REF] also defined the credibility distribution Φ : R → [0, 1] of a fuzzy variable ξ as follows:

∀t ∈ R, Φ(t) = Cr{ξ ≤ t} = 1 2 [1 + sup x∈]-∞;t] µ(x) -sup x∈]t;+∞[ µ(x)]. (3) 
When Φ is absolutely continuous, we have the credibility density function

φ : R → [0, ∞[ such that ∀t ∈ R, Φ(t) = t -∞ φ(u)du. (4) 
Obviously, we have

+∞ -∞ φ(u)du = 1. A distribution function Φ of ξ is a non-degenerate distribution function if ∀t ∈ R, t = E[ξ] ⇒ Φ(t) = 0.
The distribution function Φ of a fuzzy number ξ = (a, b, c, d) is defined by:

∀r ∈ R, Φ(r) =            0 if r < a 1 2 µ(r) if a ≤ r < b 1 2 if b ≤ r < c 1 -1 2 µ(r) if c ≤ r < d 1 if d ≤ r . ( 5 
) It is an increasing function, that means, ∀x ∈ [a, b], ∀y ∈ [b, c], ∀z ∈ [c, d], Φ(x) ≤ Φ(y) ≤ Φ(z).
In the next Paragraph, we will introduce the lower partial moment of a fuzzy variable, namely, the Fuzzy Lower Partial Moment (FLPM) of ξ and examine some of its properties.

Lower Partial Moments of fuzzy variables

In the following, we define the FLPM of a fuzzy variable and deduce some of its properties that seem similar to some well-known properties of lower partial moment (LPM) of a random variable under a probability measure. For illustration, we particularly focus on the determination of the FLPM for trapezoidal and triangular fuzzy variables.

Definitions, specific cases and examples

Definition 1. Let ξ be a fuzzy variable, τ ∈ R and α ∈ R * + . The Fuzzy Lower Partial Moment (FLPM) of ξ with order α and target value τ is defined as

FLPM α,τ [ξ] = E[max(τ -ξ, 0) α ] ( 6 
)
where the expectation operator E is defined by [START_REF] Bawa | Optimal Rules for Ordering Uncertain Prospects[END_REF].

Following the paper of Kaplan and Knowles [START_REF] Kaplan | A generalised downside-risk performance measure[END_REF], we introduce the Fuzzy Kappa index which is a fuzzy risk-adjusted performance measure by using the fuzzy lower partial moment (FLPM) as a risk measure for a fuzzy variable. Definition 2. For τ ∈ R and α ∈ R * + , the fuzzy Kappa index (FK) of the fuzzy variable ξ is:

F K α,τ [ξ] = E[ξ] -τ (FLPM α,τ [ξ]) 1 α . ( 7 
)
Throughout this paper, we will simply say "The Fuzzy Lower Partial Moment (FLPM) of ξ" instead of "The Fuzzy Lower Partial Moment (FLPM) of ξ with order α and target value τ."

Let us deduce from the previous definition some notions that are fuzzy counterpart of some well-known notion on LPM of a random variable under probability theory. We also provide an alternative definition of the FLPM of ξ based on its credibility density function.

Remark 1. Let ξ be a fuzzy variable, τ ∈ R and α ∈ R * + . 1. If the target value τ = E[ξ] = µ, then we obtain the following known notions:

• For α ∈ 2N -{0}, FLPM α,µ [ξ]
is the semi-moment of order α of ξ introduced earlier by Sadefo Kamdem et al. [START_REF] Sadefo Kamdem | Moments and semi-moments for fuzzy portfolio selection[END_REF].

• For α = 4, FLPM α,µ [ξ] becomes the fuzzy semi-kurtosis of ξ introduced by Sadefo Kamdem et al. [START_REF] Sadefo Kamdem | Moments and semi-moments for fuzzy portfolio selection[END_REF].

• For α = 2, FLPM α,µ [ξ] becomes the fuzzy semi-variance of ξ introduced by Huang [START_REF] Huang | Mean-semivariance models for fuzzy portfolio selection[END_REF].

2. For some specific values of α, we obtain fuzzy counterparts of some well-known notions of the downside risk under probability theory:

• We introduce the so-called credibility of loss equals to the 0 th order FLPM 0,τ of ξ.

• In the case where

α = 1, FLPM 1,τ = E[max(τ -ξ, 0)] is called the expected loss of ξ.
Here the constant target value τ can be considered as the threshold point separating returns in two parts (downside returns and upside returns depending of the threshold).

• For α = 2, FLPM 2,τ = E[max(τ -ξ, 0) 2 ] is the Credibilistic Fuzzy Target Semi-Variance (CFTSV).
• By setting α = 4, we obtain FLPM 4,τ ) which is the Credibilistic Fuzzy Target Semi-Kurtosis (CFTSV).

The FLPM of ξ can be defined by means of the density function of ξ as follows:

FLPM

α,τ [ξ] = +∞ 0 Cr{max(τ -ξ, 0) α ≥ r} dr = α τ -∞ (τ -u) α-1 Φ(u)du = τ -∞ (τ -u) α dΦ(u) = τ -∞ (τ -u) α φ(u)du. ( 8 
)
The previous definition of FLPM α,τ shows that it is a function of the credibility distribution function and, it is a non-decreasing function of its target τ return. As τ increases, FLPM α,τ also increases.

We end this Section with the expressions of FLPM of trapezoidal and triangular fuzzy numbers.

Corollary 1.

The FLPM of the trapezoidal fuzzy variable

ξ = (a, b, c, d) is: FLPM α,τ [ξ] =                0 if τ < a (τ -a) α+1 2(α+1)(b-a) if a ≤ τ < b [(τ -a) α+1 -(τ -b) α+1 ] 2(α+1)(b-a) if b ≤ τ < c [(τ -a) α+1 -(τ -b) α+1 ] 2(α+1)(b-a) + (τ -c) α+1 2(α+1)(d-c) if c ≤ τ < d [(τ -a) α+1 -(τ -b) α+1 ] 2(α+1)(b-a) + [(τ -c) α+1 -(τ -d) α+1 ] 2(α+1)(d-c) if τ ≥ d . ( 9 
)
2. The FLPM of the triangular fuzzy number (a,b,d) is:

FLPM α,τ [ξ] =            0 if τ < a (τ -a) α+1 2(α+1)(b-a) if a ≤ τ < b [(τ -a) α+1 -(τ -b) α+1 ] 2(α+1)(b-a) + (τ -b) α+1 2(α+1)(d-b) if b ≤ τ < d [(τ -a) α+1 -(τ -b) α+1 ] 2(α+1)(b-a) + [(τ -b) α+1 -(τ -d) α+1 ] 2(α+1)(d-b) if τ ≥ d . (10) 
In the appendix, we give some examples of FLPM of trapezoidal fuzzy number and, we introduce and study the Fuzzy Kappa index of such numbers.

In the next Paragraph, we determine some properties of FLPM of a fuzzy variable ξ based on its absolutely continuous credibility distribution function.

Some results on FLPM α,τ

The following result determines the credibility distribution function of ξ in term of derivatives of its FLPM when α ∈ N * . More precisely, it establishes that we can determine the credibility distribution Φ(τ ) uniquely given FLPM α,τ with α ∈ N * . Proposition 1. The credibility distribution function Φ of a fuzzy variable ξ satisfies the following relation:

d α dτ α FLPM α,τ = α! Φ(τ ), that is, Φ(τ ) = 1 α! d α dτ α FLPM α,τ (11) 
Proof : Let Φ be the credibility distribution function of the fuzzy variable ξ. We have:

d α dτ α FLPM α,τ = d α dτ α [ τ -∞ (τ -u) α dΦ(u)] = τ -∞ d α dτ α [(τ -u) α dΦ(u)].
It is easy to check that ∀α ∈ N * , d α dτ α (τu) α = α! and finally, we have:

d α dτ α FLPM α,τ = τ -∞ α!dΦ(u) = α! τ -∞ dΦ(u) = α![Φ(τ ) -lim u→-∞ Φ(u)] = α![Φ(τ ) -0] = α!Φ(τ ).
Hence the result.

The following result determines necessary and sufficient condition on a FLPM under which the density function φ of ξ belongs to exponential family. Proposition 2. Let φ be the credibility density function of a non-negative fuzzy variable ξ. φ belongs to exponential family, that means,

φ(x) = e γ x+K(x)+D(γ) , x ∈ (0, ∞), γ > 0, ( 12 
)
where K(•) and D(•) are arbitrary functions, if and only if, its FLPM α,τ satisfy a recurrence relationship

FLPM α+1,τ = (τ + D ′ (γ))FLPM α,τ - d dγ FLPM α,τ , (13) 
where D ′ (γ) is the derivative of D(γ) with respect to γ.

Proof : (⇒) Assume that the credibility density function φ is defined by: φ(x) = e γ x+K(x)+D(γ) where

x ∈ (0, ∞), γ > 0, and, K and D are arbitrary functions. Let us prove that FLPM α+1,τ = (τ + D ′ (γ))FLPM α,τd dγ FLPM α,τ . We have:

d dγ FLPM α,τ = d dγ [ τ 0 (τ -u) α e γ u+K(u)+D(γ) du] = τ 0 (τ -u) α d dγ e γ u+K(u)+D(γ) du i.e d dγ FLPM α,τ = τ 0 (τ -u) α (u + D ′ (γ))e α u+K(u)+D(α) du i.e d dγ FLPM α,τ = τ 0 u(τ -u) α e α u+K(u)+D(γ) du+ τ 0 D ′ (γ)(τ -u) α e γ u+K(u)+D(γ) du i.e d dγ FLPM α,τ = τ 0 (u -τ + τ )(τ -u) α e γ u+K(u)+D(γ) du + D ′ (γ)FLPM α,τ i.e d dγ FLPM α,τ = - τ 0 (τ -u) α+1 e γ u+K(u)+D(γ) du+τ τ 0 (τ -u) α e γ u+K(u)+D(γ) du+D ′ (γ)FLPM α,τ i.e d dγ FLPM α,τ = -FLPM α+1,τ + (τ + D ′ (γ))FLPM α,τ .
Hence the result.

(⇐) Now we prove the sufficient condition.

We have

FLPM α+1,τ = (τ + D ′ (γ))FLPM α,τ -d dγ FLPM α,τ and d dγ FLPMα,τ FLPMα,τ = (τ + D ′ (γ)) - FLPM α+1,τ
FLPMα,τ . By integrating each part of this last equality with respect to γ, we obtain:

τ 0 (τ -u) α φ(u)du = e ατ +D(γ)-τ 0 FLPM α+1,τ FLPMα,τ dγ By setting k(τ ) = - τ 0 FLPM α+1,τ
FLPMα,τ dγ, we get:

τ 0 (τ -u) α φ(u)du = e γτ +D(γ)+k(τ ) (14) 
Let us explicit the left member of relation [START_REF] Liu | Uncertainty Theory: An Introduction to its Axiomatics Foundations[END_REF].

A first integration by parts gives:

τ 0 (τ -u) α φ(u)du = α τ 0 (τ -u) α-1 φ(u)du
with Φ(0) = 0, where Φ is the primitive function of φ and the credibility distribution of a nonnegative fuzzy variable.

A second integration by parts gives:

α τ 0 (τ -u) α-1 φ(u)du = α(α -1) τ 0 (τ -u) α-2 φ(u)du
By using inductive method, a α th integration by parts gives:

τ 0 (τ -u) α φ(u)du = α!Φ(τ )
By replacing this last result in relation ( 14), we get:

α!Φ(τ ) = e γτ +D(γ)+k(τ ) ⇔ Φ(τ ) = 1 α! e γτ +D(γ)+k(τ ) .
So, we can set the function Φ as follows: Φ(u) = 1 α! e γu+D(γ)+k(u) . The derivative of this function with respect to γ gives:

φ(u) = γ+k ′ (u)
α! e γu+D(γ)+k (u) which can also be written as:

φ(u) = e γu+D(γ)+k(u)+ln | γ+k ′ (u) α!
| . Finally, we take

K(u) = k(u) + ln | γ+k ′ (u) α!
| and we get φ(u) = e γu+D(γ)+K (u) .

We end this paragraph with the following useful result. For that, we need the following useful notation: Φ(x -) = sup{Φ(y), y < x} which means the credibility of getting a value of ξ not exceeding x.

Proposition 3. Let ξ be a fuzzy variable, Φ its credibility distribution func- tion, α ∈ R * + and τ ∈ R. 1. FLPM α,τ [ξ] = 0 ⇔ Φ(τ -) = 0. ( 15 
)
2. If α = 1, then Φ(τ ) = FLPM α,τ [ξ]. ( 16 
) Proof : 1) (⇒) Assume that FLPM α,τ [ξ] = 0, then (8) implies ∀r ∈ R, r < τ =⇒ Φ(r) = 0, that means, Φ(τ -) = sup{Φ(r), r < τ } = 0. (⇐) If Φ(τ -) = 0, then the inequality Φ(r) ≥ 0 implies ∀r ∈ R, r < τ =⇒ Φ(r) = 0.
According to the relation [START_REF] Huang | Portfolio selection under distributional uncertainty: A relative robust cvar approach[END_REF], the previous implication leads to FLPM α,τ [ξ] = 0.

2) Assume that α = 1. According to the relation (8), we have:

FLPM α,τ [ξ] = α τ -∞ φ(u)du = αΦ(τ ) = Φ(τ ).
In the following Section, we introduce and analyze three dominance relations on fuzzy variables. For that, we proceed as follows:

1. We introduce and characterize the Mean-risk dominance relation based on FLPM on the set of fuzzy variables. We remark that this relation is not complete on the set of fuzzy variables.

2. We recall the first credibilistic dominance relation introduced recently by Li et Peng [START_REF] Li | A new approach to risk comparison via uncertain measure[END_REF]. We characterize and determine some of its properties for fuzzy numbers.

3. We recall the second credibilistic dominance relation on fuzzy variables introduced by Peng et al. [START_REF] Peng | Fuzzy Dominance Based on Credibility Distributions[END_REF]. We introduce fuzzy counterparts of the two notions of Interval of Coincidence and Crossing Points of two random variables introduced by Osuna [START_REF] Osuna | Crossing points of distribution and a theorem that relates them to second order stochastic dominance[END_REF] and, we characterize crossing points for fuzzy numbers. We use these two notions to characterize the second credibilistic dominance relation.

4. We establish the relationship between the three relations.

Dominance relations of fuzzy variables

In the following Subsection, we study Mean-risk dominance for fuzzy variables.

Mean-risk dominance based on FLPM α,τ

We now define the fuzzy mean-risk dominance relation based on FLPM.

Definition 3. Let α ∈ R * + and τ ∈ R. The fuzzy mean-risk dominance is the binary relation on the set of fuzzy variables denoted by α,τ and defined as follows: For two fuzzy variables ξ 1 and ξ 2 ,

ξ 1 α,τ ξ 2 if E[ξ 1 ] ≥ E[ξ 2 ] FLPM α,τ [ξ 1 ] ≤ FLPM α,τ [ξ 2 ]
with at least one strict inequality .

Our first main result characterizes the dominance α,τ in the three following cases: (1) the two fuzzy variables have disjoint supports and τ is less than the minimum of the two supports, (2) the two fuzzy variables are symmetric and τ is between the minimum of the two supports and (3) one of the two fuzzy variables is a crisp one and the other one is a fuzzy variable with unbounded support on left and bounded on right at the threshold τ.

Notice that, intuitively speaking we can interpret the three results of this theorem as follows:

1. The first case means that α,τ is completely determined by expected returns when all possible returns for Φ 1 and Φ 2 lie at or above the target τ.

2. The second case means that if two distributions have equal means and one is certain to give a return as good as τ, then the former dominates the latter.

3. The third case reveals that the model may have a risk-seeking or "gambling" aspect when α < 1 and all returns for Φ 1 and Φ 2 are at or below the target.

Theorem 1. Assume that [START_REF] Markowitz | Portfolio Selection[END_REF] holds. Then:

1. If Φ 1 (τ -) = Φ 2 (τ -) = 0, then ξ 1 α,τ ξ 2 if and only if E[ξ 1 ] > E[ξ 2 ]. 2. If    E[ξ 1 ] = E[ξ 2 ] Φ 1 (τ -) = 0 Φ 2 (τ -) > 0 then ξ 1 α,τ ξ 2 . 3. If E[ξ 1 ] = E[ξ 2 ] = τ -r (with r > 0)
, Φ 1 is a degenerate distribution that assigns credibility 1 to τ -r with r > 0, and Φ 2 is a non-degenerate distribution that has Φ 2 (τ ) = 1, then:

ξ 1 α,τ ξ 2 if and only if α > 1 ξ 2 α,τ ξ 1 if and only if α < 1 . ( 18 
)
To establish this proof, we recall the Jensen's Inequality for fuzzy variable introduced earlier by Liu [START_REF] Liu | Uncertainty Theory[END_REF] (Theorem 1.59, page 68): " Jensen's Inequality: Let ξ be a fuzzy variable and f : R → R a strictly convex function.

If E[ξ] and E[f (ξ)] are finite, then f (E[ξ]) < E[f (ξ)]."
We establish our proof:

Proof : 1) Let us assume that Φ 1 (τ -) = Φ 2 (τ -) = 0. By the relation (15), we have FLPM α,τ [ξ 1 ] = FLPM α,τ [ξ 2 ] = 0. (⇒) We assume that ξ 1 α,τ ξ 2 . If E[ξ 1 ] ≤ E[ξ 2 ]
, then by the fact that FLPM α,τ [ξ 1 ] = FLPM α,τ [ξ 2 ] = 0, there is not any strict inequality between the means or the fuzzy lower partial moments of the fuzzy variables ξ 1 and ξ 2 ; so by the definition of α,τ , we have ξ 1 α,τ ξ 2 and this contradicts the assumption. Therefore, we have:

E[ξ 1 ] > E[ξ 2 ]. (⇐) We assume that E[ξ 1 ] > E[ξ 2 ]
. Therefore, by the fact that FLPM α,τ [ξ 1 ] = FLPM α,τ [ξ 2 ] = 0, and the definition of α,τ , we have ξ 1 α,τ ξ 2 .

2) Let us assume that E[ξ

1 ] = E[ξ 2 ], Φ 1 (τ -) = 0, Φ 2 (τ -) > 0. By the relation (15), FLPM α,τ [ξ 1 ] = 0 and FLPM α,τ [ξ 2 ] > 0 and this leads to FLPM α,τ [ξ 2 ] > FLPM α,τ [ξ 1 ]
. So, by the definition of α,τ , we have:

E[ξ 1 ] = E[ξ 2 ] FLPM α,τ [ξ 1 ] < FLPM α,τ [ξ 2 ] ⇒ ξ 1 α,τ ξ 2 .
3) Let us assume that Φ 1 is a degenerate distribution that assigns credibility 1 to τr with r > 0, and Φ 2 is a non-degenerate distribution that has Φ 2 (τ ) = 1 and

E[ξ 1 ] = E[ξ 2 ] = τ -r.
Let us set f (y) = (τy) α for y ≤ τ, and r > 0. According to the fact that Φ 1 is a degenerate distribution function that assigns credibility 1 to τ -r, we have the following equality τ -∞ (τ -y) α dΦ 1 (y) = r α . We also have:

f (E[ξ 1 ]) = r α .
-If 0 < α < 1 then -f is strictly convexe. By the Inequality of Jensens and the fact that

E[ξ 1 ] = E[ξ 2 ], we have: E[-f (ξ 2 )] = - τ -∞ (τ -y) α dΦ 2 (y) > -f (E[ξ 1 ]), that means, τ -∞ (τ -y) α dΦ 2 (y) < r α . Finally, we have: τ -∞ (τ -y) α dΦ 2 (y) < τ -∞ (τ -y) α dΦ 1 (y) and we conclude that ξ 2 n,τ ξ 1 .
The converse case is obvious.

-If α > 1 then f is strictly convexe. By the Inequality of Jensens and the fact that

E[ξ 1 ] = E[ξ 2 ], we have: E[f (ξ 2 )] = τ -∞ (τ -y) α dΦ 2 (y) > f (E[ξ 1 ]), that means, τ -∞ (τ -y) α dΦ 2 (y) > r α . Finally, we have τ -∞ (τ -y) α dΦ 2 (y) > τ -∞ (τ -y) α dΦ 1 (y) and we conclude that ξ 1 α,τ ξ 2 .
The converse case is obvious.

Let us end this Paragraph by justifying that α,τ is not a complete relation on the set of fuzzy variables.

Remark 2. If α = 1, then according to the previous assumptions related to Φ 1 and Φ 2 , Φ 1 (τ ) = Φ 2 (τ ) = 1 and by the relation [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF]

, we have FLPM α,τ [ξ 1 ] = FLPM α,τ [ξ 2 ] = 1. Moreover, by the fact that E[ξ 1 ] = E[ξ 2 ]
, neither ξ 1 nor ξ 2 satisfies one of the following relations: ξ 1 α,τ ξ 2 and ξ 2 α,τ ξ 1 .

In the following Subsection, we recall the first credibilistic dominance relation on the set of fuzzy variables. We characterize and determine some of its properties.

3.2

The First Credibilistic Dominance: 1 [START_REF] Li | A new approach to risk comparison via uncertain measure[END_REF], page 178, Definition 4) Let ξ 1 and ξ 2 be two fuzzy numbers and Φ 1 , Φ 2 their credibility distribution functions respectively. The first credibilistic dominance is the binary relation on fuzzy variables denoted 1 and defined by: for all ξ 1 and ξ

Definition and characterization Definition 4. (See Li et Peng

2 , ξ 1 1 ξ 2 if ∀r ∈ R, Φ 1 (r) ≤ Φ 2 (r).
From the previous definition, we deduce the strict component of 1 denoted by ≻ 1 and its symmetric component denoted by ∼ 1 defined as follows:

• ξ 1 ≻ 1 ξ 2 if ∀r ∈ R, Φ 1 (r) < Φ 2 (r). • ξ 1 ∼ 1 ξ 2 if ∀r ∈ R, Φ 1 (r) = Φ 2 (r). Consequently, we have ξ 1 1 ξ 2 , means that, ξ 1 1 ξ 2 if (ξ 1 ≻ 1 ξ 2 or ξ 1 ∼ 1 ξ 2 ).
Our second main result characterizes 1 for two fuzzy numbers. 

ξ 1 1 ξ 2 ⇔        a 1 ≥ a 2 b 1 ≥ b 2 c 1 ≥ c 2 d 1 ≥ d 2 . ( 19 
)
In other words, 

ξ 1 1 ξ 2 if and only if (a 1 < a 2 or b 1 < b 2 or c 1 < c 2 or d 1 < d 2 ).
: (⇐) Assume that a 1 < a 2 or b 1 < b 2 or c 1 < c 2 or d 1 < d 2
and let us prove that ξ 1 1 ξ 2 , that is, there exists some r 0 ∈ R such that Φ 1 (r 0 ) > Φ 2 (r 0 ). We distinguish four cases: 1) Assume that a 1 < a 2 . Let r ∈]a 1 ; a 2 [; r > a 1 ⇒ Φ 1 (r) > Φ 1 (a 1 ) = 0 and r < a 2 ⇒ Φ 2 (r) = 0, so we have Φ 1 (r) > 0 and Φ 2 (r) = 0. So, ∃r ∈ R/Φ 1 (r) > Φ 2 (r) which can be traduced by

⌉(∀r ∈ R, Φ 1 (r) ≤ Φ 2 (r)). 2) Assume that b 1 < b 2 . Let r ∈]b 1 ; b 2 [; r > b 1 ⇒ Φ 1 (r) > Φ 1 (b 1 ) = 1 2 and r < b 2 ⇒ Φ 2 (r) < Φ 2 (b 2 ) = 1
2 , so we have Φ 1 (r) > Φ 2 (r). So, 

∈ R/Φ 1 (r) > Φ 2 (r) which can be traduced by ⌉(∀r ∈ R, Φ 1 (r) ≤ Φ 2 (r)). 3) Assume that c 1 < c 2 . Let r ∈]c 1 ; c 2 [; r > c 1 ⇒ Φ 1 (r) > Φ 1 (c 1 ) = 1 2 and r < c 2 ⇒ Φ 2 (r) < Φ 2 (c 2 ) = 1 2 , so we have Φ 1 (r) > Φ 2 (r). So, ∃r ∈ R/Φ 1 (r) > Φ 2 (r) which can be traduced by ⌉(∀r ∈ R, Φ 1 (r) ≤ Φ 2 (r)). 4) Assume that d 1 < d 2 . Let be r ∈]d 1 ; d 2 [; r > d 1 ⇒ Φ 1 (r) = 1 and r < d 2 ⇒ Φ 2 (r) < Φ 2 (d 2 ) = 1,
so we have Φ 1 (r) = 1 and Φ 2 (r) < 1. So, ∃r ∈ R/Φ 1 (r) > Φ 2 (r) which can be traduced by ⌉(∀r ∈ R, Φ 1 (r) ≤ Φ 2 (r)). We conclude that ξ 1 ⊁ 1 ξ 2 .

(⇒) We use the method of contraposition. Assume that that a 1 ≥ a 2 and b 1 ≥ b 2 and c 1 ≥ c 2 and d 1 ≥ d 2 and let us show that ξ 2 is dominated by ξ 1 , that is, ∀r ∈ R, Φ 1 (r) ≤ Φ 2 (r). We consider the following cases:

-∀r ∈] -∞; a 2 ], r ≤ a 2 < a 1 , so Φ 2 (r) = Φ 1 (r) = 0.
-∀r ∈]a 2 ; a 1 ], a 2 < r ≤ a 1 , and Φ 1 (r) = 0, Φ 2 (r) > 0. If a 1 ≥ b 2 , we have the same result else: by the fact that

µ 1 , µ 2 increase on [a 1 ∨ a 2 , b 1 ∧ b 2 ], we have ∀r ∈]a 1 ; b 2 ], Φ 1 (r) = 1 2 µ 1 (r), Φ 1 (r) = 1 2 µ 1 (r). As a 2 < a 1 , b 2 < b 1 and µ 1 , µ 2 strictly increase on [a 1 , b 2 ]
where the minimum value of ξ 1 (respectively of ξ 2 ) is reached on a 1 (respectively on a 2 ) and the maximum value of ξ 1 (respectively of ξ 2 ) is reached on b 1 (respectively on b 2 ) , we have

µ 1 (r) ≤ µ 2 (r), which involves Φ 1 (r) ≤ Φ 2 (r). -∀r ∈]b 2 ; b 1 ], b 2 < r ≤ b 1 , Φ 2 (r) > 1 2 , Φ 1 (r) < 1 2 so Φ 2 (r) > Φ 1 (r). If b 1 ≥ c 2 , we have the same result else:∀r ∈]b 1 ; c 2 ], Φ 2 (r) = Φ 1 (r) = 1 2 . -∀r ∈]c 2 ; c 1 ], c 2 < r ≤ c 1 , Φ 2 (r) > Φ 1 (r). If c 1 ≥ d 2 , we have the same result else: by the fact that µ 1 , µ 2 decrease on [c 1 ∨ c 2 , d 1 ∧ d 2 ], we have ∀r ∈]c 1 ; d 2 ], Φ 1 (r) = 1 -1 2 µ 1 (r), Φ 1 (r) = 1 -1 2 µ 1 (r). As c 2 < c 1 , d 2 < d 1 and µ 1 , µ 2 strictly decrease on [c 1 , d 2 ]
where the minimum value of ξ 1 (respectively of ξ 2 ) is reached on d 1 (respectively on d 2 ) and the maximum value of ξ 1 (respectively of ξ 2 ) is reached on c 1 (respectively on c 2 ) , we have µ 2 (r) ≤ µ 1 (r), which involves Φ 1 (r) ≤ Φ 2 (r).

-∀r ∈]d

2 ; d 1 ], d 2 < r ≤ d 1 , Φ 2 (r) = 1, Φ 1 (r) > 1. -∀r ∈]d 1 ; +∞], Φ 2 (r) = Φ 1 (r) = 1.
In all the cases, we have: Φ 1 (r) ≤ Φ 2 (r).

From the previous result, we deduce the characterization of ∼ 1 .

Corollary 2. Let ξ 1 and ξ 2 be two fuzzy numbers. Then

ξ 1 ∼ 1 ξ 2 if and only if ξ 1 = ξ 2 .
Let us end this section by giving some properties on 1 . The two first properties are satisfied for a given fuzzy number (a, b, c, d) and the other properties are satisfied on the particular family of trapezoidal fuzzy numbers.

Some properties of 1

Proposition 4. Let ξ i , ξ j , ξ k and ξ l be four fuzzy numbers denoted respectively by ∀t ∈ {i, j, k, l} ξ t = (a t , b t , c t , d t ). We have the following properties:

1. If ξ i 1 ξ j and ξ j 1 ξ k , then ξ i 1 ξ k .

2. If inf Supp(ξ i ) ≥ sup Supp(ξ j ), then ξ i 1 ξ j .

3. Furthermore, if ∀t ∈ {i, j, k, l} ξ t = (a t , b t , c t , d t ) is a trapezoidal fuzzy number, then

• If ξ i 1 ξ j then -ξ i 1 -ξ j . • If ξ i 1 ξ j and ξ k 1 ξ l , then ξ i + ξ k 1 ξ j + ξ l .
In particular, if ξ j = ξ k , we have:

ξ i + ξ j 1 ξ j + ξ l . • If ξ i 1 ξ j , then ∀λ ∈ R * , λξ i 1 λξ j , if λ > 0 λξ i 1 λξ j , if λ < 0 .
Proof: 1) Assume that ξ i 1 ξ j and ξ j 1 ξ k . Let us prove that ξ i 1 ξ k . The two assertions ξ i 1 ξ j and ξ j 1 ξ k give (a i ≥ a j , b i ≥ b j , c i ≥ c j and

d i ≥ d j ) and, (a j ≥ a k , b j ≥ b k , c j ≥ c k and d j ≥ d k ). These two relations involve that a i ≥ a k , b i ≥ b k , c i ≥ c k , d i ≥ d k . Then (a i ≥ a k , b i ≥ b k , c i ≥ c k , d i ≥ d k ) and we deduce ξ i 1 ξ k .
2) Assume that inf Supp(ξ i ) ≥ sup Supp(ξ j ). Let us prove that ξ i ≻ 1 ξ j . inf Supp(ξ i ) ≥ sup Supp(ξ j ) means that a i ≥ d j . This last inequality also means that

d i ≥ c i ≥ b i ≥ a i ≥ d j ≥ c j ≥ b j ≥ a j and we have: a i ≥ a j , b i ≥ b j , c i ≥ c j , d i ≥ d j .
And this allows us to conclude that:

(a i ≥ a j , b i ≥ b j , c i ≥ c j , d i ≥ d j ). Thus ξ i 1 ξ j .
3) Assume that ∀t ∈ {i, j, k, l}, ξ t = (a t , b t , c t , d t ) is a trapezoidal fuzzy number. We distinguish three cases.

3-1) Assume that

ξ i 1 ξ j . Let us show that -ξ i 1 -ξ j . The assertion ξ i 1 ξ j implies (a i ≥ a j , b i ≥ b j , c i ≥ c j , d i ≥ d j ) and this leads to -a i ≤ -a j , -b i ≤ -b j , -c i ≤ -c j , -d i ≤ -d j .
By the Extension Principle of Zadeh, we have: -ξ j = (-a j , -b j , -c j , -d j ) and

-ξ i = (-a i , -b i , -c i , -d i ). Since (-a i ≤ -a j , -b i ≤ -b j , -c i ≤ -c j , -d i ≤ -d j ), then -ξ i 1 -ξ j . 3-2) Assume that ξ i 1 ξ j and ξ k 1 ξ l . Let us show that ξ i + ξ k 1 ξ j + ξ l . The two assertions ξ i 1 ξ j and ξ k 1 ξ l imply (a i ≥ a j , b i ≥ b j , c i ≥ c j , d i ≥ d j ) and (a k ≥ a l , b k ≥ b l , c k ≥ c l , d k ≥ d l ). These two relations involve that a i + a k ≥ a j + a l , b i + b k ≥ b j + b l , c i + c k ≥ c j +c l , d i +d k ≥ d j +d l .
By the Extension Principle of Zadeh, we have:

ξ i +ξ k = (a i + a k , b i + b k , c i + c k , d i + d k ) and ξ j + ξ l = (a j + a l , b j + b l , c j + c l , d j + d l ). Thus ξ i + ξ k 1 ξ j + ξ l .
3-3) Assume that ξ i 1 ξ j and let λ be a real number different of zero. The assertion ξ i 1 ξ j implies (a i ≥ a j , b i ≥ b j , c i ≥ c j , d i ≥ d j ) and this leads to λa i ≤ λa j , λb i ≤ λb j , λc i ≤ λc j , λd i ≤ λd j if λ < 0 and λa i ≥ λa j , λb i ≥ λb j , λc i ≥ λc j , λd i ≥ λd j if λ > 0. By the Extension Principle of Zadeh, we have: λξ j = (λa j , λb j , λc j , λd j ) and λξ i = (λa i , λb i , λc i , λd i ) if λ > 0 and λξ j = (λd j , λc j , λb j , λa j ) and λξ i = (λd i , λc i , λb i , λa i ) if λ < 0. We can conclude that λξ i 1 λξ j , if λ > 0 λξ i 1 λξ j , if λ < 0 .

In the following subsection, we recall the second credibilistic dominance relation on fuzzy variables introduced by Peng et al. [START_REF] Peng | Fuzzy Dominance Based on Credibility Distributions[END_REF]. We write fuzzy counterparts of the two notions of Interval of Coincidence and Crossing Points of two random variables introduced by Osuna [START_REF] Osuna | Crossing points of distribution and a theorem that relates them to second order stochastic dominance[END_REF] and, we characterize crossing points for fuzzy numbers. We use these two notions to characterize the second credibilistic dominance relation. [START_REF] Peng | Fuzzy Dominance Based on Credibility Distributions[END_REF], page 299, Definition 10) Let ξ 1 and ξ 2 be two fuzzy numbers with Φ 1 , Φ 2 their respective cumulative credibility distribution functions, φ 1 and φ 2 their respective density function with

The Second Credibilistic

φ 1 = φ 2 . ξ 1 2 ξ 2 if ∀t ∈ R, t -∞ [Φ 2 (r) -Φ 1 (r)]dr ≥ 0 ∃t 0 ∈ R, t 0 -∞ [Φ 2 (r) -Φ 1 (r)]dr > 0 . We note that t -∞ [Φ 2 (r) -Φ 1 (r)
]dr represents a balance of areas between Φ 1 and Φ 2 that means the difference of areas resulting from integrating each function from -∞ to t, with the following order: the area below Φ 2 minus the area below Φ 1 .

In the following, we will characterize the second credibilistic dominance 2 by writing the fuzzy counterpart of second order stochastic dominance's characterization for random variables proposed recently by Osuna [START_REF] Osuna | Crossing points of distribution and a theorem that relates them to second order stochastic dominance[END_REF]. Therefore, we introduce, analogously as did Osuna [START_REF] Osuna | Crossing points of distribution and a theorem that relates them to second order stochastic dominance[END_REF] for random variables (see Definition 3.1 P 760), the two notions of Interval of coincidence and crossing points for two fuzzy variables.

The Intervals of coincidence of two fuzzy variables is the half open interval, open at the right, where the two curves of their distributions functions coincide. For example, in Figure 3, the two straight lines entitled I.C. are the two intervals of coincidence of Φ 1 and Φ 2 . Formally, we have:

Definition 6. Intervals of coincidence (IC) The half-open interval [a, b), with a < b is an interval of coincidence (IC) for Φ 1 and Φ 2 if Φ 1 (t) = Φ 2 (t) for all t ∈ [a, b).
From this definition we can deduce that any value t 0 belongs to an interval of coincidence if there exists some ǫ > 0 such that the interval [t 0 , t 0 +ǫ) is IC.

We now introduce two types of crossing points for fuzzy variables, namely, crossing point of type I and crossing point of type II. Analogously to Definition 3.2 of page 760 in Osuna [START_REF] Osuna | Crossing points of distribution and a theorem that relates them to second order stochastic dominance[END_REF], the crossing point of type II of ξ 1 and ξ 2 is the point where the two curves of their distribution functions intersect and the curve which strictly minimizes before that point strictly majorizes after that point. The crossing point of type I of ξ 1 and ξ 2 is the upper bound of a given interval of coincidence (point where the two curves of their distribution functions coincide before it and are distinct after it). Formally, we have the following Definition: Definition 7. Crossing points (CP) 1. If t 0 does not belong to an IC, but [a, t 0 ) is an IC of type I and a = min t such that [a, t 0 ) is an IC, t 0 corresponds to a CP if there exists some ǫ > 0 such that for all s ∈]0, ǫ[, we have

           Φ 1 (a -s) = Φ 2 (a -s) Φ 1 (t 0 + s) = Φ 2 (t 0 + s)   Φ 1 (a -s) -Φ 2 (a -s) < 0 and Φ 1 (t 0 + s) -Φ 2 (t 0 + s) > 0 or Φ 1 (a -s) -Φ 2 (a -s) > 0 and Φ 1 (t 0 + s) -Φ 2 (t 0 + s) < 0   .

Any other value t 0 corresponds to a CP or type II if there exists some

ǫ > 0 such that for all s ∈]0, ǫ[, we have

           Φ 1 (t 0 -s) = Φ 2 (t 0 -s) Φ 1 (t 0 + s) = Φ 2 (t 0 + s)   Φ 1 (t 0 -s) -Φ 2 (t 0 -s) < 0 and Φ 1 (t 0 + s) -Φ 2 (t 0 + s) > 0 or Φ 1 (a -s) -Φ 2 (a -s) > 0 and Φ 1 (t 0 + s) -Φ 2 (t 0 + s) < 0   .

Convention: (a) if t 0 belongs to an IC, it does not correspond to a CP;

(b) let m 1 = min{t/Φ 1 (t) > 0} and m 2 = min{t/Φ 2 (t) > 0}, and let t 1 = min(m 1 , m 2 ) : the interval (-∞, t 1 [ is an IC and t 1 does not correspond to a CP.

Our third main result establishes a characterization of the second credibilistic dominance. Theorem 3. Let ξ 1 and ξ 2 be two fuzzy variables, Φ 1 and Φ 2 their respective absolutely continuous credibility distribution and t 01 , ..., t 0k be their k (k ≥ 1) crossing points (ordered so increasing) such that t 01 > min{min{t : Φ 1 (t) > 0}, min{t : Φ 2 (t) > 0}}. Then ξ 1 2 ξ 2 if and only if

       ∀i = {1, ..., k}, t 0i -∞ [Φ 2 (r) -Φ 1 (r)]dr ≥ 0   +∞ -∞ [Φ 2 (r) -Φ 1 (r)]dr = 0 and ∃t 0h ∈ {t 01 , ..., t 0k }, t 0h -∞ [Φ 2 (r) -Φ 1 (r)]dr > 0 or ∞ -∞ [Φ 2 (r) -Φ 1 (r)]dr > 0   .
Proof: According to the fact that the cumulative distribution functions (with respect to the credibility distribution) Φ 1 and Φ 2 have the same properties as the classical stochastic ones, we can refer to the proof proposed in Osuna [START_REF] Osuna | Crossing points of distribution and a theorem that relates them to second order stochastic dominance[END_REF], Theorem 4.1, page 761. 

Characterization of Crossing Points of two fuzzy numbers

The following result characterizes crossing points of two fuzzy numbers in the following six cases: (i) the three first cases are illustrated by Figure 5 and (ii) the three last cases allow us to find crossing points when the core of one of at least one of the fuzzy number is reduced to a single point, that is a crisp number. Proposition 5. Let ξ i = (a i , b i , c i , d i ) and ξ j = (a j , b j , c j , d j ) be two fuzzy numbers satisfying [a i ∨a j , b i ∧b j ] = ∅, [b i ∨b j , c i ∧c j ] = ∅ and [c i ∨c j , d i ∧d j ] = ∅. Let µ i and µ j be their respective membership functions, Φ i and Φ j be their respective credibility distribution functions. Then we have:

1. ∃ǫ > 0, ∃r 0 ∈ R, ∀s ∈]0, ǫ[, µ i (r 0 -s) < µ j (r 0 -s), µ i (r 0 + s) > µ j (r 0 + s) r 0 -s, r 0 + s ∈ [a i ∨ a j , b i ∧ b j ] ⇔ r 0 is a crossing point of type II. 2. ∃ǫ > 0, ∃r 0 ∈ R, ∀s ∈]0, ǫ[, µ i (r 0 -s) < µ j (r 0 -s), µ i (r 0 + s) > µ j (r 0 + s) r 0 -s, r 0 + s ∈ [c i ∨ c j , d i ∧ d j ] ⇔ r 0 is a crossing point of type II. 3. ([b i , c i ] ⊆ [b j , c j ] and [a i , d i ] ⊆ [a j , d j ], b i = c i , b j = c j ) ⇔ c i is a crossing point of type I and b i = min{t/[t, c i ) is I.C}. 4. ([a i , d i ] ⊆ [a j , d j ], b i = c i , b j = c j , b i ∈ [b j , c j ]) ⇔ c i is a crossing point of type II . 5. ([a i , d i ] ⊆ [a j , d j ], b i = c i , b j = c j , b j ∈ [b i , c i ]) ⇔ c j is a crossing point of type II. 6. ([a i , d i ] ⊆ [a j , d j ], b i = c i = b j = c j , a i = a j , d i = d j ) ⇔ c j is a crossing point of type II.
To establish our result, we need the following Lemma.

Lemma 1. Let ξ i = (a i , b i , c i , d i ) and ξ j = (a j , b j , c j , d j ) be two fuzzy numbers satisfying [a i ∨ a j , b i ∧ b j ] = ∅, [b i ∨ b j , c i ∧ c j ] = ∅ and [c i ∨ c j , d i ∧ d j ] = ∅.
Let µ i and µ j be their respective membership functions and, Φ i and Φ j be their respective credibility distribution functions. Then we have: Then we take ǫ = (b ja j ) ∧ (d jc j ). It is easy to check that for all s : 0

1. ∃ǫ > 0, ∃r 0 ∈ R, ∀s ∈]0, ǫ[, µ i (r 0 -s) < µ j (r 0 -s), µ i (r 0 + s) > µ j (r 0 + s) r 0 -s, r 0 + s ∈ [a i ∨ a j , b i ∧ b j ] ⇔ Φ i (r 0 -s) < Φ j (r 0 -s), Φ i (r 0 + s) > Φ j (r 0 + s).
i -ǫ = b j , c i + ǫ = c i + b i -b j . Φ i (b i -ǫ) -Φ j (b i -ǫ) = Φ i (b j ) -Φ j (b j ) < 0; indeed, on one hand, Φ i (b i -s) < Φ i (b i ) = 1 2 because b i -s < b i , Φ i increases; on the other hand Φ j (b j -s) > Φ j (b j -ǫ) = Φ j (b j ) = 1 2 . Furthermore, Φ i (c i + s) > Φ i (c i ) = 1 2 because Φ i increases and Φ j (c i + s) < Φ j (c j ) = 1 2 because c i + s < c i + ǫ < c i + c j -c i = c j and F j increases. 2nd case: c j -c i < b i -b j We have ǫ = c j -c i , and c i + ǫ = c j , b i -ǫ = b i -c j + c i . Φ i (b i -s) -Φ j (b i -s) < 0 because: Φ i (b i -s) < Φ i (b i ) = 1 2 and b i -ǫ = 2b i -b j > b j , (b i > b j ) so Φ j (b i -s) > Φ j (b i -ǫ) > Φ j (b j ) = 1 2 as Φ j increases and b i -ǫ > b j . Furthermore, Φ i (c i + s) -Φ j (c i + s) > 0 ; indeed, c i + s < c i + ǫ = c j , so Φ j (c i + s) < Φ j (c j ) = 1 2 . On the other hand Φ i increases and Φ i (c i + s) > Φ i (c i ) = 1 2 . ii) If b i = b
< s < ǫ, b j -s ∈ [a j , b i [ and c j +s ∈ [c i , d j [. (c i = c j , b i = b j ) ⇒ [b j , c j ] = [b i , c i ]
; thus the support of ξ i is included in the support of ξ j and their cores coincide that means µ j and µ i coincide only in [b j , c j ], and this allow us to say that ∀s ∈

[a j , b i [, µ j (s) > µ i (s) and ∀s ∈ [c i , d j [, µ i (s) < µ j (s). Furthermore, ∀s ∈ [a j , b i [, Φ j (s) > Φ i (s) by the fact that µ j (s) > µ i (s) and ∀s ∈ [c i , d j [, Φ j (s) < Φ i (s) by the fact that µ i (s) < µ j (s); these last inequalities lead us to Φ i (c j + s) > Φ j (c j + s), Φ i (b j -s) < Φ j (b j + s).
The converse case can be proved easily. 4) By taking ǫ = min(b ib j , c jb i ), we can easily check that: ∀s : 0

< s < ǫ, Φ i (c i -s) < Φ j (c i -s), Φ i (c i + s) > Φ j (c i + s).
The converse case is obvious. 5) By taking ǫ = min(b jb i , c ib j , ) we can easily check that: ∀s : 0 < s < ǫ, Φ j (c js) < Φ i (c js), Φ j (c j + s) > Φ i (c j + s). The converse case is obvious. 6) By taking ǫ = max(a ia j , d jd i ), we can easily check that: ∀s : 0

< s < ǫ, Φ j (c j -s) > Φ i (c j -s), Φ j (c j + s) < Φ i (c j + s).
The converse case is obvious.

Remark 4.

• We have an analogous result if ∃ǫ > 0, ∃r 0 , ∀s ∈]0, ǫ[, µ i (r 0s) > µ j (r 0s) and µ i (r 0 + s) < µ j (r 0 + s).

• The binary relation 2 on the set of fuzzy numbers is not complete.

Let us take the triangular fuzzy numbers ξ 1 = (1, 3, 8) and ξ 2 = (2, 3, 4) drawn in Figure 6 and, Φ 1 and Φ 2 are their respective credibility distributions.

By Proposition 5, we can prove that the only crossing point is obtained at r 0 = 3. Then, we have:

3 -∞ [Φ 1 (r) -Φ 2 (r)]dr = 1 4 > 0, +∞ -∞ [Φ 1 (r) -Φ 2 (r)]dr = -1
5 < 0 and by Theorem 3 we conclude that ξ 1 2 ξ 2 and ξ 2 2 ξ 1 .

We establish the relationship between the three relations.

3.4 Relations between α,τ , 1 and 2 .

The following result shows that 1 is stronger than α,τ and 2 . Proposition 6. Let ξ 1 and ξ 2 be two fuzzy variables. Then

ξ 1 1 ξ 2 ⇒ (∀α ∈ R * + , ∀τ ∈ R, ξ 1 α,τ ξ 2 ) ξ 1 2 ξ 2 .
Proof: Let ξ 1 and ξ 2 be two fuzzy variables with uncertainty distributions Φ 1 and Φ 2 respectively, α and τ some given reals. 1) Assume that ξ 1 1 ξ 2 and we prove that

ξ 1 α,τ ξ 2 . ξ 1 1 ξ 2 ⇒ ∀r ∈ R, Φ 1 (r) ≤ Φ 2 (r), that is, ∀r ∈ R, Cr{ξ 1 ≤ r} ≤ Cr{ξ 2 ≤ r} (20) 
and

∀r ∈ R, Cr{ξ 1 ≥ r} ≥ Cr{ξ 2 ≥ r} (21) 
According to the definition of 1 . In the other hand, we have: [START_REF] Peng | Fuzzy Dominance Based on Credibility Distributions[END_REF] and ( 21), we conclude that

E[ξ 1 ] = +∞ 0 Cr{ξ 1 ≥ r} dr - 0 -∞ Cr{ξ 1 ≤ r} dr and E[ξ 2 ] = +∞ 0 Cr{ξ 2 ≥ r} dr - 0 -∞ Cr{ξ 2 ≤ r} dr According to
E[ξ 1 ] ≥ E[ξ 2 ].
In the same manner, according to Remark 1 we have: FLPM

α,τ [ξ 1 ] = α τ -∞ (τ - x) α-1 Cr{ξ 1 ≤ x}dx and FLPM α,τ [ξ 2 ] = α τ -∞ (τ -x) α-1 Cr{ξ 2 ≤ x}dx These last relations allow us to conclude that FLPM α,τ [ξ 1 ] < FLPM α,τ [ξ 2 ]. Finally, we can conclude that ξ 1 α,τ ξ 2 . 2) Since ∀r ∈ R, Φ 1 (r) ≤ Φ 2 (r) then ∀t ∈ R, t -∞ Φ 2 (r) -Φ 1 (r) dr ≥ 0.
We can easily obtain the proof. Now we use the following example to justify that the converse of the two previous implications are not true.

Example 1. Let us consider the triangular fuzzy numbers ξ 1 = (1, 3, 5) and ξ 2 = (2, 3, 4).

• By Proposition 5, we can prove that the only crossing point is obtained at r 0 = 3. Then, we have:

3 -∞ [Φ 1 (r) -Φ 2 (r)]dr = 1 4 > 0, +∞ -∞ [Φ 1 (r) -Φ 2 (r)
]dr = 0 and by Theorem 3 we conclude that ξ 2 2 ξ 1 . But by Proposition 6, ξ 2 1 ξ 1 .

• By using this same example, we have:

E[ξ 1 ] = E[ξ 2 ] = 3, FLPM 2,3 [ξ 1 ] = 2 3 and FLPM 2,3 [ξ 2 ] = 1 6
. And FLPM 2,3 [ξ 2 ] < FLPM 2,3 [ξ 1 ] and hence Φ 2 2,3 Φ 1 . But by Proposition 6, ξ 2 1 ξ 1 .

We end with the two following examples which specify that there is not a link between 2 and α,τ (See Figure 7). 3. For α = 2 we have: if τ ≥ d .

The following table gives

FLPM 2,τ [ξ] =                0 if τ < a
• For α = 2, we have the following • For α = 4 and τ = e (e is the mean), we obtain the semi-kurtosis of the seven triangular fuzzy numbers (see Sadefo Kamdem, Tassak et Fono [START_REF] Sadefo Kamdem | Moments and semi-moments for fuzzy portfolio selection[END_REF]).

  denote a fuzzy number by ξ = (a, b, c, d) with a ≤ b ≤ c ≤ d and its support is the bounded interval Supp(ξ) = Supp((a, b, c, d)) = [a, d]. In the particular case where µ is a straight line on [a, b] and [c, d], then ξ = (a, b, c, d) is the usual and well-known trapezoidal fuzzy number. If b = c, then ξ = (a, b, d) is a triangular fuzzy number.

Theorem 2 .

 2 Let ξ 1 = (a 1 , b 1 , c 1 , d 1 ) and ξ 2 = (a 2 , b 2 , c 2 , d 2 ) be two fuzzy numbers. Then

Figure 1

 1 illustrates that the trapezoidal fuzzy numberξ 2 = (a 2 , b 2 , c 2 , d 2 ) dominates ξ 1 = (a 1 , b 1 , c 1 , d 1) by means of 1 while Figure2illustrates that neither dominates another by means of 1 .

Figure 1 :

 1 Figure 1: fuzzy number (a1, b1,c1,d1) dominated by (a2, b2,c2,d2) by means of ≥1

Figure 2 :

 2 Figure 2: Incomparable fuzzy numbers by means of ≥1

Dominance: 2 3. 3 . 1

 231 Definition, crossing points and characterization Definition 5. (Peng et al.

Figure 3 :Figure 4 :

 34 Figure 3: : Intervals of coincidence (I.C.) of two fuzzy variables based on their distribution functions

Figure 5 :

 5 Figure 5: Crossings points of type I and type II of two fuzzy numbers based on their membership functions

  j and c i = c j Then ǫ = c jc i and we easily conclude as in i). iii) If c i = c j and b i = b j Then ǫ = b ib j and we easily conclude as in i). iv) If c i = c j and b i = b j .

Figure 6 :

 6 Figure 6: Incomparable fuzzy numbers by means of ≥2

(τ -a) 3 6

 3 (b-a) if a ≤ τ < b [(τ -a) 3 -(τ -b) 3 ] 6(b-a) if b ≤ τ < c [(τ -a) 3 -(τ -b) 3 ] 6(b-a) + (τ -c) 3 6(d-c) if c ≤ τ < d [(τ -a) 3 -(τ -b) 3 ] 6(b-a) + [(τ -c) 3 -(τ -d) τ -a) 3 -(τ -b) 3 ]

2 FK 3 0

 23 2,τ [(-0.8, 2.5, 3.0)] 1.82 FLPM 2,τ [(-0.6, 1.8, 3.0)] ,τ [(-0.3, 1.8, 2.3)] 9.6 5.9 4.7 3.4 1.7 FK 3,τ [(-0.4, 2.0, 2.2)] 7.8 5.0 4.1 3.0 1.6 FK 3,τ [(-0.5, 1.9, 2.7)] 6.4 4.3 3.59 2.6 1.49 FK 3,τ [(-0.6, 2.2, 2.8)] 5.9 4.0 3.4 2.5 1.45 FK 3,τ [(-0.7, 2.4, 2.7)] 5.37 3.7 3.17 2.4 1.38 FK 3,τ [(-0.8, 2.5, 3.0)] 4.9 3.5 2.9 2.2 1.32 FK 3,τ [(-0.6, 1.8, 3.0)] 5.30 3.6 3.1 2.3 1.34 5. For α = 4 we have:FLPM 4,τ [ξ] = if τ < a (τ -a) 5 10(b-a) if a ≤ τ < b [(τ -a) 5 -(τ -b) 5 ] 10(b-a) if b ≤ τ < c [(τ -a) 5 -(τ -b) 5 ] 10(b-a) + (τ -c) 5 10(d-c) if c ≤ τ < d[(τ -a) 5 -(τ -b) 5 ] 10(b-a) + [(τ -c) 5 -(τ -d)

  Fuzzy Kappa index of first order for seven triangular fuzzy numbers when the threshold τ ∈ { e FK 1,τ [(-0.3, 1.8, 2.3)] 54.6 27.9 20.8 13.3 5.8 FK 1,τ [(-0.4, 2.0, 2.2)] 42.5 23.3 17.9 11.8 5.4 FK 1,τ [(-0.5, 1.9, 2.7)] 29.2 18.0 14.1 9.6 4.6 FK 1,τ [(-0.6, 2.2, 2.8)] 28.1 17.0 13.5 9.3 4.5 FK 1,τ [(-0.7, 2.4, 2.7)] 25.2 15.5 12.4 8.7 4.3 FK 1,τ [(-0.8, 2.5, 3.0)] 22.6 14.1 11.4 8.0 4.1 FK 1,τ [(-0.6, 1.8, 3.0)] 23.0 14.2 11.3 7.9 3.9

						10 , e 5 , e 4 , e 3 , e 2 }.
	τ	e 10	e 5	e 4	e 3	e 2

  table which gives Fuzzy Kappa index of the second order for the same seven triangular fuzzy numbers. FK 2,τ [(-0.4, 2.0, 2.2)] 12.3 7.6 6.1 4.4 2.3 FK 2,τ [(-0.5, 1.9, 2.7)] 9.7 6.3 5.2 3.7 2.0 FK 2,τ [(-0.6, 2.2, 2.8)] 9.0 6.0 4.9 3.6 1.9 FK 2,τ [(-0.7, 2.4, 2.7)] 8.1 5.5 4.6 3.4 1.89 FK 2,τ [(-0.8, 2.5, 3.0)] 7.4 5.1 4.2 3.22 1.80 FK 2,τ [(-0.6, 1.8, 3.0)] 7.8 5.3 4.4 3.28 1.81 • For α = 2 and τ = e (e is the mean), we obtain semi-variances of the seven triangular numbers (see Sadefo Kamdem et al. [21]). [(-0.3, 1.8, 2.3)] 0.74 FLPM 2,τ [(-0.4, 2.0, 2.2)] 0.96 FLPM 2,τ [(-0.5, 1.9, 2.7)] 0.96 FLPM 2,τ [(-0.6, 2.2, 2.8)] 1.3 FLPM 2,τ [(-0.7, 2.4, 2.7)] 1.6 FLPM

	e 10 FK 2,τ [(-0.3, 1.8, 2.3)] 15.3 9.0 7.1 4.9 e e e τ 5 4 3	e 2 2.4
	τ	e
	FLPM 2,τ	

•

  For α = 4, the following table gives Fuzzy Kappa index of the fourth order of the seven triangular fuzzy numbers. FK 4,τ [(-0.3, 1.8, 2.3)] 7.5 4.7 3.8 2.7 1.4 FK 4,τ [(-0.4, 2.0, 2.2)] 6.1 4.0 3.3 2.4 1.3 FK 4,τ [(-0.5, 1.9, 2.7)] 5.1 3.51 2.9 2.2 1.25 FK 4,τ [(-0.6, 2.2, 2.8)] 4.7 3.3 2.8 2.1 1.21 FK 4,τ [(-0.7, 2.4, 2.7)] 4.2 3.0 2.5 1.9 1.15 FK 4,τ [(-0.8, 2.5, 3.0)] 3.9 2.8 2.4 1.8 1.11 FK 4,τ [(-0.6, 1.8, 3.0)] 4.2 3.0 2.5 1.9 1.14

	τ	e 10	e 5	e 4	e 3	e 2

2.

∃ǫ > 0, ∃r 0 ∈ R, ∀s ∈]0, ǫ[, µ i (r 0s) < µ j (r 0s), µ i (r 0 + s) > µ j (r 0 + s) r 0s, r 0 + s ∈ [c i ∨ c j , d i ∧ d j ] ⇔ Φ i (rs) > Φ j (rs), Φ i (r + s) < Φ j (r + s).

Proof of the Lemma: Let us recall that Φ is given by [START_REF] Dentcheva | Semi-infinite probabilistic optimization: First-order stochastic dominance constraint[END_REF]. We suppose that:

1) Let us suppose that ∃ǫ > 0, ∃r 0 ∈ R and let be s : 0 < s < ǫ, µ i (r 0s) < µ j (rs), µ i (r 0 + s) > µ j (r 0 + s) and r 0s, r 0 + s ∈ [a i ∨ a j , b i ∧ b j ], then µ i (r 0s) < µ j (r 0s) ⇒ Φ i (r 0s) = 1 2 µ i (r 0s) < Φ j (r 0s) = 1 2 µ j (r 0s) and µ i (r 0 + s) > µ j (r 0 + s) ⇒ Φ i (r 0 + s) = 1 2 µ i (r 0 + s) > Φ j (r 0 + s) = 1 2 µ j (r 0 + s). The converse case is proved in the same manner.

2) Let us suppose that ∃ǫ > 0, ∃r 0 ∈ R and let be s : 0

The converse case is proved in the same manner.

3

2 . Remark 3. We have an analogous result if ∃ǫ > 0, ∃r 0 ∈ R, ∀s ∈]0, ǫ[, µ i (r 0s) > µ j (r 0s) and µ i (r 0 + s) < µ j (r 0 + s).

We now give the proof of our Proposition. Proof of the Proposition: 1) Let us suppose that ∃ǫ > 0, ∃r 0 ∈ R and let be s : 0 < s < ǫ such that µ i (r 0s) < µ j (r 0s) and µ i (r 0 + s) > µ j (r 0 + s), with r 0s, r 0 + s ∈ [a i ∨ a j , b i ∧ b j . According to the Lemma 1, we have Φ i (r 0s) < Φ j (r 0s) and Φ i (r 0 + s) > Φ j (r 0 + s) and by Definition 7, we can conclude that r 0 is a crossing point of type II. We prove the converse case by the same manner.

2) We use the same method as in 1.

3) Let us show that c i is a crossing point of type I.

and by Lemma 1 and Definition 5, we have:

1. Let us consider the triangular fuzzy numbers ξ 1 = (1.5, 4, 5) and ξ 2 = (2, 3, 4). By Proposition 5, we can prove that the only crossing point is obtained at r 0 = 4. Then, we have:

2. Let us consider the triangular fuzzy numbers ξ 3 = (1, 4, 5) and ξ 4 = (2, 3, 4) and, Φ 3 and Φ 4 are their respective credibility distribution functions.

By Proposition 5, we can prove that the only crossing point is obtained at r 0 = 4. Then, we have:

] and ξ 4 2,4 ξ 3 .

Concluding remarks

In this paper, we introduce Fuzzy lower partial moment (FLPM) based on credibility measure and propose some of its properties. We also introduce the n-th order fuzzy kappa index (FK) which a fuzzy risk adjusted performance measure that can be useful to classified fuzzy variables (e.g. portfolio returns performance). We complete our credibility fuzzy dominance with a general analysis of the mean-risk dominance based on FLPM, the first and second Figure 7: Links between the three fuzzy dominances order dominance of fuzzy variables. We also characterize the obtained fuzzy mean-risk dominance. Because in some situations, it is not absolutely possible to compare two or multiple fuzzy variable, we introduce and characterize the crossing points between two fuzzy variables distributions and propose a theorem that relates them to second order fuzzy dominance.

5 Appendix on some examples of FLPM 5.

1 Some examples of FLPM and of Fuzzy Kappa Index of a trapezoidal fuzzy number

In the following example, we compute from Corollary 1 the FLPMs and the Kappa index for a trapezoidal fuzzy number ξ = (a, b, c, d) for some values of α and τ.

Example 3.

1. For α = 0 we have:

The credibility of loss FLPM 0,τ coincides with the cumulative distribution of credibility Φ.

For α = 1 we have

4. For α = 3 we have:

The following tabular gives Fuzzy Kappa index of the third order for seven triangular fuzzy numbers when the threshold τ ∈ { 

Some examples of Fuzzy Lower partial Moments of a fuzzy portfolio return

From ( 9), it is straightforward to obtain the following proposition:

Remark 5.

1. Let ξ p = (γ a , γ b , γ c , γ d ) be a trapezoidal fuzzy return of a portfolio. Then the fuzzy lower partial moment of the portfolio return ξ p is given by: