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PACS 03.75.Gg – Entanglement and decoherence in Bose-Einstein condensates

Abstract – The evolution of an interacting two-component Bose-Einstein condensate from an
initial phase state leads to a spin squeezed state that may be used in atomic clocks to increase the
signal-to-noise ratio, opening the way to quantum metrology. The efficiency of spin squeezing is
limited by the finite temperature of the gas, as was shown theoretically in a spatially homogeneous
system. Here we determine the limit of spin squeezing in the realistic trapped case, with classical
field simulations, and with a completely analytical treatment that includes the quantum case.

Introduction. – In good atomic clocks, the signal-
to-noise ratio is determined by the quantum noise, that is
the partition noise of uncorrelated atoms among two in-
ternal levels a and b, rather than by technical noise [1].
The resulting statistical uncertainty on the transition fre-
quency ωab is then ∆ωab = 1/(τN1/2) where N is the
atom number and τ the Ramsey interrogation time.
One can beat this so-called “standard quantum limit”

by introducing appropriate quantum correlations among
the atoms, that is using squeezed states of the collective
spin [2] having reduced fluctuations ∆S⊥ along some di-
rection transverse to the mean spin 〈S〉. The resulting
statistically uncertainty on the transition frequency is re-
duced by the squeezing parameter ξ < 1 to the value [3]

∆ωsq
ab =

ξ

N1/2τ
with ξ2 =

N∆S2
⊥

|〈S〉|2 . (1)

A fundamental issue is then to know how ξ scales in
the large-N limit. Practical realisation of spin squeezing
requires some non-linearity in the spin dynamics [4,5]. In
two-component Bose-Einstein condensates, it is provided
by the atomic s-wave interactions [6], and first experi-
mental implementations have been performed with a dy-
namical control of the interactions [7]. The original model
Hamiltonian proposed in [2] is then realized if one restricts
to the two condensate spatial modes (in a and in b), re-
sulting in a squeezing parameter minimised over time such
that ξ2min ≈ N−2/3. For one million atoms, this predicts
a signal-to-noise increase by a factor 100. There may be
however serious shortcomings of the two-mode model. The
combined effect of one-body and three-body particle losses
was shown in [8] to impose a non-zero lower bound on ξmin.

More fundamentally, the finite temperature gases in the
experiments are intrinsically multimode; in the spatially
homogeneous case, this was predicted in [9, 10] to lead to
a non-zero value of ξ2min in the thermodynamic limit, in
sharp contrast with the N−2/3 scaling, as a consequence
of random dephasing of the condensate introduced by the
non-condensed quasi-particles [11].
Here, we perform the last step towards a full theoretical

understanding of the spin squeezing dynamics, by includ-
ing the effect of the trap present in the experiments. Al-
though it significantly complicates the theoretical analysis,
we will see that an analytical treatment can be pushed to
the end to obtain ξmin in the large system-size limit.

Classical fields. – Classical field models require an
energy cut-off of the order of kBT , where T is the initial
temperature of the gas. Here it is provided by a cubic
lattice model, with a unit cell volume dV adjusted to re-
produce the quantum non-condensed particle number for a
zero chemical potential spatially homogeneous ideal Bose
gas. The corresponding Hamiltonian is

H =
∑

σ=a,b

∑

r

dV

[

ψ∗
σh0ψσ +

g(t)

2
ψ∗
σψ

∗
σψσψσ

]

(2)

with a one-body part h0 = p2/(2m) + U(r) involving
the kinetic energy part [eigenmodes are plane waves of
wavevector k in the first Brillouin zone] and the internal-
state independent trapping part U(r). We assume that
the coupling constant g is the same in the two internal
states a and b, as for F = 1 spinor condensates, and that
there is no interaction between a and b, which may be
realized by spatial separation of the two components. Ini-
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tially, at time t = 0−, the gas is in thermal equilibrium
in the internal state a, with a fixed total particle num-
ber N and a coupling constant g(0−). To mimic quantum
noise in the initially empty internal state b, we sample
the Gaussian Wigner distribution of the vacuum state in
b, which amounts to introducing on average 1/2 fictitious
particles in each of the N spatial modes1. At t = 0, the
gas experiences a π/2 pulse, inducing the field mapping

ψa,b(r, 0
+) =

1√
2
[ψa(r, 0

−)∓ ψb(r, 0
−)] (3)

This distributes on the average half of the particles in each
internal state, with Poissonian fluctuations, and it puts the
system out of equilibrium. To minimize the excitation of
a breathing mode of the condensate [14], we subsequently
increase the coupling constant by a factor two,

g(0+) ≡ g = 2g(0−), (4)

which may be realized using a Feshbach resonance 2 3.
The before-pulse coupling constant g(0−) is related to
the before-pulse s-wave scattering length by g(0−) =
4π~2a(0−)/m. After the pulse, each field ψa,b is evolved
according to the non-linear Schrödinger equation

i~∂tψσ = [h0 + g|ψσ(r, t)|2]ψσ (5)

The variances of the various collective spin components
Sx + iSy =

∑

r
dV ψ∗

a(r)ψb(r) and Sz = (Na − Nb)/2,
where Nσ is the particle number in internal state σ, give
access to the spin squeezing parameter ξ2(t) as a function
of time. According to Eq. (1), one needs in particular [9]:

∆S2
⊥ =

1

2
[〈S2

y〉+ 〈S2
z 〉 − |〈(Sy + iSz)

2〉|], (6)

where 〈. . .〉 represents the average over all stochastic re-
alisations. In practice, spin squeezing is supposed to be
applied to large atomic ensembles, as in clocks, so we con-
centrate our study on the thermodynamic limit, where the
single-particle level spacing tends to zero for fixed temper-
ature and chemical potential. We then find as in [9, 10]
that ξ2(t) is a very flat function around its minimum, and
that its minimum tends to a finite value ξ2min in the ther-
modynamic limit, see inset in Fig. 1. This is a striking
consequence of the multimode nature of the problem.
In the spatially homogeneous case, in the weakly inter-

acting regime, ξ2min obeys a simple scaling formula [9, 10].
Its intuitive generalisation to the trapped case is

ξ2min

[ρ(0, 0−)a3(0−)]1/2
= f

(

kBT

µ

)

(7)

1The Wigner method in the context of spin squeezing was also
used in [12] and recently extended to the case with particle losses
[13].

2Strictly speaking, one should take g(0−)N = g(0+)(N +N )/2.
Here, however, one has N ≫ N/2 as required in [15].

3We have however seen numerically that for g(0+) = g(0−) such
excitation does not have a large impact on the squeezing.
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Fig. 1: Minimal spin squeezing parameter ξ2min in an isotropic
harmonic trap, U(r) = mω2r2/2, as a function of temperature.
After rescaling as in Eq. (7), it is universal in the thermody-
namic and weakly interacting limit. Analytical result (33) for
quantum fields: solid line. Classical field model: simulations
(squares) vs analytics (26) (crosses). Inset: ξ2(t) from simu-
lations approaching the thermodynamic limit; kBT/µ = 2.89,
[ρ(0, 0−)a3(0−)]1/2 = 1.4× 10−4, N from 105 to 5.6× 105.

where µ is the Gross-Pitaevskii chemical potential of the
gas, and ρ(0, 0−) is the mean atomic density before the
pulse in the trap center. We have checked numerically,
by producing data with various atom numbers and inter-
action strength, that this scaling holds for the trapped
system. The rescaled minimal spin squeezing ξ2min as a
function of the rescaled temperature, that is the function
f , is plotted with symbols in Fig. 1. The temperature is
limited to the range kBT > µ where our classical field
model makes sense.

Analytical approach for classical fields. – We
develop analytics within the framework of the number-
conserving Bogoliubov approach [16,17], along the lines of
our studies of the homogeneous case [10]. The Bogoliubov
approach is used first to describe the initial distribution
of the fields (before the pulse); this is relatively standard,
and we shall be brief on this aspect here. Second, it is used
to describe the dynamical evolution of the fields after the
pulse, which is more involved as we now explain.
The theory introduces as a small parameter the non-

condensed fraction of the gas, ǫBog, and it is pushed
to first order included in ǫBog. It would remain quite
involved without the use of a second small parameter,
ǫsize = 1/N1/2 where N is the total particle number, con-
trolling the approach of the thermodynamic limit 4. In
the Bogoliubov approach, one singles out the contribution
of the macroscopically populated modes, corresponding to
the condensate wavefunctions φσ in each internal state:

ψσ(r, t) = aσ(t)φσ(r, t) + ψ⊥σ(r, t) (8)

4The two small parameters are not fully independent. Since the
system size is ≫ the thermal wavelength, one finds NǫBog ≫ 1.
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The non-condensed fields ψ⊥σ are orthogonal to the con-
densate wavefunctions; their squared modulus gives the
non-condensed density so that they are smaller than the

condensate fields aσφσ by a factor ǫ
1/2
Bog. This allows the

Bogoliubov expansion of the Hamiltonian in powers of ψ⊥.
For each component σ the condensate wavefunction φσ

is an averaged quantity: it is the most populated eigen-
state of the one-body density matrix 〈ψ∗

σ(r
′, t)ψσ(r, t)〉.

Due to symmetry in our problem, one has φa = φb. The

expansion of φσ in powers of ǫ
1/2
Bog reads, with notations

slightly different from [17]:

φσ(r, t) = Φ(r) + φ(2)(r, t) +O
[

(ǫ
1/2
Bog)

3
]

(9)

The zeroth order contribution Φ corresponds to Gross-
Pitaevskii theory; it is time-independent here, due to the
trick (4), so it can be taken as the real and positive solution
of the stationary Gross-Pitaevskii equation

0 = [h0 + g〈Nσ〉Φ2 − µ]Φ (10)

where 〈Nσ〉 is the mean particle number in each internal
state after the pulse. The equation for the correction φ(2),
due to condensate depletion and interaction with the non-
condensed particles, is not needed; we shall use that φ(2)

scales as ǫBogΦ, and that it is orthogonal to Φ [17].
Of crucial importance is the modulus-phase representa-

tion of the condensate amplitudes

aσ(t) = eiθσ(t)[nσ(t)]
1/2 (11)

where the condensate phases θσ and particle numbers nσ

are fluctuating and time-dependent quantities. First, in-
clusion of this phase factor in the non-condensed fields
leads to the fields (called Λex in [17]) that are the main
dynamical variables of the number-conserving theories:

Λσ(r, t) ≡ e−iθσ(t)ψ⊥σ(r, t) (12)

Second, the phases θσ(t) are unbounded variables that in-
crease linearly in time, contrarily to the condensate num-
bers nσ(t) or the fields Λσ that merely oscillate in time.
The simulations show that the best squeezing time remains
finite in the thermodynamic limit, as it was the case for
the spatially homogeneous system [9,10]; the phase differ-
ence (θa−θb)(t) thus remains O(1/N1/2) and ≪ 1 over the
relevant time window. Linearizing the quantity ei(θb−θa)

that appears in the expression of the collective spin com-
ponent Sy, as in [9,10], one obtains a contribution growing
linearly in time that eventually dominates over the collec-
tive spin component Sz (which is a constant of motion).
The resulting squeezing parameter ξ2(t) reaches its mini-
mal value at large times 5 6:

ξ2(t) ≃
large t

1− 〈(θa − θb)(Na −Nb)〉2
〈(θa − θb)2〉〈(Na −Nb)2〉

≃
large t

ξ2min (13)

5As in the homogeneous case, large times correspond (in the
Thomas-Fermi regime) to ξminµt/~ ≫ 1.

6As in [10] we use the fact that, at large times, Sy ≃ (θb − θa)F
where F =

√
nanb + Re

∑
r
dV Λ∗

aΛb can be replaced by its mean
value 〈F〉 in the thermodynamic limit since θa − θb is of zero mean.

Note that Na −Nb scales as N
1/2, since it is of zero mean

and of variance ≃ N .
We thus need to evaluate the time evolution of the con-

densate phases. From the equation of motion (5), one gets
the expression of d

dtθσ that we transform with the splitting
(8), keeping terms up to order one included in ǫBog and
up to order one included in ǫsize, and using where neces-
sary nσ = Nσ − ∑

r
dV |Λσ|2. Going beyond first order

in ǫBog is indeed beyond Bogoliubov theory. According to
(13), the relevant quantity is N1/2(θa − θb), and terms in
the phase difference that are o(ǫsize) are negligible in the
thermodynamic limit. Also, the crossed terms scaling as
ǫBogǫsize are negligible. We finally obtain after the pulse:

− ~
d

dt
θσ ≃ µ+ 〈Nσ〉g

∫

Φ3(φ(2) + c.c.)

+ (nσ − 〈Nσ〉)g
∫

Φ4 + 2g

∫

Φ2

(

|Λσ|2 +
Λ2
σ + c.c.

4

)

+ (〈Nσ〉1/2 + qσ)g

∫

Φ3(Λσ + Λ∗
σ), (14)

where
∫

is a short-hand notation for
∑

r
dV and we have

introduced the opposite quantities of order unity cor-
responding to the fluctuations in the particle numbers,
qσ ≡ (Nσ − 〈Nσ〉)/〈Nσ〉1/2. The first line in (14) is the
same for the two internal states due to symmetry and will
cancel out in the phase difference θa− θb. The second line
was already present in the spatially homogeneous case [18].
The last term in (14) is new; it is non-zero, even if Λσ is
orthogonal to φσ, because Φ and Φ3 are not proportional
in a trap. This new term is linear in the non-condensed

field and thus potentially larger by a factor 1/ǫ
1/2
Bog than

the preceding term. It forces us to evaluate the fields Λσ

one order in ǫ
1/2
Bog beyond the usual Bogoliubov approxima-

tion, which makes the trapped case treatment more subtle
than the homogeneous case one, as we now see.
In the usual number-conserving Bogoliubov approaches,

the fields Λσ are evaluated to the leading ǫ
1/2
Bog order only.

They are expanded on the Bogoliubov mode functions
uk(r) and vk(r), that are orthogonal to Φ and normalized
as 〈uk|uk〉 − 〈vk|vk〉 = 1. They are here common to both
internal states and most importantly, thanks to the trick
(4), they are at t < 0 and t > 0 the same time-independent
eigenstates of the Bogoliubov operators of eigenenergies

ǫk > 0. To first order included in ǫ
1/2
Bog, the modal expan-

sion then reads (after the pulse)

Λ(1)
σ (r, t) =

∑

k

ckσ(0
+)e−iǫkt/~uk(r)+c

∗
kσ(0

+)eiǫkt/~v∗k(r)

(15)
From (3) and along the lines of [10], one finds

ckσ(0
+) =

1√
2
[cka(0

−)∓Bk], (16)

omitting a O(1/N1/2) contribution involving the conden-
sate phase change due the pulse, negligible in the large
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N limit [10]. The modal coefficients cka(0
−) in the ini-

tial thermal equilibrium state have independent Gaus-
sian distributions, with 〈|cka(0−)|2〉 = kBT/ǫk according
to the equipartition formula. The amplitudes Bk result
from the projection of the initial Wigner noise in internal
state b over the Bogoliubov modes, and are thus Gaussian
variables of zero mean statistically independent from the
cka(0

−)’s. We only need here that 〈|Bk|2〉 = 1
2 + 〈vk|vk〉.

Due to the potentially much larger last term in Eq. (14),
the leading order (15) is not accurate enough, and one

must go to the next order in ǫ
1/2
Bog. Furthermore the fluctu-

ations of the particle numbers Nσ will give a contribution
not included in (15), since the usual number-conserving
theory assumes a fixed total particle number. One writes
Λσ = e−iθσQφψσ, where Qφ projects orthogonally to φσ,
and one calculates the temporal derivative. After inser-
tion of the splitting (8) and of the expansion (9), one gets

terms scaling as µΛσǫ
α
Bogǫ

β
size; such terms contribute to the

last term of Eq. (14) as µǫ
α+1/2
Bog ǫβsize, so they have to be

neglected if α + 1/2 > 1 or β > 1 or if α + 1/2 = β = 1.
This leads to

i~∂tΛσ ≃ Q(h0 − µ+ 2〈Nσ〉gΦ2)Λσ +Q〈Nσ〉gΦ2Λ∗
σ

+(nσ −〈Nσ〉)〈Nσ〉1/2QgΦ3+ qσ〈Nσ〉1/2[QgΦ2(2Λσ +Λ∗
σ)

−gΛσ

∫

Φ4]+〈Nσ〉1/2[〈Nσ〉QgΦ2(φ(2)+c.c.)−(µ+i~∂t)φ
(2)]

+ 〈Nσ〉1/2gQ{Φ(2|Λσ|2 + Λ2
σ)− Λσ

∫

[Φ3(Λσ + Λ∗
σ)]}
(17)

where Q projects orthogonally to Φ. The various terms
in the right-hand side have a simple physical interpreta-
tion. The first two terms constitute the usual Bogoliubov
equations of motion, written for a number 〈Nσ〉 of par-
ticles, and whose (uk, vk) are the positive-energy eigen-
modes. Due to the fluctuations of the particle numbers,
these usual Bogoliubov equations differ from the ones writ-
ten for a given realisation with Nσ particles, hence the
fourth term (on two lines). The third term corresponds to
a similar effect at the level of the Gross-Pitaevskii equa-
tion, further including the condensate depletion: It takes
into account the fact that the Gross-Pitaevskii solution for
nσ particles in the condensate of internal state σ slightly
differs from the solution Φ for 〈Nσ〉 particles in that con-
densate, providing a source term for Λσ. This third term
already appeared in Eq. (3.14) of [19] (except for the miss-
ing projector Q). The fifth term, involving the deviation
φ(2) of the condensate wavefunction from Φ, gives the same
contribution for σ = a, b; to the relevant order, its con-
tribution will cancel out in the phase difference θa − θb.
The sixth term describes the effect of the cubic interaction
among the Bogoliubov quasi-particles; whereas this inter-
action usually leads to a true transfer of quasi-particles
among the Bogoliubov modes (according to the so-called
Beliaev-Landau processes), its relevant effect here is rather
a reactive effect that shifts the value of the field Λσ.

We now apparently have to solve Eq. (17). This
formidable task is greatly simplified by the fact that we
need here, in the long time limit, only the linearly diverg-
ing part of the phases θσ(t). What should be evaluated is
thus only the time averaged part θ̄σ; the oscillating parts
θσ(t)− θ̄σ will be neglected in the so-called secular approx-
imation for the condensate phase [18] carefully justified for
spin squeezing in the homogeneous case in [10]. In the sec-
ond line of (14), the leading value (15) for Λσ suffices. In
the third line of (14), it would give the insufficient result
Λ̄σ = 0, so we have to determine the leading order non-
zero approximation for Λ̄σ from (17). In the subleading
terms of (17), that is the fourth, sixth and seventh terms,
we can replace Λσ by the leading value (15); after tempo-
ral average, the fourth term thus disappears. Adding the
temporally averaged (17) to its complex conjugate gives
the inhomogeneous equation

0 =M(Λ̄σ + Λ̄∗
σ) + S (18)

with the hermitian operator M given by

M = Q(h0 − µ+ 3〈Nσ〉gΦ2)Q (19)

and an easy-to-reconstruct source S term that we shall not
write explicitly. Since Φ is the ground energy solution of
the Gross-Pitaevskii equation, the operator M is positive
and invertible (in the subspace orthogonal to Φ). Whereas
the explicit expressions of M−1, and thus of M−1S, are
unknown, in order to get the last line of (14) we fortunately
only need

M−1QgΦ3 = −∂〈Nσ〉Φ, (20)

as can be deduced from the derivative of (10) with respect
to the particle number [17]. Then we get

∫

gΦ3(Λ̄σ + Λ̄∗
σ) =

∫

(gQΦ3)M−1(−S) =
∫

S ∂〈Nσ〉Φ

(21)
All this leads to

− t−1
~θσ(t) ≃

large t

(

Nσ − 〈Nσ〉 −
∫

|Λ(1)
σ |2

)

∂〈Nσ〉µ

+

∫
[

2|Λ(1)
σ |2 + 1

2

(

Λ
(1)2
σ + c.c.

)

]

∂〈Nσ〉(〈Nσ〉gΦ2)

− g〈Nσ〉
∫∫

(Λ
(1)
σ (r)+c.c.)(Λ

(1)
σ (r′)+c.c.)Φ3(r)∂〈Nσ〉Φ(r

′)

+ terms symmetric under exchange a↔ b (22)

where we used ∂〈Nσ〉µ−
∫

gΦ4 = 2〈Nσ〉g
∫

Φ3∂〈Nσ〉Φ. The

last line in (22) originates from the correction φ(2) to the
condensate wavefunction; as it assumes the same value in
both internal states a and b, it cancels out in the phase
difference, so that its explicit value is not needed here.
Remarkably, the Λ-dependent terms in (22) exactly re-
produce the classical field version of the ones appearing
in the expression of the full (not Gross-Pitaevskii) chem-
ical potential µtot of the gas at thermal equilibrium, as
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given by Eq. (103) of [20]. This confirms the expectation
that the condensate phase evolves at the average pulsation
−µtot/~; in other words, this constitutes a test of (22).
It remains to use (13) to obtain the squeezing parameter

minimized over time. As in our previous studies, the phase
difference has the structure

θa(t)− θb(t) ≃
large t

−[Na −Nb +D]
∂〈Na〉µ

~
t (23)

where D collects the contributions that would be absent
in the two-mode model realizing the proposal of [2]. The
time average in (22) suppresses the crossed terms that in-
volve two different Bogoliubov modes, since they oscillate
in time. This leads to a single sum over modes:

D = −
∑

k

dk

[

|cka|2 − |ckb|2
]

= −
∑

k

dk[cka(0
−)B∗

k+c.c.]

(24)
where we used (16) to transform |cka(0+)|2 − |ckb(0+)|2
and the fact that the quasi-particle occupation numbers
|ckσ(t)|2 are constants of motion within Bogoliubov the-
ory7. The general expressions for dk are easily deduced
from (22). They look involved, but an inspired applica-
tion of the Hellmann-Feynman theorem to the Bogoliubov
operator [of which (uk, vk) is an eigenmode] gives

dk =
∂〈Nσ〉ǫk

∂〈Nσ〉µ
= ∂µǫk. (25)

The simplicity of the result is understood from another
expression of the gas full chemical potential µtot at ther-
mal equilibrium, which is most rapidly obtained within
the microcanonical ensemble as in [18]: µtot is then the
derivative of the energy Etot with respect to the particle
number Nσ at fixed entropy; since within Bogoliubov the-
ory, Etot = E0 +

∑

k ǫk〈|ckσ |2〉, and the occupation num-
bers 〈|ckσ|2〉 are constant at fixed entropy, we get (25).
Finally, inserting the structure (23) in (13) and keep-

ing the leading (that is first) order in ǫBog gives for the
classical field model8:

ξ2min

class≃ 〈D2〉
N

=
1

N

∑

k

d2k
kBT

ǫk
(1 + 2〈vk|vk〉) (26)

This expression is successfully compared to the numeri-
cal simulations (see symbols in Fig. 1), after a numerical
diagonalisation of the Bogoliubov operator to obtain the
eigenfunctions (uk, vk) and the eigenenergies ǫk.

Extension to quantum fields. – The previous ana-
lytical developments have been performed within the clas-
sical field model, in order to allow for a comparison with
the numerical simulations. They can be quite directly

7This requires that the squeezing time is shorter than the ther-
malisation time. This holds in the weakly interacting limit [9].

8In particular, we used that 〈(Na−Nb)D〉 ≈ NǫBog, see Appendix
D in [10], so that its contribution, which appears squared in the
numerator of (13), is negligible as compared to 〈D2〉 ≈ NǫBog.

transposed to the quantum case, where the number con-
serving Bogoliubov theories were initially developed. The
condensate phases and particle numbers are now conju-
gate hermitian operators [n̂σ, θ̂σ′ ] = iδσσ′ , and the classi-

cal fields become operators ψ̂σ and Λ̂σ. Also ckσ, Bk and
D have quantum counterparts9. The energy cut-off is no
longer restricted to kBT and one can take the limit of
a vanishing lattice spacing in the Bogoliubov results for
ξ2min, so that the notation

∫

reduces to a true spatial inte-
gral and one at last studies the case of trapped particles
in real continuous space. We obtain

ξ2min

quant≃ 〈D̂2〉
N

=
1

N

∑

k

d2k

[

1 + 2〈vk|vk〉
eǫk/kBT − 1

+ 〈vk|vk〉
]

(27)
The coefficients dk have the same expression in terms of
the Bogoliubov modes (uk, vk) as in the classical field case,
so that Eq. (25) still holds. As compared to (26), the oc-
cupation numbers of the Bogoliubov modes are now given
by the Bose formula. There is also a quantum term that
subsists at T = 0; the fact that ξ2min is non-zero for T = 0
is due to the excitation of quasi-particles by the π/2 pulse.

Continuous spectrum limit. – Up to now, we have
taken advantage of the large-N limit (through the ǫsize
expansion) but we have not explicitly used the fact that
the thermodynamic limit also corresponds to a vanishing
single-particle level spacing, where the spectral sum in the
quantum result (27) may be replaced by an integral. This
we now fully implement for an isotropic 10 harmonic trap
U(r) = mω2r2/2, where the semi-classical limit à la WKB
corresponds to ~ω/µ → 0 and can reasonably easily be
taken thanks to integrability of the classical motion issued
from the Bogoliubov equations [21].

For the condensate wavefunction, one takes the
Thomas-Fermi approximation W (r) ≡ 〈Nσ〉gΦ2(r) ≃
[µ − U(r)]Y [µ − U(r)] [22], where Y is the Heaviside
function; Φ then strictly vanishes at distances larger than
the Thomas-Fermi radius R, and from the usual Thomas-
Fermi formula one obtains

(µ/~ω)3 = 15N(π/8)1/2[ρ(0, 0−)a3(0−)]1/2. (28)

Due to rotational symmetry, the Bogoliubov modes are
labeled by the radial n ≥ 0, angular momentum l ≥ 0 and
azimuthal ml quantum numbers, so k = (n, l,ml). The
ml-independent eigenenergies ǫn,l, thus of 2l+ 1 degener-
acy, are approximated by the Bohr-Sommerfeld quantiza-
tion rule [21]

π~(n+ 1/2) =

∫ r2

r1

dr pr(r, ǫk, µ) (29)

9In particular, one has [B̂k, B̂
†

k′
] = δkk′ and 〈B̂†

kB̂k〉 = 〈vk |vk〉.
10Modes of angular momentum l are then degenerate; their crossed

terms in (22), not suppressed by time average, are killed by spatial
integration, so that the form (24) holds.
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where the positive classical radial moment pr, such that

p2r(r, E, µ)

2m
= (E2 +W 2)1/2 −

[

~
2l2

2mr2
+ 2W + U − µ

]

,

(30)
vanishes at the two classical turning points r1 and r2. Tak-
ing the derivative of (29) with respect to µ gives

dk = ∂µǫk ≃ −ωcl

π

∫ r2

r1

dr∂µpr(r, ǫk, µ), (31)

where the angular frequency ωcl of the classical mo-
tion is given as usual in classical mechanics by π/ωcl =
∫ r2
r1
dr∂Epr(r, ǫk, µ). The mode functions uk(r) and vk(r)

have their angular part proportional to spherical harmon-
ics Y ml

l (θ, φ); the WKB theory gives explicit expressions
for the radial parts [21] leading to

1 + 2〈vk|vk〉 ≃
ωcl

π

∫ r2

r1

dr
m

pr
. (32)

To evaluate the resulting integrals, which can be done
analytically, it is convenient to introduce the reduced
energy ε ≡ E/µ and the rescaled angular momentum
j ≡ l~ω/(2µ).
Two types of classical orbits are obtained in the trap

[21]. A first type corresponds to orbits that are purely out
of the condensate, due to a large enough angular momen-
tum (and centrifugal barrier), and a not too high energy,
1 < 2j−1 < ε < j2; in this case, the quasi-particles simply
experience the effective potential U − µ, so that dk ≃ −1,
ωcl = 2ω and 〈vk|vk〉 ≃ 0. The second type corresponds
to mixed orbits that cross the condensate boundary, that
is r1 < R < r2, which corresponds to the parameter range
0 < j2 < ε. Also in that case dk is negative (at variance
with the homogeneous case), but it is larger than −1. This
implies that ξ2min is always smaller than the non-condensed
fraction as in [9]. Integration over the purely external or-
bits can be performed explicitly:

ξ2min

[ρ(0, 0−)a3(0−)]1/2
≃ 15

√
π

2
√
2

(

kBT

µ

)3

g3(e
−µ/kBT )+fmix

(33)
where gα(z) =

∑

n≥1 z
n/nα is the Bose function. The

mixed-orbit contribution still involves a double integral,
which is ultraviolet and infrared convergent:

fmix =
15

√
2√
π

∫ +∞

0

dε

∫ ε1/2

0

jdj
I2

J

[K

J
coth

εµ

2kBT
− 1

]

(34)
where the functions I, J,K of ε and j are given in the
appendix11. This leads to the quantum result plotted as
a solid line in Fig. 1.

Conclusion. – We show that spin squeezing driven
by interactions in trapped bimodal atomic condensates
takes a finite optimal value in the thermodynamic and

11For kBT ≫ µ external orbits dominate over fmix = O(kBT/µ)2.

weakly interacting limit, a value that we determine ana-
lytically. Our theory applies both for classical fields (26)
and quantum fields (27), and for arbitrary trap geometries.
It indicates that a large metrologic gain is still possible at
finite temperature in realistic experimental conditions: for
kBT ≃ µ ≃ 10~ω, and assuming that one million is a large
enough atom number to reach the thermodynamic limit,
we predict a signal-to-noise increase by a factor 1/ξ ≃ 30.
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Appendix. – With the change of variable 1−r2/R2 =
ε sinh z, and then X = e±z, the semi-classical integrals can
be evaluated. Setting J = πω/ωcl = J1+J2, where J1 (J2)
is the in(out)-condensate contribution, one finds:

J1 =
ε/
√
2

(2j2 + ε2)1/2
arccos

[

2j2 + ε2 − ε

ε(2j2 + ε2 + 1)1/2

]

(35)

J2 =
1

2
arccos

1− ε

[(1 + ε)2 − 4j2]1/2
(36)

Setting I = −J∂µǫk = I1 + I2, one finds I2 = J2 and

I1 = − 1√
2
arccosh

1 + ε

(2j2 + ε2 + 1)1/2
(37)

Setting K = J(1+2〈vk|vk〉) = K1+K2, one finds K2 = J2
and

K1 =
ε(J1 +

√

ε− j2)

2(ε2 + 2j2)
− I1

2
(38)
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