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ABSTRACT 

In order to shed light on the fragmentation mechanisms occurring during the collision induced 

dissociation (CID) of peptides in the gas phase, we have studied a peptidic model system, the N-

Formylalanylamide (HCO-Ala-NH2), by coupling experimental and theoretical methods. In particular, 

we have addressed two different questions arising in such experiments: i) what is (are) the structure(s) 

of the ion before collision, and ii) what are the fragmentation mechanisms occurring after collision with 

the target gas. For the first question, we coupled the potential energy surface (PES) study done by 

means of density functional theory (DFT), with InfraRed Multiple Photon Dissociation (IRMPD) 

spectroscopy. For the second problem, which is actually the main topic of the present work, we coupled 

quantum mechanics plus molecular mechanics (QM+MM) direct chemical dynamics simulations with 

tandem mass spectrometry (MS/MS). In addition, in order to better delineate the fragmentation 

mechanisms and validate those proposed by simulations, isotopic labeling experiments using 
2
H and 

13
C 

were performed. Thanks to the interplay between simulations and experiments, it was possible to 

successfully identify the fragmentation pathways leading to b1, y1, a1 and immonium ions. Our 

mechanisms support the “mobile proton” picture that is supposed to trigger the peptide fragmentation in 

the gas phase, confirming, from a chemical dynamics point of view, previous theoretical and 

experimental studies on similar systems. 

 

 

Keywords: Collision Induced Dissociation; Peptide gas phase fragmentation; Molecular dynamics; 

Infra Red Multiple Photon Dissociation; QM+MM chemical dynamics 
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1. INTRODUCTION  

Protein identification in proteomics is primarily based on sequencing of proteolytic peptides by means 

of tandem mass spectrometry (MS/MS).[1-3] In these experiments, ions are usually sampled from a 

atmospheric-pressure electrospray source into the first mass analyzer that is operated in the mass filter 

mode to selectively transmit the desired precursor ions. The selected ions are accelerated into the 

collision cell where excitation and dissociation take place by collision-induced dissociation (CID). The 

second mass analyzer is used to record the m/z values of the dissociation products.[4] In the limit of 

low-energy collisions, electronic excitation is unimportant and collisions transfer a fraction of the 

translational energy both to vibrational and rotational energy of the ion. Several research groups have 

used CID to decipher peptide sequences by means of bioinformatic tools.[5-7] These software products 

utilize fragmentation models to generate theoretical spectra for candidate sequences, measuring the 

similarity between theoretical and experimental spectra: the spectrum that best matches the experimental 

one is used to assign the sequence. Nevertheless, the uncertainty in the evaluation is one of the limiting 

factors in large-scale protein identification studies. This explains the importance of understanding the 

fragmentation processes of protonated peptides and, therefore, the necessity to developnew techniques 

in order to study CID process. 

 

Different authors have studied fragmentation of protonated peptides obtaining different possible 

fragments (and fragmentation pathways). Backbone cleavage at amide bonds, leads to N-terminal, bn
+
, 

and C-terminal, yn
+
, ions, but also, after successive decomposition an

+
 ions are obtained.[8-15] In terms 

of decomposition leading to the losses of small neutrals, the elimination of water has long been 

investigated.[16, 17] Loss of CO was found to be coupled to proton mobility in protonated diglycine 

[18, 19] and the same loss of CO was obtained from the intermediate oxazolone structure by Paisz et 

al.[20] Oxazolone structure (a cyclic type b ion) formation was described in detail by Paisz et al. 

through accurate quantum chemical calculations for HCO-CH2-CO-NH2 and MeCO-CHMe-CO-
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NH2.[21] Note that the formation of such oxazolone structure was first proposed by Harrison and co-

workers [22] and later the first evidence was provided by IRMPD experiments by Polfer et al.[23] 

Finally, the loss of N-terminal acyl (formyl) group was reported by Komaromi et al.[24] in a model 

study of N-acetyl O-methoxy proline where it was pointed out a competition between low energy 

process, leading to methanol loss and high energy process, leading to ketene loss. The lacking of 

ammonia elimination from the N-terminal side was explained as due to the lack of stable fragments and 

presence of competitive exit channels.[25, 26] 

 

A crucial step in the peptide fragmentation mechanisms is attributed to the proton mobility induced by 

energy activation after collision. The mobile proton model, which describes how protonated peptides 

dissociate under low-energy collisions, has been described by several groups by both theoretical and 

experimental methods.[27-32] In protonated peptidic systems, the added proton moves through 

protonation sites allowing charge-directed fragmentations. Paizs, Suhai and coworkers described a 

theoretical model [28] in which the proton transfer processes connect different protonation sites of 

protonated diglycine. Both, RRKM and DFT calculations were used to conclude that the proton 

transfers between conformers were found to be fast with relatively low energy barriers. Furthermore, 

when CID occurs the internal energy of the ion increases upon excitation. Consequently, energetically 

less favored protonation sites become more populated. This means that for systems like peptides, where 

different protonation sites are available, they become, after activation, energetically accessible. 

 

The molecular picture of these mechanisms being clarified by studies of potential energy surface (PES) 

and statistical unimolecular reactions (i.e. RRKM methods), we are interested in show how (and if) 

chemical dynamics simulations can reproduce these mechanisms and improve our knowledge on them.  

Chemical dynamics in the gas phase, in fact, can be seen as a complementary picture of PES and RRKM 

studies, in providing non-statistical or non-kinetics effects or more in general the “short” time-scale 

behavior of chemical reactions. Example can be found in the case of [Ca(urea)]
2+

 CID fragmentation 
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mechanisms,[33] shattering mechanism in surface induced dissociation (SID) of protonated 

octaglycine,[34] CID and SID of protonated glycine,[35] CID of CH3SH
+
, CH3SCH

3+
, Cr

+
(CO)6, 

H2CO
+
 and protonated urea.[36-42] 

 

In the present work we have focused our attention on a synthesized model system, the N-

Formylalanylamide, HCO-Ala-NH2 (shown in Figure 1), that is a multifunctional peptide model bearing 

four protonation sites. Due to the relatively small size of such a model, it is possible to perform not only 

calculations at different theoretical levels, but also chemical dynamics. Furthermore, the relatively easy 

interpretation of CID and IRMPD experiments allows a full comparison between experiments and 

simulations.  

 

The main purpose of the present study is to obtain a detailed picture of the reaction mechanisms 

involved in CID. Generally, CID experiments are interpreted by inspecting the PES that can give 

information on reactants, products and transition states, connecting them with satisfactory results for 

many systems.[43-45] Nevertheless, depending on the system, limitations must be taken into account 

when only the PES is considered: (i) the PES can give insights on statistical fragmentation but does not 

take into account any kinetic effect and (ii) all possible isomers and fragmentation pathways have to be 

considered. This becomes difficult for large systems not only for computational reasons but also 

because of conformational congestion. Direct dynamics can overcome these problems since the system 

(with the necessary statistical sampling) is allowed to experience pathways that are activated due to 

energy transfer subsequent to collision. 

 

In the present work, we combine QM+MM direct dynamics simulations with the aforementioned 

experimental techniques (CID and IRMPD) on HCO-Ala-NH2, which then leads to the protonated form 

[(HCO-Ala-NH2)H]
+ 

under electrospray conditions. Furthermore, 
2
H and 

13
C labeling ESI-MS/MS 

experiments were carried out to gain some insights about the fragmentation pathways, in order to 
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confirm the results obtained from direct dynamics simulations. By coupling simulations to experiments, 

we were consequently able to propose consistent fragmentation mechanisms accounting for the various 

fragment ions observed experimentally.  

2. MATERIALS AND METHODS 

2.1.Chemicals  

Syntheses of the products HCO-Ala-NH2 and isotopic-labeled DCO-Ala-NH2 and H
13

CO-Ala-NH2 were 

carried out as described in the Scheme 1 by using Rink Amide MBHA resin as solid support.  

 

Scheme 1:Synthesis of HCO-Ala-NH2 (X). Labeled compounds  DCO-Ala-NH2 (Y) and H
13

CO-Ala-NH2 

(Z) were prepared by an analogous procedure. 

The coupling of the Fmoc-L-Ala-OH was done in DMF in the presence of N,N’-

diisopropylcarbodiimide (DIPCDI) and 1-hydroxybenzotriazole (HOBt). Piperidine 20% in DMF was 

used for Fmoc- removal. N-Formylation of the terminal amine was accomplished in DMF at low 

temperature, by using a mixture of DIPCDI and formic acid (HCOOH, DCOOH or H
13

COOH, 

respectively). Finally, treatment of the resin with a cleavage cocktail (TFA/H2O/TIPS) allowed us to 

obtain the desired product with moderated yields and excellent purities. The reaction conditions as well 

as the NMR data are summarized in the Supporting Information (SI-A). 

2.2. Mass spectrometry Experiments  
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Experiments were performed using an Applied Biosystems/MDS Sciex API2000 triple-quadrupole 

instrument fitted with a turboionspray ion source. Aqueous solutions of  

HCO-Ala-NH2 (10
-4

 M) were prepared in pure water (purified with a Milli-Q water purification system) 

and were introduced into the source using direct infusion with a syringe pump at a flow of 5 µl/min. 

Ionization of the sample was achieved by applying a voltage of 5.5 kV on the sprayer probe and by the 

use of a nebulizing gas (GAS1, air) surrounding the sprayer probe, intersected by a heated gas (GAS2, 

air) at an angle of 90°. The operating pressure of GAS1 and GAS2 are adjusted to 2.1 bars, by means of 

an electronic board (pressure sensors), as a fraction of the air inlet pressure. The curtain gas (N2), which 

prevents air or solvent from entering the analyzer region, was similarly adjusted to a value of 1.4 bars. 

The temperature of GAS2 was set to 100°C. CID spectra were recorded by introducing N2 gas in the 

second quadrupole at a total pressure of 3 x 10
-5

 mbar. Moreover, declustering potential was fixed at 20 

V to perform MS/MS experiments. CID spectra were recorded at different collision energies ranging 

from 6 to 20 eV (laboratory frame).  

2.3. IRMPD Experiments  

The present IRMPD spectroscopic investigation has been performed using an experimental platform 

which has been described in details previously.[46] This platform coupled a modified quadrupole ion 

trap (Bruker, Esquire 3000+) mass spectrometer to the IR free electron laser (FEL) of the CLIO (Centre 

Laser Infrarouge d'Orsay) center.[47] The FEL system is based on a 16-48 MeV linear electron 

accelerator where bunches of electrons are injected in the alternating magnetic field placed in the optical 

cavity. Wavelength tunability of this laser system is achieved at fixed electron energy by changing the 

gap between magnets. For the experiments in the 1100-1900 cm
-1

 spectral region, the electron energy 

was fixed at 45 MeV and a stable average power of 800-1000 mW was observed.The IR FEL delivers 8 

μs long trains of macropulses at a repetition rate of 25 Hz. Each macropulse conveys typical energies of 
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40 mJ. A conical hole (0.7 mm of diameter) in the ring electrode of the trap was made in order to allow 

the optical access to the centre of the trap. 

 

Multistage mass spectrometry was carried out using the standard Bruker Esquire Control (v 5.2) 

software. In order to record the IRMPD spectrum, the [(HCO-Ala-NH2)H]
+
 cation was mass-selected in 

the MS
1
 step and the control of the irradiation time (typically 200 ms) was obtained using the MS

2
 step. 

Mass spectra were averaged over 15 accumulations using the standard mass range (m/z 50-3000) and 

the normal scan resolution (13000 Th s
-1

). This sequence was repeated 10 times for each recorded 

frequency.  

2.4 Computational details  

Potential energy surface (PES). Geometry optimizations of minima and saddle points and fragmentation 

products of protonated HCO-Ala-NH2 were obtained by combining the B3LYP functional [48, 49] with 

the 6-311++G(d,p) basis set. Harmonic vibrational frequencies were computed at this level, and zero-

point vibrational energy (ZPE) were added to the relative energies refined with the extended 6-

311++G(2df,2p) basis set. PM3 semiempirical Hamiltonian was also used, starting from B3LYP 

minima, to investigate the potential energy surface (PES) with the same level further used in the direct 

dynamics simulations. All these calculations were performed by means of Gaussian03 suite of 

programs.[50]  

Here and hereafter we use the following nomenclature to identify each structure: the first two characters 

are in common for all structures (AH) and mean protonated (H) alanine (A); the third character is a 

number which refers to the protonation site, being 1 (amide nitrogen), 2 (amide carbonyl), 3 (secondary 

amide) and 4 (formyl group), as shown in Figure 2; the last character is a letter denoting different 

conformers for the same isomer (i.e. the same protonation site).  
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With the aim to describe more in detail the proton shuttling between both carbonyl groups (AH2_a, 

AH4_a and TS1), MP2/6-311++G(d,p) calculations were also performed.  

Direct dynamicssimulations. The potential energy function for the collision system, consisting of 

protonated [(HCO-Ala-NH2)H]
+
 (peptide

+
) and the collision gas (Ar) is described by:  

          (1)
 

where Vpeptide+ is the intramolecular potential of protonated HCO-Ala-NH2 and VAr-peptide is the 

Ar/[(HCO-Ala-NH2)H]
+
 intermolecular potential. The PM3 semiempirical Hamiltonian has been used 

for the intramolecular potential. B3LYP/6-31G* intramolecular potential was also used for one short 

time set of simulations in order to check the reliability of PM3-based dynamics. Note that B3LYP-based 

chemical dynamics simulations are much more computationallyexpensive and even if based on a more 

reliable potential, they will necessarily suffer from a lack of enough statistical sampling.  

The intermolecular potential is expressed as a sum of two-body terms between the collision gas and the 

atoms of [(HCO-Ala-NH2)H]
+
, with each two body term given by : 

(2)

 

where i runs over all the [(HCO-Ala-NH2)H]
+
 atoms. This potential is purely repulsive – A, B and C are 

always positive – and it was developed by Meroueh and Hase to simulate CID of protonated 

peptides.[37] Values for A,B and C are listed in the supporting information (SI-B). The same potential 

of Eq. 2 was recently used to simulate CID of protonated urea and [Ca(urea)]
2+

, and good agreements 

with experimental results were obtained.[33, 36, 37] 

Note that here, as previously mentioned, we used Ar in simulations while in experiments N2 is used as 

collision gas. As we have recently shown in a simple model case,[37] the main difference is that Ar gas 
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provides a more efficient energy transfer with respect to N2 and higher reaction probability (55% vs 

30% in case of protonated urea).  

Chemical dynamics simulations were performed for the following isomers: AH1, AH2_c, AH3, 

AH4_a, AH4_b. They correspond to the minimum energy structure in the PES for each possible 

protonation site. We also added the AH2_a conformer since it lies only few kJ/mol higher in energy 

than AH4_a. Structures are shown in Figure 2. 

Initial conditions for each isomer were chosen by adding a quasi-classical 300 K Boltzmann distribution 

of vibrational/rotational energies about the isomers potential energy minima.[51-53] Energies for the 

normal modes of vibration were selected from a 300 K Boltzmann distribution. The resulting normal 

mode energies were partitioned between kinetic and potential energies by choosing a random phase for 

each normal mode. A 300 K rotational energy of RT/2 was added to each principal axis of rotation for 

the ion. Vibrational and rotational energies were transformed into Cartesian coordinates and momenta 

following well-known algorithms implemented in VENUS.[54, 55] The ion was then randomly rotated 

about its Euler angles to take into account the random directions of the Ar +  

[HCO-Ala-NH2)H]
+
 collisions. Relative velocities were then added to the Ar/[(HCO-Ala-NH2)H]

+
 

system in accord with the center-of-mass collision energy and impact parameter. Collision energy of 8.6 

eV (836.8 kJ/mol) was considered, corresponding to laboratory frame energy of 11 eV (1060.0 kJ/mol). 

The impact parameter, b, was randomly sampled between 0 and 2.5 Å. The trajectories were calculated 

using a software package consisting of the general chemical dynamics computer program VENUS 96 

coupled to MOPAC.[56] It was used to calculate the potential energy and gradient for the protonated 

peptide intramolecular potential. The classical equations of motion were integrated using the velocity 

Verlet algorithm with a time step of 0.2 fs that gives energy conservation for both reactive and 

nonreactive trajectories. The trajectories were initiated at an ion-projectile distance of 15 Å, large 

enough to guarantee no interaction between the ion and the colliding atom, and halted at a distance of 
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300 Å to allow substantial intramolecular motion of the protonated peptide ion. This corresponds to a 

total integration time of about 50 ps. A trajectory was also stopped if the ion dissociates. In that case, the 

criterion distance of 7 Å was also used to guarantee no interactions between fragments. For each isomer, 

approximately 5000 trajectories were performed.  

The B3LYP/6-31G* chemical dynamics simulations were done using as initial structure the AH4_a 

isomer (the most stable form) and with same initial condition generation method as PM3-based 

dynamics. The VENUS 96 code [54, 55] coupled to Gaussian03 [50] was employed. In this case, due to 

the large computational time needed to run dynamics on such a relatively big system, only 125 

trajectories were performed. Simulations were initiated at 5 Å and halted at 10 Å for a total simulation 

time of about 0.2 ps per trajectory. These results, while lacking enough statistical sampling, can give 

clues on reliability of PM3-based simulations. 

Note that our chemical dynamics simulations model the “ideal” medium-energy single collisions, while 

in real experiments there are surely multiple collisions, even when the set-up tries to minimize their 

number (see section XX). Further, other experiments in the litterature directly implement multiple low-

energy collisions to obtain fragmentation. Our simulations thus can be qualitatively comparable with 

experiments with fewest collisions while the comparison with multiple low-energy collision is more 

subtle: we are in the limit in which energy is given in a single event, thus potentially activating short-

time scale processes (and thus also non-statistical events), while experiments are (more) in the statistical 

(or IVR) limit. 

3. RESULTS  

3.1 Pre-Dissociation Potential Energy Surface  
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As described above, HCO-Ala-NH2 is a multifunctional molecule that can be protonated at various 

functional sites leading to several isomers. All structures (minima and transition states) and 

corresponding relative energies of the PES are reported in the Supporting Information (SI-C). 

The full PES respect to barriers for proton transfer is reported in the Supporting Information (SI-D). 

Two of the most stable isomers, AH4_a and AH2_a, correspond to structures in which the proton is 

located in between the carbonyl groups. DFT results predict that the proton is moving from AH4_a (0.0 

kJ/mol) to AH2_a (2.7 kJ/mol) through a small barrier Ts1 that becomes barrierless when including 

zero point energy (-2.6 kJ/mol). This is confirmed by MP2 calculations where the transition state is also 

located at -0.2 kJ/mol from AH2_a (0.0 kJ/mol) and AH4_a (2.3 kJ/mol). This means that before any 

collision, experimentally, the system should shuttle between these two structures without any energy 

barrier. Therefore, ions detected in positive-ion mass spectra probably correspond to a mixture between 

both AH4_a and AH2_a structures. On the other hand, PM3 calculations provided a barrier of 61.6 

kJ/mol. This means that using the PM3 Hamiltonian, starting from AH4_a and AH2_a structures, we 

will underestimate this proton transfer and PM3 dynamics before any collision will not show any proton 

shuttling between AH4_a and AH2_a. Differences between PM3 and B3LYP PES are not only 

confined in proton transfer. We discuss these differences based on comparison between PM3 and 

B3LYP dynamics results (see Section 3.4) and careful investigation of each reaction pathways (see 

Section 4). Here we can anticipate that from an empirical point of view PM3 seems to be suited to 

describe fragmentation reactivity, since results are in agreement with experiments and with B3LYP 

chemical dynamics, and that this is probably due to the fact that the exit channels are reasonably well 

reproduced (i.e. differences with B3LYP are smaller) and that barriers to exit channels are bigger than 

those corresponding to proton transfer. Finally, PM3, with the aforementione exception of the proton 

transfer between structures AH4_a and AH2_a, underestimates energy barriers with respect to B3LYP 

but the profiles are similar (i.e. they proceed, after a given point of difference, in an almost “parallel” 
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way) and thus we can consider that PM3 overestimates the reactivity expected from B3LYP 

calculations. 

3.2. IRMPD Experiments  

Before discussing fragmentation, we first report the results of IRMPD experiments that were performed 

in order to gain some insights about the structures that are most likely present in gas phase before 

collisions. Figure 3 shows the IRMPD spectrum of the protonated HCO-Ala-NH2 recorded upon 

irradiation by the IR FEL in the 1300-1800 cm
-1

 energy range. Assignments of the experimental IR 

absorption spectrum is achieved by comparison with the IR spectra obtained from DFT for the 

structures used later in the simulation (AH4_a, AH4_b, AH2_a, AH2_c, AH1 and AH3), For the sake 

of comparison, computed absorption cross-sections are represented in Figure 3 by assuming a Gaussian 

profile (fwhm=15 cm
-1

) for each calculated infrared band. Experimental IRMPD spectra are obtained by 

plotting the photofragmentation yield R (R= - ln(IP/( IP + IF)), where Ip is the intensity of the precursor 

ion and IF is the sum of the intensities of the fragment ions as a function of the IR radiation 

wavenumber. The fragmentation yield was about 20 % for [(HCO-Ala-NH2)H]
+
 using four IR-FEL 

macropulses, suggesting an excellent spatial overlap between the laser and the ion cloud and/or low 

threshold dissociation energies.[46] In the following, as far as the positions are concerned, all theoretical 

vibrational modes were scaled with a factor of 0.97 known to be appropriate for DFT calculations as 

suggested by Schlegel and coworkers. [57, 58] 

 

The IRMPD spectrum of the protonated HCO-Ala-NH2 is dominated by an intense broad band centered 

at ~1690 cm
-1

 that can be the superposition of both amide and formyl O=C symmetrical stretching 

modes, mainly from AH2_a, AH2_c and AH4_a . These suggest that the presence of an intramolecular 

hydrogen bond between both carbonyl groups induces a red-shift of their (its) stretching frequencies by 

about 80 cm
-1

.[59] No experimental signals were detected above 1700 cm
-1

, suggesting the lack of any 

"free" carbonyl group, whose stretching mode is detected around and above 1800 cm
-1

, as observed for 
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instance for protonated nucleobases [60] or small peptides.[14] (More ref here?)Another band is 

detected at ~1600 cm
-1

 which may correspond to the NH2 scissoring vibrational mode in AH2_a, 

AH4_a and AH4_b. It is also observed a small feature at ~1525 cm
-1

 that may be attributed to a the C-

NH-C antisymmetrical stretching vibrational mode in AH2_a,AH2_c, AH3 and AH4_a. The last broad 

band, detected experimentally around 1350 cm
-1

, could correspond to a CH bending vibrational mode 

and it matches with both cyclic structures AH2_a and AH4_a. In summary, it turns out from IRMPD 

experiments that AH2_a and AH4_a seem to be the most probable structures generated by electrospray 

before the collision, thereby confirming DFT calculations that predict them as the most relevant in gas 

phase before collision.  

 

3.3. Mass spectrometry and CID Experiments  

Under the electrospray conditions used, the most abundant ion observed is the protonated peptide, 

detected at m/z 117, and at m/z 118 for both D- and 
13

C-labeled peptides. The [(HCO-Ala-NH2)H]
+
 ion 

was then selected in order to record its MS/MS spectrum (Figure 4). In addition, the use of labeled 

compounds allows us providing insights on the fragmentation mechanisms associated with the 

formation of the various product ions. CID results obtained for both unlabeled and labeled compounds 

are summarized in Table 1. 

 

As shown in Figure 4a, four dissociation channels were observed. The first one (m/z 100) corresponds to 

the loss of NH3 (formation of b1, Figure1). Another prominent peak is associated with the loss of carbon 

monoxide (formation of y1). The use of 
13

C-labeling unambiguously demonstrates that the labeled 

carbonyl group is specifically eliminated (loss of 29 Daltons). Furthermore, labeled compounds give 

useful information for the two remaining processes. Thus, both 
13

C and deuterium atoms stay after 

fragmentation in the "a1" fragment and consequently the [H3, C, O, N] moiety eliminated (loss of 45 

Daltons) does not include the formyl group. The last process gives rise to the m/z 44 immonium ion I 

through the loss of [H3,C2,O2,N]. Examination of Figure 4b shows that with (DCO-Ala-NH2), this 
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particular process is characterized by two peaks at m/z 44 and 45. This indicates that there are at least 

two fragmentation pathways for the I formation. In one of them, hydrogen atom of the formyl group is 

eliminated within the neutral moiety. 

3.4. Chemical dynamics simulations  

We have performed direct dynamics simulations using the six most relevant structures as starting points, 

namely AH4_a, AH4_b, AH2_a, AH2_c, AH1 and AH3 (Figure 2). We can distinguish three types of 

reactivity yields: very low reactivity (2 –3 %) corresponding to initial structures in which the proton is 

located on the formyl group (structures AH4_a and AH4_b); medium reactivity (14 – 16 %) when the 

proton is on the amide carbonyl group (structures AH2_a and AH2_c); and finally higher reactivity for 

the less energetically favored structures, which are protonated onto one of the nitrogen atom (AH1 and 

AH3). Details on reactivity yields obtained are reported in Supporting Information (SI-E). We should 

note that reactivity yields depend mainly on protonation site rather than on conformation. This is due to 

the fact that, prior to collision, thermal energy allows each isomer to rotate along dihedral angles, like 

those connecting AH4_a to AH4_b or AH2_a with AH2_c. Thus, pairs of structures with similar 

protonation sites (AH4_a/AH4_b and AH2_a/AH2_c) give similar reactivities. 

In case of AH4_a and AH2_a structures, it is expected from B3LYP and MP2 PES results that before 

collision the proton should shuttle within the two carbonyl groups. On the other hand, PM3 provides a 

barrier for this proton transfer. Consequently, PM3 dynamics did not show any proton shuttling between 

both structures prior collision. This corresponds to the following: we simulate collisions for both 

AH4_a and AH2_afixed protonation initial states as an approximation of the mixed state where the 

proton shuttles between the two sites. The reliability of this approximation is verified by comparing 

fragmentation results with experiments. We should further remark that B3LYP-based dynamics, based 

on a PES where the proton transfer is barrierless, did not show any such proton transfer prior collision 

either. 
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Theoretical MS/MS spectra obtained from chemical dynamic simulations for each initial geometries are 

reported in Supporting information (SI-F) and summarized in table 2. All the fragments observed 

experimentally (see Figure 4), b1, y1, a1 and I ions, are also present in the spectra obtained by chemical 

dynamics simulations. Three fragments, a1* (m/z 74), X0 (m/z 46) and B0 (m/z 29), are found in the 

theoretical MS/MS, at small quantity, but not observed experimentally.The a1 (m/z 72) and I (m/z 44) 

experimental fragment ions are both observed in all of the theoretical MS/MS spectra. b1 (loss of 

ammonia, m/z 100) and y1 (loss of CO, m/z 89) fragment ions are obtained mainly when AH1 and AH3 

isomers are used as initial structures, respectively, but also few trajectories leading to b1 and y1 

fragments were found when starting from AH4_a and AH4_b isomers. Note that, as shown by the pre 

dissociation PES (Supporting information SI-D), to achieve both fragmentations, it is necessary to 

convert AH4_a and AH4_b into AH1 and AH3 via sequential proton transfers. To let the system span 

in a statistically relevant fashion along the full PES starting from stable AH4_a and AH4_b structures, 

one should carry out simulations of at least one order of magnitude longer duration (we have actually 

performed thousands of simulation in the 10-50 ps time length). A possible way to circumvent this brute 

force approach, is to observe what happens when we activate structures in the PES leading to high 

energy local minima. This is what we have done by performing chemical dynamics simulations with 

AH1 or AH3 as initial geometries. 

As aforementioned, few trajectories were carried out at DTF level using AH4_a structure as initial 

geometry. They lead to the formation of the a1 (m/z 72) fragment but nob1 or y1 fragments were 

observed. This is probably due to the limited number of trajectories and, mainly, to the shorter 

timelength (less than 1 ps) reachable by B3LYP-based dynamics. On the other hand, X0 (m/z 46) and B0 

(m/z 29) fragments not recorded experimentally, but obtained in PM3-based dynamics, were also 

observed by B3LYP-based dynamics. This suggests that the observation of these fragments in chemical 

dynamics is not due to the use of the PM3 semiempirical Hamiltonian in simulations.  
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4. FRAGMENTATION PATHWAYS 

In order to better understand the various fragmentation pathways, we will now examine in details each 

fragment ion obtained, by combining results of simulations with those of experiments. The 

fragmentation mechanisms of X0 (m/z 46), B0 (m/z 29) and a1* (m/z 74), not observed experimentally, 

are reported in the supporting information (SI-G). 

4.1 Ammonia loss (m/z 100). 

From the analysis of all the chemical dynamics trajectories, it turns out that the loss of NH3 mostly 

arises from AH1 (87.9%), AH4_a (7.3%) and AH4_b (4.8%) initial structures. When the initial 

structure is AH4_a or AH4_b, the NH3 loss is obtained through a proton transfer from the formyl group 

to the amide carbonyl. Then, following the mechanism and the energy profile shown in Figure 5 (an 

example is also given as a movie in the supporting information; b1.mpg), the formation of oxazolone 

ring (B) is obtained in near all the cases (92%) while in the remaining (8%) the final structure is linear 

(A). Note that while B3LYP and PM3 differ in providing the energy for the exit channels b1_B 

(corresponding to the low energy path detailed by Paisz et al. [REF], where NH3 loss and ring 

formation are concerted) and b1_A (corresponding to the high energy path observed in our chemical 

dynamics simulations where first NH3 is removed and then the ring closes), both methods report b1_B 

as lower in energy than b1_A. 

With both labeled compounds, the observed m/z value was 101 (neutral loss of 17 Daltons). 

Consequently, the proton eliminated together with the terminal amino group does not come from the 

formyl group. These results are consistent with the proposed mechanism shown in Figure 5. 

 

4.2 CO loss (m/z 89). 
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From chemical dynamics simulations results, two different mechanisms may be proposed for the CO 

loss leading to the y1 ion, as reported in Figure 6. Elimination of carbon monoxide is observed almost 

exclusively from AH3 (98.8 %), and to a very minor extent from AH4_a (0.6 %) and AH4_b (0.6 %) 

initial structures. For the simulations starting from AH4_a and AH4_b, a proton transfer between the 

formyl and the amide carbonyl group occurs first, forming an AH2-like structure; then a second proton 

transfer leads to AH3. Thus the cleavage of the bond denoted Y is made possible leading to y1 fragment 

following two possible pathways: the CHO moiety dissociates and donates a proton (A) to the amide 

carbonyl (74.0%) or (B) to the terminal amino group (26.0%). In the supporting information we report 

two prototypical movies corresponding to these mechanisms (y1_A.mpg and y1_B.mpg respectively). 

These mechanisms are supported by experiments with 
13

C and 
2
H-labeled peptides. Remarkably, 

MS/MS spectrum of protonated DCO-Ala-NH2 indicates that deuterium and not hydrogen is transferred 

to the secondary amine (pathway A) or to the amide carbonyl (pathway B) as shown by the shifted m/z 

90. Moreover, H
13

CO-Ala-NH2experiments reveal that the formyl carbonyl group is exclusively 

eliminated (neutral loss of 29 Daltons). 

4.3 [H3, C, O, N] loss (m/z 72). 

The fragmentation product corresponding to m/z 72 has been obtained in all simulations. Surprisingly, 

ten different pathways leading to this fragment have been found, but two of which were observed in 99 

% of the reactive trajectories and are shown in Figure 7. When initial geometries are AH4_a and 

AH4_b, a proton transfer is first required. In 52% of all cases, the proton migrates towards amide 

carbonyl position forming an AH2-like structure, as shown by arrow 1 in the Figure 7. In the remaining 

simulations a proton moves to the terminal amino group, leading to AH1-like structures, as shown by 

arrow 2 in the same Figure 7. In the first reaction pathway (1), following the proton transfer a direct loss 

of (OH-C-NH2) has been recorded, as also reported in a prototypical simulation movie (supporting 

information; a1_1.mpg).In the second mechanism (2), after the first proton transfer, two consecutive 
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losses of neutrals were observed, first ammonia and then carbon monoxide, as also shown in supporting 

information (movie a1_2.mpg). Remarkably, these two mechanisms are similar to those recorded from 

B3LYP-based chemical dynamics simulations. With both labeled compounds, the mass of the neutral 

fragment remains unchanged as compared to the unlabeled peptide (45 Daltons). Consequently, the 

neutral moiety does not incorporate the formyl group. This experimental finding is in agreement with 

both proposed mechanisms. 

4.4 [H3, C2, O2, N] loss (m/z 44). 

The fragment ion detected experimentally at m/z 44 corresponds to the immonium ion. It has been 

obtained starting from the six structures as initial structure through two different pathways (Figure 7 and 

8). 

The first fragmentation pathway is summarized in the Figure 7. The proton is initially located onto the 

formyl group (AH4), then a proton transfer first occurs either (1) to the amide carbonyl (60%)generating 

AH2-like structure or (2) to the amide nitrogen (40%), leading to AH1 structure, as for the m/z 72 

formation previously described. Then, two bonds are consecutively broken, first the bond named X 

breaks and then the bond named Y does (loss of CHO). After Y bond cleavage, the group CHO leaves 

the molecule and a proton transfer occurs from the CHO to the NH. 

 

The second fragmentation mechanism is reported in Figure 8. When the starting structure is AH3 the 

fragmentation pathway starts with the cleavage of the Z bond followed by CHO dissociation. Then, two 

different pathways can occur, proton transfer from the CHO either to (1) to the amide carbonyl (72 %) 

followed by W bond cleavage (an example is shown in supporting information, I1_Sch5_A.mpg), or to 

(2) to the amide nitrogen (28 %) followed by two successive losses: firstly ammonia and then carbon 

monoxide.  
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These mechanisms observed during direct dynamic simulations are again supported by isotopically 

labeled experiments. Remarkably, MS/MS spectra recorded with the 
13

C-labeled peptide exhibit a peak 

at m/z 44, indicating that the labeled formyl carbon atom is not retained in the ionic fragment, in 

agreement with both mechanisms proposed in Figure 8. More interesting are the deuterium-labeled 

experiments. If one carefully examines the mechanisms that occurred during direct dynamics 

simulations, it is observed that according to Scheme 4, the deuterium would be incorporated in the ionic 

fragment, while it is expelled according to the mechanisms depicted in Figure 8. This is perfectly 

consistent with experimental results, where both product ions (m/z 44 and 45) were observed in the 

MS/MS spectrum of protonated DCO-Ala-NH2 (Figure 4b). Consequently, this suggests that both 

proposed mechanisms are experienced by the system while leading to the immonium ion (fragment I, 

m/z 44). 

CONCLUSIONS 

Protonated HCO-Ala-NH2 has been synthesized and investigated by a combined chemical dynamics and 

MS/MS studies. It has been shown that the “mobile proton” model can be used in order to achieve a 

better understanding of the MS/MS process of protonated peptides. According to experimental and 

theoretical results, the added proton moves amongst the four protonation sites in HCO-Ala-NH2. 

Moreover, the fragmentation process occurs mainly by charge-directed reactions. 

 

Remarkably, all the experimental MS/MS fragments (loss of ammonia, loss of CO, a1 and immonium 

formation) were successfully identified by using direct dynamic simulations. Furthermore, MS/MS of 

labeled peptides are in perfect agreement with the recorded fragmentation pathways for all the ions. We 

should note that the oxazolone structure we have identified was first proposed by Harrison [Ref JASMS 

1995] and the first direct evidence pointed out by IRMPD [REF JACS 2005], and later confirmed and 
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discussed by works of Maitre, Paisz and co-workers [Ref 59-61 of submitted paper] and Oomens, Polfer 

and co-workers [Refs 62-66 of submitted paper]. 

Notably, the use of a simple and approximated semi-empirical Hamiltonian for dynamics (PM3) – that 

is compulsory at the present time to perform a correct statistical sampling for such relatively large 

system – turned to be appropriate in supplying a qualitative explanation of the observed reactivity. From 

the comparison between DFT and PM3 PES, we can ground that on the fact that the energy barriers for 

dissociation are  higher in energy than other those for proton transfer and that they regulate the 

reactivity. It resulted that, while part of the PES are quite different, two aspects suggest that PM3 

dynamics is qualitatively instructive to complete the understanding of CID chemistry: (i) the exit 

channels (or transition states leading to a pre-dissociation) are higher in energy with respect to barriers 

for proton transfer (as previously found by Paisz et al. [REF]) and differences between PM3 and DFT 

are smaller in that part of the PES; (ii) even if a difference between PM3 and DFT is present and it can 

be also important in some region, the two surfaces are ‘almost’ parallel, i.e. they do not cross (except 

one case where the energy difference is small). We can further suggest that, since PM3 barriers are 

sistematically lower than DFT ones in the regions that determine the final fragmentation products, we 

overestimate reactivity at a given energy, such that what we observe can be reported to higher values of 

really transferred energy. 

Finally, the QM+MM direct dynamics simulations of protonated CID was shown to provide a 

complementary picture of the M/MS fragmentation processes and rationalize experimental findings. 
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FIGURE AND TABLE CAPTIONS 

Figure 1: Sequence ions in (HCO-Ala-NH2) following the peptide fragmentation nomenclature.[3] Red 

numbers show the different protonation sites taken into account, namely amide nitrogen (1), amide 

carbonyl (2), amide nitrogen (3) and formyl group (4). 

 

Figure 2: Optimized structures for protonated (HCO-Ala-NH2). Energies, in parenthesis, are in kJ/mol. 

 

Figure 3: Experimental IRMPD a) and theoretical IR spectra b-g) of [(HCO-Ala-NH2)H]
+
. Calculations 

are carried out at the B3LYP/6-311++G(d,p) level of theory. The experimental spectrum of panel a is 

superimposed in light gray over each theoretical spectrum. 

 

Figure 4: Energy profile associated for dissociation mechanism for formation of b1 ion. It was 

calculated at B3LYP/6-311++G(2df,2p)//B3LYP/6-311++G(d,p)+ZPE level (in black and continuous 

profile) and PM3 level (in green and non-continuous profile).  
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Figure 5: Energy profile associated for dissociation mechanism for formation of y1 ion. The numbers on 

the arrows represent the proton transfer from CHO moiety to the (1) amide carbonyl and (2) secondary 

amine. It was calculated at B3LYP/6-311++G(2df,2p)//B3LYP/6-311++G(d,p)+ZPE level (in black and 

continuous profile) and PM3 level (in green and non-continuous profile).  

 

Figure 6: Energy profile associated for dissociation mechanism for formation of a1 and I ions. The 

numbers on the arrows represent the proton transfer from the formyl group to the (1) amide carbonyl 

and (2) amide nitrogen. It was calculated at B3LYP/6-311++G(2df,2p)//B3LYP/6-311++G(d,p)+ZPE 

level (in black and continuous profile) and PM3 level (in green and non-continuous profile).  

 

Figure 7: Energy profile associated for dissociation mechanism for formation of I ion. The numbers on 

the arrows represent the proton transfer from the formyl group to the (1) amide carbonyl and (2) amide 

nitrogen. It was calculated at B3LYP/6-311++G(2df,2p)//B3LYP/6-311++G(d,p)+ZPE level (in black 

and continuous profile) and PM3 level (in green and non-continuous profile).  

 

Table 1: Product ions observed experimentally during the fragmentation of protonated HCO-Ala-NH2. 

 

Table 2: Comparison between both theoretical and experimental MS/MS depending on the starting 

structure of protonated HCO-Ala-NH2. 
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Figure 4 
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Precursor ion Product ions 

 (b1); -NH3 (y1); -CO   (a1); - [H3,N,C,O] (I); -[H3,C2,O2,N]  

[(HCO-Ala-NH2)H]
+
 (m/z 117) m/z 100 m/z 89 m/z 72 m/z 44 

[(DCO-Ala-NH2)H]
+
 (m/z 118) m/z 101 m/z 90 m/z 73 m/z 44/45 

[(H
13

CO-Ala-NH2)H]
+
 (m/z 118) m/z 101 m/z 89 m/z 73 m/z 44 

 

Table 1 
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Product ion Precursor ion 

 Experimental 

MS/MS 

AH4_a 

(0.0) 
AH4_b 

(23.7) 
AH2_a 

(2.7) 
AH2_c 

(32.4) 
AH1 

(68.9) 
AH3 

(79.3) 

b1 (m/z 100) X X X   X  

y1 (m/z 89) X X X    X 

a1* (m/z 74)   X  X   

a1 (m/z 72) X X X X X X X 

X0 (m/z 46)  X X X X X X 

I (m/z 44) X X X X X X X 

B0 (m/z 29)    X X X X 

 

 

Table 2 

 


