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We consider an inverse scattering problem and its near-field approximation at high frequencies. We first prove, for both problems, Lipschitz stability results for determining the low-frequency component of the potential. Then we show that, in the case of a radial potential supported sufficiently near the boundary, infinite resolution can be achieved from measurements of the near-field operator in the monotone case.

Introduction

The first aim of this paper is to establish Lipschitz stability results for the inverse scattering problem of determining the low-frequency component (lower than the operating frequency) of the compactly supported potential from scattering or near-field measurements. It is known that, in general, the problem is exponentially unstable [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF][START_REF] Alessandrini | Examples of instability in inverse boundary-value problems[END_REF][START_REF] Alessandrini | Open issues of stability for the inverse conductivity problem[END_REF][START_REF] John | Continuous dependence on data for solutions of partial differential equations with a prescribed bound[END_REF][START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF]. However, taking advantage of a priori information may improve stability and give accurate reconstruction algorithms [START_REF] Ammari | Direct reconstruction methods in ultrasound imaging of small anomalies[END_REF][START_REF] Ammari | Reconstruction of small inhomogeneities from boundary measurements[END_REF][START_REF] Ammari | The generalized polarization tensors for resolved imaging. Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements[END_REF]. The Lipschitz stability results proved in this paper together with the recent analysis of the local convergence of the nonlinear Landweber iteration in [START_REF] De Hoop | Local analysis of inverse problems: Hölder stability and iterative reconstruction[END_REF] show that the low-frequency component of the potential can be determined from the data in a linearly stable way. Moreover, they precisely quantify the resolution limit, which is defined as the characteristic size of the smallest oscillations in the potential that can be stably recovered from the data. Since Rayleigh's work, it has been admitted that the resolution limit in inverse scattering is of order π over the operating frequency [START_REF] Born | Principles of Optics[END_REF]. This is nothing else than a direct application of the uncertainty principle in inverse scattering [START_REF] Bertero | Resolution and super-resolution in inverse diffraction[END_REF][START_REF] Chen | Inverse scattering via Heisenberg's uncertaintly principle[END_REF][START_REF] Donoho | Uncertaintly principles and signal recovery[END_REF][START_REF] Slepian | Some comments on Fourier analysis, uncertainty and modeling[END_REF]. It is well-known that if the support of the potential is a point support, then the reconstructed location of the point potential from the scattering data has finite size of order of the Rayleigh resolution limit [START_REF] Ammari | An Introduction to Mathematics of Emerging Biomedical Imaging[END_REF][START_REF] Bertero | Resolution and super-resolution in inverse diffraction[END_REF]. Having this in mind, the results of this paper prove that the Fourier transform of the potential can be reconstructed in a linearly stable way for all frequencies (dual variable to the space one) smaller than the operating frequency, and therefore, justify the notion of resolution limit. More intriguingly, again in view of [START_REF] De Hoop | Local analysis of inverse problems: Hölder stability and iterative reconstruction[END_REF], they prove that the stability of the reconstruction of the potential increases at high operating frequencies.

The second aim of the paper is to show that infinite resolution can be achieved from near-field measurements. Here, the near-field operator approximates Sommerfeld's radiation condition and is equivalent to the measurements of the Cauchy data at a finite distance. Moreover, if the potential is supported near the boundary, then infinite resolution can be achieved in the monotone case. In fact, a Lipschitz stability result holds for both the low and high frequency components of the potential. It should be noted that the scattering amplitude can be recovered from the near-field operator. However, approximating the near-field operator from the scattering amplitude is a severely ill-posed problem [START_REF] Karp | A convergent 'farfield' expansion for two-dimensional radiation functions[END_REF][START_REF] Novikov | A multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0[END_REF][START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF][START_REF] Taylor | Estimates for approximate solutions to acoustic inverse scattering problems[END_REF]] and therefore cannot be of any practical and realistic use. It was shown in [START_REF] Karp | A convergent 'farfield' expansion for two-dimensional radiation functions[END_REF] that in order to compute the near-field operator from the scattering amplitude one needs to differentiate the scattering amplitude an infinite number of times.

The results of this paper extend to medium scattering the recent results in [START_REF] Ammari | Multistatic imaging of extended targets[END_REF][START_REF] Ammari | Resolution and stability analysis in full aperture, linearized conductivity and wave imaging[END_REF][START_REF] Zhao | Analysis of the response matrix for an extended target[END_REF], where a stability and resolution analysis was performed for linearized conductivity and wave imaging problems. They can be also used to justify the hopping (or continuation in the frequency) reconstruction algorithms proposed in [START_REF] Bao | Regularity and stability for the scattering map of a linearized inverse medium problem[END_REF][START_REF] Chen | Inverse scattering via Heisenberg's uncertaintly principle[END_REF][START_REF] Chen | On the inverse scattering problem for the Helmholtz equation in one dimension[END_REF][START_REF] Coifman | An improved operator expansion algorithm for direct and inverse scattering computations[END_REF].

In connection with our results in this paper, we also refer to the works by Isakov [START_REF] Isakov | Increased stability in the Cauchy problem for some elliptic equations[END_REF] and Isakov and Kindermann [START_REF] Isakov | Subspaces of stability in the Cauchy problem for the Helmholtz equation[END_REF], Bao, Lin, and Triki [START_REF] Bao | A multi-frequency inverse source problem[END_REF][START_REF] Bao | Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data[END_REF], Nagayasu, Uhlmann and Wang [START_REF] Nagayasu | Depth dependent stability estimates in electrical impedance tomography[END_REF][START_REF] Nagayasu | Increasing stability in an inverse problem for the acoustic equation[END_REF], as well as Derveaux, Papanicolaou, and Tsogka [START_REF] Derveaux | Resolution and denoising in near-field imaging[END_REF]. In [START_REF] Isakov | Increased stability in the Cauchy problem for some elliptic equations[END_REF][START_REF] Isakov | Subspaces of stability in the Cauchy problem for the Helmholtz equation[END_REF], an evidence of increasing stability in wave imaging when frequency is growing was given. In [START_REF] Bao | A multi-frequency inverse source problem[END_REF], stability estimates for the inverse source problem were established and the conversion of the logarithmic type stability to a Lispchitz one first proved. Numerical results to illustrate the stability of the source reconstruction problem were presented in [START_REF] Bao | Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data[END_REF]. In [START_REF] Bao | On the stability of an inverse problem for the wave equation[END_REF], Lipschitz stability estimates for the time-dependent wave equation were obtained. In [START_REF] Nagayasu | Depth dependent stability estimates in electrical impedance tomography[END_REF], a stability estimate for a linearized conductivity problem was derived and its dependence on the depth of the inclusion highlighted. In [START_REF] Nagayasu | Increasing stability in an inverse problem for the acoustic equation[END_REF], it is shown that the ill-posedness of the inverse acoustic problem decreases when the frequency increases and the stability estimate changes from logarithmic type for low frequencies to a Lipschitz type for large frequencies. In [START_REF] Derveaux | Resolution and denoising in near-field imaging[END_REF], the enhancement of resolution in the near-field was studied and numerically illustrated. Our results in this paper confirm these important observations in a quite general situation and precisely quantify them.

Our paper is organized as follows. Section 1 is devoted to the stability of the reconstruction of the potential from the scattering amplitude (called also far-field pattern) in the high frequency regime. Theorem 2 proves that the low-frequency component of the potential can be determined in a stable way from the scattering amplitude. The threshold frequency determines the resolution limit. Section 2 extends the results of Section 1 to the nearfield measurements. Theorem 3 shows that the same results as those in Section 1 hold for reconstructing the potential from measurements of the near-field operator. In Section 3 we show that we gain infinite resolution for potentials supported near the boundary. If the potential is supported near the boundary, then infinite resolution can be achieved in the monotone case. Theorem 4 provides a Lipschitz stability result for both the low and high frequency components of the potential. Finally, in Appendix A, we provide useful results on Bessel's functions.

Finally, we mention that the letter C will be used to denote a universal constant which may vary from line to line. We also use A B to denote an estimate of the form A ≤ CB for some constant C. We also use the classical notation x = 1 + |x| 2 .

1. Far field pattern 1.1. Definitions and notations. Let Ω be a bounded domain in the Euclidean space R d of dimension d ≥ 2, let q ∈ C ∞ 0 (R d ) be a real-valued potential supported in Ω. We use the classical notation D = -i∂ for derivatives and consider the Helmholtz equation with potential

D 2 u -λ 2 u + qu = 0 (1.1) at frequency λ ∈ R * + := R + \ {0}.
Plane waves e iλx•ω propagating along the direction ω in S d-1 are solutions of the free Helmholtz equation

D 2 u -λ 2 u = 0. (1.2)
Here S d-1 denotes the unit sphere in R d . More generally, plane waves generate the set of solutions in the space of tempered distributions, S ′ (R d ), of the free Helmholtz equation: all solutions of (1.2) with polynomial growth are superpositions of elementary plane waves e iλx•ω when ω varies on the sphere S d-1 . It will be useful later on to adopt Melrose's notation in [START_REF] Melrose | Geometric scattering theory[END_REF] to designate these solutions: for g ∈ C ∞ (S d-1 ), we shall write

Φ 0 (λ)g(x) = S d-1 e iλx•ω g(ω) dω.
Obviously Φ 0 (λ)g is a solution of (1.2) which belongs to S ′ (R d ).

To guarantee the uniqueness of solutions to the Helmholtz equation (1.1), one can impose conditions on the behavior of solutions at infinity. More precisely, we are interested in solutions which can be decomposed

u = e iλx•ω + u scat = u in + u scat (1.3)
as the sum of an incoming planar wave and a scattered wave satisfying Sommerfeld's radiation condition

∂ ∂|x| -iλ u scat = o 1 |x| d-1 2
as |x| → +∞, (1.4) uniformly with respect to the direction θ = x |x| at fixed frequency λ ∈ R * + . The following result from [START_REF] Melrose | Geometric scattering theory[END_REF]Lemma 2.4] holds.

Proposition 1.1. There exists a unique solution to the Helmholtz equation (1.1) with potential q ∈ C ∞ 0 (Ω) of the form (1.5) ϕ q (x, ω, λ) = e iλx•ω + ϕ scat q (x, ω, λ), where the scattered wave ϕ scat q satisfies Sommerfeld's radiation condition (1.4) and which is given by

(1.6) ϕ scat q = -R q (λ)(e iλx•ω q).
Here R q denotes the meromorphic continuation of the perturbed resolvent. Furthermore ϕ q depends smoothly on (x, ω, λ) ∈ R d × S d-1 × R * + and is bounded.

We choose to denote Φ q (λ)g = S d-1 ϕ q (x, ω, λ)g(ω) dω the operator with kernel ϕ q (x, ω, λ) given by (1.5).

Theorem 1. The scattered wave in the solution (1.3) to the Helmholtz equation (1.1) given by Proposition 1.1 assumes the form

ϕ scat q (x) = e iλ|x| |x| d-1 2 a q x |x| , ω, λ + O 1 |x| d+1 2 as |x| → +∞, (1.7)
where a q is a smooth function on

S d-1 × S d-1 × R * + and a q x |x| , ω, λ = - 1 2iλ λ 2πi d-1 2 
q(y)ϕ q (y, ω, λ)e -iλ x |x| •y dy.

Proof. We consider the Green function G λ corresponding to the free Helmholtz equation

(D 2 y -λ 2 )G λ (x, y) = δ(x -y), (1.8)
subject to Sommerfeld's radiation condition (1.4), with δ being the Dirac delta function. Let R > 0 be large enough so that the ball of radius R contains the support of q. By definition of the Green function, for all |x| ≤ R we have

u(x) = |y|≤R (D 2 y -λ 2 )G λ (x, y)u(y) dy,
and if u is a solution to the Helmholtz equation (1.1) we deduce by Green's formula that for any

|x| ≤ R u(x) = - |y|≤R G λ (x, y)q(y)u(y) dy - |y|=R ∂G λ ∂r (x, y) u(y) -G λ (x, y) ∂u ∂r (y) dσ(y).
Along the same lines, it is possible to derive a similar identity for the plane wave

u in (x) = e iλω•x u in (x) = - |y|=R ∂G λ ∂r (x, y) u in (y) -G λ (x, y) ∂u in (y) ∂r (y) dσ(y),
taking into account the fact that (D 2λ 2 )u in = 0. Subtracting the two identities gives the following representation formula for the scattered wave

u scat = u -u in u scat (x) = - |y|≤R G λ (x, y) q(y) u(y) dy - |y|=R ∂G λ ∂r (x, y) u scat (y) -G λ (x, y) ∂u scat ∂r (y) dσ(y).
The Green function of the free Helmholtz equation is explicitly given by

G λ (x, y) = 1 4i λ 2π d-2 2 |x -y| -d-2 2 H (1) d/2-1 λ|x -y| , (1.9)
where H 

G λ (x, y) = 1 2iλ λ 2πi d-1 2 e iλ|x-y| |x -y| -d-1 2 1 + O 1 λ|x -y| . (1.10) Since we have |x -y| = |y| - x • y |y| + O |x| 2 |y|
we find for |y| large enough and fixed λ:

e iλ|x-y| = e iλ |y| e -iλ y |y| •x 1 + O |x| 2 |y| .
We therefore obtain for fixed x, λ and large R = |y|

G λ (x, y) = 1 2iλ λ 2πi d-1 2 |y| -d-1 2 e iλ |y| e -iλ y |y| •x 1 + O 1 R . (1.11)
Analogously, we have

∂G λ ∂r (x, y) = iλc d (λ)|y| -d-1 2 e iλ|y| e -iλ y |y| •x 1 + O 1 R , with c d (λ) = 1 2iλ (λ/2πi) d-1
2 . This leads to

u scat (x) = - |y|≤R G λ (x, y)q(y)u(y) dy + c d (λ) R d-1 2 |y|=R ∂u scat ∂r -iλu scat e iλR-iλ y |y| •x 1 + O 1 R dσ(y).
Sommerfeld's radiation condition implies that the second right-hand side term tends to zero when R tends to infinity, so we get

u scat (x) = -G λ (x, y)q(y)u(y) dy .
Using once again the asymptotic formula (1.11) together with the fact that the Green function is symmetric we get

u scat (x) = - 1 2iλ λ 2πi d-1 2 e iλ|x| |x| d-1 2 q(y)u(y)e -iλ x |x| •y 1 + O |y| 2 |x| dy.
To summarize, we have that

u scat (x) = e iλ|x| |x| d-1 2 a q x |x| , ω, λ + O 1 |x| d+1 2 , with a q x |x| , ω, λ = - 1 2iλ λ 2πi d-1 2 q(y)u(y)e -iλ x |x| •y dy.
This proves that the scattered part of any solution of Helmholtz' equation subject to Sommerfeld's radiation condition takes the form announced in Theorem 1.

Definition 1.2. We define the scattering amplitude associated with the po-

tential q ∈ C ∞ 0 (R d ) by the smooth function a q : S d-1 × S d-1 × R * + → C given by a q (θ, ω, λ) = - 1 2iλ λ 2πi d-1 2 
q(y)ϕ q (y, ω, λ)e -iλθ•y dy. (1.12)

We denote

A q (λ)g(θ) = S d-1 a q (θ, ω, λ)g(ω) dω, θ ∈ S d-1 ,
the corresponding operator with kernel a q (θ, ω, λ).

It is easy to get an asymptotic expansion of

Φ q (λ)g(x) = S d-1 e iλx•ω + ϕ scat q (x, ω, λ) g(ω) dω
as |x| → +∞ using the stationary phase and Theorem 1:

(1.13) Φ q (λ)g = 2π λ|x| d-1 2 
e -iλ|x| e i(d-1) π 4 g( -θ)

+ e iλ|x| e -i(d-1) π 4 g(θ) + λ 2π d-1 2 A q (λ)g(θ) + O 1 |x| with θ = x/|x| ∈ S d-1
. The operator which maps the coefficient of e -iλ|x| into the coefficient of e iλ|x| is given by

g(-θ) → i -d+1 g(θ) + λi 2π d-1 2 A q (λ)g(θ) .
This is, after renormalization and composition with the antipodal map, the scattering matrix [START_REF] Melrose | Geometric scattering theory[END_REF].

Definition 1.3. The scattering matrix is the operator given by

S q (λ) = Id + λi 2π d-1 2 A q (λ).
Integration by parts allows to relate the values of the potential inside the domain with the scattering matrix S q (λ).

Lemma 1.4. We have the following identities

(q 1 -q 2 )u 1 u 2 dx = -2iλ 2π λ d-1 S d-1 g 1 g 2 -S q 1 (λ)g 1 S q 2 (λ)g 2 dω, (q 1 -q 2 )u 1 u 2 dx = -2iλ 2π λi d-1 S d-1 ǧ2 S q 1 (λ)g 1 -ǧ1 S q 2 (λ)g 2 dω,
for any pair of solutions 1

u 1 = Φ q 1 (λ)g 1 , u 2 = Φ q 2 (λ)g 2 ,
to the Helmholtz equations (1.1) related to the potentials q 1 , q 2 .

Proof. Let R be large enough so that the ball of radius R contains the support of both potentials q 1 , q 2 . By Green's formula, we have

|x|≤R (q 1 -q 2 )u 1 u 2 dx = |x|=R ∂ r u 1 u 2 -u 1 ∂ r u 2 dσ(x)
and using the asymptotic formula (1.13) on the functions u 1 = Φ q 1 (λ)g 1 and u 2 = Φ q 2 (λ)g 2 , we deduce

∂ r u 1 u 2 -u 1 ∂ r u 2 = -2iλ 2π λR d-1 g 1 (-θ) g 2 (-θ) -S q 1 (λ)g 1 (θ) S q 2 (λ)g 2 (θ) + O 1 R d , which implies |x|≤R (q 1 -q 2 )u 1 u 2 dx = -2iλ 2π λ d-1 S d-1 g 1 g 2 -S q 1 g 1 S q 2 g 2 dθ + O 1 R .
Letting R tend to infinity provides the first identity.

The proof of the second identity is similar, since

∂ r u 1 u 2 -u 1 ∂ r u 2 = -2iλ 2π λR d-1 g 1 (-θ) S q 2 g 2 (θ) -S q 1 (λ)g 1 (θ) g 2 (-θ) + O 1 R d .
This completes the proof of the lemma.

Choosing q 1 = q 2 = q in Lemma 1.4, we obtain the following properties of the scattering matrix:

t S q (λ) = P • S q (λ) • P, S q (λ) * S q (λ) = Id recalling that P g = ǧ is the antipodal map. Here, t denotes the transpose and * the transpose conjugate. Besides, using the first relation together with Lemma 1.4, we finally get

(q 1 -q 2 )u 1 u 2 dx = 2iλ 2π λi d-1 2 S d-1 ǧ2 A q 1 (λ) -A q 2 (λ) g 1 dω, (1.14) 
for any pair of solutions

u 1 = Φ q 1 (λ)g 1 , u 2 = Φ q 2 (λ)g 2 ,
to the Helmholtz equations (1.1) with Sommerfeld's radiation condition (1.4) related to the potentials q 1 , q 2 . 1.2. Stability estimates at high frequencies. The first stability result we shall prove in this paper states that low frequencies (i.e. smaller than 2λ) may be recovered in a stable way from the scattering amplitude.

Theorem 2. For all ε, M, R > 0 and all α > d there exist C ε , λ 0 > 0 such that the following stability estimate holds true. Let q 1 , q 2 ∈ C ∞ 0 (R d ) be two potentials supported in the ball centered at 0 and of radius R such that q 1 L ∞ , q 2 L ∞ ≤ M . Then for all λ ≥ λ 0 ,

(1.15) |ξ|≤(2-ε)λ ξ -α ( q 1 -q 2 )(ξ) 2 dξ ≤ C ε λ 3 a q 1 -a q 2 2 L 2 + C ε λ -2 q 1 -q 2 2 L ∞ .
The proof of Theorem 2 relies on estimates on solutions to the Helmoltz equations stated below, as well as on the following lemma, stating that one can relate the Fourier transform of the potential and the scattering amplitude.

Lemma 1.5. For all M, R > 0 there exist constants C, λ 0 > 0 such that for all potentials q ∈ C ∞ 0 (R d ) supported in the ball B(0, R) and satisfying q L ∞ ≤ M, we have the following approximation:

a q (θ, ω, λ) + 1 2iλ λ 2πi d-1 2 q λ(θ -ω) ≤ C λ d-5 2 q 2 L 2 (1.16)
for all λ ≥ λ 0 .

Lemma 1.5 is based on the following classical estimate on the free resolvent R 0 (λ). We refer to [START_REF] Burq | Semi-classical estimates for the resolvent in nontrapping geometries[END_REF] for an exposition by Burq of an elementary proof due to Zworski. This type of a priori estimates have a long history and go back to the work of Agmon [START_REF] Agmon | Spectral properties of Schrödinger operators and scattering theory[END_REF] on weighted estimates on the resolvent and the limiting absorption principle.

Proposition 1.6. Let χ ∈ C ∞ 0 (R d )
, there exists a constant C > 0 such that for all λ > 1 we have

χR 0 (λ)χ L(L 2 (R d )) ≤ Cλ -1 .
Proof of Lemma 1.5. We start with the expression defining the scattering amplitude (see Definition 1.2):

a q (θ, ω, λ) = - 1 2iλ λ 2πi d-1 2 
q(y)ϕ q (y, ω, λ)e -iλθ•y dy so by (1.5) we deduce that

a q (θ, ω, λ) + 1 2iλ λ 2πi d-1 2 q λ(θ -ω) = - 1 2iλ λ 2πi d-1 2 q(x)ϕ scat q (x, ω, λ) e -iλx•θ dx.
The resolvent identity reads (see for instance Formula (2.3) in [START_REF] Melrose | Geometric scattering theory[END_REF])

(1.17) R q (λ) = R 0 (λ) -R 0 (λ) q R q (λ) which implies that if χ ∈ C ∞ 0 (R d
) is a cutoff function which equals 1 on the ball B(0, R), then χR q (λ)χ = χR 0 (λ)χ -χR 0 (λ)χ q χR q (λ)χ .

If we apply this identity to -qe iλx•ω , we get in view of (1.6)

χϕ scat q = -χR 0 (λ)χ qe iλx•ω ) + χR 0 (λ)χ qχϕ scat q
and using the estimate of Proposition 1.6, we obtain

χϕ scat q L 2 ≤ Cλ -1 q L 2 + Cλ -1 q L ∞ χϕ scat q L 2 .
Taking λ ≥ 2CM we deduce

χϕ scat q L 2 ≤ 2Cλ -1 q L 2 .
Using Cauchy-Schwarz's inequality, we get

q ϕ scat q e -iλx•ω dx ≤ 2Cλ -1 q 2 L 2
and this completes the proof of the lemma.

Note that the main ingredient in the proof of Lemma 1.5 consists in combining the estimate for the non-perturbed resolvent (Proposition 1.6) with the resolvent identity (1.17), along with the fact that q is compactly supported.

This lemma is the basis of the reconstruction of the potential from the scattering amplitude at high frequencies, since one can choose θ, ω ∈ S d-1 such that λ(θω) = ξ for any fixed frequency ξ with |ξ| ≤ 2λ and let λ tend to infinity. We use a similar approach to prove a stability estimate at high frequencies.

Proof of Theorem 2. Again, we start with the expression defining the scattering amplitude and then express the potential in terms of the scattering amplitude: for j ∈ {1, 2} we write

q j λ(θ -ω) = -2i(2πi) d-1 2 λ -d-3
2 a q j (θ, ω, λ)q j (x)ϕ scat q j (x, ω, λ) e -iλx•θ dx.

Taking the difference of the two expressions yields

(1.18) ( q 1 -q 2 ) λ(θ -ω) ≤ 2(2π) d-1 2 λ -d-3 2 (a q 1 -a q 2 )(θ, ω, λ) + q 1 -q 2 L 2 ϕ scat q 1 L 2 (|x|≤R) + q 2 L 2 ϕ scat q 1 -ϕ scat q 2 L 2 (|x|≤R)
where we recall that the supports of q 1 , q 2 are contained in the ball of center 0 and radius R > 0. As in the proof of Lemma 1.5 we have

ϕ scat q 1 L 2 (|x|≤R) ≤ Cλ -1 q 1 L 2 . (1.19)
In light of (1.6), the difference of the two scattered waves satisfies

ϕ scat q 1 -ϕ scat q 2 = -R q 1 (λ) -R q 2 (λ) (q 1 e iλx•ω -R q 2 (λ) (q 1 -q 2 )e iλx•ω
and by the resolvent identity (1.17), the first term on the right-hand side reads

R q 2 (λ)(q 1 -q 2 )R q 1 (λ)(q 1 e iλx•ω = -R q 2 (λ)(q 1 -q 2 ) ϕ scat q 1 . Let χ ∈ C ∞ 0 (R d
) be a cutoff function which equals 1 on the ball B(0, R), then χ(ϕ scat q 1ϕ scat q 2 ) = -χR q 2 (λ)χ (q 1q 2 )ϕ scat q 1

-χR q 2 (λ)χ (q 1q 2 )e iλx•ω .

Therefore along the same lines as in the proof of Lemma 1.5, the resolvent identity (1.17) and Proposition 1.6 give rise to

(1.20) ϕ scat q 1 -ϕ scat q 2 L 2 (|x|≤R) λ -1 q 1 -q 2 L ∞ ϕ scat q 1 L 2 (|x|≤R) + λ -1 q 1 -q 2 L 2 .
Indeed invoking the resolvent identity (1.17), we infer that χR q 2 (λ)χ = χR 0 (λ)χ -χR 0 (λ)χ q 2 χR q 2 (λ)χ .

Thus applying this identity to (q 1q 2 )ϕ scat q 1 , we obtain

χR q 2 (λ)χ (q 1 -q 2 )ϕ scat q 1 L 2 ≤ Cλ -1 q 1 -q 2 L ∞ ϕ scat q 1 L 2 (|x|≤R) + Cλ -1 q 2 L ∞ χR q 2 (λ)χ (q 1 -q 2 )ϕ scat q 1 L 2 , which implies for λ > 2CM χR q 2 (λ)χ (q 1 -q 2 )ϕ scat q 1 L 2 ≤ 2Cλ -1 q 1 -q 2 L ∞ ϕ scat q 1 L 2 (|x|≤R) .
We have also

χR q 2 (λ)χ (q 1 -q 2 )e iλx•ω L 2 λ -1 q 1 -q 2 L 2 ,
which achieves the proof of Estimate (1.20).

Taking into account those bounds, we obtain in view of (1.18) the estimate

(1.21) ( q 1 -q 2 ) λ(θ -ω) λ -d-3 2 (a q 1 -a q 2 )(θ, ω, λ) + λ -1 q 1 -q 2 L ∞ . We denote r(ξ) = 1 -|ξ| 2 when |ξ| ≤ 1. For ξ ∈ R d with |ξ| ≤ 2λ, choose η ∈ ξ ⊥ with norm |η| = r(ξ/2λ). The vectors θ = η + ξ 2λ , ω = η - ξ 2λ ,
have length one, taking the square of (1.21) and integrating the resulting estimate with respect to η yields

( q 1 -q 2 )(ξ) 2 λ -2 q 1 -q 2 2 L ∞ + λ -d+3 r(ξ/2λ) -d+2 |η|=r(ξ/2λ) η⊥ξ a q 1 -a q 2 η + ξ 2λ , η - ξ 2λ , λ 2 dη.
When |ξ| ≤ (2ε)λ we have r(ξ/2λ) ≥ ε(4ε)/2 therefore multiplying the previous inequality by ξ -α ≤ 1 and integrating with respect to ξ we get

|ξ|≤(2-ε)λ ξ -α ( q 1 -q 2 )(ξ) 2 dξ ≤ C ε λ -2 q 1 -q 2 2 L ∞ + C ε λ 3 |ξ|≤1 |η|=r(ξ) η⊥ξ (a q 1 -a q 2 ) η + ξ, η -ξ, λ 2 dη dξ.
We consider the following 2d -2 dimensional submanifold of S 2d-1 Σ = (ξ, η) ∈ S 2d-1 : ξ, η = 0 and the following diffeomorphism

ϕ : Σ → S d-1 × S d-1 (ξ, η) → (ξ + η, η -ξ), with inverse ϕ -1 : S d-1 × S d-1 → Σ (θ, ω) → θ -ω 2 , θ + ω 2
for which we have

Σ F (η + ξ, η -ξ) dη ∧ dξ = S d-1 ×S d-1 F (θ, ω) ϕ -1 * (dη ∧ dξ) = 2 -d S d-1 ×S d-1 F (θ, ω) dω ∧ dθ.
Then we finally get

|ξ|≤(2-ε)λ ξ -α ( q 1 -q 2 )(ξ) 2 dξ ≤ C ε λ 3 S d-1 ×S d-1 a q 1 θ, ω, λ -a q 2 θ, ω, λ 2 dθ dω + C ε λ -2 q 1 -q 2 2 L ∞
and this completes the proof of our estimate.

In particular, we recover the uniqueness of the potential from the scattering amplitude at high frequencies.

Corollary 1.7. If for all (θ, ω, λ) belonging to S d-1 × S d-1 × R * + , we have a q 1 (θ, ω, λ) = a q 2 (θ, ω, λ) then q 1 = q 2 . 

Near field pattern

(D 2 -λ 2 + q)u = 0 in Ω, (∂ ν -iλ)u| ∂Ω = f ∈ L 2 (∂Ω). (2.1)
This problem has a unique solution u ∈ H 1 (Ω) for all f ∈ L 2 (∂Ω). Writing a variational formulation of (2.1) and using a unique continuation argument shows the uniqueness of a solution to (2.1). The existence follows from Fredholm's alternative [START_REF] Melenk | On generalized finite element methods[END_REF].

Remark 2.1. Other classical boundary conditions are either Dirichlet or Neumann boundary conditions. However, one has to make the additional assumption that λ 2 is not a Dirichlet (or Neumann) eigenvalue of D 2 + q, for the Dirichlet problem corresponding to (2.1) to have a unique solution for all f ∈ H 1 2 (∂Ω). Unfortunately, this does not make sense if one wants to take the high frequency limit λ → ∞. To bypass this difficulty, we study the boundary problem (2.1). Indeed, this condition is natural. It approximates Sommerfeld's radiation condition at high frequencies [START_REF] Engquist | Absorbing boundary conditions for the numerical simulation of waves[END_REF][START_REF] Keller | Exact nonreflecting boundary conditions[END_REF].

Remark 2.2. It follows from [START_REF] Melenk | On generalized finite element methods[END_REF] that the unique solution u ∈ H 1 (Ω) of (2.1) satisfies

Du L 2 (Ω) + λ u L 2 (Ω) ≤ C qu L 2 (Ω) + f L 2 (∂Ω)
for some constant C independent of λ. Therefore, as λ → ∞, we have

Du L 2 (Ω) + λ 2 u L 2 (Ω) ≤ C f L 2 (∂Ω) .
Definition 2.3. The near field pattern is the map

Nq(λ) : L 2 (∂Ω) → L 2 (∂Ω) f → u| ∂Ω .
The typical inverse problem on the near field pattern is whether it uniquely determines the potential q. This was solved (for smooth potentials) by Sylvester and Uhlmann [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] in dimension d ≥ 3 in the case of the Dirichletto-Neumann map. Reconstruction methods were proposed by Nachmann in [START_REF] Nachman | Reconstruction from boundary measurements[END_REF] and stability issues were studied by Alessandrini [START_REF] Alessandrini | Open issues of stability for the inverse conductivity problem[END_REF]. It was shown by Mandache in [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF] that the logarithmic stability result of Alessandrini in [START_REF] Alessandrini | Open issues of stability for the inverse conductivity problem[END_REF] is optimal.

Stability estimates at high frequencies.

The following result is the counterpart of Theorem 2 in the near-field context. Theorem 3. For all M, R > 0 and all α > d there exist C, λ 0 > 0 such that the following stability estimate holds true. Let q 1 , q 2 ∈ C ∞ 0 (R d ) be two potentials supported in the ball centered at 0 and of radius R such that q 1 L ∞ , q 2 L ∞ ≤ M . Then for all λ ≥ λ 0 ,

(2.2) |ξ|≤2λ ξ -α q 1 -q 2 (ξ) 2 dξ ≤ C Nq 1 -Nq 2 2 + Cλ -2 q 1 -q 2 2 L ∞ .
Proof. We start with two solutions u 1 , u 2 of the equations (D 2λ 2 + q j )u j = 0 and computing

Ω (q 1 -q 2 )u 1 u 2 dx = Ω ∆u 1 u 2 dx - Ω u 1 ∆u 2 dx = ∂Ω (∂ ν -iλ)u 1 u 2 dσ - ∂Ω u 1 (∂ ν -iλ)u 2 dσ yields the formula Ω (q 1 -q 2 )u 1 u 2 dx = ∂Ω u 2 Nq 1 (λ)u 1 -u 1 Nq 2 (λ)u 2 dσ.
Choosing q 1 = q 2 shows that the application Nq j is symmetric, and using this additional information, we get the formula

Ω (q 1 -q 2 )u 1 u 2 dx = ∂Ω u 2 Nq 1 (λ) -Nq 2 (λ) u 1 dσ.
Let us write q = q 1q 2 and choose

u 1 = ϕ q 1 = e iλx•θ 1 + ϕ scat q 1
and u 2 = ϕ q 2 = e iλx•θ 2 + ϕ scat q 2 , with θ 1 , θ 2 ∈ S d-1 . Recall from the proof of Lemma 1.5 that the scattered waves satisfy the estimate

ϕ scat q 1 L 2 (B(0,R)) + ϕ scat q 2 L 2 (B(0,R)) ≤ Cλ -1 . It follows that Ω e iλx•(θ 1 +θ 2 ) q(x) dx = ∂Ω Nq 1 (λ) -Nq 2 (λ) u 1 u 2 dσ - Ω q(x)(ϕ scat q 1 + ϕ scat q 2 + ϕ scat q 1 ϕ scat q 2 ) dx
and therefore

q λ(θ 1 + θ 2 ) ≤ Nq 1 (λ) -Nq 2 (λ) u 1 L 2 (∂Ω) u 2 L 2 (∂Ω) + C λ q L ∞ ≤ C Nq 1 (λ) -Nq 2 (λ) + C λ q L ∞ for all (θ 1 , θ 2 ) ∈ S d-1 × S d-1 .
We notice that

S d-1 × S d-1 → B(0, 2) (θ 1 , θ 2 ) → θ 1 + θ 2
is a submersion when θ 1 , θ 2 are not colinear. This implies that

q(ξ) ≤ C Nq 1 (λ) -Nq 2 (λ) + C λ q L ∞ , ξ ∈ B(0, 2λ). (2.3)
Multiplying this estimate by ξ -α /2, taking the square and integrating on the ball B(0, 2λ) completes the proof of the theorem.

3. The case of a potential located near the boundary 3.1. Definitions and notations. In this section we show, in the model case of the unit disk, that if the potential is supported close to the boundary of the disk, then a larger range of frequencies may be recovered by the near field Nq(λ) than in the general case treated in the previous two sections. More precisely, introducing radial coordinates (x 1 , x 2 ) = (r cos θ, r sin θ), with (r, θ) ∈ R + × [0, 2π[, we consider the following model problem in two space dimensions:

(3.1) (D 2 -λ 2 + q λ )u n = 0 in B = x ∈ R 2 , |x| ≤ 1 , ∂ r -iλ u n|∂B = e inθ .
We suppose that q λ is a smooth, radial function, with support included in D κ λ for some fixed constant κ > 0, where (3.2)

D κ λ = r ∈ [0, 1], 1 -κλ -1 < r < 1 .
In the following for simplicity we shall drop the index λ in the notation of the potential.

The following result shows that in the monotone case, one can improve on the frequency band recovered in the general case (see Theorems 2 and 3). We recall that Nq(λ) denotes the operator norm of Nq(λ) in L(L 2 ).

Theorem 4. Let q 1 and q 2 be two smooth radial potentials supported on D κ λ as defined in (3.2) and such that q 1 ≥ q 2 . There are positive constants λ 0 and C such that the following holds. Let λ → K(λ) be any function such that λ ≤ K(λ). Then the following stability estimate is valid for all λ ≥ λ 0 :

|ξ|≤K(λ) ( q 1 -q 2 )(ξ) 2 dξ ≤ CK 2 (λ) λ 4 Nq 1 (λ) -Nq 2 (λ) 2 + C 2 q 1 ,q 2 λ 4 q 1 -q 2 2 L ∞ , where C q 1 ,q 2 = max q 1 L ∞ , q 2 L ∞ , q 1 L ∞ q 2 L ∞ .
Remark 3.1. One has trivially that |ξ|≤K(λ)

( q 1 -q 2 )(ξ) 2 dξ ≤ CK 2 (λ) q 1 -q 2 2 L ∞ ≤ CK 2 (λ) λ 2 q 1 -q 2 2
L ∞ , so the estimate provided in Theorem 4 is of a different nature.

Remark 3.2. The proof of Theorem 4 is presented in Section 3.2, as an immediate consequence of Lemma 3.3 proved in Section 3.3. That lemma relates the Laplace transform of a function to the near field operator. It holds in much more generality than Theorem 4, without the additional assumption that q 1q 2 ≥ 0. However we are unable to relate the Fourier transform of a function to its Laplace transform in general (this fact is well-known to be difficult and in general very unstable); for nonnegative functions however the relation is very easy and enables us to conclude.

3.2.

Proof of Theorem 4. We start by stating a lemma, proved in Section 3.3, which relates the Laplace transform of a function to the near field operator. It is stated in the framework of general, non radial functions. We define the operator T : g → T g by

T g(r) = g(1 -r)
as well as the Laplace transform L: L(g)(t) = R g(s) e -s t ds.

For any function θ → f (θ) we call c k (f ) its Fourier transform, for k ∈ Z:

c k (f )(r) = 2π 0 f (r, θ) e -i k θ dθ.
Lemma 3.3. Let q 1 and q 2 be two functions supported on D κ λ . There are three positive constants λ 0 , K and C such that if t ≥ 2Kλ > 2Kλ 0 , then

L c k T (r(q 1 -q 2 ) (t) ≤ C λ 2 Nq 1 (λ) -Nq 2 (λ) + C q 1 ,q 2 λ 2 q 1 -q 2 L ∞ where C q 1 ,q 2 = max q 1 L ∞ , q 2 L ∞ , q 1 L ∞ q 2 L ∞ .
Proof of Theorem 4. Let q = q 1 -q 2 . Since q is radial, we have q(x) = Q(|x|) and q(ξ) = Q(|ξ|) with for all ρ > 0,

Q(ρ) = 2π 0 ∞ 0 e -irρ cos θ Q(r) rdrdθ.
In particular recalling that Q is nonnegative, we find that for all ξ ∈ R 2 ,

| q(ξ)| ≤ 2π ∞ 0 Q(r) rdr ≤ 2π ∞ 0 e ζ 0 (1-r) e -ζ 0 (1-r) Q(r) rdr
for any ζ 0 ∈ R. Then we can apply Lemma 3.3 to the particular case of a radial function, so choosing k = 0 and ζ 0 = 3Kλ 0 we infer that

| q(ξ)| ≤ Ce ζ 0 κ/λ L T (rQ) (ζ 0 ) (3.3) ≤ Ce 3Kκ λ 2 Nq 1 (λ) -Nq 2 (λ) + C q 1 ,q 2 λ 2 q 1 -q 2 L ∞ .
The end of the proof of Theorem 4 follows easily by taking the L 2 norm in ξ.

3.3.

Proof of Lemma 3.3. The method of proof follows the ideas developed in the proofs of Theorems 2 and 3, adapting the estimates to our special situation where the potentials are located near the boundary. The heart of the matter consists to approximate the solutions to Helmholtz equation (3.1) by separable solutions in radial coordinates involving Bessel functions, which allows in light of Debye's formula to relate the Laplace transform of the potential to its near field operator.

More precisely, we shall look for solutions to (3.1) under the following form, for n ∈ Z:

u n (r, θ) = J |n| (λr) λ(J ′ |n| (λ) -iJ |n| (λ)) e inθ + v n = z n (r, λ) e inθ + v n ,
where J n is a Bessel function of the first kind (see Appendix A), solution to

∂ 2 r + 1 r ∂ r - n 2 r 2 + 1 J n (r) = 0.
Suppose that for ℓ ∈ {1, 2}, u ℓ n solves (3.1) with potential q ℓ . Then writing

u ℓ n (r, θ) = z n (r, λ) e inθ + v ℓ n (r, θ), we find that (D 2 -λ 2 + q ℓ )v ℓ n = -q ℓ z n e inθ in B, (∂ r -iλ)v ℓ n|∂B = 0.
Due to Property (A.6) we have if 1λ -1 ≤ r ≤ 1 and |n| ≥ Kλ for K large, that λ z n (r, λ) is bounded, for λ ≥ λ 0 , by a constant depending only on K and λ 0 . For now on we shall denote by C(λ 0 , K) such a constant, which may change from line to line.

Therefore, arguing as in the proof of Lemma 1.5 and taking advantage of the fact that on the support of q ℓ , r varies in an interval of size λ -1 , we find as soon as λ is large enough compared to q ℓ L ∞

(3.4) v ℓ n L 2 ≤ C(λ 0 , K) λ q ℓ (r, θ) z n (r, λ) L 2 ≤ C(λ 0 , K) λ 5 2 q ℓ L ∞ .
Now going back to the computations of Section 2 we consider two positive integers n and m such that n, m ≥ Kλ, and we write

B (q 1 -q 2 )u 1 n u 2 -m dx = ∂B (N q 1 (λ) -Nq 2 (λ)
e inθ e -imθ dθ.

Therefore decomposing

u 1 n (r, θ) = z n (r, λ) e inθ + v 1 n (r, θ) and u 2 -m (r, θ) = z m (r, λ) e -imθ + v 2 -m (r, θ), we get 2π 0 Nq 1 (λ) -Nq 2 (λ) e inθ e -imθ dθ = B (q 1 -q 2 )e i(n-m)θ z n (r, λ) z m (r, λ) rdr dθ + B (q 1 -q 2 )e inθ z n (r, λ) v 2 -m rdr dθ (3.5) + B (q 1 -q 2 )e -imθ z m (r, λ) v 1 n rdr dθ + B (q 1 -q 2 )v 1 n v 2 -m rdr dθ.
As λ z n (r, λ) is bounded by a constant C(λ 0 , K), we have (recalling that q 1 and q 2 are compactly supported in an interval in r of size λ -1 )

B (q 1 -q 2 )e inθ z n (r, λ) v 2 -m r dr dθ ≤ C(λ 0 , K) λ 3 2 q 1 -q 2 L ∞ v 2 -m L 2
and similarly

B (q 1 -q 2 )e -imθ z m (r, λ) v 1 n r dr dθ ≤ C(λ 0 , K) λ 3 2 q 1 -q 2 L ∞ v 1 n L 2 . Finally B (q 1 -q 2 )v 1 n v 2 -m rdr dθ ≤ q 1 -q 2 L ∞ v 1 n L 2 v 2 -m L 2 .
Thus by (3.4), we get from (3.5), for n, m ≥ Kλ > Kλ 0 ,

B (q 1q 2 )e i(n-m)θ z n (r, λ) z m (r, λ) rdr dθ

≤ 2π 0 Nq 1 (λ) -Nq 2 (λ) e inθ e -imθ dθ + C q 1 ,q 2 λ 4 q L ∞ ,
where q = q 1q 2 and

C q 1 ,q 2 = C(λ 0 , K) max q 1 L ∞ , q 2 L ∞ , q 1 L ∞ q 2 L ∞ .
This gives rise to

(3.7) B (q 1 -q 2 )e i(n-m)θ z n (r, λ) z m (r, λ) rdr dθ ≤ Nq 1 (λ) -Nq 2 (λ) + C q 1 ,q 2 λ 4 q L ∞ , which leads in light of (A.6) to B (q 1 -q 2 )e i(n-m)θ e -(n+m)(1-r) rdr dθ ≤ C(λ 0 , K) λ 2 Nq 1 (λ) -Nq 2 (λ) + C q 1 ,q 2 λ 2 q L ∞
, for all n, m ≥ Kλ. In conclusion we have for any k ∈ Z, any ℓ ∈ N and any j ≥ 2Kλ > 2Kλ 0 , (3.8) B (q 1q 2 )e -i kθ e -j(1-r) rdr dθ ≤ C(λ 0 , K) λ 2 Nq 1 (λ) -Nq 2 (λ) + C q 1 ,q 2 λ 2 q L ∞ . The conclusion follows from (3.3). Lemma 3.3 is proved.

Concluding remarks

In this paper we have shown that the low-frequency component of the potential can be determined in a stable way from the scattering measurements and justified the resolution limit. We have also proved that in the near-field we have in the monotone case infinite resolution in reconstructing the potential near the boundary. We think that the result holds in the general case. However, its proof seems to be out of reach. In fact, even though a sampling (or interpolation) formula for the Laplace transform does exist [START_REF] Boumenir | Sampling eigenvalues in Hardy spaces[END_REF][START_REF] Rybkin | A new interpolation formula for the Titchmarsh-Weyl mfunction[END_REF], making norm-estimates similar to those in Theorem 4 is very challenging. Our results can be extended in many directions. It would be very interesting to study the limited-view case and show, as in [START_REF] Ammari | Limited view resolving power of conductivity imaging from boundary measurements[END_REF], that we recover infinite resolution from near-field measurements on the overlap of the source and receiver apertures. Another challenging problem is to understand how probe interaction can improve local resolution by converting where z is any point of the complex plane cut along the segment ] -∞, 0]. The motivation for introducing the Hankel functions is that the linear combination of J n (z) and Y n (z) have very simple asymptotic expansions for large |z|: it is thus well-known that H (1) n (z) = 2 πz (2πn tanh α) (2πn tanh α)

1 2 1 + O 1 n , J ′ n (n sech α) = (tanh α)
1 2 e -n(α-tanh α) (4πn) Without loss of generality we may assume that n ∈ N, then defining cosh α 1 = n λr and cosh α 2 = n λ , it is easy to see that under the above assumptions (λ ≪ n and r ∼ 1), we have necessarily cosh α i ≫ 1 for i ∈ {1, 2}, hence α i ≫ 1. This implies cosh α i ∼ e α i , sinh α i ∼ e α i , and tanh α i ∼ 1, which gives rise to Re z n (λ, r) = J n (n sech α 1 )J ′ n (n sech α 2 ) λ(J ′2 n (n sech α 2 ) + J 2 n (n sech α 2 )) and Im z n (λ, r) = J n (n sech α 1 )J n (n sech α 2 ) λ(J ′2 n (n sech α 2 ) + J 2 n (n sech α 2 )) • Finally, taking advantage of (A.5) we get Re z n (λ, r) ∼ e -n(α 1 -α 2 ) λ ∼ e -n log( 1

r ) λ •
The computation is identical for Im z n (λ, r), so using the fact that r is near to 1, we obtain the desired conclusion.

1

 1 is the Hankel function of first kind and order d/2 -1 (cf. Appendix A). The asymptotic behavior of Hankel functions (A.3) implies that for |y| large enough

2. 1 .

 1 Definitions and notations. Instead of considering the Helmholtz equation on the whole Euclidean space (with Sommerfeld's radiation condition) we focus on the Cauchy problem with Robin boundary condition on a bounded open set Ω ⊂ R d with smooth boundary

  |z| → ∞. Furthermore, we have the following Debye formulas whose proof can be found for instance in[START_REF] Olver | Asymptotics and special functions[END_REF] Chapter 9.4] and [1, Chapter 9]:J n (n sech α) ∼ e -n(α-tanh α)

5 )

 5 J n (n sech α) = e -n(α-tanh α)

1 n

 1 as n → ∞, where sech z denotes the hyperbolic secant of z defined by sech z = 1 cosh z with cosh z the hyperbolic cosine.Debye's formula gives rise to the following asymptotic behavior for the function introduced in Section 3:z n (λ, r) = J |n| (λr) λ(J ′ |n| (λ) -iJ |n| (λ))defined for n ∈ Z. Let us prove that for |n| ≫ λ and r ∼ 1,

We use the notation ǧ(ω) = g(-ω) = P g(ω) for the antipodal map.
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evanescent modes of the potential to propagating ones [START_REF] Carney | Near-field tomography, in Inside out: inverse problems and applications[END_REF]. These problems will be the subject of forthcoming works.

Appendix A. Bessel functions

Bessel's equation arises when finding separable solutions to the Helmholtz equation in spherical coordinates, and writes as follows:

It is well known (see for instance [START_REF] Lebedev | Special functions and their applications[END_REF][START_REF] Olver | Asymptotics and special functions[END_REF] and the references therein) that one of the solutions of Bessel's equation is the entire function J n (z) known as the Bessel function of the first kind of order n, and defined for arbitrary z ∈ C by the convergent series

in the case where n ∈ N and by

To find a general solution of Bessel's equation (A.1), we need a second solution of (A.1) which is linearly independent of J n (z). For such a solution, we usually choose Y n (z) the Bessel function of the second kind which is entire in the complex plane cut along the segment ] -∞, 0] and defined for n ∈ N by

where ψ(m + 1) = -γ + 1 + 1 2 + ... + 1 m , γ being the Euler constant. We also define Y -n (z) = (-1) n Y n (z).

Since J n and Y n are linearly independent, the general expression for solutions of (A.1) is a linear combination of Bessel functions of the first and second kinds, i.e, u(z) = A J n (z) + B Y n (z), where A and B are constants.

Another basis of solutions to the differential equation (A.1) is given by the Bessel functions of the third kind or Hankel functions, denoted by H n . These functions are defined by the formulas (A.2)

H (1) n (z) = J n (z) + iY n (z) and H (2) n (z) = J n (z) -iY n (z),