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Refined Sobolev inequalities in Lorentz spaces

Hajer Bahouri and Albert Cohen

March 1, 2013

Abstract

We establish refined Sobolev inequalities between the Lorentz spaces and homogeneous Besov

spaces. The sharpness of these inequalities is illustrated on several examples, in particular based on

non-uniformly oscillating functions known as chirps. These results are also used to derive refined

Hardy inequalities.

1 Introduction

The Sobolev inequality states that for any 0 < s < d
2 there exists a constant C > 0 such that for any

function f defined on R
d,

‖f‖Lp ≤ C‖f‖Ḣs ,

with 1
p := 1

2 −
s
d (therefore p is strictly between 2 and ∞). A refined version of this inequality was proved

in [10] :

‖f‖Lp ≤ C‖f‖
1− 2s

d

Ḣs
‖f‖

2s
d

Ḃ
s−d

2
∞,∞

,

where Ḃ
s− d

2
∞,∞ is the homogeneous Besov space. Similar results also hold when the smoothness of the

function is measured in Lq for 1 ≤ q <∞: for any 0 < s < d
q ,

‖f‖Lp ≤ C‖f‖
1− qs

d

Ḃs
q,q

‖f‖
qs
d

Ḃ
s−d

q
∞,∞

, (1.1)

with 1
p := 1

q−
s
d , or the same kind of inequalities with Ẇ s,q in place of Ḃs

q,q. We also refer to [3, 4, 13, 14, 16]
for similar results, involving in particular the space BV .

These inequalities are generalizations of the usual Sobolev embedding in Lebesgue spaces, their addi-
tional feature being that they are invariant under oscillations and fractal transforms see [1]. A significant
application is the description of defect of compactness in Sobolev embedding (see [9] in the L2 framework
and [11] in Lp framework).

On the other hand, it is also known that Sobolev and Besov spaces also embed in Lorentz spaces
Lp,q(Rd) : with 1

p = 1
q − s

d , one has

‖f‖Lp,q ≤ C‖f‖Ḃs
q,q
. (1.2)

This may be derived from the standard inequalities in Lp spaces by a real interpolation argument. This
justifies looking for refined inequalities of the type (1.1) with Lp,q(Rd) in place of Lp(Rd).

In this paper, such inequalities will be established. The “price to pay” will be a slight modification
in one index of the Besov space of negative smoothness, namely

‖f‖Lp,q ≤ C‖f‖
1− qs

d

Ḃs
q,q

‖f‖
qs
d

Ḃ
s−d

q
∞,q

, (1.3)

for the same range of indices (s, p, q) as in (1.1). It will be shown that this change is unavoidable and
that such inequalities are sharp.

The structure of the paper is the following. First, in §2, we briefly recall some facts on Lorentz and
Besov spaces, we establish estimates for Besov spaces which are used in the sequel. In §3 we give the
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proof of the refined Sobolev inequalities (1.3), which follows from the same line of reasoning as in [10] or
[13]. The sharpness of the inequality is discussed in §4. As with the improved Sobolev inequality (1.1),
these inequalities remain sharp for oscillatory functions, but more interestingly the necessity of the above
mentioned change of index can be proved by considering non-uniformly oscillating functions known as
chirps. Such functions have been deeply studied by Meyer and Jaffard, see [12, 16] and arise naturally
in signal processing. Finally, as a by-product of (1.3) we obtain in §5 a refined version of the Hardy
inequalities in the Lq framework, namely

(∫ |f(x)|q

|x|sq

) 1
q

≤ C‖f‖
1− qs

d

Ḃs
q,q

‖f‖
qs
d

Ḃ
s−d

q
∞,q

. (1.4)

A similar inequality was derived in [1] in the case q = 2. However, our method of proof is significantly
simpler and applies to arbitrary values of q. Let us stress that Hardy inequalities are of important use in
analysis: among other applications, we can mention blow-up methods or the study of pseudo-differentional
operators with singular coefficients.

Acknowledgement: the authors are grateful to the anonymous reviewers for their constructive sug-
gestions in improving the paper.

2 Lorentz spaces and Besov spaces

For any measurable function f on R
d, we define its distribution and rearrangement functions

µf (t) := |{x ; |f(x)| ≥ t} and f∗(s) := inf{t ; µf (t) ≤ s}.

For 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, the Lorentz space Lp,q(Rd) is defined as the set of all measurable

functions f such that the function s
1
p f∗(s) belongs to Lq(R+,

ds
s ). The L

p,q quasi-norm is defined by

‖f‖Lp,q :=
(∫ +∞

0

(s
1
p f∗(s))q

ds

s

) 1
q

, (2.5)

with the standard modification when q = ∞ which corresponds to the weak Lp space wLp = Lp,∞.
It is well known that Lp,p = Lp and that Lorentz spaces can be derived from Lp spaces by the real
interpolation method. In particular, when 1 < p < ∞ we have Lp,q = [L1, L∞]θ,q with 1

p = 1 − θ. We

refer to [5, 2] for these classical results.
In this paper, we shall use the expression of the Lp,q quasi-norm in terms of the distribution function

µf , namely

‖f‖Lp,q =
(
p

∫ +∞

0

(tµf (t)
1
p )q

dt

t

) 1
q

. (2.6)

To derive this expression, one first writes

f∗(s)q = q

∫ f∗(s)

0

tq−1dt,

so that
‖f‖qLp,q =

∫ +∞

0 s
q
p−1f∗(s)qds

= q
∫ +∞

0
s

q
p−1[

∫ f∗(s)

0
tq−1dt]ds

= q
∫ +∞

0 tq−1[
∫ µf∗ (t)

0 s
q
p−1ds]dt

= p
∫ +∞

0
tq−1µf∗(t)

q
p dt.

Observing that µf = µf∗ we obtain (2.6).
There exists several equivalent definitions of Besov spaces either based on Littlewood-Paley decompo-

sitions, moduli of smoothness, approximation procedures, wavelet decompositions. We refer to [18] and
[7] for a general treatment, and only recall here the definition based on Littlewood-Paley theory.
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Let ϕ be a function of d variables such that its Fourier transform ϕ̂ is non-negative, C∞, supported in
the ball {|ω| ≤M} for some M > 1 and such that ϕ̂(ω) = 1 if |ω| ≤ 1. For j ∈ Z we define the operator
Sj acting on tempered distributions of d variables by

Sjf = 2djϕ(2j ·) ∗ f

and ∆j = Sj+1 − Sj or equivalently
∆jf = 2djψ(2j ·) ∗ f,

with ψ̂(ω) = ϕ̂(ω2 )− ϕ̂(ω). For s < d
p and q ≥ 1, we define the homogeneous Besov space Ḃs

p,q(R
d) as the

space of tempered distributions f such that
∑J

j=−J ∆jf converges towards f in S ′ as J → +∞ and such
that

‖f‖Ḃs
p,q

:= ‖(2sj‖∆jf‖Lp)j∈Z‖ℓq

is finite. It is known and not difficult to check that this definition is independent of the initial choice of the
function ϕ with the above mentioned property, the resulting norms being equivalent. The condition that
s < d

p is necessary to ensure the fact that we have defined a proper Banach space (otherwise convergence

should be interpreted in S ′/Πn where Πn is the space of polynomials of total degree n = ⌊s − d
p⌋, for

more details see [8] and the discussion therein p. 153–155).
We shall consider Besov spaces of regularity index s which is either positive or negative. Using discrete

Hardy inequalities, it is also possible to characterize these spaces using only the operator Sj : for s > 0,
we have

‖f‖Ḃs
p,q

∼ ‖(2sj‖(I − Sj)f‖Lp)j∈Z‖ℓq ,

and for s < 0,
‖f‖Ḃs

p,q
∼ ‖(2sj‖Sjf‖Lp)j∈Z‖ℓq .

Equivalent norms for Besov spaces can also be obtained with the discrete frequencies 2j replaced by a
continuous one: introducing for any λ > 0 the operators

Sλf = λdϕ(λ·) ∗ f and ∆λf = S2λf − Sλf = λdψ(λ·) ∗ f,

we then find that ‖f‖Ḃs
p,q

is equivalent to the norm of the function

F (λ) := λs‖∆λf‖Lp (2.7)

in Lq(R+,
dt
t ). By similar arguments as when working with discrete frequency, we can equivalently choose

F (λ) := λs‖(I − Sλ)f‖Lp (2.8)

for s > 0 or
F (λ) := λs‖Sλf‖Lp , (2.9)

for s < 0. For the purpose of our analysis, we shall also need estimates on the derivative F ′(λ) = dF
dλ , as

expressed by the following result.

Lemma 2.1 There exists a constant K which depends only on s, d, p, q and the choice of ϕ such that for
all f ∈ Ḃs

p,q, the function G(λ) := λF ′(λ) belongs to Lq(R+,
dt
t ) with

‖G‖Lq(R+, dtt ) ≤ K‖f‖Ḃs
p,q
, (2.10)

where F is defined by (2.7), or by (2.8) when s > 0, or by (2.9) when s < 0.

Proof: we only consider the case where F is defined by (2.7), the two others being treated in the same
way. We first estimate the derivative of the function g(λ) := ‖∆λf‖Lp . Clearly, we have

|g′(λ)| ≤ ‖
d

dλ
(λdψ(λ·)) ∗ f‖Lp = ‖λd−1ψ̃(λ·) ∗ f + dλd−1ψ(λ·) ∗ f‖Lp ,
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with ψ̃(x) = x · ∇ψ(x). Since we have

F ′(λ) = sλs−1g(λ) + λsg′(λ),

it follows that
|G(λ)| ≤ (s+ d)F (λ) + λs‖λdψ̃(λ·) ∗ f‖Lp := (s+ d)F (λ) + F̃ (λ)

The function ψ̃ satisfies ̂̃ψ(ω) = ̂̃ϕ(ω2 )− ̂̃ϕ(ω) with

̂̃ϕ(ω) := ϕ̂(ω) + ω · ∇ϕ̂(ω).

Since ˆ̃ϕ is C∞, compactly supported in the ball {|ω| ≤M}, and such that ϕ̂(ω) = 1 if |ω| ≤ 1, we obtain
from the definition of Besov spaces that

‖G‖Lq(R+, dtt ) ≤ (s+ d)‖F‖Lq(R+, dtt ) + ‖F̃‖Lq(R+, dtt ) ≤ K‖f‖Ḃs
p,q
,

for some K which depends on (s, d, p, q, ϕ). ⋄

3 Proof of the refined inequality

We first observe that we may prove (1.3) in the particulary case where f is a C∞ compactly supported
function, and derive by density the general validity of the inequality.

We decompose f into low and high frequencies according to

f = Sλf + (I − Sλ)f

where Sλ is the convolution operator defined in the previous section. From the characterization of Besov
spaces which was recalled in §2.2, we have

∫ ∞

0

[F (λ)]q
dλ

λ
≤ C0‖f‖

q

Ḃ
s−d

q
∞,q

where C0 is an absolute constant and

F (λ) := λs−
d
q ‖Sλf‖L∞.

We also have ∫ +∞

0

λqs‖(I − Sλ)f‖
q
Lq

dλ

λ
≤ C1‖f‖

q

Ḃs
q,q

,

where C1 is also an absolute constant.
We now consider the function λ 7→ t(λ) defined by

t(λ) = 2λ
d
pF (λ) = 2λs+

d
p−

d
q ‖Sλf‖L∞ = 2‖Sλf‖L∞.

This function may not be monotone but it tends towards 0 as λ→ 0 and towardsM := 2‖f‖L∞ ≥ ‖f‖L∞

as λ → +∞. We may thus use it as a change of variable in the expression (2.6) of the Lp,q quasi-norm,
which yields

‖f‖qLp,q = p

∫ +∞

0

tqµf (t)
q
p dt = p

∫ 2M

0

tqµf (t)
q
p dt = p

∫ +∞

0

t(λ)q−1t′(λ)
(
µf (t(λ))

) q
p

dλ. (3.11)

From the triangle inequality we have

{
x ; |f(x)| > t

}
⊂

{
x ; |Sλf(x)| >

t

2

}
∪
{
x ; |(I − Sλ)f(x)| >

t

2

}

Since we have |Sλf(x)| ≤
t(λ)
2 for all x, it follows that

{x ; |f(x)| > t(λ)} ⊂ {x ; |(I − Sλ)f | >
t(λ)

2
},
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i.e. µf (t(λ)) ≤ µ(I−Sλ)f (
t(λ)
2 ). Combining this observation together with (3.11), we obtain

‖f‖qLp,q ≤ p
∫ +∞

0
t(λ)q−1t′(λ)[µ(I−Sλ)f (

t(λ)
2 )]

q
p dλ

= 2qd
∫ +∞

0
[λ

d
pF (λ)]q−1(λ

d
p−1F (λ))[µ(I−Sλ)f (

t(λ)
2 )]

q
p dλ

+ 2qp
∫ +∞

0
[λ

d
pF (λ)]q−1(λ

d
pF ′(λ))[µ(I−Sλ)f (

t(λ)
2 )]

q
p dλ

= 2qd
∫ +∞

0 λ
dq
p −1F (λ)q [µ(I−Sλ)f (

t(λ)
2 )]

q
p dλ

+ 2qp
∫ +∞

0
λ

dq
p F (λ)q−1F ′(λ)[µ(I−Sλ)f (

t(λ)
2 )]

q
p dλ

:= T0 + T1

In order to estimate further the two above terms, we remark that

µ(I−Sλ)f (
t(λ)

2
) ≤ (

t(λ)

2
)−q‖(I − Sλ)f‖

q
Lq = (λ

d
pF (λ))−q‖(I − Sλ)f‖

q
Lq .

For T0, this gives

T0 ≤ 2qd
∫ +∞

0 λ
dq
p −1F (λ)q[(λ

d
pF (λ))−q‖(I − Sλ)f‖

q
Lq ]

q
p dλ

= 2qd
∫ +∞

0
F (λ)q(1−

q
p )[λd−

dq
p ‖(I − Sλ)f‖

q
Lq ]

q
p dλ

λ

= 2qd
∫ +∞

0 F (λ)q(1−
q
p )[λqs‖(I − Sλ)f‖

q
Lq ]

q
p dλ

λ .

Applying Hölder inequality, we thus obtain

T0 ≤ 2qd
(∫ +∞

0 F (λ)q dλ
λ

)1− q
p
(∫ +∞

0 λqs‖(I − Sλ)f‖
q
Lq

dλ
λ

) q
p

≤ 2qd
(∫ +∞

0
F (λ)q dλ

λ

) qs
d
(∫ +∞

0
λqs‖(I − Sλ)f‖

q
Lq

dλ
λ

)1− qs
d

≤ C
(
‖f‖

qs
d

Ḃ
s−d

q
∞,q

‖f‖
1− qs

d

Ḃs
q,q

)q

.

where C is an absolute constant. Proceeding in an exactly similar manner for T1, we obtain

T1 ≤ 2qp
(∫ +∞

0

F (λ)q−1λF ′(λ)
dλ

λ

) qs
d
(∫ +∞

0

λqs‖(I − Sλ)f‖
q
Lq

dλ

λ

)1− qs
d

.

Using Lemma 2.1 together with a Hölder inequality, we see that the integral in the first factor can again
be controlled by ‖f‖q

Ḃ
s−d

q
∞,q

, and therefore we also obtain

T1 ≤ C
(
‖f‖

qs
d

Ḃ
s−d

q
∞,q

‖f‖
1−qs

d

Ḃs
q,q

)q

,

where C is an absolute constant. Combining our estimates for T0 and T1 we have proved that

‖f‖qLp,q ≤ C
(
‖f‖

qs
d

Ḃ
s−d

q
∞,q

‖f‖
1− qs

d

Ḃs
q,q

)q

,

which is the desired result.

Remark 3.1 For our range of indices (s, p, q), we also have a continuous embedding of Ḃs
q,r into Lp,r

for any 1 ≤ r ≤ ∞ (this can easily be proved from the standard Sobolev embedding by a real interpolation
argument). This suggests a correponding improved inequality of the form

‖f‖Lp,r ≤ C‖f‖
1− qs

d

Ḃs
q,r

‖f‖
qs
d

Ḃ
s−d

q
∞,r

,

but the proof of this does not seem obvious to us, neither by interpolation arguments, nor by an adaptation
of our current proof (that corresponds to the case r = q).
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4 Sharpness of the inequality

We shall discuss the sharpness of (1.3) through two examples. The first one shows that the refined
estimates are sharp with respect to oscillating functions: consider for all positive ω, the function

ϕω(x) = eiωx1ϕ(x),

where ϕ is a fixed function in S(Rd). For such a function, ‖ϕω‖Lp,q is independent of ω since the Lp,q

quasi-norm only depends on the modulus. On the other hand for |ω| > 1,

‖ϕω‖Ḃs
q,q

∼ ωs.

Therefore, the Sobolev inequality (1.2) is not sharp when ω is large. It is also easily checked that for
|ω| > 1

‖ϕω‖
Ḃ

s−d
q

∞,q

∼ ωs−d
q ,

(see [1] for the proof of these equivalences) and therefore

‖ϕω‖
1− qs

d

Ḃs
q,q

‖ϕω‖
qs
d

Ḃ
s−d/q
∞,q

∼ ωs(1− qs
d )+(s− d

q )
qs
d = 1,

which shows that (1.3) is sharp for such oscillatory functions.
The defect of this first example is that it does not make much distinction between (1.3) and the

improved Sobolev inequality (1.1) in Lp spaces : indeed, we also have that ‖ϕω‖Lp is independent of ω

and that ‖ϕω‖
Ḃ

s−d
q

∞,∞

∼ ωs− d
q . In particular, this example does not reveal the necessity of using Ḃ

s− d
q

∞,q in

place of Ḃ
s− d

q
∞,∞ when we want to control the Lp,q quasi-norm. A finer example is needed order to show

that this cannot be avoided. This example should contain oscillations in a wide range of frequencies in

order to make the distinction between Ḃ
s− d

q
∞,q and Ḃ

s− d
q

∞,∞, whereas it should also contain a wide range
of magnitudes in order to distinguish between Lp and Lp,q. Our example has roughly the form of a
hyperbolic “chirp”

f(x) = x−α sin(
1

x
),

with α > 0. For the sake of simplicity, we have placed ourselves in the one-dimensional case d = 1
although this example can be generalized to arbitrary dimensions. In order to simplify our analysis, we
shall define a variant of f in the form of a wavelet series. We recall that the Haar system is defined by
the functions

ψj,k(x) = 2
j
2ψ(2jx− k), j, k ∈ Z,

where ψ := χ
[0, 1

2
[ − χ

[ 1
2
,1]. Besov spaces Ḃs

p,q can be characterized as follows by wavelets (see e.g. [15]

or [6]): if f =
∑

j,k dj,kψj,k, then

‖f‖Ḃs
p,q

∼ ‖
(
2(s+

1
2
− 1

p )j‖(dj,k)k∈Z‖ℓp
)
j∈Z

‖ℓq .

In the case of the Haar system, this characterisation holds if 1
p −1 < s < 1

p (due to the lack of smoothness

of the functions ψj,k) which is sufficient for our purpose.
Let q ≥ 1 and 0 < s < 1

q , and let 1
p := 1

q − s. For J > 0, we consider the function

fJ(x) =

J∑

j=1

2(
1
p−

1
2
)jψj,1(x) =

J∑

j=1

2
j
pψ(2jx− 1). (4.12)

Note that the wavelets in the expansion of fJ have disjoint supports. We first notice that we have

‖fJ‖Ḃs
q,q

∼
( J∑

j=1

2(qs+
q
2
−1)j2(

q
p−

q
2
)j
) 1

q

= J
1
q .

6



For the Besov norms of negative indices, we have

‖fJ‖
Ḃ

s− 1
q

∞,∞

∼
J

sup
j=1

2(s−
1
q+

1
2
)j2(

1
p−

1
2
)j = 1,

and

‖fJ‖
Ḃ

s− 1
q

∞,q

∼
( J∑

j=1

[2(s−
1
q+

1
2
)j2(

1
p−

1
2
)j ]q

) 1
q

= J
1
q .

Since the wavelets in the expansion of fJ have disjoint supports, the Lp norm is of the order

‖fJ‖Lp =
( J∑

j=1

‖2
j
pψ(2j · −1)‖pLp

) 1
p

∼ J1/p.

Remarking that the rearrangement function of fJ is simply given by

f∗
J(s) = |fJ(s+ 2−J)|,

we can also easily evaluate its Lp,q quasi-norm using (2.5) which gives

‖fJ‖Lp,q =
(∑J

j=1 2
jq
p
∫ 2−j

0 (s+ 2−j − 2−J)
q
p−1ds

) 1
q

∼
(∑J

j=1 2
jq
p 2−j2−j( q

p−1)
) 1

q

= J
1
q .

From all these estimates, we obtain that

‖fJ‖
1−qs

Ḃs
q,q

‖fJ‖
qs

Ḃ
s− 1

q
∞,∞

∼ J
1
q−s = J

1
p ∼ ‖fJ‖Lp ,

and
‖fJ‖

1−qs

Ḃs
q,q

‖fJ‖
qs

Ḃ
s− 1

q
∞,q

∼ J
1
q−sJs = J

1
q ∼ ‖fJ‖Lp,q .

Again (1.3) and (1.1) are sharp, but this example also shows that the use of Ḃ
s− d

q
∞,q in place of Ḃ

s− d
q

∞,∞ is
unavoidable for the validity of (1.3).

5 Refined Hardy inequalities

Let as in the previous sections 1 < p < ∞ and s ∈]0, dq [, with
1
p = 1

q − s
d . For such indices, we claim

that the refined Hardy inequality (1.4) holds. It is actually a direct consequence of (1.3) combined with
a generalized version of Hölder’s inequality known as O’Neil inequalities : if 1 ≤ p1, p2, q1, q2 ≤ ∞, then
for any f ∈ Lp1,q1(Rd) and g ∈ Lp2,q2(Rd),

‖fg‖Lp,q(Rd) ≤ C‖f‖Lp1,q1 (Rd)‖g‖Lp2,q2 (Rd), (5.13)

where 1
p = 1

p1
+ 1

p2
and 1

q = 1
q1

+ 1
q2

and C = C(p1, p2, q1, q2) (a first proof of these inequalities using

rearrangements can be found in [17], while a more modern proof would proceed by bilinear interpolation
between the usual inequalities for Lebesgue spaces).

We now take g(x) = 1
|x|s and apply (5.13), in the specific form

‖fg‖Lq,q(Rd) ≤ C‖f‖Lp,q(Rd)‖g‖Lr,∞(Rd)

where 1
q = 1

p + 1
r , i.e. r =

d
s . Since obviously g ∈ Lr,∞(Rd), we have

(∫ |f(x)|q

|x|sq

) 1
q

≤ C‖f‖Lp,q(Rd).

7



Combining this with (1.3), we obtain (1.4). Let us mention that this inequality is obtained in [1] for
q = 2 by a different method which can not be generalized to the general Lq framework.

Concerning the sharpness of (1.4), we can make similar observations as for (1.3). In particular, this
inequality is sharp for oscillatory functions of the type ϕω(x) = eiωx1ϕ(x). It is also easily checked that
the sequence fJ defined by (4.12) satisfies

(∫ |fJ(x)|
q

|x|sq

) 1
q

∼ J
1
q ∼ ‖fJ‖Lp,q(Rd),

making (1.4) sharp for such functions, and justifying the use of Ḃ
s− d

q
∞,q in place of Ḃ

s− d
q

∞,∞.
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Université Paris XII - Val de Marne
61, avenue du Général de Gaulle
94 010 Creteil Cedex, France
bahouri@univ-paris12.fr

Albert Cohen
UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
cohen@ann.jussieu.fr

9


