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Equations aux dérivées partielles

Localization of solutions for nonlinear elliptic problems with

critical growth

Rejeb Hadiji Riccardo Molle Donato Passaseo Habib Yazidi

Abstract. We study the existence and the multiplicity of solutions for the problem −div(p(x)∇u) =
u2

∗

−1 + λu, u > 0 in Ω and u = 0 on ∂Ω, when the set of the minimizers for the weight p has multiple
connected component. We study also the case where this set has one connected component and has
complex topology.

Localisation des solutions pour un problème elliptique

avec exposant critique de Sobolev

Résumé. On étudie l’existence et la multiplicité de solutions du problème −div(p(x)∇u) = u2
∗

−1 +

λu, u > 0 dans Ω et u = 0 sur ∂Ω dans le cas où l’ensemble de minima de p admet plusieurs composantes

connexes. On s’intéresse également au cas où cet ensemble possède une seule composante connexe et une

topologie complexe.

Version française abrégée. On considère le problème suivant

(Pλ)

{

−div(p(x)∇u) = u2∗−1 + λu, u > 0 dans Ω
u = 0 sur ∂Ω

où Ω est un domaine borné de IRn, n ≥ 3, 2∗ = 2n
n−2

, λ ∈ IR et p : Ω̄ → IR une fonction positive

dans H1(Ω) ∩ C(Ω̄).

Soit V (Ω) =

{

u ∈ H1
0 (Ω) :

∫

Ω

|u(x)|2
∗

dx = 1

}

, on définit

Qλ(u) =

∫

Ω

p(x)|∇u(x)|2dx − λ

∫

Ω

|u(x)|2dx.

On considère Sλ(p) = inf{Qλ(u) : u ∈ V (Ω)}. Soit λ1 la première valeur propre de l’opérateur
−div(p(x)∇·) dans H1

0 (Ω). On sait (voir [7]) qu’il existe 0 ≤ λ∗ < λ1 tels que pour λ < λ∗,
Sλ(p) n’est pas atteint et pour λ > λ∗, Sλ(p) est atteint. On suppose qu’il existe x̄ ∈ Ω vérifiant

p(x) ≤ inf
Ω

p + c|x − x̄|α ∀x ∈ B(x̄, r) (1)

avec c > 0, r > 0 et α > 0. Lorsque n ≥ 4 et α > 2 on a λ∗ = 0, par contre si n = 3 ou
0 < α ≤ 2 la situation est plus compliquée (voir [7]).
Dans cette Note, on s’intéresse au cas où n ≥ 4 et α > 2 (voir [8] pour les autres cas).
On utilise la fonction dite ”barycentre” β : V (Ω) → IRn définie par

β(u) =

∫

Ω

x |u(x)|2
∗

dx ∀u ∈ V (Ω).

Nos résultats principaux sont les suivants:
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Théorème 1 Soit Ω un domaine borné de IRn, n ≥ 4. On suppose qu’il existe x̄ ∈ Ω et un
ouvert A ⊆ IRn tels que x̄ ∈ A et si Ω̄ ∩ ∂A 6= ∅ on a inf

Ω̄∩∂A
p > inf

Ω
p. Alors, il existe λ̄A ∈]0, λ1]

tel que, pour tout λ ∈]0, λ̄A[, le problème (Pλ) admet au moins une solution uλ,A qui vérifie

β
(

uλ,A

‖uλ,A‖
L2∗

)

∈ A et Qλ

(

uλ,A

‖uλ,A‖
L2∗

)

= Sλ(p, A) (voir (4)).

Corollaire 1 On suppose qu’il existe k ouverts disjoints dans IRn, A1, . . . , Ak, et k points
x̄1, . . . , x̄k dans Ω vérifiant les mêmes conditions que A et x̄ du Théorème 1. Alors, il existe
λ̄ ∈]0, λ1] tel que, pour tout λ ∈]0, λ̄[, le problème (Pλ) admet au moins k solutions distinctes

uλ,A1
, . . . , uλ,Ak

vérifiant, pour i = 1, . . . , k, β
(

uλ,Ai

‖uλ,Ai
‖

L2∗

)

∈ Ai et Qλ

(

uλ,Ai

‖uλ,Ai
‖

L2∗

)

= Sλ(p,Ai)

(voir (4)).

Théorème 2 Soit Ω un ouvert borné dans IRn, n ≥ 4. On suppose qu’il existe un ouvert A

dans IRn et un fermé K ⊆ Ω∩A telles que, pour tout x̄ ∈ K, les conditions du Théorème 1 sont
vérifiées pour des constantes convenables c > 0, r > 0 et α > 2 (c, r, α sont indépendentes de
x̄). Alors, il existe λ̄ > 0 tel que, pour tout λ ∈]0, λ̄[, le problème (Pλ) admet au moins catA K

solutions distinctes, où catA K représente le Ljusternik-Schnirelman catégorie de K dans A.
De plus, lorsque λ tend vers 0, chaque solution se concentre en un point minimum de p.

Let us consider the following problem

(Pλ)

{

−div(p(x)∇u) = u2∗−1 + λu, u > 0 in Ω
u = 0 on ∂Ω

where Ω is a bounded domain of Rn, n ≥ 3, 2∗ = 2n
n−2

, λ ∈ IR and p : Ω → IR is a positive

function in H1(Ω) ∩ C(Ω).
Let us denote by λ1 the first eigenvalue of the operator −div(p(x)∇ ·) in H1

0 (Ω).

Consider the set V (Ω) =

{

u ∈ H1
0 (Ω) :

∫

Ω

|u(x)|2
∗

dx = 1

}

and define the functional

Qλ(u) =

∫

Ω

p(x)|∇u(x)|2dx − λ

∫

Ω

|u(x)|2dx ∀u ∈ V (Ω).

For every λ ∈ IR, let us set

Sλ(p) = inf{Qλ(u) : u ∈ V (Ω)}.

Notice that Sλ(p) is a non increasing continuous function with respect to λ; the definition of λ1

implies Sλ1
(p) = 0; moreover, well known concentration arguments show that Sλ(p) = S inf

Ω
p

∀λ ≤ 0, where S denotes the best Sobolev constant, i.e. S = inf

{
∫

Ω

|∇u|2dx : u ∈ V (Ω)

}

.

The infimum Sλ(p) is not achieved for any λ < λ∗, where λ∗ = max{λ ∈ IR : Sλ(p) = S inf
Ω

p};

on the contrary, Sλ(p) is achieved for every λ > λ∗ and, if λ ∈]λ∗, λ1[, the minimizing functions
give rise to solutions of problem (Pλ) (taking into account the homogeneity of the nonlinear
term).

The number λ∗ depends on the behaviour of the function p(x) near its minimum points (see
[7, 15]). In particular, if there exists x̄ ∈ Ω such that p(x) ≤ inf

Ω
p + c|x − x̄|α ∀x ∈ B(x̄, r) for

suitable positive constants c and r, then λ∗ = 0 when n ≥ 4 and α > 2 (while the situation is
more complex if n = 3 or 0 < α ≤ 2).
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In this Note, for the sake of simplicity, we consider only this case (see [8] for the other cases);
for λ > 0 small enough, we obtain solutions which are localized near a prescribed region of
minimizers for p; as λ tends to 0, these solutions concentrate as Dirac masses near minimum
points of p(x) and, after rescaling, converge to minimizing functions for the best Sobolev constant
(see [14]); moreover, we exploit this concentration phenomenon in order to relate the number of
solutions to the geometrical properties of the set of the minimizers of p.

When p = 1 and λ → 0+ problem (Pλ) was studied in [12] and [13]. The effect of weights
in front of the nonlinearity has considered by several authors see for example [1], [9] and the
references therein. Note that, in subcritical case, Musso and Passaseo obtained the existence
and multiplicity of nontrivial solutions for problems having asymptotically singular weights in
divergence form operators see [11].

We shall use the barycenter function β : V (Ω) → IRn defined by

β(u) =

∫

Ω

x |u(x)|2
∗

dx ∀u ∈ V (Ω). (2)

Lemma 1 Assume that n ≥ 4 and that there exist x̄ ∈ Ω and α > 2 such that

p(x) ≤ inf
Ω

p + c |x − x̄|α ∀x ∈ B(x̄, r) (3)

for suitable positive constants c and r. Moreover, assume that there exists an open set A in IRn

such that x̄ ∈ A and, if Ω̄ ∩ ∂A 6= ∅, inf
Ω̄∩∂A

p > inf
Ω

p. Then, there exists λ̃A > 0 such that the

infimum
Sλ(p, A) = inf{Qλ(u) : u ∈ V (Ω), β(u) ∈ A} (4)

is achieved for every λ ∈]0, λ̃A[.

Proof. Notice that {u ∈ V (Ω) : β(u) ∈ A} 6= ∅ (because x̄ ∈ Ω∩A) and Sλ(p,A) is continuous
and non increasing with respect to λ. Moreover (concentrating near x̄ the minimizing functions
for the Sobolev constant and arguing as in [5, 7, 15]) one can show that Sλ(p,A) = S inf

Ω
p ∀λ ≤ 0

while (since n ≥ 4 and α > 2) Sλ(p, A) < S inf
Ω

p ∀λ > 0.

Now, if {u ∈ V (Ω) : β(u) ∈ ∂A} 6= ∅, let us consider the infimum

Sλ(p, ∂A) = inf{Qλ(u) : u ∈ V (Ω), β(u) ∈ ∂A}.

It is clear that also Sλ(p, ∂A) is continuous and non increasing with respect to λ.
Let us prove that S0(p, ∂A) > S inf

Ω
p. In fact, it is clear that S0(p, ∂A) ≥ S inf

Ω
p. Ar-

guing by contradiction, assume that the equality holds and consider a minimizing sequence

(ui)i∈N, i.e. ui ∈ V (Ω), β(ui) ∈ ∂A ∀i ∈ N and lim
i→+∞

∫

Ω

p(x) |∇ui(x)|2dx = S inf
Ω

p. Since
∫

Ω

p(x)|∇u(x)|2dx ≥ inf
Ω

p

∫

Ω

|∇u(x)|2dx, it follows that lim
i→+∞

∫

Ω

|∇ui(x)|2dx = S. Therefore,

there exists x0 ∈ Ω̄ such that (up to a subsequence) |∇ui|
2 → S δx0

and |ui|
2∗ → δx0

, where δx0

denotes the Dirac mass in x0, (see [10]).
If Ω̄ ∩ ∂A = ∅, we have a contradiction because β(ui) ∈ ∂A ∀i ∈ N implies x0 ∈ ∂A. If

Ω̄ ∩ ∂A 6= ∅, we have x0 ∈ Ω̄ ∩ ∂A which (under our assumptions) implies p(x0) > inf
Ω

p. As a

consequence, we obtain

lim
i→+∞

∫

Ω

p(x) |∇ui(x)|2dx = S p(x0) > S inf
Ω

p (5)

3



which also gives a contradiction.
Therefore, we must have S0(p, ∂A) > S inf

Ω
p and, since Sλ(p, ∂A) depends continuously on

λ, there exists λ̃A > 0 such that Sλ(p, ∂A) > S inf
Ω

p ∀λ ∈]0, λ̃A[. Hence, we have

Sλ(p,A) < S inf
Ω

p < Sλ(p, ∂A) ∀λ ∈]0, λ̃A[. (6)

Now, we can prove that the infimum Sλ(p,A) is achieved for every λ ∈]0, λ̃A[. In fact, using
a well known result of Brezis and Lieb (see [4]) and arguing as in [5], from the inequality
Sλ(p,A) < S inf

Ω
p one can infer that every minimizing sequence for Sλ(p,A) is relatively compact

in H1
0 (Ω) (for the strong H1

0 topology). Thus, up to a subsequence, every minimizing sequence
(ui)i∈N converges in H1

0 (Ω) to a function ū ∈ V (Ω) such that Qλ(ū) = Sλ(p,A) and β(ū) ∈ A.
In order to complete the proof, we need only to observe that β(ū) ∈ A. Indeed, if {u ∈

V (Ω) : β(u) ∈ ∂A} = ∅, this fact is obvious; in the other case, it follows from the inequality
Sλ(p,A) < Sλ(p, ∂A) (see (6)). 2

Theorem 1 Let Ω be a bounded domain of IRn, n ≥ 4, assume that there exists x̄ ∈ Ω and an
open set A ⊆ IRn satisfying the same conditions as in Lemma 1.

Then, there exists λ̄A ∈]0, λ1] such that, for every λ ∈]0, λ̄A[, problem (Pλ) has at least one

solution uλ,A such that β
(

uλ,A

‖uλ,A‖
L2∗

)

∈ A and Qλ

(

uλ,A

‖uλ,A‖
L2∗

)

= Sλ(p,A) (see (4)).

Proof. Let us set λ̄A = min{λ̃A, λ1} (see Lemma 1). Thus, we have Sλ(p,A) > 0 ∀λ ∈]0, λ̄A[.
Lemma 1 implies that there exixts a minimizing function ūλ,A for the infimum Sλ(p,A); clearly,
we can assume ūλ,A ≥ 0 (otherwise we replace ūλ,A by |ūλ,A|). Since {u ∈ V (Ω) : β(u) ∈ A} is
an open subset of V (Ω), it follows that ūλ,A is a critical point for the functional Qλ constrained
on V (Ω). Hence, taking into account that Sλ(p,A) > 0, one can easily verify that uλ,A =

[Sλ(p, A)]
n−2

4 ūλ,A solves problem (Pλ) and satisfies the desired properties. 2

The following corollary shows that Lemma 1 may be also used to obtain multiplicity of
solutions when the set of the minimizers for p(x) consists of several connected components.

Corollary 1 Let Ω be a bounded domain of IRn, n ≥ 4, and assume that there exist k pairwise
disjoint open sets in IRn, A1, . . . , Ak, and k points x̄1, . . . , x̄k in Ω such that, for i = 1, . . . , k, x̄i

and Ai satisfy the same conditions as x̄ and A in Lemma 1.
Then, there exists λ̄ ∈]0, λ1] such that, for every λ ∈]0, λ̄[, problem (Pλ) has at least k distinct

solutions uλ,A1
, . . . , uλ,Ak

satisfying, for i = 1, . . . , k, β
(

uλ,Ai

‖uλ,Ai
‖

L2∗

)

∈ Ai and Qλ

(

uλ,Ai

‖uλ,Ai
‖

L2∗

)

=

Sλ(p,Ai) (see (4)).

The proof is a direct consequence of Lemma 1 and Theorem 1.

Remark 1 When λ tends to 0, for each i = 1, . . . , k the solution uλ,Ai
given by Corollary 1

tends to concentrate (up to a subsequence) as a Dirac mass near a point xi ∈ Ai such that
p(xi) = inf

Ω
p, and, after rescaling, converges to a minimizing function for the best Sobolev

constant. This property follows easily taking into account that lim
λ→0

Sλ(p,Ai) = S inf
Ω

p; in fact,

as a consequence, we have

lim
λ→0

‖uλ,Ai
‖−2

L2∗

∫

Ω

p(x)|∇uλ,Ai
(x)|2dx = S inf

Ω
p
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which also implies

lim
λ→0

‖uλ,Ai
‖−2

L2∗

∫

Ω

|∇uλ,Ai
(x)|2dx = S.

Corollary 1 guarantees the existence of multiple solutions of Problem (Pλ) in a case where the
set of the minimizers for the weight p(x) has multiple connected components; however, notice
that we can have multiple solutions even if this set has only one connected component but it
has complex topology. For example, the following result holds.

Theorem 2 Let Ω be a bounded domain of IRn, n ≥ 4, and assume that there exist an open
set A in IRn and a closed set K ⊆ Ω ∩ A such that, for every x̄ ∈ K, the conditions required in
Lemma 1 are satisfied for suitable constants c > 0, r > 0 and α > 2 (c, r, α are independent of
x̄).

Then, there exists λ̄ > 0 such that, for every λ ∈]0, λ̄[, problem (Pλ) has at least catA K

distinct solutions, where catA K denotes the Ljusternik-Schnirelman category of K in A, i.e.
the smallest integer h for which there exist h closed subsets of A, we call K1, . . . , Kh, which are
contractible in A and such that K ⊆ ∪h

i=1Ki.
Moreover, as λ tends to 0, these solutions tend to concentrate as Dirac masses near points

of A, which minimize the function p(x), and, after rescaling, converge to minimizing functions
for the best Sobolev constant.

Proof. Since n ≥ 4 and α > 2, we have Sλ(p, A) < S inf
Ω

p ∀λ > 0 and if {u ∈ V (Ω) : β(u) ∈

∂A} 6= ∅, using Lemma 1 there exists λ̄ > 0 such that

inf{Qλ(u) : u ∈ V (Ω), β(u) ∈ ∂A} > S inf
Ω

p ∀λ < λ̄. (7)

The concentration arguments used in [3, 5, 7, 15] show that, for every λ > 0, one can find a
nonnegative radial function ϕλ ∈ H1

0 (B(0, r)) such that, if we set ϕx̄,λ(x) = ϕλ(x − x̄) ∀x̄ ∈ K

(ϕx̄,λ(x) = 0 for x 6∈ B(x̄, r)) and consider the set ΦK,λ = {ϕx̄,λ : x̄ ∈ K}, then ΦK,λ ⊆ V (Ω)
and

sup{Qλ(u) : u ∈ ΦK,λ} < S inf
Ω

p. (8)

Arguing as in [5, 7, 15] and taking into account (7) and (8), one can show that the sublevel

{u ∈ V (Ω) : β(u) ∈ A, Qλ(u) ≤ sup
ΦK,λ

Qλ} (9)

is compact in H1
0 (Ω) for every λ ∈]0, λ̄[.

Therefore, if we denote by k̃ the Ljusternik-Schnirelman category of ΦK,λ in {u ∈ V (Ω) :
β(u) ∈ A, u ≥ 0 in Ω}, general results of critical points theory guarantee that in this sublevel
there exist at least k̃ critical points for the functional Qλ constrained on V (Ω), which give rise
to k̃ distinct solutions of (Pλ).

Now, notice that k̃ ≥ catA K; in fact, if H1, . . . , Hh are h closed subsets contractible in
{u ∈ V (Ω) : β(u) ∈ A, u ≥ 0 in Ω} and such that ΦK,λ ⊆ ∪h

i=1Hi, then the sets K1, . . . , Kh

defined by Ki = {x̄ ∈ K : Φx̄,λ ∈ Hi}, for i = 1, . . . , h, are closed subsets of A, are contractible
in A (as one can easily verify by using the barycenter function β), and K = ∪h

i=1Ki.
Finally, let us remark that, as λ tends to 0, the asymptotic behaviour of the solutions follows

easily taking into account that

lim
λ→0

Sλ(p,A) = lim
λ→0

sup
ΦK,λ

Qλ = S inf
Ω

p.

(arguing as in Remark 1) 2
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Remark 2 The solutions obtained in Corollary 1 correspond to k local minimizers for the
corresponding energy functional. Therefore, it is natural to expect that one could apply the
mountain pass Theorem (see [2]) to find other solutions, corresponding to higher critical values.
But new difficulties arise, due to the presence of the weight p(x); in fact, the higher critical
values of p(x) produce new energy levels where the Palais-Smale compactness condition is not
satisfied; so this condition may fail just at the mountain pass level.

However, under the assumptions required in Corollary 1, it is possible to find many higher
energy solutions using a new approach (see [8]); in fact, for every subset {i1, . . . , ir} of {1, . . . , k},
(by minimizing on a suitable manifold of codimension r) we construct a solution of (Pλ) which
is the sum of r positive functions uλ,i1 , . . . , uλ,ir that, for λ > 0 small enough, are localized,
respectively, near the prescribed regions Ai1 , . . . , Air . Hence, for every r = 1, . . . , k, we obtain
on the whole

(

k
r

)

distinct r-peak solutions. Also in the case described in Theorem 2 it is natural
to expect the existence of a higher energy solution when the set K is not contractible in A (i.e.
catA K ≥ 2). In this case (see [8]) the region where the weight p(x) is large may play the same
role as a hole in the domain (as in [6, 12]); in general, the weight p(x) may have the same effect
as the domain shape on the existence and the multiplicity of solutions.

Finally, let us point out that the results presented in this Note may be also explained in
terms of bifurcation with respect to the parameter λ. It is well known that a branch of positive
solutions bifurcate from the first eigenvalue λ1; some examples (see [8]) suggest that the existence
of multiple solutions, given by Corollary 1 and Theorem 2, corresponds to secondary bifurcations
from this branch of positive solutions.
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