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We consider a thin multidomain of R 3 consisting of two vertical cylinders, one placed upon the other: the first one with given height and small cross section, the second one with small thickness and given cross section. The first part of this paper is devoted to analyze, in this thin multidomain, a "static Landau-Lifshitz equation", when the volumes of the two cylinders vanish. We derive the limit problem, which decomposes into two uncoupled problems, well posed on the limit cylinders (with dimensions 1 and 2, respectively). We precise how the limit problem depends on limit of the ratio between the volumes of the two cylinders. In the second part of this paper, we study the asymptotic behavior of the two limit problems, when the exterior limit fields increase. We show that in some cases, contrary to the initial problem, the energies of the limit problems diverge and we find the order of these energies.

Résumé. Nous considérons un multi-domaine mince de R 3 se composant de deux cylindres verticaux, superposés l'un sur l'autre : le premier possède une taille donnée et une petite section transversale, le second a une petite épaisseur et une section transversale donnée. La première partie de cet article est consacrée à analyser, dans ce multi-domaine, une équation stationnaire de type Landau-Lifshitz, quand les volumes des deux cylindres tendent vers 0. Nous montrons que le problème limite, se décompose en deux probèmes découplés, bien posés sur le domaine limite. Ensuite, nous précisons comment le problème limite dépend de la limite du rapport des volumes des deux cylindres. Dans la deuxième partie de cet article, nous étudions le comportement asymptotique des deux problèmes limites, quand les champs extérieurs limites augmentent. Nous prouvons que dans certains cas, contrairement au problème initial, les énergies des problèmes limites divergent et nous précisons l'ordre de ces énergies.

Introduction

This paper is devoted to an asymptotic analysis, in a thin multidomain of R 3 , of minimizing maps with values in S 2 . Precisely, let Ω n ⊂ R 3 , n ∈ N, be a thin multidomain consisting of two vertical cylinders, one placed upon the other: the first one with constant height 1 and small cross section r n Θ, the second one with small thickness h n and constant cross section Θ, where r n and h n are two small parameters converging to zero (see Figure). By denoting H 1 (D, S 2 )={v ∈ H 1 (D, R 3 ), |v| = 1 a.e. in D} for an open subset D ⊂ R N (N =1 , 2, 3), we consider the following minimization problem: min Ωn |DV (x 1 ,x 2 ,x 3 )| 2 -2V (x 1 ,x 2 ,x 3 )F n (x 1 ,x 2 ,x 3 ) d(x 1 ,x 2 ,x 3 ):

V ∈ H 1 (Ω n ,S 2 ) , (1.1) 
where F n ∈ L 2 (Ω n , R 3 ). Problem (1.1) describes the classical 3d system for the static isotropic Heisenberg model (see [START_REF] Stanley | Introduction to Phase Transitions and Critical Phenomena[END_REF]), where V is the spin-density with finite magnitude and F n an external magnetic field. The Euler system associated to Problem (1.1) is

∆V + |DV | 2 V + F n -<V,F n >V =0,
which is equivalent to the time independent spin equation of motion (see [START_REF] Hong | The Landau-Lifshitz Equation with the External Field -a New Extension or Harmonic Maps with Values in S 2[END_REF]). The time dependent spin equation of motion was first derived by Landau and Lifshitz (see [START_REF] Landau | On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[END_REF]) and it plays a fundamental role in the understanding of nonequilibrium magnetism. See [START_REF] Guo | The Landau-Lifshitz Equation of the Ferromagnetic Spin Chain and Harmonic Maps[END_REF] and [START_REF] Hong | The Landau-Lifshitz Equation with the External Field -a New Extension or Harmonic Maps with Values in S 2[END_REF] about links between harmonic maps and the Landau-Lifshitz equation of the spin chain.

The first part of our paper is devoted to study the asymptotic behavior of Problem (1.1), when r n → 0 and h n → 0, as n → +∞ (see Section 2). After having reformulated the problem on a fixed domain through appropriate rescalings of the kind proposed by P.G. Ciarlet and P. Destuynder in [START_REF] Ciarlet | A Justification of the Two-Dimensional Linear Plate Model[END_REF] and having imposed appropriate convergence assumptions on the rescaled exterior fields, we derive the limit problem which depends on the limit of the ratio between the volumes of the two cylinders (see Subsection 2.1). More precisely, if these two volumes vanish with same rate, i.e. h n r 2 n , the limit problem decomposes into two uncoupled problems, well posed on the limit cylinders, with dimensions 1 and 2, respectively:

min |Θ| 1 0 |w (x 3 )| 2 dx 3 -2 1 0 Θ f a (x 1 ,x 2 ,x 3 )d(x 1 ,x 2 ) w(x 3 ) dx 3 : w ∈ H 1 (]0, 1[,S 2 ) , (1.2) 
min Θ |Dζ(x 1 ,x 2 )| 2 d(x 1 ,x 2 ) -2 Θ 1 0 f b (x 1 ,x 2 ,x 3 )dx 3 ζ(x 1 ,x 2 ) d(x 1 ,x 2 ): ζ ∈ H 1 (Θ,S 2 ) , (1.3) 
where f a and f b are the L 2 -weak limits of the rescaled exterior fields in the upper cylinder and in the lower cylinder, respectively (see (2.5) and (2.10) in Section 2); and w stands for the derivative of w.I fh n << r 2 n , the limit problem reduces to Problem (1.2). If h n >> r 2 n , the limit problem reduces to Problem (1.3). In all cases, strong convergences in H 1 -norm are obtained for the rescaled minimizers.

The proofs of these results make use of the main ideas of Γ-convergence method introduced by E. De Giorgi (see [START_REF] De Giorgi | Su un tipo di convergenza variazionale[END_REF]) and they develop in several steps: a priori estimates, construction of the recovery sequence, density results and l.s.c arguments (see Subsection 2.2). The main difficulty with respect to [START_REF] Gaudiello | Coupled and Uncoupled Limits for a N-Dimensional Multidomain Neumann Problem[END_REF], where the asymptotic behavior of the Laplacian is studied when h n r 2 n , arises from the fact that the set of the admissible vector valued functions of Problem (1.1) is not a convex set, due to the constraint |V ((x 1 ,x 2 ,x 3 ))| = 1. This difficulty is overcome by working with a projection from R 3 into S 2 = {(x 1 ,x 2 ,x 3 ) ∈ R 3 : |(x 1 ,x 2 ,x 3 )| =1}, introduced in [START_REF] Bethuel | Density of Smooth Functions between Two Manifolds in Sobolev Spaces[END_REF] (see also [START_REF] Alicandro | Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere[END_REF]), and by using the Sard's Lemma. Moreover, point out that the cases h n << r 2 n and h n >> r 2 n are not treated in [START_REF] Gaudiello | Coupled and Uncoupled Limits for a N-Dimensional Multidomain Neumann Problem[END_REF]. Remark that it is not necessary that the two cylinders are scaled to the same one or that the first cylinder has height 1. In fact, the results do not essentially change if one assumes

Ω n =(r n Θ a × [0,l[) (Θ b ×] -h n , 0[), with Θ a , Θ b ⊂ R 2 ,0 ∈ Θ b and l ∈]0, +∞[.
In the second part of this paper (see Section 3), we consider the following problem:

min Ωn |DV (x 1 ,x 2 ,x 3 )| 2 + λ|V (x 1 ,x 2 ,x 3 ) -F n (x 1 ,x 2 ,x 3 )| 2 d(x 1 ,x 2 ,x 3 ): V ∈ H 1 (Ω n ,S 2 ) , (1.4) 
where

F n :Ω n → R 3 is a measurable function such that |F n ((x 1 ,x 2 ,x 3 ))| = 1 a.e.
in Ω n and λ ≥ 0. Remark that Problem (1.4) reduces to Problem (1.1), up to the additive constant:

2|Ω n |λ. Consequently, for λ fixed, by passing to the limit as n → +∞, one obtains limit problems (1.2) and (1.3), up to the additive constant: 2|Θ|λ. If we assume that |f a | =1,f a is independent of (x 1 ,x 2 ), |f b | = 1 and f b is independent of x 3 , then the limit problems can be rewritten as follows:

min

|Θ| 1 0 |w (x 3 )| 2 + λ |w(x 3 ) -f a (x 3 )| 2 dx 3 : w ∈ H 1 (]0, 1[,S 2 ) , (1.5) min 
Θ |Dζ(x 1 ,x 2 )| 2 + λ ζ(x 1 ,x 2 ) -f b (x 1 ,x 2 ) 2 d(x 1 ,x 2 ):ζ ∈ H 1 (Θ,S 2 ) . (1.6)
Note that, since smooth maps are dense in H 1 (Θ,S 2 ) and in H 1 (]0, 1[,S 2 ) (see [START_REF] Bethuel | Density of Smooth Functions between Two Manifolds in Sobolev Spaces[END_REF]), the infimum in (1.5) (resp. (1.6)) does not change if we replace

H 1 (Θ,S 2 ) (resp. H 1 (]0, 1[,S 2 )) by C 1 (Θ,S 2 ) (resp. C 1 (]0, 1[,S 2 
)). This property does not hold true for initial Problem (1.4) (for instance, see [START_REF] Hadiji | Regularity of Ω |∇u| 2 +λ Ω |u-f | 2 and Some Gap Phenomenon[END_REF]).

The second part of the paper is devoted to study the asymptotic behavior of problems (1.5) and (1.6), as λ → +∞, that is when the exterior limit field increases. The interesting cases occur when

f a / ∈ H 1 (]0, 1[) or f b / ∈ H 1 (Θ)
, otherwise the asymptotic analysis is trivial. We examine some cases (see Subsection 3.1). For instance, if

F n = x |x| in
(1.4), one obtains (1.5) and (1.6) with f a =( 0 , 0, 1) and

f b = 1 |(x 1 ,x 2 )| (x 1 ,x 2 , 0), respec- tively (see (2.10) in Section 2). Remark that f b / ∈ H 1 (Θ), although x |x| ∈ H 1 loc (R 3 ,S 2
). In this case, energy (1.6) diverges, as λ → +∞. By adapting some results proved by F. Bethuel, H. Brezis and F. Hélein in [START_REF] Bethuel | Ginzburg -Landau Vortices[END_REF], we show that π log λ + c is an upper bound of energy (1.6), for λ large enough. It provides that every sequence of minimizers of Problem (1.6) converges to 1 |(x 1 ,x 2 )| (x 1 ,x 2 , 0) strongly in L 2 (Θ), as λ → +∞. Moreover, with a technique introduced in [START_REF] Struwe | Une estimation asymptotique pour le modèle de Ginzburg-Landau[END_REF] in the case of the Ginzburg-Landau energy, we prove that

lim inf λ→+∞ Θ λ ζ λ (x 1 ,x 2 ) -f b (x 1 ,x 2 ) 2 d(x 1 ,x 2 )
< +∞, where ζ λ solves (1.6). This result allows us to obtain, by an integration by parts, the existence of a diverging sequence {λ k } k∈N for which corresponding energy (1.6) is bounded from below by π log λ k -c.

By choosing

F n (x 1 ,x 2 ,x 3 )= 1 |(x 1 ,x 2 ,x 3 -γ)| (x 1 ,x 2 ,x 3 -γ), with γ ∈]0, 1[, in (1.4), one obtains (1.5) and (1.6) with f a (x 3 )= 0, 0, x 3 -γ |x 3 -γ| and f b (x 1 ,x 2 )= 1 |(x 1 ,x 2 , -γ)| (x 1 ,x 2 , -γ), respectively (see (2.10) in Section 2). Remark that F n ∈ H 1 loc (R 3 ,S 2 ), f b ∈ H 1 (Θ,S 2 ), but f a / ∈ H 1 (]0, 1[).
In this case, by using suitable test functions, we derive the upper bound |Θ|2 √ 2π √ λ of energy (1.5). It provides that every sequence of minimizers of Problem (1.5) converges to 0, 0, x 3 -γ |x 3 -γ| strongly in L 2 (]0, 1[), as λ → +∞. Moreover, by virtue of an auxiliary scalar problem, we obtain the lower bounds |Θ|(2 -ε) √ λ of energy (1.5), for λ>λ ε . The proofs of this results will be developed in Subsection 3.2.

For the study of thin structures and multi-structures we refer to [START_REF] Ciarlet | Plates and Junctions in Elastic Multistructures: An Asymptotic Analysis[END_REF], [START_REF] Cioranescu | Homogenization of Reticulated Structures[END_REF], [START_REF] Damlamian | Homogenization Limits of the Equations of Elasticity in Thin Domains[END_REF], [START_REF] Gruais | Modélisation de la jonction entre une plaque et une poutre en élasticité linéarisée[END_REF], [START_REF] Kozlov | Asymptotic analysis of Fields in a Multi-Structure[END_REF], [START_REF] Landau | Problèmes variationnels dans le multi-domaines: modélisation des jonctions et applications[END_REF], [START_REF] Trabucho | Mathematical Modelling of Rods, Hand-book of Numerical Analysis[END_REF] and the references quoted therein. For a thin multi-structure as considered in this paper, we refer to [START_REF] Gaudiello | Coupled and Uncoupled Limits for a N-Dimensional Multidomain Neumann Problem[END_REF], [START_REF] Gaudiello | Asymptotic Analysis of a Class of Minimization Problems in a Thin Multidomain[END_REF], [START_REF] Gaudiello | Asymptotic Analysis for Monotone Quasilinear Problems in Thin Multidomains[END_REF], [START_REF] Gaudiello | On the Junction of Elastic Plates and Beams[END_REF], [START_REF] Gaudiello | Junction of Elastic Plates and Beams[END_REF] and [START_REF] Gaudiello | Junction in a Thin Multidomain for a Fourth Order Problem[END_REF]. Precisely, the model, described in [START_REF] Gaudiello | Coupled and Uncoupled Limits for a N-Dimensional Multidomain Neumann Problem[END_REF] and [START_REF] Gaudiello | Asymptotic Analysis of a Class of Minimization Problems in a Thin Multidomain[END_REF] through its integral energy, and in [START_REF] Gaudiello | Asymptotic Analysis for Monotone Quasilinear Problems in Thin Multidomains[END_REF] through the related constitutive equations, is a quasilinear Neumann second order scalar problem. A fourth order problem is examined in [START_REF] Gaudiello | Junction in a Thin Multidomain for a Fourth Order Problem[END_REF]. The case of the linearized elasticity system in R 3 is studied in [START_REF] Gaudiello | Junction of Elastic Plates and Beams[END_REF]. The spectrum of a Laplacian Problem is considered in [START_REF] Gaudiello | Asymptotic Analysis of the Eigenvalues of a Laplacian Problem in a Thin Multidomain[END_REF].

For n fixed, Problem (1.4) is studied in [START_REF] Courilleau | Regularity of Minimizing Maps with Values in S 2 and Some Numerical Simulations[END_REF] and in [START_REF] Hadiji | Regularity of Ω |∇u| 2 +λ Ω |u-f | 2 and Some Gap Phenomenon[END_REF]. The authors show that any minimizer of (1.4) is regular if λ is small enough; while, if λ is large and F n is not a strong limit of smooth maps in H 1 (Ω n ,S 2 ) (for instance, this is the case when

F n (x)= x | x |
), then any minimizer of (1.4) possesses singularities. In this case, a minimizer of (1.4) is of the

type: R x -x 0 | x -x 0 |
, where R is a rotation, near each singularity x 0 . It is also shown that any minimizer for (1.4) tends to F n weakly in H 1 ,a sλ tends to +∞.

2 First part: derivation of the limit model

In the sequel, x =( x 1 ,x 2 ,x 3 )=( x ,x 3 ) denotes the generic point of R 3 and, D x and D x 3 stand for the gradient with respect to the first 2 variables x 1 ,x 2 and for the derivative with respect to the last variable x 3 , respectively. Let Θ ⊂ R 2 be a bounded open connected set with smooth boundary such that the origin in R 2 , denoted by 0 , belongs to Θ, and

{r n } n∈N , {h n } n∈N ⊂]0, 1[ be two sequences such that lim n h n = 0 = lim n r n .
(2.1)

For every n ∈ N, let Ω a n = r n Θ × [0, 1[, Ω b n =Θ×] -h n , 0[ and Ω n =Ω a n ∪ Ω b n (see Figure). For every n ∈ N, let F n ∈ L 2 (Ω n , R 3 ) and J n : V ∈ H 1 (Ω n ,S 2 ) -→ Ωn |DV (x)| 2 dx -2 Ωn V (x)F n (x)dx.
(2.2)

By applying the Direct Method of Calculus of Variations, for every n ∈ N there exists a solution U n ∈ H 1 (Ω n ,S 2 ) of the following problem:

J n (U n ) = min {J n (V ):V ∈ H 1 (Ω n ,S 2 )} . (2.3)
As it is usual (see [START_REF] Ciarlet | A Justification of the Two-Dimensional Linear Plate Model[END_REF]), Problem (2.3) can be reformulated on a fixed domain through an appropriate rescaling which maps Ω n into Ω = Θ×] -1, 1[. Namely, for every n ∈ N by setting

u n (x)=    u a n (x ,x 3 )=U n (r n x ,x 3 ), (x ,x 3 ) a.e. in Ω a =Θ×]0, 1[, u b n (x ,x 3 )=U n (x ,h n x 3 ), (x ,x 3 ) a.e. in Ω b =Θ×] -1, 0[, (2.4 
)

f n (x)=    f a n (x ,x 3 )=F n (r n x ,x 3 ), (x ,x 3 ) a.e. in Ω a =Θ×]0, 1[, f b n (x ,x 3 )=F n (x ,h n x 3 ), (x ,x 3 ) a.e. in Ω b =Θ×] -1, 0[, (2.5) 
V n = (v a ,v b ) ∈ H 1 (Ω a ,S 2 ) × H 1 (Ω b ,S 2 ):v a (x , 0) = v b (r n x , 0), for x a.e. in Θ , (2.6) 
j n : v =(v a ,v b ) ∈ V n -→ Ω a 1 r n D x v a ,D x 3 v a 2 -2v a f a n dx+ + h n r 2 n Ω b D x v b , 1 h n D x 3 v b 2 -2v b f b n dx, (2.7) 
it results that u n ∈ V n solves the following problem:

j n (u n ) = min {j n (v):v ∈ V n } . (2.8)
Remark that we have also multiplied the rescaled functional by 1 r 2 . To study the asymptotic behavior of Problem (2.8), as n → +∞, assume that

lim n h n r 2 n = q ∈ [0, +∞],
(2.9)

and f a n f a weakly in L 2 (Ω a , R 3 ),f b n f b weakly in L 2 (Ω b , R 3 ). (2.10)
Moreover, set

j a : w ∈ H 1 (]0, 1[,S 2 ) -→ | Θ| 1 0 |w (x 3 )| 2 dx 3 -2 1 0 w(x 3 ) Θ f a (x ,x 3 )dx dx 3 , (2.11) 
j b : ζ ∈ H 1 (Θ,S 2 ) -→ Θ |Dζ(x )| 2 dx -2 Θ ζ(x ) 1 0 f b (x ,x 3 )dx 3 dx .
(2.12)

where w stands for the derivative of w.

Convergence results when n → +∞

The main result of this section, describing the asymptotic behavior of Problem (2.8) when q ∈]0, +∞[, is the following one:

Theorem 2.1. For every n ∈ N, let u n =(u a n ,u b n ) be a solution of Problem (2.6)-(2.7)-(2.8), under assumptions (2.1), (2.9) with q ∈]0, +∞[ and (2.10).

Then, there exist an increasing sequence of positive integer number

{n i } i∈N , u a ∈{ w ∈ H 1 (Ω a ,S 2 ):w is independent of x }H 1 (]0, 1[,S 2 ) and u b ∈{ ζ ∈ H 1 (Ω b ,S 2 ):ζ is inde- pendent of x 3 }H 1 (Θ,S 2
) (u a and u b depending on the selected subsequence) such that

u a n i → u a strongly in H 1 (Ω a ,S 2 ),u b n i → u b strongly in H 1 (Ω b ,S 2 ), (2.13) 
as i → +∞, and u a , u b solve the following problems:

j a (u a ) = min {j a (w):w ∈ H 1 (]0, 1[,S 2 )} , (2.14) j b (u b ) = min j b (ζ):ζ ∈ H 1 (Θ,S 2 ) , (2.15) 
respectively, with j a and j b defined in (2.11) and (2.12), respectively. Moreover,

1 r n D x u a n → 0 strongly in L 2 (Ω a , R 6 ), 1 h n D x 3 u b n → 0 strongly in L 2 (Ω b , R 3 ), (2.16)
as n → +∞. Furthermore, the energies converge in the sense that

lim n j n (u n )=j a (u a )+qj b (u b ).
(2.17)

If q = 0, the following result holds true:

Theorem 2.2. For every n ∈ N, let u n =(u a n ,u b n ) be a solution of Problem (2.6)-(2.7)-(2.8
), under assumptions (2.1), (2.9) with q =0and (2.10).

Then, there exist an increasing sequence of positive integer number

{n i } i∈N and u a ∈ {w ∈ H 1 (Ω a ,S 2 ):w is independent of x }H 1 (]0, 1[,S 2 ) (u a depending on the selected subsequence) such that u a n i → u a strongly in H 1 (Ω a ,S 2 ), (2.18) 
as i → +∞, and u a solves problem (2.14). Moreover,

1 r n D x u a n → 0 strongly in L 2 (Ω a , R 6 ), √ h n r n u b n → 0 strongly in H 1 (Ω b , R 3 ), (2.19) 1 √ h n r n D x 3 u b n → 0 strongly in L 2 (Ω b , R 3 ),
as n → +∞. Furthermore, the energies converge in the sense that

lim n j n (u n )=j a (u a ).
(2.20)

If q =+∞, the following result holds true:

Theorem 2.3. For every n ∈ N, let u n =(u a n ,u b n ) be a solution of Problem (2.6)-(2.7)-(2.8
), under assumptions (2.1), (2.9) with q =+∞ and (2.10).

Then, there exist an increasing sequence of positive integer number {n i } i∈N and

u b ∈{ζ ∈ H 1 (Ω b ,S 2 ):ζ is independent of x 3 }H 1 (Θ,S 2 ) (u b depending on the selected subsequence) such that u b n i → u b strongly in H 1 (Ω b ,S 2 ), (2.21) 
as i → +∞, and u b solves problem (2.15). Moreover,

1 h n D x 3 u b n → 0 strongly in L 2 (Ω b , R 3 ), r n √ h n u a n → 0 strongly in H 1 (Ω a , R 3 ), (2.22) 1 √ h n D x u a n → 0 strongly in H 1 (Ω a , R 6 ),
as n → +∞. Furthermore, the energies converge in the sense that

lim n r 2 n h n j n (u n ) = j b (u b ). (2.23)
As regard as the asymptotic behavior of original problem (2.3), as n → +∞, from the rescaling (2.4)-(2.5) and Theorems 2.1, 2.2 and 2.3, the result below follows immediately.

Corollary 2.4. For every n ∈ N, let U n be a solution of Problem (2.3), under assumptions (2.1) and (2.10) with {f n } n∈N defined by (2.5), and let q be given by (2.9).

Then, there exist an increasing sequence of positive integer number

{n i } i∈N , u a ∈{ w ∈ H 1 (Ω a ,S 2 ):w is independent of x }H 1 (]0, 1[,S 2 ) and u b ∈{ ζ ∈ H 1 (Ω b ,S 2 ):ζ is in- dependent of x 3 }H 1 (Θ,S 2 ) (u a and u b depending on the selected subsequence) such that 1) if q ∈]0, +∞[, lim i 1 r 2 n i rn i Θ×]0,1[ |U n i -u a | 2 + |D x U n i | 2 + |D x 3 U n i -D x 3 u a | 2 dx =0, (2.24) 
lim i 1 h n i Θ×]-hn i ,0[ U n i -u b 2 + D x U n i -D x u b 2 + |D x 3 U n i | 2 dx =0, (2.25) lim n J n (U n ) r 2 n = j a (u a )+qj b (u b ); 2) if q =0, lim i 1 r 2 n i rn i Θ×]0,1[ |U n i -u a | 2 + |D x U n i | 2 + |D x 3 U n i -D x 3 u a | 2 dx =0, (2.26) 
lim n 1 r 2 n Θ×]-hn,0[ |U n | 2 + |D x U n | 2 + |D x 3 U n | 2 dx =0, lim n J n (U n ) r 2 n = j a (u a ); 3) if q =+∞, lim n 1 h n rnΘ×]0,1[ |U n | 2 + |D x U n | 2 + |D x 3 U n | 2 dx =0, lim i 1 h n i Θ×]-hn i ,0[ U n i -u b 2 + D x U n i -D x u b 2 + |D x 3 U n i | 2 dx =0, (2.27) lim n J n (U n ) h n = j b (u b );
and u a and u b solve problems (2. Proof of Theorem 2.1. The proof of Theorem 2.1 will be performed in several steps. In the sequel, |A| i , i =2, 3, denotes the R i -Lebeasgue measure of a measurable set A ⊂ R i . 1) A priori estimates. Being ((0, 0, 1), (0, 0, 1)) ∈ V n for every n ∈ N, by virtue of (2.9) with q ∈ [0, +∞[ and (2.10), there exists a constant c, independent of n, such that

j n (u n ) ≤-2 Ω a (0, 0, 1)f a n dx -2 h n r 2 n Ω b (0, 0, 1)f b n dx ≤ c, ∀n ∈ N. (2.28)
Consequently, by taking into account that q ∈]0, +∞[, |u n | = 1 a.e. in Ω for every n ∈ N and (2.10), there exist an increasing sequence of positive integer number

{n i } i∈N , u a ∈ H 1 (Ω a ,S 2 ) independent of x , u b ∈ H 1 (Ω b ,S 2 ) independent of x 3 , ξ a ∈ L 2 (Ω a , R 6 ) and ξ b ∈ L 2 (Ω b , R 3 ) such that u a n i u a weakly in H 1 (Ω a ,S 2 ),u b n i u b weakly in H 1 (Ω b ,S 2 ), (2.29) 1 r n i D x u a n i ξ a weakly in L 2 (Ω a , R 6 ), 1 h n i D x 3 u b n i ξ b weakly in L 2 (Ω b , R 3 ), (2.30) as i → +∞, Remark that u a ∈ H 1 (]0, 1[,S 2 ) and u b ∈ H 1 (Θ,S 2 ). 2) Recovery sequence.L e t( w, ζ) ∈ C 1 ([0, 1],S 2 ) × C 1 (Θ,S 2
) such that and w(0) = ζ(0 ). This step is devoted to prove the existence of a sequence

{v n } n∈N , with v n ∈ V n , such that lim n j n (v n )=j a (w)+qj b (ζ).
(2.31)

For every n ∈ N,s e t

g n (x)=      w(x 3 ), if x =(x ,x 3 ) ∈ Θ×]r n , 1[, w(r n ) x 3 r n + ζ(r n x ) r n -x 3 r n , if x =(x ,x 3 ) ∈ Θ × [0,r n ], ζ(x ), if x =(x ,x 3 ) ∈ Ω b .
(2.32)

Remark that, for every n ∈ N,

g n | Θ×]0,rn[ ∈ C 1 (Θ×]0,r n [).
Moreover, assumption (2.9) with q ∈]0, +∞[ and, in particular, the transmission condition w(0) = ζ(0 ) provide (for the proof, see (4.11) and (4.12) in [START_REF] Gaudiello | Asymptotic Analysis of a Class of Minimization Problems in a Thin Multidomain[END_REF]) that lim n 

(Θ×]0,rn[) 1 r n D x g n (x),D x 3 g n (x) 2 dx =0. (2.33) Of course, g a n ∈ H 1 (Ω a ), g b n ∈ H 1 (Ω b ),
(0) = {x ∈ R 3 : |x|≤ 1 2 }, introduce the function π y : x ∈ B 1 (0) \{y}→y + y(y -x)+ (y(x -y)) 2 + |x -y| 2 (1 -|y| 2 ) |x -y| 2 (x -y) ∈ S 2 projecting x ∈ B 1 (0) \{y} = {x ∈ R 3 :
|x|≤1}\{y} on S 2 along the direction x -y (see [START_REF] Bethuel | Density of Smooth Functions between Two Manifolds in Sobolev Spaces[END_REF] and [START_REF] Alicandro | Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere[END_REF]). It is easily seen that

π y (x)=x, ∀x ∈ S 2 , (2.34)
and there exists a constant c>0 such that

|Dπ y (x)| 2 ≤ c |x -y| 2 , ∀y ∈ B1 2 (0), ∀x ∈ B 1 (0) \{y}.
(2.35)

The idea is to choose y ∈ B 1 2 (0) opportunely, and to define v n = π y • g n . To do that, one has to be careful that the set {x : g n (x)=y} is "sufficiently small". By setting G = (0)\G, the set G n,y = {x ∈ Θ×]0,r n [: g n (x)=y} has dimension 0 (see [START_REF] Smith | Primer of modern Analysis[END_REF], ch.13, par.14). Consequently, for every n ∈ N and for every y ∈ B 1 2 (0) \ G, the function π y • (g n | Ω\Gn,y ) is well defined and, by virtue of (2.35) there exists a constant c>0 such that

B 1 2 (0)\G (Θ×]0,rn[)\Gn,y 1 r n D x (π y (g n (x))) ,D x 3 (π y (g n (x))) 2 dxdy ≤ B 1 2 (0)\G (Θ×]0,rn[)\Gn,y |(Dπ y )(g n (x))| 2 1 r n D x g n (x),D x 3 g n (x) 2 dxdy ≤ c B 1 2 (0)\G (Θ×]0,rn[)\Gn,y 1 |g n (x) -y| 2 1 r n D x g n (x),D x 3 g n (x) 2 dxdy = c B 1 2 (0)\G (Θ×]0,rn[) (1 -χ Gn,y ) 1 |g n (x) -y| 2 1 r n D x g n (x),D x 3 g n (x) 2 dxdy ≤ c (Θ×]0,rn[)   B 1 2 (0)\G 1 |g n (x) -y| 2 dy   1 r n D x g n (x),D x 3 g n (x) 2 dx ≤ c (Θ×]0,rn[)   B 3 2 (0) 1 |z| 2 dz   1 r n D x g n (x),D x 3 g n (x) 2 dx = c B 3 2 (0) 1 |z| 2 dz (Θ×]0,rn[) 1 r n D x g n (x),D x 3 g n (x) 2 dx, ∀n ∈ N,
where

B 3 2 (0)
|z| -2 dz < +∞. Consequently, there exist a constant C>0 and a sequence

{y n } n∈N ⊂ B 1 2 (0) \ G such that (Θ×]0,rn[)\Gn,y n 1 r n D x (π yn (g n (x))) ,D x 3 (π yn (g n (x))) 2 dx ≤ C (Θ×]0,rn[) 1 r n D x g n (x),D x 3 g n (x) 2 dx, ∀n ∈ N,
from which, by virtue of (2.33), it follows that lim n

(Θ×]0,rn[)\Gn,y n 1 r n D x (π yn (g n (x))) ,D x 3 (π yn (g n (x))) 2 dx =0. (2.36) Finally, for every n ∈ N set v n = π yn • (g n | Ω\Gn,y n ).
Then, by virtue of (2.32) and (2.34), it results that

v n (x)=        w(x 3 ), if x =(x ,x 3 ) ∈ Θ×]r n , 1[, π yn w(r n ) x 3 r n + ζ(r n x ) r n -x 3 r n if x =(x ,x 3 ) ∈ (Θ × [0,r n ]) \ G n,yn ζ(x ), if x =(x ,x 3 ) ∈ Ω b . (2.37) At first, remark that v a n ∈ H 1 (Ω b ,S 2 ). Indeed, v a n ∈ H 1 (Θ×]r n , 1[,S 2 ). Moreover, since v a n ∈ L 2 (Θ×]0,r n [,S 2 ) and Dv a n ∈ (L 2 (Θ×]0,r n [)) 9 (see (2.36)), it results that v a n ∈ H 1 (Θ×]0,r n [,S 2 ). Furthermore, since v a n ∈ C((Θ × [0,r n ]) \ G n,yn
) and G n,yn has dimension 0, the trace of v a n| Θ×]0,rn[ on Θ ×{ r n } is equal to w(r n ). Consequently, these properties provide that v a n ∈ H 1 (Ω b ,S 2 ). On the other hand, it is evident that v b n ∈ H 1 (Ω b ,S 2 ), and v a n (x , 0) = v b n (r n x , 0) for x a.e. in Θ. In conclusion, for every n ∈ N, v n ∈ V n . Now, it remains to prove that {v n } n∈N satisfies (2.31).

By virtue of (2.37), it results that

j n (v n )= Ω a |(D x 3 w)| 2 -2wf a n dx - Θ×]0,rn[ |(D x 3 w)| 2 -2wf a n dx+ (Θ×]0,rn[)\Gn,y n 1 r n D x (π yn • g n ) ,D x 3 (π yn • g n ) 2 -2(π yn • g n )f a n dx+ h n r 2 n Ω b |(D x ζ)| 2 -2ζf b n dx.
(2.38)

On the other side, convergence (2.10) provides that

lim n Ω a wf a n dx = Ω a wf a dx, lim n Ω b ζf b n dx = Ω b ζf b dx, (2.39) lim n Θ×]0,rn[ |(D x 3 w)| 2 -2wf a n dx =0, lim n (Θ×]0,rn[)\Gn,y n (π yn • g n )f a n dx =0. (2.40)
Then, by passing to the limit, as n diverges, in (2.38) and by taking into account (2.39), (2.40), (2.36) and (2.9) with q ∈]0, +∞[, one obtains that lim

n j n (v n )= Ω a |(D x 3 w)| 2 -2wf a dx + q Ω b |(D x ζ)| 2 -2ζf b dx =j a (w)+qj b (ζ). 3) Density result.L e t( w, ζ) ∈ C 1 ([0, 1],S 2 ) × C 1 (Θ,S 2
). This step is devoted to prove the existence of a sequence

{(w k ,ζ k )} k∈N ⊂ C 1 ([0, 1],S 2 ) × C 1 (Θ,S 2 ), with w k (0) = ζ k (0 ) for every k ∈ N, such that (w k ,ζ k ) → (w, ζ) strongly in H 1 (]0, 1[,S 2 ) × H 1 (Θ,S 2 ).
For every k ∈ N,s e t

θ k = w(0)ϕ k +(1-ϕ k )ζ,
where ϕ k is the solution of the following problem: min

   B 1 k (0 ) |Dϕ k (x )| 2 dx : ϕ k ∈ C 1 0 (B 1 k (0 )),ϕ k = 1 in B 1 k 2 (0 ), 0 ≤ ϕ k ≤ 1    , with B 1 k (0 )= x ∈ R 2 : |x | < 1 k and B 1 k 2 (0 )= x ∈ R 2 : |x | < 1 k 2
. Remark that (for instance, see (3.4) in [START_REF] Gaudiello | Asymptotic Analysis of a Class of Minimization Problems in a Thin Multidomain[END_REF])

lim k B 1 k (0 )\B 1 k 2 (0 ) |Dθ k (x )| 2 dx ≤ 2 lim k   Dζ 2 L ∞ (Θ) |B 1 k (0 )| 2 +(|w(0)| + ζ L ∞ (Θ) ) 2 B 1 k \B 1 k 2 |Dϕ k (x )| 2 dx   =0.
(2.41)

Since θ k : Θ ⊂ R 2 → R 3 is a C 1 function, it results that k∈N θ k (Θ) 3 = 0. Consequently,
now it is easier than in the previous step to apply the projection π y for obtaining S 2value functions. Indeed, for every k ∈ N and for every y

∈ B 1 2 (0) \ k∈N θ k (Θ), the function π y • θ k ∈ C 1 (Θ,S 2
) and, by virtue of (2.35), there exists a constant c>0 such that

B 1 2 (0) \ k∈N θ k (Θ) B 1 k (0 )\B 1 k 2 (0 ) |D(π y (θ k (x )))| 2 dx dy ≤ c B 3 2 (0) 1 |z| 2 dz B 1 k (0 )\B 1 k 2 (0 ) |Dθ k (x )| 2 dx , ∀k ∈ N.
Consequently, by taking into account (2.41), there exists a subsequence, still denoted by {k}, and y ∈ B1

2 (0) \ k∈N θ k (Θ) such that lim k B 1 k (0 )\B 1 k 2 (0 ) |D(π y (θ k (x )))| 2 dx =0. (2.42) Now, for every k ∈ N set w k = w and ζ k = π y •θ k . Then, it is evident that {(w k ,ζ k )} k∈N ⊂ C 1 ([0, 1],S 2 )×C 1 (Θ,S 2
), with ζ k (0 )=w k (0), and w k → w strongly in H 1 (Θ,S 2 ). Moreover, it results that ζ k → ζ strongly in H 1 (Θ,S 2 ). In fact, by taking into account that (see (2.34))

ζ k (x )=      w(0 ), if x ∈ B 1 k 2 (0), π y (w(0)ϕ k (x )+(1-ϕ k (x ))ζ) , if x ∈ B 1 k (0 ) \ B 1 k 2 (0 ), ζ(x ), if x ∈ Θ \ B 1 k (0 ), ∀k ∈ N, (2.43)
and (2.42), it results that

lim k Θ |ζ k -ζ| 2 dx = lim k B 1 k (0 ) |(π y • θ k ) -ζ| 2 dx =0, and lim k Θ |Dζ k -Dζ| 2 dx = lim k   B 1 k (0 )\B 1 k 2 (0 ) |D(π y • θ k ) -Dζ| 2 dx + B 1 k 2 (0 ) |Dζ| 2 dx   ≤ lim k   2 B 1 k (0 )\B 1 k 2 (0 ) |D(π y • θ k )| 2 dx +3Dζ 2 L ∞ (Θ) |B 1 k (0 )| 2   =0.
4) Conclusion. By using a l.s.c argument, from (2.9) with q ∈]0, +∞[, (2.10), (2.29) and (2.30) it follows that

Ω a |ξ a | 2 dx + j a (u a )+q j b (u b )+ Ω b |ξ b | 2 dx ≤ lim inf i j n i (u n i ). ( 2 

.44)

On the other hand, by virtue of step 2, for every (w,

ζ) ∈ C 1 ([0, 1],S 2 ) × C 1 (Θ,S 2 ) with w(0) = ζ(0 ), there exists a sequence {v n } n∈N , with v n ∈ V n , such that lim sup i j n i (u n i ) ≤ lim sup i j n i (v n i ) = lim n j n (v n )=j a (w)+qj b (ζ).
(2.45)

Then, by combining (2.44) with (2.45), one obtains that

Ω a |ξ a | 2 dx + j a (u a )+q j b (u b )+ Ω b |ξ b | 2 dx ≤ lim inf i j n i (u n i ) ≤ lim sup i j n i (u n i ) ≤ j a (w)+qj b (ζ), (2.46) for every (w, ζ) ∈ C 1 ([0, 1],S 2 ) × C 1 (Θ,S 2 ) such that w(0) = ζ(0 ).
Step 3 provides that inequality (2.46) holds true for every (w, [START_REF] Bethuel | Density of Smooth Functions between Two Manifolds in Sobolev Spaces[END_REF]), inequality (2.46) holds true also for every (w, Proof of Theorem 2.2. A priori estimates (2.28) hold true also if q = 0 in (2.9). Consequently, by taking into account that q =0 ,|u n | = 1 a.e. in Ω for every n ∈ N and (2.10), there exist an increasing sequence of positive integer number 

ζ) ∈ C 1 ([0, 1],S 2 ) × C 1 (Θ,S 2 ). Moreover, since C 1 ([0, 1],S 2 ) × C 1 (Θ,S 2 ) is dense in H 1 (]0, 1[,S 2 ) × H 1 (Θ,S 2 ) (see
ζ) ∈ H 1 (]0, 1[,S 2 ) × H 1 (Θ,S 2
{n i } i∈N , u a ∈ H 1 (Ω a ,S 2 ) inde- pendent of x , ξ a ∈ L 2 (Ω a , R 6 ) and z b ∈ L 2 (Ω b , R 3 )
Ω a |ξ a | 2 dx + j a (u a )+ Ω b |z b | 2 dx ≤ lim inf i   Ω a 1 r n i D x u a n i ,D x 3 u a n i 2 -2u a n i f a n i dx + Ω b D x 3 u b n i h n i r n i 2 - 2h n i r 2 n i u b n i f b n i dx   ≤ lim inf i j n i (u n i ).
(2.52) On the other hand, for every w ∈ C 1 ([0, 1],S 2 ) the sequence {v n } n∈N , defined by v a n = w and v b n = w(0), belongs to V n and satisfies lim sup

i j n i (u n i ) ≤ lim sup i j n i (v n i ) = lim n j n (v n )=j a (w). (2.53)
By combining (2.52) with (2.53), and by taking into account that C 1 ([0, 1],S 2 ) is dense in H 1 (]0, 1[,S 2 ) (see [START_REF] Bethuel | Density of Smooth Functions between Two Manifolds in Sobolev Spaces[END_REF]), one obtains that ξ a =0,z b = 0, that u a solves problem (2.14), and the convergence of the energies (2.20). One achieves the proof of Theorem 2.2, by arguing as in the last part of the proof of Theorem 2.1.

Proof of Theorem 2.3. Being ((0, 0, 1), (0, 0, 1)) ∈ V n for every n ∈ N, by virtue of (2.9) with q =+∞ and (2.10), there exists a constant c, independent of n, such that

r 2 n h n j n (u n ) ≤- r 2 n h n Ω a 2(0, 0, 1)f a n dx - Ω b 2(0, 0, 1)f b n dx ≤ c, ∀n ∈ N. (2.54)
Consequently, by taking into account that q =+∞, |u n | = 1 a.e. in Ω for every n ∈ N and (2.10), there exist an increasing sequence of positive integer number 

{n i } i∈N , u b ∈ H 1 (Ω b ,S 2 ) independent of x 3 , ξ b ∈ L 2 (Ω b , R 3 ) and z a ∈ L 2 (Ω b , R 6 )
u b n i → u b strongly in H 1 (Ω b ,S 2 ), (2.56) 1 h n i D x 3 u b n i ξ b weakly in L 2 (Ω b , R 3 ), (2.57) as i → +∞. Remark that u b ∈ H 1 (Θ,S 2 ).
By using a l.s.c argument, from (2.10), (2.56), (2.57) and (2.55) it follows that

Ω a |z a | 2 dx + j b (u b )+ Ω b |ξ b | 2 dx ≤ lim inf i   Ω a 1 h n i D x u a n i 2 - 2r 2 
n i h n i u a n i f a n i dx + Ω b D x u b n i , D x 3 u b n i h n i 2 -2u b n i f b n i dx   ≤ lim inf i r 2 n i h n i j n i (u n i ) .
(2.58) On the other hand, for every ζ ∈ C 1 (Θ,S 2 ), such that ζ is constant in a neighbourhood of 0 , the sequence {v n } n∈N , defined by v a n = ζ(0 ) and v b n = ζ, belongs to V n (for n sufficiently large) and satisfies

lim sup i r 2 n i h n i j n i (u n i ) ≤ lim sup i r 2 n i h n i j n i (v n i ) = lim n r 2 n i h n i j n (v n ) = j b (ζ). (2.59)
Obviously, step 3 of the proof of Theorem 2.1 is independent of q ∈ [0, +∞]. Moreover, a careful reading of this step (in particular, see (2.43)) shows that the space {ζ ∈ C 1 (Θ,S 2 ): ζ is constant in a neighbourhood of 0 } is dense in C 1 (Θ,S 2 ) with respect to the H 1 -norm.

Consequently, by combining (2.58) with (2.59), it results that

Ω a |z a | 2 dx + j b (u b )+ Ω b |ξ b | 2 dx ≤ lim inf i r 2 n i h n i j n i (u n i ) ≤ lim sup i r 2 n i h n i j n i (u n i ) ≤ j b (ζ), ∀ζ ∈ C 1 (Θ,S 2 ).
from which, by taking into account that C 1 ([0, 1],S 2 ) is dense in H 1 (]0, 1[,S 2 ) (see [START_REF] Bethuel | Density of Smooth Functions between Two Manifolds in Sobolev Spaces[END_REF]), one obtains that z a =0 ,ξ b = 0, that u b solves problem (2.15), and the convergence of the energies (2.23). One achieves the proof of Theorem 2.3, by arguing as in the last part of the proof of Theorem 2.1.

3 Second part: analysis of the limit model

For every n ∈ N and λ ∈ [0, +∞[, consider the following problem:

J n,λ : V ∈ H 1 (Ω n ,S 2 ) -→ Ωn |DV (x)| 2 dx + λ Ωn |V (x) -F n (x)| 2 dx, (3.1) 
where

F n :Ω n → S 2 is a measurable function.
Remark that J n,λ has the same minimum points of the functional:

J n,λ : V ∈ H 1 (Ω n ,S 2 ) -→ Ωn |DV (x)| 2 dx -2λ Ωn V (x)F n (x)dx, since J n,λ (V )= J n,λ (V )+2λ|Ω n |,f o re v e r yV ∈ H 1 (Ω n ,S 2
). Consequently, after a rescaling as in Section 2, by passing to the limit as n → +∞, one obtains all the results of Subsection 2.1 with

j a λ (w)=|Θ| 1 0 |w (x 3 )| 2 dx 3 -2λ 1 0 w(x 3 ) Θ f a (x ,x 3 )dx dx 3 +2λ|Θ|, ∀w ∈ H 1 (]0, 1[,S 2 ), (3.2) 
j b λ (ζ)= Θ |Dζ(x )| 2 dx -2λ Θ ζ(x ) 1 0 f b (x ,x 3 )dx 3 dx +2λ|Θ|, ∀ζ ∈ H 1 (Θ,S 2 ), (3.3) 
where f a and f b are given by (2.10), and w stands for the derivative of w. Remark that, since |f a n (x)| = 1 a.e. in Ω a and |f b n (x)| = 1 a.e. in Ω b for every n ∈ N, weak convergences in (2.10) are always satisfied for a subsequence.

If

|f a (x)| = 1 a.e. in Ω a , f a is independent of x , |f b (x)| = 1 a.e.
in Ω b and f b is independent of x 3 , then functionals (3.2) an (3.3) can be rewritten as follows:

j a λ (w)=|Θ| 1 0 |w (x 3 )| 2 + λ |w(x 3 ) -f a (x 3 )| 2 dx 3 , ∀w ∈ H 1 (]0, 1[,S 2 ), (3.4) 
j b λ (ζ)= |Dζ(x )| 2 + λ ζ(x ) -f b (x ) 2 dx , ∀ζ ∈ H 1 (Θ,S 2 ). (3.5) 
In the sequel, w λ and ζ λ denote solutions of the following problems:

j a λ (w λ ) = min |Θ| 1 0 |w (x 3 )| 2 + λ |w(x 3 ) -f a (x 3 )| 2 dx 3 : w ∈ H 1 (]0, 1[,S 2 ) , (3.6) 
j b λ (ζ λ ) = min Θ |Dζ(x )| 2 + λ ζ(x ) -f b (x ) 2 dx : ζ ∈ H 1 (Θ,S 2 ) , (3.7) 
respectively. This section is devoted to study the asymptotic behavior, as λ → +∞, of Problem (3.6) and Problem (3.7). Remark that, if λ = 0, the solutions of Problem (3.6) and Problem (3.7) are the constants of S 2 .

Convergence results when

λ → +∞ If f a ∈ H 1 (]0, 1[,S 2 ), from (3.6) it follows that (w λ ) 2 (L 2 (]0,1[)) 3 + λ w λ -f a 2 (L 2 (]0,1[)) 3 ≤ 1 0 |(f a ) (x 3 )| 2 dx 3 , ∀λ ∈]0, +∞[, ((w λ 
) and (f a ) stand for the derivative of w λ and f a , respectively) which provides that

w λι f a weakly in H 1 (]0, 1[,S 2 ),
for any diverging sequence of positive numbers {λ ι } ι∈N . Moreover, by using a l.s.c. argument, it results that

|Θ|(f a ) 2 (L 2 (]0,1[)) 3 ≤|Θ| lim inf ι (w λι ) 2 (L 2 (]0,1[)) 3 ≤ lim inf ι j a λι (w λι ) ≤ lim sup ι j a λι (w λι ) ≤ lim sup ι j a λι (f a )=|Θ|(f a ) 2 (L 2 (]0,1[)) 3 ,
for any diverging sequence of positive numbers {λ ι } ι∈N , from which it follows that lim λ→+∞

j a λ (w λ )=|Θ|(f a ) 2 (L 2 (]0,1[)) 3 . Similarly, if f b ∈ H 1 (Θ,S 2
), one has that

ζ λι f b weakly in H 1 (Θ,S 2 ),
for any diverging sequence of positive numbers {λ ι } ι∈N , and

lim λ→+∞ j b λ (ζ λ )= Df b 2 (L 2 (Θ)) 6 .
Then, interesting situations occur when

f a / ∈ H 1 (]0, 1[), or f b / ∈ H 1 (Θ).
At first, consider the case:

f b = 1 |x | (x , 0). Remark that 1 |x | (x , 0) / ∈ H 1 (Θ) (although x |x| ∈ H 1 loc (R 3 ,S 2 )). Consequently, it results that lim λ→+∞ j b λ (ζ λ )=+∞. (3.8) 
In fact, by arguing by contradiction, if (3.8) does not hold true, then there exists c ∈]0, +∞[ and a diverging sequence of positive numbers

{λ k } k∈N such that j b λ k (ζ λ k ) ≤ c for every k. Consequently, ζ λ k f b weakly in H 1 (Θ,S 2 ), which is false, since f b / ∈ H 1 (Θ) .
On the other hand, the following a priori estimates hold true (the proof will be performed in Subsection 3.2):

Proposition 3.1. For every λ ∈ [0, +∞[, let ζ λ be a solution of Problem (3.7) with f b = x |x | , 0 .
Then, there exist c 1 and λ 1 ∈]0, +∞[ such that

j b λ (ζ λ ) ≤ π log λ + c 1 , ∀λ ∈]λ 1 , +∞[. (3.9) 
Moreover, there exist a diverging sequence of positive numbers {λ k } k∈N and c 2 , Then, it results that

c 3 ∈]0, +∞[ such that Θ ζ λ k (x ) -f b (x ) 2 dx ≤ c 2 λ k , ∀k ∈ N, (3.10) 
π log λ k -c 3 ≤ j b λ k (ζ λ k ), for k ∈ N large enough. (3.11) Remark 3.2 
ζ λι → f b strongly in L 2 (Θ,S 2 ),
for any diverging sequence of positive numbers {λ ι } ι∈N . There exists a diverging sequence of positive numbers {λ k } k∈N and c ∈]0, +∞[ such that

Θ ζ λ k (x ) -f b (x ) 2 dx ≤ c λ k , ∀k ∈ N, and 
lim k→+∞ j b λ k (ζ λ k ) log λ k = π.
Obviously, {ζ λι } ι∈N does not converge weakly in H 1 (Θ,S 2 ), since

f b = x |x | , 0 / ∈ H 1 (Θ).
One obtains the same results, if

f b = 1 |(x 1 -α, x 2 -β)| (x 1 -α, x 2 -β, 0), where (α, β)
is a fixed point in Θ.

Consider, now, the case: f a = 0, 0, x 3γ |x 3 -γ| , where γ is a fixed number in ]0, 1[. Obviously, f a / ∈ H 1 (]0, 1[) (remark that f a ∈ H 1 (]0, 1[,S 2 ) if γ ∈{ 0, 1}, and w λ =( 0 , 0, 1) if γ =0,w λ =(0, 0, -1) if γ = 1). Consequently, it results that lim λ→+∞ j a λ (w λ )=+∞.

(3.12)

In fact, by arguing by contradiction, if (3.12) does not hold true, then there exists c ∈]0, +∞[ and a diverging sequence of positive numbers {λ k } k∈N such that j a λ k (w λ k ) ≤ c for every k. Consequently, w λ k f a weakly in H 1 (]0, 1[,S 2 ), which is false, since f a / ∈ H 1 (]0, 1[) .

When f a = 0, 0, Then, it results that

j a λ (w λ ) ≤|Θ|2 √ 2π √ λ, ∀λ ∈]0, +∞[. (3.13)
Moreover, for every ε ∈]0, 2[ there exists Then, it results that w λι → f a strongly in L 2 (]0, 1[,S 2 ), for any diverging sequence of positive numbers {λ ι } ι∈N .

λ ε ∈]0, +∞[ such that |Θ|(2 -ε) √ λ ≤ j a λ (w λ ), ∀λ ∈]λ ε , +∞[. ( 3 
Obviously, {w λι } ι∈N does not converge weakly in H 1 (]0, 1[,S 2 ), since f a = 0, 0, 

x 3 -γ |x 3 -γ| / ∈ H 1 (]0, 1 
|w λ k (x 3 ) -f a (x 3 )| 2 dx 3 ≤ c √ λ k , ∀k ∈ N.
This subsection ends by showing some situations when the considered cases:

f a = 0, 0, x 3 -γ |x 3 -γ| ,f b = 1 |(x 1 -α, x 2 -β)| (x 1 -α, x 2 -β, 0),
appear in the limit problem.

In the sequel, (α, β) denotes a fixed point in R 2 and γ in R.

For instance, by choosing in (3.1)

F n (x 1 ,x 2 ,x 3 )= 1 |(x 1 -r n α, x 2 -r n β, x 3 -γ)| (x 1 -r n α, x 2 -r n β, x 3 -γ), convergence (2.10) gives f a (x 3 )= 0, 0, x 3 -γ |x 3 -γ| ,f b (x 1 ,x 2 )= 1 |(x 1 ,x 2 , -γ)| (x 1 ,x 2 , -γ).
Remark that

F n ∈ H 1 loc (R 3 ,S 2 ), f a / ∈ H 1 (]0, 1[) ⇔ γ ∈]0, 1[, f b / ∈ H 1 (Θ) ⇔ γ =0. By choosing in (3.1) F n (x 1 ,x 2 ,x 3 )= 1 |(x 1 -α, x 2 -β, x 3 -h n γ)| (x 1 -α, x 2 -β, x 3 -h n γ), convergence (2.10) gives f a (x 3 )= 1 |(-α, -β, x 3 )| (-α, -β, x 3 ) ,f b (x 1 ,x 2 )= 1 |(x 1 -α, x 2 -β)| (x 1 -α, x 2 -β, 0). Remark that F n ∈ H 1 loc (R 3 ,S 2 ), f a ∈ H 1 (]0, 1[,S 2 ), f b / ∈ H 1 (Θ) ⇔ (α, β) ∈ Θ. By choosing in (3.1) F n (x 1 ,x 2 ,x 3 )= 1 |(x 1 -r n α, x 2 -r n β, x 3 -h n γ)| (x 1 -r n α, x 2 -r n β, x 3 -h n γ), convergence (2.10) gives f a (x 3 )=(0, 0, 1) ,f b (x 1 ,x 2 )= 1 |(x 1 ,x 2 )| (x 1 ,x 2 , 0). Remark that F n ∈ H 1 loc (R 3 ,S 2 ), f a ∈ H 1 (]0, 1[,S 2 ), f b / ∈ H 1 (Θ).
3.2 Proof of Proposition 3.1 and Proposition 3.4

Proof of Proposition 3.1. To obtain estimate (3.9), for r, λ ∈]0, +∞[ introduce the functionals:

j b λ,r : ζ ∈ H 1 (C r (0 ),S 2 ) → Cr(0 ) |Dζ(x )| 2 + λ ζ(x ) -f b (x ) 2 dx ,
and denote with ζ λ,r a solution of the following problem:

j b λ,r (ζ λ,r ) = min j b λ,r (ζ):ζ ∈ H 1 (C r (0 ),S 2 ),ζ= f b on ∂C r (0 ) , where C r (0 )={x ∈ R 2 : |x | <r}.
By arguing as in Lemma III.1 of [START_REF] Bethuel | Ginzburg -Landau Vortices[END_REF], it is easy to prove that

j b λ,r (ζ λ,r ) ≤ π log λ +2π log r + j b 1,1 (ζ 1,1 ), ∀r ∈]0, +∞[, ∀λ ≥ 1 r 2 . (3.15)
Let r ∈]0, +∞[ be such that Θ ⊂ C r(0 ). Then, by virtue of (3.15), it results that

j b λ (ζ λ ) ≤ j b λ,r (ζ λ,r ) ≤ π log λ +2π log r + j b 1,1 (ζ 1,1 ), ∀λ ≥ 1 r2
, which provides estimate (3.9) with λ 1 = 1 r2 and

c 1 =2π log r + j b 1,1 (ζ 1,1 ). The next step is devoted to prove that lim inf λ→+∞ Θ λ ζ λ (x ) -f b (x ) 2 dx < +∞. (3.16)
The proof of (3.16) makes use of a technique introduced in [START_REF] Struwe | Une estimation asymptotique pour le modèle de Ginzburg-Landau[END_REF] in the case of the Ginzburg-Landau energy. Since, for λ ≥ λ, it results

j b λ(ζ λ ) ≥ j b λ(ζλ) ≥ j b λ (ζλ) ≥ j b λ (ζ λ ), one derives that the function λ ∈]0, +∞[→ j b λ (ζ λ ) ∈]0
, +∞[ is increasing, and therefore derivable a.e. in ]0, +∞[, and that .18) Consequently, by passing to the limit in (3.17) with λ → λ + and in (3.18) with λ → λ-, one obtains that .19) To prove (3.16), by arguing by contradiction, assume that

j b λ(ζ λ ) -j b λ (ζ λ ) λ -λ ≥ j b λ(ζλ) -j b λ (ζ λ ) λ -λ , ∀λ ∈]0, +∞[, ∀ λ ∈]λ, +∞[, (3.17) 
j b λ(ζλ) -j b λ (ζ λ ) λ -λ ≥ j b λ(ζλ) -j b λ (ζλ) λ -λ , ∀λ ∈]0, +∞[, ∀ λ ∈]λ, +∞[. ( 3 
dj b λ (ζ λ ) dλ = Θ ζ λ (x ) -f b (x ) 2 dx , for λ a.e. in ]0, +∞[, i.e. j b λ (ζ λ )=j b 1 (ζ 1 )+ λ 1 Θ ζ µ (x ) -f b (x ) 2 dx dµ, ∀λ ∈]0, +∞[. ( 3 
lim λ→+∞ Θ λ ζ λ (x ) -f b (x ) 2 dx =+∞.
Consequently, there exists λ 

2 ∈]1, +∞[ such that λ Θ ζ λ (x ) -f b (x ) 2 dx >π+1, ∀λ ∈]λ 2 , +∞[. ( 3 
π log λ + c 1 ≥ j b λ (ζ λ )=j b 1 (ζ 1 )+ λ 1 Θ ζ µ (x ) -f b (x ) 2 dx dµ = j b 1 (ζ 1 )+ λ 1 1 Θ ζ µ (x ) -f b (x ) 2 dx dµ + λ λ 1 1 µ Θ µ ζ µ (x ) -f b (x ) 2 dx dµ ≥ j b λ 1 (ζ λ 1 )+(π + 1)(log λ -log λ 1 ), ∀λ ∈] max{λ 1 ,λ 2 },
j b λ k (ζ λ k ) ≥ C r (0 )\Cr(0 ) |Dζ λ k (x )| 2 dx = C r (0 )\Cr(0 ) D f b (x )+ζ λ k (x ) -f b (x ) 2 dx ≥ C r (0 )\Cr(0 ) |Df b (x )| 2 dx +2 C r (0 )\Cr(0 ) Df b (x )D ζ λ k (x ) -f b (x ) dx , ∀r ∈]0, r[, ∀k ∈ N. (3.21) 
Consequently, by integrating by parts the last integral in (3.21) and by recalling that

f b = x |x | , 0 , it follows that j b λ k (ζ λ k ) ≥ C r (0 )\Cr(0 ) D x |x | 2 dx +2 2 α=1 ∂(C r (0 )\Cr(0 )) (ζ λ k ) α (x ) - x α |x | D x α |x | • νdx + -2 2 α=1 C r (0 )\Cr(0 ) (ζ λ k ) α (x ) -f b α (x ) ∆ x α |x | dx , ∀r ∈]0, r[, ∀k ∈ N, (3.22) 
where ν denotes the exterior unit normal to C r(0 ) \ C r (0 ), and

ζ λ k =((ζ λ k ) 1 , (ζ λ k ) 2 , (ζ λ k ) 3 ).
On the other hand, it is evident that

C r (0 )\Cr(0 ) D x |x | 2 dx = C r (0 )\Cr(0 ) 1 |x | 2 dx =2π log r + log 1 r , ∀r ∈]0, r[, (3.23) and 2 2 α=1 ∂(C r (0 )\Cr(0 )) (ζ λ k ) α (x ) - x α |x | D x α |x | • νdx =0, ∀r ∈]0, r[, ∀k ∈ N, (3.24) since D x α |x | • ν =0on∂(C r(0 ) \ C r (0 )).
In what concerns the last integral in (3.22), by recalling that ∆

x α |x | = x α |x | 3
and by applying the Hölder inequality, it results that 2

C r (0 )\Cr(0 ) 2 α=1 (ζ λ k ) α (x ) -f b α (x ) ∆ x α |x | dx ≤ 2 C r (0 )\Cr(0 ) ζ λ k (x ) -f b (x ) 2 dx 1 2 C r (0 )\Cr(0 ) 1 |x | 4 dx 1 2 , ∀r ∈]0, r[, ∀k ∈ N.
Consequently, by taking into account estimate (3.10) and that C r (0 )\Cr(0 ) Proof of Proposition 3.4. To prove estimate (3.13), for every t ∈]0, +∞[ introduce the function:

1 |x | 4 dx 1 2 = √ π - 1 r2 + 1 r 2 1 2 ≤ √ π r , ∀r ∈]0, r[, ∀k ∈ N,
z t : x 3 ∈]0, 1[→ 1 t 2 +(x 3 -γ) 2
(t, 0,x 3γ) ∈ S 2 .

Since z t ∈ H 1 (]0, 1[,S 2 ), from (3.6) it follows that j a λ (w λ ) ≤|Θ| 

n∈N y ∈ B 1 2 (

 2 0) : ∃x ∈ Θ×]0,r n [ with g n (x)=y and rank((Dg n )(x)) < 3 , Sard's Lemma assures that meas(G)=0 . M o r e o v e r ,f o re v e r yn ∈ N and for every y ∈ B 1 2

.Corollary 3 . 3 .

 33 If one can prove estimate (3.10) for λ large enough, the proof of Proposition 3.1 shows that also estimate (3.11) holds true for λ large enough. Proposition 3.1 immediately provides the following convergence result: For every λ ∈ [0, +∞[, let ζ λ be a solution of Problem (3.7) with f b = x |x | , 0 .

x 3 -γ |x 3 Proposition 3 . 4 .

 334 -γ| , the following a priori estimates hold true (the proof will be performed in Subsection 3.2): For every λ ∈ [0, +∞[, let w λ be a solution of Problem (3.6) with f a = 0, 0, x 3γ |x 3 -γ| and γ ∈]0, 1[.

. 14 )Corollary 3 . 5 .

 1435 Estimate(3.13) immediately provides the following convergence result: For every λ ∈ [0, +∞[, let w λ be a solution of Problem (3.6) with f a = 0, 0,x 3γ |x 3 -γ| and γ ∈]0, 1[.

Proposition 3 . 6 .

 36 [). By making use of estimate (3.13) and by arguing as in the proof of estimate (3.10) it is easy to prove the following result: For every λ ∈ [0, +∞[, let w λ be a solution of Problem (3.6) with f a = 0, 0, x 3γ |x 3 -γ| and γ ∈]0, 1[. There exist a diverging sequence of positive numbers {λ k } k∈N and c ∈]0, +∞[ such that 1 0

r +2π log r - 2 √ c 2 π √ λ k 1 r

 21 ]0, r[, ∀k ∈ N. (3.25) Finally, by combining (3.22) with (3.23), (3.24) and (3.25), one derives that j b λ k (ζ λ k ) ≥ 2π log 1 ∀r ∈]0, r[, ∀k ∈ N, from which, by choosing r = 1 √ λ k with k ∈ N large enough, one obtains (3.11) with c 3 = -2π log r +2 √ c 2 π.

1 0|v (x 3 )| 2 dx 3 + λ 1 0 v(x 3 ) - x 3 -γ |x 3 -γ| 2 dx 3 : 3 √λ 1 0|v (x 3 )| 2 dx 3 + λ 1 0 v(x 3 ) - x 3 -γ |x 3 -γ| 2 dx 3 :v ∈ H 1 (

 1313233131231 v ∈ H 1 (]0, 1[, R) , ∀λ ∈]0, +∞[. (3.29) For every λ ∈]0, +∞[, the last minimum is attained in the solution v λ ∈ H 1 (]0, 1[) of the following problem: +1, in ]γ, 1[. (3.30) By combining (3.29) with (3.30), it follows that j a λ (w λ ) ≥|Θ| min

  Kondrachov compact embedding Theorem and the uniform convexity of the space L 2 , it is easy to see that convergences (2.29) and (2.30) occur in the strong sense, i.e. (2.13) and (2.16).

			). Con-
	sequently, it results that		
		ξ a =0,ξ b =0,	(2.47)
	u a and u b solve problems (2.14) and (2.15), respectively, and	
	lim i	j n i (u n i )=j a (u a )+qj b (u b ).	(2.48)
	Really, convergence (2.48) holds true for the whole sequence (so (2.17) is proved), since j a (u a )
	and j b (u b ) are independent of the selected subsequence, being the minimum of problems
	(2.14) and (2.15), respectively.		
	Finally, by combining (2.9) with q ∈]0, +∞[, (2.10), (2.29), (2.30) and (2.47) with (2.48), and by using the Rellich-

  +∞[ and of a diverging sequence of positive numbers {λ k } k∈N satisfying (3.10). The next step is devoted to prove estimate(3.11). Let r ∈]0, 1[ be such that C r(0 ) ⊂ Θ. Then, it results that

	+∞[,
	which gives
	π ≥ π +1. So estimate (3.16) holds true. In particular, (3.16) provides the existence of a constant
	c 2 ∈]0,

  ) stands for the derivative of z t . An easy computation shows that 1 0|(z t ) (x 3 )| 2 dx 3 = 1 0 t 2 (t 2 +(x 3γ) 2 ) 2 dx 3 = +(1γ) 2 ) 2 -t 2 γ (t 2 + γ 2 ) 2 < 0, ∀t ∈]0, +∞[,

	it results that where (z t 1 t 2 1 t 1 0 z t (x 3 ) -0, 0, 2 x 3 -γ dx 3 ≤ 4, ∀t ∈]0, +∞[. 1 0 1 1+( x 3 -γ |x 3 -γ| t ) 2 By combining (3.26) with (3.27) and (3.28), it follows that	2 dx 3 =	(3.28)
	1 t 1 t from which, by choosing t = 1-γ t -γ t 1 (1 + y 2 ) 2 dy = j a λ (w λ ) ≤|Θ| 1 2 t(1 -γ) t 2 +(1-γ) 2 + t 2 + γ 2 +arctan 1 t 1 2 y 1+y 2 +arctany π 2 1 t +4λt , ∀t ∈]0, +∞[, ∀λ ∈]0, +∞[, 1-γ t = -γ t tγ 1 -γ t +arctan γ t . √ π √ , one obtains estimate (3.13). 8λ To prove estimate (3.14), at first remark that
	Consequently, since									
	lim t→0 + λ (w λ ) ≥|Θ| min 1 2 t 2 +(1-γ) 2 + t(1 -γ) j a	tγ t 2 + γ 2 +arctan	1 -γ t	+arctan	γ t	=	π 2	,
	and	d dt	1 2	t(1 -γ) t 2 +(1-γ) 2 +	tγ t 2 + γ 2 +arctan	1 -γ t	+arctan	γ t	=
	-(t 2 it results that	t 2 (1 -γ)	0	1	|(z t ) (x 3 )| 2 dx 3 ≤	π 2	1 t	, ∀t ∈]0, +∞[.	(3.27)
	On the other hand, an easy computation shows that
	1 t		0	1	z t (x 3 ) -	0, 0,	x 3 -γ |x 3 -γ|	2	dx 3 =	2 t	-	2 t	0	1	|x 3 -γ| (x 3 -γ) 2 + t 2	dx 3 =
	2 t		1+2t -	t 2 + γ 2 -	t 2 +(1-γ) 2	, ∀t ∈]0, +∞[.
	Consequently, since									
						lim t→0 +		2 t		1+2t -	t 2 + γ 2 -	t 2 +(1-γ) 2	=4
	and														
	d dt -2	1 1+2t -0 |(z t ) (x 3 )| 2 dx 3 + |Θ|λt t 2 +(1-γ) 2 1 t 1 0 z t (x 3 ) -= t 2 + γ 2 -∀t ∈]0, +∞[, ∀λ ∈]0, +∞[, 0, 0, x 3 -γ 2 dx 3 , |x 3 -γ| γ -2 t γ 2 t 2 + γ 2 -2 (1 -γ) -(1 -γ) 2 t 2 +(1-γ) 2 < 0, ∀t ∈]0, +∞[,	(3.26)
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