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We prove an Hopf-Lax-Oleinik formula for the solutions of some Hamilton-Jacobi equations on a general metric space. As a first consequence, we show in full generality that the log-Sobolev inequality is equivalent to an hypercontractivity property of the Hamilton-Jacobi semi-group. As a second consequence, we prove that Talagrand's transportentropy inequalities in metric space are characterized in terms of log-Sobolev inequalities restricted to the class of c-convex functions.

Introduction

Let L : R m → R be a convex function with super linear growth, in the sense that L(h)/ h → ∞, when h → ∞, where • is any norm on R m . It is well known that if f is some Lipschitz function on R m , the function Q t f defined by (1.1) Q t f (x) = inf y∈R m {f (y) + tL((xy)/t)} , t ≥ 0, x ∈ R m , is a solution, in different weak senses, of the following Hamilton-Jacobi equation

(1.2) ∂ t u(t, x) = -L * (∂ x u(t, x))
with initial condition u(0, x) = f (x), where L * (v) = sup u∈R m {u • v -L(u)} is the Fenchel-Legendre transform of L (see for instance [START_REF] Evans | Partial differential equations[END_REF]). It can be shown, for example, that the function (t, x) → Q t f (x) is almost everywhere differentiable in (0, ∞)×R m and that (1.2) is verified at every such point of differentiability (see e.g [START_REF] Evans | Partial differential equations[END_REF]Chapter 3]). Formula (1.1) is usually referred to as the Hopf-Lax-Oleinik formula for Hamilton-Jacobi equations.

The objective of this paper is twofold:

(i) generalize the Hopf-Lax-Oleinik (HLO) formula to a class of Hamilton-Jacobi equations in a metric space framework; (ii) use this aforementioned HLO formula to establish different connections between logarithmic Sobolev type inequalities and transport-entropy inequalities.

1.1. General framework. In this section we give the general setting of this article.

1.1.1. Assumptions on the space. In all the paper, (X, d) will be a complete and separable metric space in which closed balls are compact. This latter assumption could be removed at the expense of additional standard technicalities. We will sometimes assume that (X, d) is a geodesic space, meaning that for every two points x, y ∈ X there is at least one curve (γ t ) t∈[0,1] with γ 0 = x, γ 1 = y and such that d(γ s , γ t ) = |t -s|d(x, y) for all s, t ∈ [0, 1]. Such a curve is called a geodesic between x and y.

1.1.2. The sup and inf convolution "semigroups". In all the paper, α : R + → R + will be an increasing convex function of class C 1 such that α(0) = 0. If f : X → R is a bounded function, we define for all t > 0 the functions P t f and Q t f as follows:

(1.3)

P t f (x) = sup y∈X f (y) -tα d(x, y) t , ∀x ∈ X,

and

(1.4)

Q t f (x) = inf y∈X f (y) + tα d(x, y) t , ∀x ∈ X.
The operators P t and Q t are connected by the following simple relation

Q t f = -P t (-f ).
When the space (X, d) is geodesic, the families of operators {Q t } t>0 and {P t } t>0 form nonlinear semigroups acting on bounded functions:

Q t+s f = Q t (Q s f
) and P t+s f = P t (P s f ) , ∀t, s > 0, for all bounded function f : X → R. When (X, d) is not geodesic, only half of this property is preserved:

Q t+s f ≤ Q t (Q s f
) and P t+s f ≥ P t (P s f ) , ∀t, s > 0.

Now we present our main results.

1.2. An Hopf-Lax-Oleinik formula on a metric space. Our objective is to show that the Hamilton-Jacobi equation (1.2) is still verified by Q t f in the metric space framework introduced above. To that purpose we first need to give a meaning to the state space partial derivative ∂ x in this context.

We will adopt the following classical measurements |∇ + f |(x) and |∇ -f |(x) of the local slope of a function f : X → R around x ∈ X defined by (1.5)

|∇ + f |(x) = lim sup y→x [f (y) -f (x)] + d(x, y) , |∇ -f |(x) = lim sup y→x [f (y) -f (x)] - d(x, y) ,
(by convention, we set |∇ ± f |(x) = 0, if x is an isolated point in X).

If f is locally Lipschitz, then |∇ ± f |(x) are finite for every x ∈ X. Moreover, if f is Lipschitz continuous with Lipschitz constant denoted by Lip(f ), then |∇ ± f |(x) ≤ Lip(f ) for all x ∈ X. Finally, when X is a Riemannian manifold and f is differentiable at x, it is not difficult to check that |∇ ± f |(x) is equal to the norm of the vector ∇f (x) ∈ T x X (the tangent space at x).

One of our main result is the following theorem.

Theorem 1.6. If f : X → R is an upper semicontinuous function bounded from above, then the following Hamilton-Jacobi differential inequalities hold

(1.7) d dt + P t f (x) ≥ α * |∇ + P t f |(x) ∀t > 0, ∀x ∈ X,
and d dt - P t f (x) ≥ α * |∇ -P t f |(x) ∀t > 0, ∀x ∈ X,
where α * (u) = sup h≥0 {huα(h)}, u ≥ 0, and where d/dt + and d/dt -denote respectively the right and left time derivatives. Moreover, when the space (X, d) is geodesic, it holds

(1.8) d dt + P t f (x) = α * |∇ + P t f |(x) ∀t > 0, ∀x ∈ X.
The interesting feature of Theorem 1.6 is that there is no measure theory in its formulation: the conclusion holds for all t > 0 and all x ∈ X. Theorem 1.6 extends previous results by Lott and Villani [START_REF] Lott | Hamilton-Jacobi semigroup on length spaces and applications[END_REF][START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], where (1.8) was obtained on compact measured geodesic spaces (X, d, µ) provided the measure µ verifies some additional assumptions. More precisely, it is proved in [START_REF] Lott | Hamilton-Jacobi semigroup on length spaces and applications[END_REF] that if µ verifies a doubling condition together with a local Poincaré inequality, then (1.8) holds true, for all t and for all x outside a set N t of µ measure 0. Under the geometric assumption that (X, d) is finite dimensional with Aleksandrov curvature bounded below, Lott and Villani obtained the validity of (1.8) for all t and x. In [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Theorem 22.46], Villani proves (1.8) for all t and x on a Riemannian manifold.

We indicate that, during the preparation of this work, we learned that Theorem 1.6 has also been obtained by Ambrosio, Gigli and Savaré in their recent paper [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF] (see also [START_REF] Ambrosio | Density of lipschitz functions and equivalence of weak gradients in metric measure spaces[END_REF]), with a very similar proof. Let us underline that the inequality

(1.9) d dt + Q t f (x) ≤ -α * |∇ -Q t f |(x) ,
which is equivalent to (1.7), is an important ingredient in their study of gradient flows of entropic functionals over general metric spaces. The main source of inspiration of the present paper is the seminal work by Bobkov, Gentil and Ledoux [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] establishing the equivalence between the logarithmic Sobolev inequality and hypercontractivity properties of Hamilton-Jacobi solutions.

The main tool in the proof of Theorem 1.6 is the following result of independent interest.

Theorem 1.10. Let f : X → R be an upper semicontinuous function bounded from above. For all t > 0 and x ∈ X, denote by m(t, x) the set of points where the supremum (1.3)

defining P t f (x) is reached: m(t, x) = ȳ ∈ X : P t f (x) = f (ȳ) -tα d(x, ȳ) t .
These sets are always non empty and compact and it holds

d dt + P t f (x) = β 1 t max ȳ∈m(t,x) d(x, ȳ) , ∀t > 0, ∀x ∈ X and d dt - P t f (x) = β 1 t min ȳ∈m(t,x) d(x, ȳ) , ∀t > 0, ∀x ∈ X,
where

β(h) = hα ′ (h) -α(h), h ≥ 0.
1.3. Hypercontractivity of Q t and the log-Sobolev inequality. Let µ be a Borel probability measure on X. Recall that the entropy functional Ent µ ( • ) is defined by

Ent µ (g) = g log g g dµ dµ, ∀g > 0.
In order to introduce the log-Sobolev inequality, and for technical reasons, define, for r > 0,

Lip(f, r) = sup x,y: d(x,y)≤r |f (y) -d(x)| d(x, y)
and observe that the usual Lipschitz constant is Lip(f ) = sup r Lip(f, r). Then, we denote by F α the set of bounded functions f : X → R such that Lip(f, r) < ∞ for some r > 0 and

Lip(f ) ≤ lim h→∞ α(h) h (observe that if α(h)/h → ∞ when h → ∞, this last condition is empty).
The probability measure µ is said to satisfy the modified log-Sobolev inequality minus LSI - α (C) for some C > 0 if

(LSI - α (C)) Ent µ (e f ) ≤ C α * (|∇ -f |)e f dµ ∀f ∈ F α .
In particular, when α(h) = h p /p, h ≥ 0, with p > 1, it holds α * (h) = h q /q, h ≥ 0 with 1/p + 1/q = 1. In this case, we write LSI - q for LSI - α . If X is a Riemannian manifold and µ is absolutely continuous with respect to the volume element, the inequality LSI - 2 is the usual logarithmic Sobolev inequality introduced by Gross [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF].

Following Bobkov, Gentil and Ledoux [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] we relate LSI - α (C) to hypercontractivity properties of the family of operators {Q t } t>0 . To perform the proof, we need to make some restrictions on the function α. We will say that α verifies the ∆ 2 -condition [START_REF] Rao | Theory of Orlicz spaces[END_REF] if there is some positive constant K such that α(2x) ≤ Kα(x), ∀x ≥ 0.

Theorem 1.11. Suppose that α verifies the ∆ 2 -condition. Then the exponents r α ≤ p α defined by

r α = inf x>0 xα ′ (x) α(x) ≥ 1 and 1 < p α = sup x>0 xα ′ (x) α(x)
are both finite. Moreover, the measure µ satisfies LSI - α (C) if and only if for all t > 0, for all t o ≤ C(p α -1) and for all bounded continuous function f :

X → R, e Qtf k(t) ≤ e f k(0) , (1.12) with k(t) =      1 + C -1 (t-to) pα-1 pα-1 1 t≤to + 1 + C -1 (t-to) rα-1 rα-1 1 t>to if r α > 1 min 1; 1 + C -1 (t-to) pα-1 pα-1 if r α = 1 ,
where g k = |g| k dµ 1/k for k = 0 and g 0 = exp log g dµ .

Our proof follows the line of [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]. Let us explain in few words how to derive (1.12) from

LSI - α . Since Q t f → f when t → 0, it is enough to show that H : t → log e Qtf k(t)
is non-increasing. The left derivative of H has an expression involving Ent µ (e k(t)Qtf ) and Proposition 4.1). To bound the first term from above, we apply the inequality LSI - α . To bound the second term, we use the inequality (1.9) which is precisely in the right direction to prove that the left derivative of H is negative.

d dt + Q t f e k(t)Qtf dµ (see
1.4. From log-Sobolev to transport-entropy inequalities. Following [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF][START_REF] Lott | Hamilton-Jacobi semigroup on length spaces and applications[END_REF], a byproduct of the above hypercontractivity result is a metric space extension of Otto-Villani's theorem [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] that indicates that log-Sobolev inequalities imply transport-entropy inequalities.

Let c : X × X → R be a continuous function; recall that the optimal transport cost T c (ν 1 , ν 2 ) between two Borel probability measures ν 1 , ν 2 ∈ P(X) (the set of all Borel probability measures on X) is defined by

T c (ν 1 , ν 2 ) = inf π∈P (ν 1 ,ν 2 )
c(x, y) π(dxdy),

where P (ν 1 , ν 2 ) is the set of all probability measures π on X ×X such that π(dx×X) = ν 1 (dx) and π(X × dy) = ν 2 (dy).

The probability measure µ is said to satisfy the transport-entropy inequality T c (C), for some

C > 0 if (T c (C)) T c (µ, ν) ≤ CH(ν|µ), ∀ν ∈ P(X),
where

H(ν|µ) = log dν dµ dν if ν ≪ µ +∞ otherwise
is the relative entropy of ν with respect to µ. This class of inequalities was introduced by Marton and Talagrand [START_REF] Marton | A simple proof of the blowing-up lemma[END_REF][START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF]. When c(x, y) = α(d(x, y)) we denote the optimal transport cost by T α ( • , • ) and the corresponding transport inequality by T α . In the particular case, when α(x) = x p /p, p ≥ 2 we use the notation T p and T p .

The first point of the next theorem will appear to be an easy consequence of Theorem 1.11 and of Bobkov and Götze dual formulation of the inequality T α (which roughly speaking corresponds to the hypercontractivity with t o = C(p α -1) or equivalently k(0) = 0).

Theorem 1.13. Suppose that α verifies the ∆ 2 -condition. If µ verifies LSI - α (C), then it verifies T α (A), with

A = max ((p α -1)C) rα-1 ; ((p α -1)C) pα-1 ,
where the numbers r α , p α are defined in Theorem 1.11.

In a Riemannian framework and for the quadratic function α(t) = t 2 /2, Theorem 1.13 was first obtained by Otto and Villani in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF], closely followed by Bobkov, Gentil and Ledoux [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]. Extensions to other functions α were provided in [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF][START_REF] Gentil | Modified logarithmic Sobolev inequalities and transportation inequalities[END_REF]. The path space case was treated by Wang in [START_REF] Wang | Probability distance inequalities on Riemannian manifolds and path spaces[END_REF]. In [START_REF] Lott | Hamilton-Jacobi semigroup on length spaces and applications[END_REF], Lott and Villani extended to certain geodesic measured spaces (X, d, µ) the Hamilton-Jacobi approach of [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] in the quadratic case. They proved Theorem 1.13 under additional assumptions on µ (doubling property and local Poincaré). Under the same assumptions Balogh, Engoulatov, Hunziker and Maasalo [START_REF] Balogh | Functional inequalities and Hamilton-Jacobi equations in geodesic spaces[END_REF] treated the case of LSI - q for all q ≤ 2. The first proofs of Otto-Villani theorem valid on any complete separable metric space appeared in [START_REF] Gozlan | A characterization of dimension free concentration in terms of transport inequalities[END_REF] and [START_REF] Gozlan | Characterization of Talagrand's transport-entropy inequalities in metric spaces[END_REF]. Their common feature is the use of the stability of the log-Sobolev inequality under tensor products of the reference probability measure. In a recent paper [START_REF] Gigli | From log sobolev to talagrand: a quick proof[END_REF], Gigli and Ledoux give another quick proof of Otto-Villani theorem on metric spaces. It is based on calculations along gradient flows in the Wasserstein space.

Using some rough properties of the operators Q t , we also provide a metric space generalization of another result by Otto and Villani [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] relating transport-entropy inequalities to Poincaré inequality.

Proposition 1.14. Let θ : R + → R + be any function such that θ(x) ≥ min(x 2 , a 2 ) for some a > 0. If µ verifies T θ (C) for some C > 0, then it verifies the following Poincaré inequality:

Var µ (f ) ≤ C 2 |∇ -f | 2 dµ,
for all bounded function f such that Lip(f, r) < ∞, for some r > 0.

1.5. Transport-entropy inequalities as restricted log-Sobolev inequalities. A second consequence of the Hamilton-Jacobi approach on metric spaces is a characterization of transport-entropy inequalities in terms of log-Sobolev inequalities restricted to a certain class of functions depending on the cost function α.

To be more precise, let us say that a function f is c-convex with respect to a cost function (x, y) → c(x, y) defined on X × X if there is a function g : X → R ∪ {±∞} such that

f (x) = P c g(x) = sup y∈X {g(y) -c(x, y)} ∈ R ∪ {±∞}, ∀x ∈ X.
The class of c-convex functions is intimately related to optimal-transport, via for instance the Kantorovich duality theorem (see e.g [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]).

An important case is when c(x, y)

= 1 2 x -y 2 2 on R m (see Proposition 2.3 below). In this case, a function f : R m → R is c-convex if and only if the function x → f (x) + x 2 2 /2 is convex on R m . If f is of class C 2 , this amounts to say that Hess f ≥ -Id.
In what follows, we consider the cost c p (x, y) = d p (x, y)/p, p ≥ 2. The second main result of this paper is the following Theorem 1.15. Let µ be a probability measure on a geodesic space (X, d) and p ≥ 2. The following properties are equivalent:

(1) There is some C > 0 such that µ verifies T p (C).

(2) There is some D > 0 such that µ verifies the following (τ )-log-Sobolev inequality: for all bounded continuous f and all 0 < λ < 1/D, it holds

Ent µ (e f ) ≤ 1 1 -λD (f -Q λ f )e f dµ,
where for all λ > 0, Q λ f (x) = inf y∈X {f (y) + λc p (x, y)} .

(3) There is some E > 0 such that µ verifies the following restricted log-Sobolev inequality: for all Kc p -convex function f , with 0 < K < 1/E it holds

Ent µ (e f ) ≤ β p (u) -1 pK q-1 (1 -KEu) |∇ + f | q e f dµ, ∀u ∈ (1, 1/(KE)),
where q = p/(p -1) and

β p (u) = u [u 1/(p-1) -1] p-1 for all u > 1.
The optimal constants C opt , D opt , E opt are related as follows

E opt ≤ D opt ≤ C opt ≤ κ p E opt ,
where κ p is some universal constant depending only on p. For p = 2, one can take

κ 2 = e 2 .
Let us make some comments on Theorem 1.15.

• The first reason why we suppose p ≥ 2 in Theorem 1.15 (as well as in Theorems 5.1 and 5.7 and Proposition 5.6), is that the only probability measures that verify the transport inequality associated to the cost function c p (x, y) = d p (x, y)/p for 0 < p < 2 are Dirac measures (see [START_REF] Gozlan | Characterization of Talagrand's transport-entropy inequalities in metric spaces[END_REF]Remark 1.3]). The second reason, is that the notation T 1 is classically used in the literature to denote the transport inequality

T 1 (ν, µ) ≤ CH(ν|µ), ∀ν ∈ P(X).
It has been characterized by Djelout, Guillin and Wu in [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF] by an integrability condition of the form e εd 2 (x,y) µ(dx)µ(dy) < +∞, for some ε > 0. • The implication (1) ⇒ (2) is true for any cost function c. It was first proved in [START_REF] Gozlan | A new characterization of Talagrand's transport-entropy inequalities and applications[END_REF].

• In [START_REF] Gozlan | Characterization of Talagrand's transport-entropy inequalities in metric spaces[END_REF], we proved that (1) is equivalent to (2) for cost functions c(x, y) = α(d(x, y))

as soon as α verifies the ∆ 2 -condition. Our proof (in [START_REF] Gozlan | Characterization of Talagrand's transport-entropy inequalities in metric spaces[END_REF]) makes use of a tensorization technique and is thus rather different from the one presented here. • In [START_REF] Gozlan | A new characterization of Talagrand's transport-entropy inequalities and applications[END_REF], we proved the equivalence between (1), ( 2) and (3) in a Euclidean framework:

X = R m and c(x, y) = 1 2 x -y 2 2 .
Actually, the result of [START_REF] Gozlan | A new characterization of Talagrand's transport-entropy inequalities and applications[END_REF] is slightly more general, since we are able to deal with cost functions of the form c(x, y)

= m i=1 θ(|x i -y i |), x, y ∈ R m , where θ : R + → R + is a convex function of class C 1 such that θ(0) = θ ′ (0) = 0 and θ ′ is concave on R + .
For a cost function of this type, we proved that (1) and ( 2) were both equivalent to the following restricted modified log-Sobolev inequality (3') (see [START_REF] Gozlan | A new characterization of Talagrand's transport-entropy inequalities and applications[END_REF]Theorem 1.5] for a precise statement): there are some

E, K > 0 such that Ent µ (e f ) ≤ E m i=1 θ * (∂ i f )e f dµ,
for all functions f : R m → R of class C 1 which are semi-convex in the following sense:

f (y) ≥ f (x) + ∇f (x) • (y -x) -Kc(x, y), ∀x, y ∈ R m .
Note that this class of functions is different from the class of Kc-convex functions (except when c(x, y) = 1 2 xy 2 2 -see Proposition 2.3 below). Note also that a function θ verifying the condition above necessarily verifies θ(t) ≤ θ ′′ (0) t 2 2 , t ≥ 0. In particular, the cost function c(x, y) = 1 p xy p p , for p > 2 is not in the scope of [START_REF] Gozlan | A new characterization of Talagrand's transport-entropy inequalities and applications[END_REF], whereas Theorem 1.15 of the present paper enables to consider such a cost function.

Theorem 1.15 thus provides what we think is the good extension of the results in [START_REF] Gozlan | A new characterization of Talagrand's transport-entropy inequalities and applications[END_REF] and unifies nicely the approaches of [START_REF] Gozlan | A new characterization of Talagrand's transport-entropy inequalities and applications[END_REF] and [START_REF] Gozlan | Characterization of Talagrand's transport-entropy inequalities in metric spaces[END_REF].

Let us mention that Theorem 1.15 as stated above is not as general as possible. Indeed, we will see in Section 5 that this equivalence is still true when the space is not geodesic (Theorem 5.1). In this more general framework (3) has to be replaced by a slightly weaker version of the restricted log-Sobolev inequality. The main tool to prove this extension is Theorem 1.10. It would also be possible to consider more general costs of the form c(x, y) = α(d(x, y)) with α satisfying the ∆ 2 -condition but, to avoid some lengthy developpements, this will not be treated here.

We end this introduction with a short roadmap of the paper. Section 2 is devoted to c-convex functions. In particular, we will recall and prove some well known facts about the subdifferential ∂ c f (x) of a c-convex function. In Proposition 2.9, we will relate their gradients |∇ ± f |(x) to the minimal or maximal distance between x and the subdifferential ∂ c f (x). Section 3 contains the proof of the HLO formula. In Section 4, we prove the hypercontractivity property of Theorem 1.12, and deduce as a corollary the Otto-Villani Theorem 1.13. Section 5 contains the proof of an improved version of our main result Theorem 1.15. Finally, the appendix gathers some technical results. 

f : X → R, we define Q c f : Y → R by Q c f (y) := inf x∈X {f (x) + c(x, y)}.
For any function g : Y → R, we define P c g : X → R, by

P c g(x) := sup y∈Y {g(y) -c(x, y)}. Definition 2.1 (c-convex and c-concave functions). A function f : X → R is said to be c-convex if there is some function g : Y → R such that f = P c g. A function g : Y → R is said to be c-concave if there is some function f : X → R such that g = Q c f.
Proposition 2.2. For any function f : X → R, the inequality

P c Q c f ≤ f holds. Moreover, f : X → R is c-convex if and only if P c Q c f = f.
Proof. For the first point observe that; for z = x,

P c Q c f (x) = sup y∈Y inf z∈X {f (z) + c(z, y) -c(x, y)} ≤ f (x).
Let us prove the second point. Trivially, a function f such that

f = P c Q c f is c-convex. Conversely, if f : X → R is c-convex, then there is some function g on Y such that f (x) = sup y∈Y {g(y) -c(x, y)} = P c g(y). Hence g verifies g(y) ≤ inf x∈X {f (x) + c(x, y)}.
Plugging this inequality into f = P c g gives f ≤ P c Q c f . Since the other direction always holds, the proof is complete.

Recall that a function f : R m → R is said to be closed (see [START_REF] Rockafellar | Convex analysis[END_REF]) if either f = -∞ everywhere or f takes its values in R ∪ {+∞} and is lower semicontinuous. It is said to be convex if its

epigraph {(x, α) ∈ R m × R : α ≥ f (x)} is a convex subset of R m × R. Let us denote by Γ(R m )
the set of all closed and convex functions on R m .

Proposition 2.3 (Examples).

Assume that X = Y = R m , m ∈ N * , equipped with its standard Euclidean structure and let f : R m → R. Then,

(1) If c(x, y) = x • y, f is c-convex if and only if f ∈ Γ(R m ). (2) If c(x, y) = 1 2 x -y 2 2 , f is c-convex if and only if f + • 2 2 /2 ∈ Γ(R m ). In particular, if f : R m → R is of class C 2 then it is c-convex if and only if Hess f (x) ≥ -Id, for all x ∈ R m .
Proof.

(1) By definition, a function f is c-convex for c(x, y) = x • y if and only if f = h * for some function h : R m → R. We recall that h * is defined by h * (x) = sup y∈R m {x • yh(y)}. It is well known (and easy to check) that h * ∈ Γ(R m ) for all h. Conversely, if f ∈ Γ(R m ) then f = f * * (see e.g [START_REF] Rockafellar | Convex analysis[END_REF]) and so f is c-convex.

(2) The function f is a c-convex function for c(x, y) = xy 2 2 /2 if and only if f = P c g, for some g : R m → R. Since

f (x) + x 2 2 2 = sup y∈R m x • y - y 2 2 2 -g(y) ,
the conclusion follows from the first point.

2.2. The c-subdifferential of a c-convex function. In this section we define the notion of c-subdifferential of a c-convex function and derive some facts that will appear to be useful later.

Definition 2.4 (c-subdifferential). Let f : X → R be a c-convex function and x ∈ X; the c-subdifferential of f at point x is the set, denoted by ∂ c f (x) ⊂ Y , of the points ȳ ∈ Y such that f (z) ≥ f (x) + c(x, ȳ) -c(z, ȳ), ∀z ∈ X.
The next lemma gives a characterization of the c-subdifferential.

Lemma 2.5. For all x ∈ X, ∂ c f (x) is the set of points y ∈ Y achieving the supremum in

f (x) = P c Q c f (x). More precisely, ∂ c f (x) = {y ∈ Y : f (x) = Q c f (y) -c(x, y)}.
More generally, if f = P c g, for some function g :

Y → R, then {y ∈ Y : f (x) = g(y) -c(x, y)} ⊂ ∂ c f (x).
Proof. The first part of the lemma is simple and left to the reader. Let us prove the second part. Since

f (x) = sup y∈Y {g(y) -c(x, y)}, x ∈ X, we have g ≤ Q c f . So if, f (x) = g(ȳ) -c(x, ȳ) then f (x) ≤ Q c f (ȳ) -c(x, ȳ) ≤ f (z) + c(z, ȳ) -c(x, ȳ), for all z ∈ X which proves that ȳ ∈ ∂ c f (x).
Lemma 2.6. Suppose that the function c :

X ×Y → R is continuous, sup v∈Y inf u∈X c(u, v) < +∞ and that, for all x ∈ X, the level sets {y ∈ Y ; c(x, y) ≤ r}, r ∈ R, are compact. If f : X → R ∪ {-∞} is a c-convex function bounded from above, then ∂ c f (x) = ∅ for all x ∈ X.
Remark 2.7. Note that, when X = Y , the condition sup v∈X inf u∈X c(u, v) < +∞ is always satisfied if c(x, y) = α(d(x, y)), where d is a distance on X and α : R + → R a non-decreasing function.

Proof. The function Q c f is an infimum of continuous functions on Y , so it is upper semicontinuous on Y . For all x ∈ X, the function ϕ x : y → Q c f (y)-c(x, y) is thus upper semicontinuous on Y . Since f is c-convex and real valued, sup y∈Y ϕ x (y) = P c Q c f (x) = f (x) < +∞; so ϕ x is bounded from above. Finally if y ∈ {ϕ x ≥ r} then c(x, y) ≤ sup f + sup v∈Y inf u∈X c(u, v)r.

Hence {ϕ x ≥ r} is compact. From this follows that ϕ x achieves its supremum at some point ȳ which, according to Lemma 2.5, necessarily belongs to ∂ c f (x).

For a better understanding of the notion, in the next lemma we express the c-subdifferential of a c-convex function f in term of its gradient in some simple cases.

Lemma 2.8. Suppose that X = Y = R m and that c(x, y) = L(xy) where L : R m → R + is a differentiable and strictly convex function with superlinear growth, i.e L(x)/ x → +∞ when x → ∞, where • denotes any norm on R m . Let f be a c-convex function bounded from above differentiable at some point x. Then

∂ c f (x) = {x -∇(L * )(-∇f (x))},
where

L * (y) = sup x∈R m {x • y -L(y)} is the Fenchel-Legendre transform of L.
We recall that if L is strictly convex and has a superlinear growth, then its Fenchel-Legendre transform is differentiable everywhere [START_REF] Rockafellar | Convex analysis[END_REF]. Lemma 2.8 is well known. However, for the sake of completeness, we will recall its proof in the appendix.

Comparisons of gradients.

In this last section, as in the rest of the paper, we will assume that (X, d) is a complete separable metric space in which closed balls are compact.

We take Y = X and we consider a cost function c on X × X of the form c(x, y) = α(d(x, y)),

where α : R + → R + is an increasing convex function of class C 1 such that α(0) = 0.

If f : X → R is c-convex for the cost c(x, y) = α(d(x, y)), we introduce the following quantities

|∇ - c f |(x) = α ′ inf ȳ∈∂cf (x) d(x, ȳ) and |∇ + c f |(x) = α ′ sup ȳ∈∂cf (x) d(x, ȳ) .
The following proposition compares

|∇ ± c f | to |∇ ± f | defined in (1.5
). Proposition 2.9. Let f : X → R be a c-convex function for the cost c(x, y) = α(d(x, y)). Suppose that f = P c g for some upper semicontinuous function g : X → R bounded from above and consider for all x ∈ X the set m(x) defined by m(x) = {y ∈ X : f (x) = g(y)-α(d(x, y))}.

(1) The following inequalities hold

|∇ + f |(x) ≤ α ′ ( max ȳ∈m(x) d(x, ȳ)) ≤ |∇ + c f |(x).
(2) If (X, d) is a geodesic space, then

|∇ + f |(x) = α ′ ( max ȳ∈m(x) d(x, ȳ)) = |∇ + c f |(x).
(3) The following inequalities hold

|∇ -f |(x) ≤ |∇ - c f |(x) ≤ α ′ ( min ȳ∈m(x) d(x, ȳ)).
Remark 2.10. We do not know if there is equality in (3) when the space is geodesic.

Proof of Proposition 2.9. (1) First observe that, since f = P c g with g bounded above, f is locally Lipschitz (see [START_REF] Gozlan | Characterization of Talagrand's transport-entropy inequalities in metric spaces[END_REF]Lemma 3.8]), so that |∇ + f | is finite everywhere. The second inequality is an immediate consequence of the definition of |∇ + c f |(x) and the fact that, according to Lemma 2.5, m(x) ⊂ ∂ c f (x). Let us prove the first inequality. Let (x n ) n∈N be a sequence of points converging to x, with x n = x for all n. For all n, fix y n ∈ m(x n ) (the set m(x n ) is not empty according to Lemma 2.11 below). It holds

f (x n ) -f (x) ≤ g(y n ) -α(d(x n , y n )) -(g(y n ) -α(d(x, y n ))) ≤ d(x, x n )α ′ (max(d(x n , y n ); d(x, y n ))) ,
where the last inequality follows from the mean value theorem, the triangle inequality, the non-negativity and the monotonicity of α ′ . From this it follows that

[f (x n ) -f (x)] + d(x n , x) ≤ α ′ (max(d(x n , y n ); d(x, y n ))). So letting n → ∞, lim sup n→∞ [f (x n ) -f (x)] + d(x n , x) ≤ α ′ lim sup n→∞ d(x, y n ) = α ′ (max{d(x, ȳ) : ȳ limit point of (y n ) n∈N }) . ≤ α ′ max ȳ∈m(x) d(x, ȳ) ,
where the last inequality comes from Lemma 2.11 bellow.

(2) To prove the second point it is enough to show that

|∇ + c f |(x) ≤ |∇ + f |(x) for all x ∈ X. Let ȳ ∈ ∂ c f (x) (
this set is not empty according to Lemma 2.6). According to the definition of the c-subdifferential,

f (z) -f (x) ≥ α(d(x, ȳ)) -α(d(z, ȳ)), ∀z ∈ X.
From the definition of |∇ + f |(x), it follows that

|∇ + f |(x) ≥ lim sup z→x α(d(x, ȳ)) -α(d(z, ȳ)) d(x, z) .
Let (z t ) t∈[0,1] be a geodesic connecting x to ȳ, it holds d(x, z t ) = td(x, ȳ), d(z t , ȳ) = (1t)d(x, ȳ) and therefore

|∇ + f |(x) ≥ lim sup t→0 α(d(x, ȳ)) -α((1 -t)d(x, ȳ)) td(x, ȳ) = α ′ (d(x, ȳ)).
Optimizing over all ȳ ∈ ∂ c f (x) completes the proof.

(3) Let (x n ) n∈N be a sequence of points converging to x, with

x n = x for all n. If ȳ ∈ ∂ c f (x), then it holds f (x n ) -f (x) ≥ α (d(x, ȳ)) -α (d(x n , ȳ)) ≥ -d(x, x n )α ′ (max(d(x n , ȳ); d(x, ȳ))) ,
where the second inequality follows from the mean value theorem and the triangle inequality.

From this it easily follows that lim sup

n→+∞ [f (x n ) -f (x)] - d(x, z n ) ≤ α ′ (d(x, ȳ)) .
Optimizing over all ȳ ∈ ∂ c f (x) leads to the first bound in (3). As above, the second inequality in ( 3) is an immediate consequence of the definition of |∇ - c f |(x) together with the fact that, according to Lemma 2.5, m(x) ⊂ ∂ c f (x). This achieves the proof.

During the proof we have used the following simple lemma whose proof can be found in the appendix.

Lemma 2.11. Let X be a complete separable metric space with compact balls and g : X → R be an upper semicontinuous function bounded from above. Define, for all x ∈ X, P t g(x) = sup y∈X g(y)tα d(x,y) t and m(t, x) as the set of points y ∈ X where this supremum is reached. Then, [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF] The set m(t, x) is a non empty compact set of X.

(2) Let x n → x ∈ X and t n → t > 0 be two converging sequences and consider a sequence (y n ) n∈N such that y n ∈ m(t n , x n ) for all n. Then (y n ) n∈N is bounded and all its limit points belong to m(t, x).

Proof of the Hamilton-Jacobi equations

This part is devoted to the proof of Theorem 1.6 and 1.10.

Proof of Theorem 1.10. According to Lemma 2.11, m(t, x) is a non empty compact set of X. We treat the case of the right derivative; the other case is completely analogous. Let t > 0, x ∈ X and (h n ) n∈N a sequence of positive numbers converging to 0. For all n ∈ N, we consider z n ∈ m(t + h n , x). Then,

1 h n (P t+hn f (x) -P t f (x)) ≤ 1 h n f (z n ) -(t + h n )α d(x, z n ) t + h n -f (z n ) -tα d(x, z n ) t = 1 h n tα d(x, z n ) t -(t + h n )α d(x, z n ) t + h n .
Define D = lim sup k→∞ d(x, z k ) and take ε > 0. For all n large enough,

d(x, z n ) ≤ D + ε.
For all h ≥ 0, all t > 0, by the convexity assumption on α, the map

d → tα d t -(t + h)α d t + h is non-decreasing. Hence lim sup n→∞ 1 h n tα d(x, z n ) t -(t + h n )α d(x, z n ) t + h n ≤ lim n→∞ 1 h n tα D + ε t -(t + h n )α D + ε t + h n = β D + ε t
where we recall that β(h) = hα ′ (h)α(h), h ≥ 0. Since α is of class C 1 , as ε goes to 0 we get lim sup

n→+∞ 1 h n (P t+hn f (x) -P t f (x)) ≤ β D t .
Applying Lemma 2.11, it is not difficult to check that

D = lim sup n→∞ d(x, z n ) = max{d(x, z) : z limit point of (z n ) n∈N } ≤ max ȳ∈m(t,x) d(x, ȳ).
The conditions on α ensure that β is non-decreasing and therefore

(3.1) lim sup n→+∞ 1 h n (P t+hn f (x) -P t f (x)) ≤ β max ȳ∈m(t,x) d(x, ȳ) t .
Analogously, if ȳ ∈ m(t, x) then

1 h n (P t+hn f (x) -P t f (x)) ≥ 1 h n tα d(x, ȳ) t -(t + h n )α d(x, ȳ) t + h n
So, letting n go to ∞, and optimizing over ȳ yields

(3.2) lim inf n→∞ 1 h n (P t+hn f (x) -P t f (x)) ≥ β max ȳ∈m(t,x) d(x, ȳ) t .
We conclude from (3.1) and (3.2) that lim

n→∞ 1 h n (P t+hn f (x) -P t f (x)) = β max ȳ∈m(t,x) d(x, ȳ) t .
This completes the proof of proposition 1.10.

Proof of Theorem 1.6. According to Theorem 1.10,

d dt + P t f (x) = β max ȳ∈m(t,x) d(x, ȳ) t ,
with β(u) = uα ′ (u)α(u), for all u ≥ 0. By definition of the c-convexity, the function x → P t f (x) is c-convex for the cost c(x, y) = tα d(x,y) t . Applying the point (1) of Proposition 2.9, it holds

|∇ + P t f |(x) ≤ α ′ max ȳ∈m(t,x) d(x, ȳ) t .
Observing that β(u) = α * (α ′ (u)) gives the result. According to point (3) of Proposition 2.9, equality holds in the geodesic case. The proof of the inequality involving the left derivative of P t f is similar.

log-Sobolev inequality and hypercontractivity on a metric space

In this section, following [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF], we show that log-Sobolev inequalities on metric spaces are equivalent to some hypercontractivity property of the "semigroup" Q t . The proof of Theorem 1.11 relies on the differentiation of the left hand side of (1.12). To that purpose, we use the next technical proposition whose proof is postponed to the appendix. 

H(t) = 1 k(t) log e k(t)Qtf dµ and K(t) = 1 k(t) log e k(t)Ptf dµ , t ∈ (a, b).
The functions H and K are continuous and differentiable on the right and on the left on (a, b). Moreover, for all t ∈ (a, b), it holds , for all bounded continuous function f : X → R, with

dH dt + (t) = k ′ (t) k(t) 2 1 e k(t)Qtf dµ Ent µ e k(t)Qtf + k(t) 2 k ′ (t) d dt + Q t f e k(t
(4.3) k(t) = 1 + C -1 (t -t o ) p α -1 pα-1 1 t≤to + 1 + C -1 (t -t o ) r α -1 rα-1 1 t>to , with the convention that k(t) = min 1; 1 + C -1 (t-to) pα-1 pα-1
, if r α = 1. The exponents r α and p α have the following property (see [12, proof of Lemma A.3]):

α * (sx) ≤ s pα pα-1 α * (x), ∀x ≥ 0, ∀s ∈ [0, 1] α * (sx) ≤ s rα rα-1 α * (x), ∀x ≥ 0, ∀s > 1.
Let H(t) = log e Qtf k(t) , with f : X → R bounded and continuous. According to Proposition 4.1, we have for all t > 0

dH dt + (t) ≤ k ′ (t) k 2 (t) 1 e k(t)Qtf dµ Ent µ e k(t)Qtf + k 2 (t) k ′ (t) d dt + Q t f e k(t)Qtf dµ .
The function k(t)Q t f belongs to F α . Indeed, if ℓ = lim x→∞ α(x)/x = ∞, this follows immediately from Lemma 4.4 (2) below and the definition of F α . On the other hand, if ℓ < +∞, then Lemma 4.4 (1) implies that r α = 1 which in turn implies that k(t) ≤ 1.

According to Lemma 4.4 (2),

Q t f ∈ F α , which, in this case, means that Lip(Q t f ) ≤ ℓ. Therefore, Lip(k(t)Q t f ) ≤ ℓ and so k(t)Q t f ∈ F α . Applying LSI - α (C) to the function k(t)Q t f , it follows that for all t > 0 (or all 0 < t ≤ t o if r α = 1), Ent µ e k(t)Qtf ≤ C α * k(t)|∇ -Q t f | e k(t)Qtf dµ ≤ C k(t) pα pα-1 1 t≤to + k(t) rα rα-1 1 t>to α * |∇ -Q t f | e k(t)Qtf dµ ≤ -C k(t) pα pα-1 1 t≤to + k(t) rα rα-1 1 t>to d dt + Q t f e k(t)Qtf dµ,
where the last inequality follows from the Hamilton-Jacobi differential inequality (1.9). Therefore,

dH dt + (t) ≤ 1 -Ck ′ (t) k(t) 2-pα pα-1 1 t≤to + k(t) 2-rα rα-1 1 t>to e k(t)Qtf dµ d dt + Q t f e k(t)Qtf dµ = 0
where the last equality is a consequence of the very definition of k. Hence H is non-increasing on (0, +∞) (or on (0, t o ] if r α = 1). When α(h)/h → ∞, when h → ∞, then according to point (3) of Proposition A.3 and the dominated convergence theorem, it holds

log e Qtf k(t) = H(t) ≤ lim s→0 + H(s) = log e f k(0)
.

If α(h)/h → ℓ ∈ R + , when h → ∞, then according to point (3) of Proposition A.3, the same conclusion holds if Lip(f ) < ℓ. Consider now a bounded continuous function f : X → R and fix ε ∈ (0, 1). Thanks to Lemma 4.4 below, Lip((

1 -ε)Q s f ) ≤ (1 -ε)ℓ for all s > 0. Since Q s f ≤ f , we can conclude that e Qt((1-ε)Qsf ) k(t) ≤ e (1-ε)Qsf k(0) ≤ e (1-ε)f k(0)
. Using Lebesgue's Theorem and Lemma 4.4, as ε → 0, we get

e Qt(Qsf ) k(t) ≤ e f k(0)
. 

Since Q t+s f ≤ Q t (Q s f )
+ ) t = k ′ (0) k(0) 2 Ent µ e k(0)f e k(0)f dµ - 1 k(0) e k(0)f dµ lim inf t→0 + e k(t)f -e k(t)Qtf t dµ.
According to the mean value theorem, there exists a function ϕ : (0, ∞) × X → R taking values in the interval [k(t)e k(t)Qtf (x) ; k(t)e k(t)f (x) ] such that

e k(t)f -e k(t)Qtf t = f -Q t f t ϕ(t, x), ∀t > 0, x ∈ X.
Applying point (4) of Proposition A.3, we get lim inf

t→0 + e k(t)f -e k(t)Qtf t dµ ≤ lim sup t→0 + e k(t)f -e k(t)Qtf t dµ ≤ k(0) α * (|∇ -f |) e k(0)f dµ. So Ent µ e k(0)f ≤ k(0) 2 k ′ (0) α * |∇ -f | e k(0)f dµ. Since k(0) = 1 -C -1 to pα-1 pα-1 → 1 and k(0) 2 /k ′ (0) = C 1 -C -1 to pα-1 pα → C, when t o → 0 + ,
we conclude that LSI - α (C) holds. This completes the proof.

During the proof above, we used the following technical lemma whose proof is postponed to the appendix for the clarity of the exposition. (2) For all t > 0, Q t f ∈ F α .

(3) For all t > 0 and all x ∈ X,

lim ε→0 Q t ((1 -ε)f )(x) = Q t f (x).
We are now in position to derive the Otto-Villani Theorem from Theorem 1.11.

Recall that, according to Bobkov and Götze characterization [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF], µ verifies the transportentropy inequality T α (C) if and only if

(4.5) e C -1 Q 1 f dµ ≤ exp C -1 f dµ ,
for all bounded continuous function f : X → R.

Proof of Theorem 1.13. Since µ verifies LSI - α (C), it verifies the hypercontractivity property (1.12) of Theorem 1.11. Take t o = C(p α -1) in the definition of k(t), the hypercontractivity inequality (1.12) yields for all bounded continuous function f , e k(t)Qtf dµ ≤ e k(t) f dµ , ∀t > 0.

According to (4.5), this means that µ verifies the following family of transport-entropy inequalities

T α( • /t) (µ, ν) ≤ 1 tk(t) H(ν|µ), ∀ν ∈ P(X),
where α( • /t) denotes the function x → α(x/t). According to [12, Proof of Lemma A.3],

α(x) ≤ max(t rα ; t pα )α(x/t), ∀t > 0.

Therefore, µ verifies T α (A), with the constant

A = inf t>0 max(t rα-1 ; t pα-1 ) k(t) .
Taking t = C(p α -1) for which k(t) = 1, we see that

A ≤ max ((p α -1)C) rα-1 ; ((p α -1)C) pα-1 ,
which ends the proof.

Proof of Proposition 1.14. Define for all t > 0 the operators

R t f (x) = inf y∈X f (y) + 1 t θ(d(x, y)) and Q t f (x) = inf y∈X f (y) + 1 t d 2 (x, y)
According to Bobkov and Götze dual formula (4.5) and by homogeneity, it holds for all t > 0 e C -1 tRtf dµ ≤ e C -1 t f dµ , for all bounded continuous function f. Take a function f such that |f | ≤ M and Lip(f, r) < ∞ for some r > 0. If d(x, y) ≥ a, and t ≤ a 2 /(2M ), then it holds

f (y) + 1 t θ(d(x, y)) ≥ -M + (2M ) a 2 a 2 = M ≥ f (x) ≥ R t f (x). It follows that if t ≤ a 2 /2M , then R t f (x) ≥ inf y:d(x,y)≤a f (y) + 1 t d 2 (x, y)) ≥ Q t f (x).
So the following inequality holds

e C -1 tQtf dµ ≤ e C -1 t f dµ , ∀t ≤ a 2 /(2M ).
Applying Taylor formula, we see that

e C -1 tQtf (x) = 1 + C -1 tQ t f (x) + C -2 (tQ t f ) 2 (x) 2 e ϕ(t,x) ,
where |ϕ(t, x)| ≤ tC -1 M , for all t, x. So, for all t ≤ a 2 /(2M ),

C -1 Q t f -f t dµ + C -2 2 (Q t f ) 2 (x)e ϕ(t,x) µ(dx) ≤ e C -1 t f dµ -1 -tC -1 f dµ t 2 .
Letting t go to 0 and using points (3) and ( 4) of Proposition A.3 together with the dominated convergence theorem yields to

- C -1 4 |∇ -f | 2 dµ + C -2 2 f 2 dµ ≤ C -2 2 f dµ 2 ,
which is the announced Poincaré inequality.

Transport-entropy inequalities as restricted log-Sobolev inequalities

In this section, we show that a transport-entropy inequality can be characterized as a modified log-Sobolev inequality restricted to a class of c-convex functions. Actually we will prove the following improved version of Theorem 1.15 which holds even if the space is not geodesic.

Theorem 5.1. Let µ be a probability measure on (X, d) and p ≥ 2. Define the function β p as follows:

(5.2)

β p (u) = u [u 1/(p-1) -1] p-1 , ∀u > 1.
The following properties are equivalent:

(1) There is some C > 0 such that µ verifies T p (C).

(2) There is some D > 0 such that µ verifies the following (τ )-log-Sobolev inequality: for all bounded continuous f and all 0 < λ < 1/D, it holds

Ent µ (e f ) ≤ 1 1 -λD (f -Q λ f )e f dµ,
where for all λ > 0, Q λ f (x) = inf y∈X {f (y) + λc p (x, y)} .

(3) There is some E > 0 such that µ verifies the following restricted log-Sobolev inequality: for all Kc p -convex function f , with 0 < K < 1/E it holds

Ent µ (e f ) ≤ β p (u) -1 (1 -KEu)pK q-1 |∇ - Kcp f | q e f dµ, ∀u ∈ (1, 1/(KE))
where q = p/(p -1) and

|∇ - Kcp f |(x) = K inf ȳ∈∂ Kcp f (x) d(x, ȳ) p-1
(see Proposition 2.9). Moreover, when the space (X, d) is geodesic these properties are equivalent to the following (3') There is some F > 0 such that µ verifies the following restricted log-Sobolev inequality: for all Kc p -convex function f , with

0 < K < 1/F it holds Ent µ (e f ) ≤ β p (u) -1 (1 -KF u)pK q-1 |∇ + f | q e f dµ, ∀u ∈ (1, 1/(KF ))
The optimal constants C opt , D opt , E opt , F opt are related as follows

F opt ≤ E opt ≤ D opt ≤ C opt ≤ κ p F opt ,
where κ p is some universal constant depending only on p. For p = 2, one can take κ 2 = e 2 .

5.1.

From transport-entropy inequalities to (τ )-log-Sobolev inequalities. Let us recall the following proposition from [START_REF] Gozlan | A new characterization of Talagrand's transport-entropy inequalities and applications[END_REF] whose proof relies on a simple Jensen argument.

Lemma 5.3. If µ verifies the transport-entropy property T c (C), for some continuous cost function c on X 2 , then the following (τ )-log-Sobolev property holds: for all function f , for all

0 < λ < 1/C, Ent µ (e f ) ≤ 1 1 -λC (f -Q λ f )e f dµ, (5.4) 
where for all x ∈ X, Q λ f (x) = inf{f (y) + λc(x, y)}.

This proves the step (1) ⇒ (2) in Theorem 5.1.

5.2.

From (τ )-log-Sobolev inequalities to log-Sobolev inequalities for c p -convex functions. The general link between the (τ )-log-Sobolev property and the restricted log-Sobolev inequality is the following: if the function f is c-convex then the quantity f -Q λ f in the right-hand side of (5.4) can be bounded by a function of |∇ - c f | (see Lemma 5.5 below). From now on, let us assume that c = c p is the cost function defined by: for all x, y in X, c p (x, y) = d p (x, y)/p, for some p > 1.

Lemma 5.5. Let λ > 0. If f is a Kc p -convex function bounded from above, and if 0 < K < λ, then for all x ∈ X and all ȳ in the Kc p -subdifferential of f at point x, ∂ Kcp f (x),

f (x) -Q λ f (x) ≤ K (β p (λ/K) -1) c p (x, ȳ),
where Q λ f (x) = inf y∈X {f (y) + λc p (x, y)} and for all u > 1,

β p (u) = u [u 1/(p-1) -1] p-1 .
Equivalently, with the notation of Proposition 2.9,

f (x) -Q λ f (x) ≤ (β p (λ/K) -1) 1 pK q-1 |∇ - Kcp f | q (x),
where q = p p-1 .

Proof. According to Definition 2.4 of ∂ Kcp f (x) and using the triangular inequality we get, for all ȳ ∈ ∂ Kcp f (x)

f (x) -Q λ f (x) = sup z∈X {f (x) -f (z) -λc p (z, x)} ≤ sup z∈X {Kc p (z, ȳ) -Kc p (x, ȳ) -λc p (z, x)} ≤ sup z∈X {Kc p (z, ȳ) -λc p (z, x)} -Kc p (x, ȳ) ≤ 1 p sup z∈X {K(d(z, x) + d(x, ȳ)) p -λd p (z, x)} -Kc p (x, ȳ) ≤ 1 p sup r≥0 {K(r + d(x, ȳ)) p -λr p } -Kc p (x, ȳ) = Kc p (x, ȳ) (β p (λ/K) -1) .
Thus optimizing over all possible ȳ ∈ ∂ Kcp f (x) yields to the expected result In this part we prove that a modified log-Sobolev inequality restricted to the class of Kc p -convex functions also implies a transport entropy-inequality. One of the main ingredient of the proof is Theorem 1.10.

f (x) -Q λ f (x) ≤ (β p (λ/K) -1) inf ȳ∈∂ Kcp f (x) Kc p (x, ȳ) = (β p (λ/K) -1) 1 pK q-1 |∇ - Kcp f | q (x).
Theorem 5.7. Let p ≥ 2. Suppose that for all K ∈ (0, 1/C) and all Kc p -convex function f : X → R bounded from above, it holds

(5.8) Ent µ (e f ) ≤ β p (u) -1 (1 -KCu)pK q-1 |∇ - Kcp f | q (x) e f (x) µ(dx), ∀u ∈ (1, 1/(KC)).
then µ verifies the inequality T p (κ p C), where κ p is some numerical constant depending only on p. For p = 2, κ 2 = e 2 . Moreover, if the space is geodesic, the same conclusion holds if |∇ - Kcp f | is replaced by |∇ + f | in the right hand side of (5.8).

This proves the steps (3) ⇒ (1) and (3 ′ ) ⇒ (1) (in the geodesic case) and completes the proof of Theorem 5.1.

Proof. For any bounded continuous function g, we define the function P t g as follows

P t g(x) = sup y∈X g(y) - 1 t p-1 c p (x, y) .
Let ℓ : [a, 1] → (0, +∞) be a decreasing function of class C 1 defined on some interval [a, 1] with a > 0 and such that ℓ(1) = 0. For all bounded continuous g define ). If all the H g 's were non-decreasing, then it would hold that H g (a) ≤ lim t→1 -H g (t) = P 1 g dµ. Since g ≤ P a g, we would get e C -1 ℓ(a)g dµ ≤ e C -1 ℓ(a) P 1 g dµ which in turn, according to Bobkov and Götze characterization Theorem, would prove that µ verifies T p (C/ℓ(a)).

H g (t) = C ℓ(t) log e C -1 ℓ(t)Ptg dµ , t ∈ [a, 1
Hence, our aim is to construct a function ℓ such that all the H g 's are non-decreasing. Set Since ℓ ′ < 0, all we have to show is that the term into brackets is non-positive. For all t > 0, the function

f t = C -
f t is K(t)c p -convex, with K(t) = ℓ(t) Ct p-1 .
Hence, for all t such that ℓ(t) < t p-1 and all u ∈ (1, 1/(CK(t)), Ent µ (e ft ) ≤ β p (u) -1 (1 -K(t)Cu)pK(t) q-1 |∇ - K(t)cp (f t )| q (x)e ft(x) µ(dx).

Since f t is K(t)c p -convex, it follows from Proposition 2.9 (applied with α(h) = K(t)h p /p) that

|∇ - K(t)cp f t |(x) = K(t) min ȳ∈∂ K(t)cp ft(x) d(x, ȳ) p-1 ≤ K(t) max ȳ∈m(t,x) d(x, ȳ) p-1 ,
denoting by m(t, x) the set of points ȳ where the supremum defining P t g is reached. As a result, it holds 1

pK(t) q-1 |∇ - K(t)cp f t | q (x) ≤ K(t) max ȳ∈m(t,x) c p (x, ȳ).
On the other hand, according to Proposition 1.10,

dP t g dt + (x) = p -1 t p max ȳ∈m(t,x) c p (x, ȳ). Therefore (5.9) 1 pK(t) q-1 |∇ - K(t)cp f t | q (x) ≤ K(t)t p (p -1) dP t g dt + (x) = tℓ(t) (p -1)C dP t g dt + (x).
So, for all t > 0 with ℓ(t) < t We conclude that µ verifies the inequality T p with the constant

C ℓ p (a p ) = C exp 1 0 θ p (s) s(θ p (s) + 1) ds = Cκ p .
In the particular case p = 2, one has θ 2 (x) = 4x (1-x) 2 , and it is easy to check that κ 2 = e 2 . It remains to consider the geodesic case. In this case, the inequality (5.9) is replaced by the equality 1

pK(t) q-1 |∇ + f t | q (x) = K(t)t p (p -1) dP t g dt + (x),
and the rest of the proof remains unchanged.

Lemma 5.10. The function s → φ(s) = θp(s) s(θp(s)+1) is continuous on (0, 1). Moreover, φ(s) goes to 1 as s goes to 1 and φ(s) = p p/(p-1) s (p-2)/(p-1) (1 + ε(s)), with ε(s) → 0 as s → 0.

Proof. After some computations, it is easy to check that for s ∈ (0, 1), the infimum θ p (s) is reached at some unique point u = u(s) ∈ (1, 1/s) such that

β ′ p (u)(1 -su) + s(β p (u) -1) = 0, or equivalently u(s) p/(p-1) -u(s) 1/(p-1) -1 p = 1/s.
It follows from this equality that u(s) is continuous on (0,1), u(s) → 1 as s → 1 and u(s) → +∞ as s → 0. As a first consequence, φ is continuous on (0, 1). By a Taylor expansion at point 0, one has

1 su(s) p/(p-1) = 1 -1 - 1 u(s) 1/(p-1) p = p u(s) 1/(p-1) (1 + ε(s)),
with ε(s) → 0 as s → 0. It follows that su(s) → 1/p as s → 0. From all this observations, we get

φ(s) = 1 -1 -u(s) -1/(p-1) p-1 s 1 -su(s) 1 -u(s) -1/(p-1) p-1 = p p/(p-1) s (p-2)/(p-1) (1 + ε(s)),
with ε(s) → 0 as s → 0. Since u(s) → 1 as s → 1 we easily get that φ(s) → 1 as s → 1. 

Appendix

(z) -f (x) ≥ L(x -ȳ) -L(z -ȳ), ∀z ∈ R m .
Let z = x + εu with ε > 0 and u ∈ R m . Since L and f are smooth functions at point x, we get as ε tends to 0, for all u ∈ R m ,

u • ∇f (x) ≥ -u • ∇L(x -ȳ),
and therefore ∇f (x) = -∇L(xȳ). Let v o = xȳ and u o = ∇L(v 0 ), by the convexity property of L,

(A.1) L(v) ≥ L(v o ) + u o • (v -v o ), ∀v ∈ R m , or equivalently L(v o ) ≤ u o • v o -L * (u o ). Since L(v o ) = sup u∈R m {u • v o -L * (u)}, it follows that the derivative of u → u • v o -L * (u) vanishes at u o , and so v o = ∇L * (u o ). Finally, x -ȳ = ∇L * (u o ) = ∇L * (-∇f (x)
), which completes the proof.

Proof of Lemma 2.11.

(1) The function h : y → g(y)-tα (d(x, y)/t) is upper semicontinuous, bounded from above and its level sets {h ≥ r} r ∈ R are compact. It follows that h reaches its supremum and so m(t, x) = {h ≥ sup h} is not empty and compact.

(2) Let h n (y) = g(y)-t n α d(xn,y) tn , y ∈ X. The sequence of functions h n converges pointwise to the function h, and the convergence is uniform on each bounded set. Since g is bounded from above by some constant r ∈ R, it holds

(A.2) r-t n α d(x n , y n ) t n ≥ g(y n )-t n α d(x n , y n ) t n ≥ g(y)-t n α d(x n , y) t n , ∀y ∈ X.
Since (x n ) n∈N is bounded and lim n→∞ t n = t > 0, we conclude that (y n ) n∈N is a bounded sequence. As balls are supposed to be compact, (y n ) n∈N has converging subsequences. Passing to the limit into the inequality (A.2) along a converging subsequence of (y n ) n∈N , yields to the conclusion that any limit point ȳ of (y n ) n∈N belongs to m(t, x).

Let us turn to the proof of Proposition 4.1. The proof requires some regularity properties of Q t f in the t variable that are gathered in the following proposition.

Proposition A.3. Let f be a bounded lower semicontinuous function on X; define for all t > 0 and x ∈ X Q t f (x) = inf f (y) + tα d(x,y) t and let m(t, x) denote the set of points where this infimum is attained. The following properties hold (1) For all x ∈ X, m(t, x) ⊂ B x, tα -1 (Osc(f )/t) . (3) If α(h)/h → ∞, when h → ∞, then for all bounded continuous function f and for all x ∈ X, lim

t→0 + Q t f (x) = f (x).
and

lim inf t→0 + Q t f (x) -f (x) t ≥ -α * (|∇ -f |(x)).
If α(h)/h → ℓ ∈ R + , when h → ∞, the same conclusions hold for all function f with Lip(f ) < ℓ. (4) Let µ be a probability measure and ϕ : (0, +∞) × X → R be such that |ϕ| ≤ M for some M > 0 and lim t→0+ ϕ(t, x) = ψ(x) for all x ∈ X. If α(h)/h → ∞ when h → ∞ and if f is such that Lip(f, r) < +∞ for some r > 0, then

lim sup t→0 f -Q t f t ϕ(t, x) dµ ≤ α * (|∇ -f |(x))ψ(x) dµ.
The same conclusion holds if α(h)/h → ℓ ∈ R + , when h → ∞, and Lip(f ) < ℓ.

Proof of Proposition A. (

) Since t → Q t f (x) is non-increasing, |Q t+h f (x) -Q t f (x)| = Q t f (x) -Q t+h f (x). If ȳ ∈ m(t + h, x), then 1 h (Q t f (x) -Q t+h f (x)) ≤ 1 h tα d(x, ȳ) t -(t + h)α d(x, ȳ) t + h ≤ β α -1 (Osc(f )/t) , 2 
where the last inequality comes from the mean value theorem, the monotonicity of the function β and point (1).

(3) Let us first assume that lim h→∞ α(h)/h = +∞. In this case, lim t→0 tα -1 Osc(f ) t = 0 and so, according to the first point, inf y∈B(x,tα -1 (Osc(f )/t)) {f (y)} ≤ Q t f (x) ≤ f (x).

Since f is lower semicontinuous, the limit when t goes to 0 of the left hand side is greater than or equal to f (x). This guarantees that lim t→0 + Q t f (x) = f (x). Moreover, for all ȳt ∈ m(t, x), f (ȳ t ) ≤ f (x) and therefore

f (x) -Q t f (x) t = f (x) -f (ȳ t ) t -α d(x, ȳt ) t = [f (ȳ t ) -f (x)] - d(x, ȳt ) d(x, ȳt ) t -α d(x, ȳt ) t ≤ α * [f (ȳ t ) -f (x)] - d(x, ȳt ) . (A.4)
Arguing as before, we see that ȳt → x as t → 0 so that lim sup

t→0 + f (x) -Q t f (x) t ≤ α * |∇ -f |(x) .
Now let us assume that α(h)/h → ℓ ∈ R + when h → ∞. According to what precedes, it is enough to show that there is a constant r > 0 such that m(t, x) ⊂ B(x; rt), ∀t > 0, x ∈ X.

Let ȳ ∈ m(t, x). Then it holds f (ȳ)f (x) + tα (d(x, ȳ)/t) ≤ 0. Since f is assumed to be Lipschitz, we conclude that Lip(f )d(x, ȳ)/t ≥ α (d(x, ȳ)/t) . Since Lip(f ) < ℓ = lim h→+∞ α(h)/h, this implies that d(x, ȳ) ≤ rt where r = sup{h : α(h)/h ≤ Lip(f )} < +∞, which proves the claim.

(4) We already know, by point (3), that lim sup t→0 + f (x)-Qtf (x) t ≤ α * (|∇ -f |(x)). Hence the result of point (4) will follow from Fatou's Lemma (in its limsup version) as soon as for some t 0 > 0, it holds sup x sup t∈(0,to) f (x)-Qtf (x) t < ∞.

Assume first that lim h→∞ α(h)/h = ∞ and let r > 0 be such that Lip(f, r) < ∞. Observe that lim t→0 tα -1 Osc(f ) t = 0 so that, by point (1), there exists t o > 0 such that, for all t ∈ (0, t o ), all x ∈ X and all ȳt ∈ m(t, x), d(x, ȳt ) ≤ r. Using (A.4), we conclude that sup x sup t∈(0,to) f (x)-Qtf (x) t ≤ α * (Lip(f, r)) < ∞.

Assume now that α(h)/h → ℓ ∈ R + , when h → ∞. Then, since Lip(f ) < ℓ, (A.4) implies that sup x,t f (x)-Qtf (x) t ≤ α * (Lip(f )) < ∞. This ends the proof of point ( 4) and of the proposition.

Proof of Proposition 4.1. We will prove that H is right differentiable, the proof of the leftdifferentiability being similar. By formally differentiating under the sign integral yields for all t > 0, Q t f e k(t)Qtf dµ , (A.5) which easily gives the desired identity. Hence, it remains to justify the above calculation. Define F (t) = e k(t)Qtf dµ. To obtain (A.5), it is enough to show that F is right differentiable and that dF dt + (t) = k ′ (t)Q t f e k(t)Qtf dµ + k(t) d dt + Q t f e k(t)Qtf dµ.

dH dt + (t) = - k ′ (t) k(t)
For all s > 0, 1 s (F (t + s) -F (t)) = G s dµ, with G s = 1 s e k(t+s)Q t+s fe k(t)Qtf . Since t → Q t f (x) is right differentiable for t > 0,

G s (x) -→ s→0 k ′ (t)Q t f (x)e k(t)Qtf (x) + k(t) d dt + Q t f (x)e k(t)Qtf (x) .
For a given t ∈ (a, b), let η t > 0 be any number such that t + η t < b. Then, using the mean value Theorem together with point (2) of Proposition A.3, it is not difficult to prove that sup x∈X sup s≤ηt |G s |(x) < +∞. Applying the dominated convergence theorem completes the proof.

Proof of Lemma 4.4. Let f : X → R be a bounded and continuous function. Fix t > 0.

(2) First, following [12, Lemma 3.8], we will prove that there exists r > 0 such that Lip(Q t f, r) < ∞. Set r = tα -1 (Osc(f )/t). From point (1) of Proposition A. 
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 5653 this lemma the (τ )-log-Sobolev property(5.4) provides immediately the first part of the following statement by setting u = λ/C. If µ verifies the (τ )-log-Sobolev (5.4) with the cost c = c p , p ≥ 2, then for all K ∈ (0, 1/C) and all function f bounded from above and Kc p -convex, it holdsEnt µ (e f ) ≤ β p (u) -1 (1 -KCu)pK q-1 |∇ - Kcp f | q (x) e f (x) µ(dx), ∀u ∈ (1, 1/(KC)).Moreover, when (X, d) is geodesic, the same inequality holds with|∇ + f | instead of |∇ - Kc p f | in the right-hand side.This proves the steps (2) ⇒ (3) and (2) ⇒ (3 ′ ) (in the geodesic case) in Theorem 5.1. Proof. Let us justify the statement in the geodesic case. According to Proposition 2.9 (applied with the function θ(x) = Kx p /p), it holds |∇ - Kcp f | ≤ |∇ + Kcp f | and when the space is geodesic, |∇ + Kcp f | = |∇ + f |, which completes the proof. From log-Sobolev inequalities for c p -convex functions to transport-entropy inequalities.

( 2 )

 2 For all t, h > 0, 1 h sup x∈X |Q t+h f (x) -Q t f (x)| ≤ β α -1 (Osc(f )/t) .

  3. (1) Let M = sup(f ) and m = inf(f ). If ȳ ∈ m(t, x), it holds m + tα d(x, ȳ) t ≤ f (ȳ) + tα d(x, ȳ) t = Q t f (x) ≤ M,which proves the first claim.

  3, it holdsQ t f (u) = inf d(y,u)≤r {f (y) + tα(d(u, y)/t)} , ∀u ∈ X.

  )Qtf dµ .The same formula holds for dH/dt -, dK/dt + and dK/dt -(replacing Q t by P t ).

	Proof of Theorem 1.11. Let us first show that the log-Sobolev inequality implies the hyper-
	contractivity property:				
	(4.2)	e Qtf	k(t)	≤ e f	k(0)

  and thanks to point (2) of Proposition A.3, we have lim s→0 Q t+s f = Q t f so that (using Lebesgue's theorem) the hypercontractivity property (4.2) still holds when f is bounded and continuous, as expected.

	lim sup t→0 +	H(t) -H(0 + ) t	≤ 0.

Now we prove that if (4.2) holds for all bounded continuous f and all t > 0 with k defined by (4.3), then µ verifies LSI - α (C). Observe that in the case α(h)/h → ℓ ∈ R + , it is enough to show that LSI - α holds for functions with Lip(f ) < ℓ. Let H(t) = log e Qtf k(t) , for all t > 0, with f ∈ F α and Lip(f ) < ℓ when α(h)/h → ℓ ∈ R + as h → ∞. By assumption, it holds Let us choose t o < C(p α -1) in the definition of k(t) so that k(0) and k ′ (0) > 0. It is not difficult to check that lim sup t→0 + H(t) -H(0

  1 ℓ(t)P t g. According to Proposition 4.1, H g is continuous and differentiable on the

	right and	d dt +	H g (t) =	Cℓ ′ (t) ℓ 2 (t) e ft dµ	Ent µ e ft +	ℓ(t) 2 Cℓ ′ (t)	dP t g dt +	e ft dµ .

  According to Lemma 5.10 below, since p ≥ 2, the function Ψ p is well defined, increasing and of class C 1 on (0, 1). Define v(t) = Ψ -1 p (-ln(t)), for all t ∈ [a p , 1], with a p = exp (-Ψ p (1)). The function v is decreasing and v(t) ∈ [0, 1] for all t ∈ [a p , 1]. Finally, define ℓ p (t) = t p-1 v(t), for all t ∈ [a p , 1]. A simple calculation shows that

	where the function θ p is defined by θ p (x) = inf 1<u<1/x	βp(u)-1 1-xu	, for x < 1. Observe that θ p
	is finite on [0, 1[. Consider the function				
		Ψ p (r) =	1 p -1	0	r	θ p (s) s(θ p (s) + 1)	ds,	∀r ∈ [0, 1].
		θ p	ℓ p (t) t p-1	t p -1	+	ℓ p (t) ℓ ′ p (t)	= 0,	∀t ∈ (a p , 1).
			p-1 it holds			
	Ent µ e ft +	ℓ(t) 2 Cℓ ′ (t)	dP t g dt +	e ft dµ ≤	ℓ(t) C	θ p	ℓ(t) t p-1	t p -1	+	ℓ(t) ℓ ′ (t)	dP t g dt +	e ft dµ,

  A. Proof of Lemma 2.8, Lemma 2.11, Proposition 4.1 and Lemma 4.4 In this appendix we collect all the technical proofs of Lemmas 2.8, 2.11 and 4.4 and of Proposition 4.1. Proof of Lemma 2.8. Let ȳ ∈ ∂ c f (x). According to the definition of the c-subdifferential, f
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Fix u, v ∈ X with d(u, v) ≤ r. Then, given y o ∈ X such that d(v, y o ) ≤ r, it follows from the mean value theorem that

) and observe that, thanks to the previous observation, d(v, y 0 ) ≤ r. It follows that (choosing y = y o ),

So sup h α ′ (h) = lim h→∞ α ′ (h) = ℓ and it follows that Q t f is ℓ-Lipschitz as an infimum of ℓ-Lipschitz functions.

(1) The inequality (A.6) above also proves that r α = 1, when ℓ < +∞.

(3) Let (λ n ) n≥0 be a sequence of real numbers converging to 1. For any x ∈ X, let m(t, x) be the set of points y ∈ X such that Q t f (x) = inf z∈X {f (z) + tα(d(x, z)/t)} = f (y) + tα(d(x, y)/t). For any n, let y n be such that Q t (λ n f )(x) = λ n f (y n ) + tα(d(x, y n )/t). We have, for all z ∈ X,

Since (λ n ) n converges, we deduce that the sequence (y n ) n is bounded. Let y be a limit point of a converging subsequence of (y n ) n . Passing to the limit in the latter leads to

Hence, y ∈ m(t, x). In turn, after easy considerations left to the reader, Q t (λ n f )(x) → Q t f (x), when n → ∞ as expected. The conclusion of point (2) follows and the proof is complete.