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HYPERELLIPTICITY AND SYSTOLES OF KLEIN
SURFACES

MIKHAIL G. KATZ∗ AND STÉPHANE SABOURAU

Abstract. Given a hyperelliptic Klein surface, we construct com-
panion Klein bottles, extending our technique of companion tori
already exploited by the authors in the genus 2 case. Bavard’s
short loops on such companion surfaces are studied in relation to
the original surface so to improve a systolic inequality of Gromov’s.
A basic idea is to use length bounds for loops on a companion Klein
bottle, and then analyze how curves transplant to the original non-
orientable surface. We exploit the real structure on the orientable
double cover by applying the coarea inequality to the distance func-
tion from the real locus. Of particular interest is the case of Dyck’s
surface. We also exploit an optimal systolic bound for the Möbius
band, due to Blatter.

Contents

1. Introduction

Systolic inequalities for surfaces compare length and area, and can
therefore be thought of as “opposite” isoperimetric inequalities. The
study of such inequalities was initiated by C. Loewner in 1949 when he
proved his torus inequality for T2 (see Pu [?] and Horowitz et al. [?]).
The systole, denoted “sys”, of a space is the least length of a loop which
cannot be contracted to a point in the space, and is therefore a natural
generalisation of the girth invariant of graphs.
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2 M. KATZ AND S. SABOURAU

Theorem 1.1 (Loewner’s torus inequality). Every metric on the 2-
dimensional torus T satisfies the bound

sys(T) ≤ 2
1
2 3
−1

4
√

area(T). (1.1)

In higher dimensions, M. Gromov’s deep result [?], relying on filling
invariants, exhibits a universal upper bound for the systole in terms of
the total volume of an essential manifold. L. Guth [?] recently found
an alternative proof not relying on filling invariants, and giving a gen-
eralisation of Gromov’s inequality, see also Ambrosio and Katz [?].

In dimension 2, the focus has been, on the one hand, on obtaining
near-optimal asymptotic results in terms of the genus [?, ?], and on
the other, on obtaining realistic estimates in cases of low genus [?, ?].
One goal has been to determine whether all aspherical surfaces satisfy
Loewner’s bound (??), a question that is still open in general. We
resolved it in the affirmative for genus 2 in [?]. An optimal inequality
of C. Bavard [?] for the Klein bottle K is stronger than Loewner’s
bound:

sys(K) ≤ CBavard

√
area(K), CBavard = π

1
2 8
−1

4 ≈ 1.0539. (1.2)

Gromov proved a general estimate for all aspherical surfaces:

sys2 ≤ 4

3
area, (1.3)

see [?, Corollary 5.2.B]. As Gromov points out in [?], the 4
3

bound (??)
is actually optimal in the class of Finsler metrics. Therefore any further
improvement is not likely to result from a mere application of the coarea
formula. One can legitimately ask whether any improvement is in fact
possible, of course in the framework of Riemannian metrics.

The goal of the present article is to furnish such an improvement in
the case of non-orientable surfaces. We will say that such a surface is
hyperelliptic if its orientable double cover is.

Theorem 1.2. Let n ≥ 2. Every Riemannian metric from a hyperel-
liptic conformal type on the surface nRP2 satisfies the bound

sys2 ≤ 1.333 area . (1.4)

Note the absence of an ellipsis following “333”, making our estimate
an improvement on Gromov’s 4

3
bound (??). By keeping track of the

best constants in our estimates throughout the proof of the theorem,
one could obtain a slightly better bound. However, our goal is merely
to develop techniques sufficient to improve the 4

3
bound. Since every

conformal class on Dyck’s surface K#RP2 = T2#RP2 = 3RP2 of Euler
characteristic −1 is hyperelliptic, we have
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Corollary 1.3. Every Riemannian metric on Dyck’s surface 3RP2 sat-
isfies

sys(3RP2)2 ≤ 1.333 area(3RP2).

The proof of the main theorem exploits a variety of techniques rang-
ing from hyperellipticity to the coarea formula and cutting and pasting.
The current best upper bound for the systole on Dyck’s surface only
differs by about 30% from the best known example given by a suitable
extremal hyperbolic surface (see Section ??).

We will exploit the following characterisation of the systole of a
non-orientable surface. Given a metric on a Klein surface X = X̃/τ
where τ : X̃ → X̃ is fixed point-free, we consider the natural τ -invariant
pullback metric on its orientable double cover X̃.

Definition 1.4. The least displacement “disp” of τ : Σg → Σg is the
number

disp(τ) = min {dist(x, τ(x)) | x ∈ Σg} . (1.5)

Proposition 1.5. The systole of a Klein surface X can be expressed
as the least of the following two quantities:

sys(X) = min
{

sys(X̃), disp(τ)
}
.

Indeed, lifting a systolic loop of X to X̃, we obtain either a loop in
the orientable cover Σg, or a path connecting two points which form
an orbit of the deck transformation τ .

Recall that the following four properties of a closed surface Σ are
equivalent: (1) Σ is aspherical; (2) the fundamental group of Σ is
infinite; (3) the Euler characteristic of Σ is non-positive; (4) Σ is not
homeomorphic to either S2 or RP2. The following conjecture has been
discussed in the systolic literature, see [?].

Conjecture 1.6. Every aspherical surface satisfies Loewner’s bound

sys2

area
≤ 2√

3
. (1.6)

M. Gromov [?] proved an asymptotic estimate which implies that
every orientable surface of genus greater than 50 satisfies Loewner’s
bound. This was extended to orientable surfaces of genus at least 20
in [?], and for the genus 2 surface in [?].

Recent publications in systolic geometry include Ambrosio & Katz [?],
Babenko & Balacheff [?], Balacheff et al. [?], Belolipetsky [?], El Mir [?],
Fetaya [?], Katz et al. [?, ?, ?, ?], Makover & McGowan [?], Parlier [?],
Ryu [?], and Sabourau [?].
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In Section ??, we will review the relevant conformal information,
including hyperellipticity. In Section ??, we will present metric infor-
mation in the context of a configuration of the five surfaces appearing in
our main argument. Section ?? exploits optimal inequalities of Blatter
and Sakai for the Möbius band so to prove our first theorem for n = 3.
We handle the remaining case, namely n ≥ 4, in Section ??.

2. Review of conformal information and hyperellipticity

In this section we review the necessary pre-metric (i.e., conformal)
information. The quadratic equation y2 = p over C is well known to
possess two distinct solutions for every p 6= 0, and a unique solution
for p = 0. Now consider the locus (solution set) of the equation

y2 = p(x) (2.1)

for (x, y) ∈ C2 and generic p(x) of even degree 2g + 2. Such a locus
defines a Riemann surface which is a branched two-sheeted cover of C.
The cover is obtained by projection to the x-coordinate. The branching
locus corresponds to the roots of p(x).

There exists a unique smooth closed Riemann surface Σg naturally
associated with (??), sometimes called the smooth completion of the
affine surface (??), together with a holomorphic map

Qg : Σg → Ĉ = S2 (2.2)

extending the projection to the x-coordinate. By the Riemann-Hurwitz
formula, the genus of the smooth completion is g, where deg(p(x)) =
2g− 2. All such surfaces are hyperelliptic by construction. The hyper-
elliptic involution J : Σg → Σg flips the two sheets of the double cover
of S2 and has exactly 2g+ 2 fixed points, called the Weierstrass points
of Σg. The hyperelliptic involution is unique. The involution J can be
identified with the nontrivial element in the center of the (finite) au-
tomorphism group of X (cf. [?, p. 108]) when it exists, and then such
a J is unique [?, p.204].

A hyperelliptic closed Riemann surface Σg admitting an orientation-
reversing (antiholomorphic) involution τ can always be reduced to the
form (??) where p(x) is a polynomial all of whose coefficients are real,
where the involution τ : Σg → Σg restricts to complex conjugation on
the affine part of the surface in C2, namely

τ(x, y) = (x̄, ȳ). (2.3)



HYPERELLIPTICITY AND SYSTOLES OF KLEIN SURFACES 5

The special case of a fixed point-free involution τ can be represented
as the locus of the equation

−y2 =
∏
j

(x− xj)(x− x̄j), (2.4)

where xj ∈ C \ R for all j. Here the minus sign on the left hand side
ensures the absence of real solutions, and therefore the fixed point-
freedom of τ . The uniqueness of the hyperelliptic involution implies
the following.

Proposition 2.1. We have the commutation relation τ ◦ J = J ◦ τ .

A Klein surface X is a non-orientable closed surface. Such a surface
can be thought of as an antipodal quotient X = Σg/τ of an orientable
surface by a fixed point-free, orientation-reversing involution τ . The
pair (Σg, τ) is known as a real Riemann surface. A Klein surface is
homeomorphic to the connected sum

X = nRP2 = RP2# . . .#RP2︸ ︷︷ ︸
n

,

of n copies of the real projective plane. The case n = 2 corresponds to
the Klein bottle K = 2RP2, covered by the torus. In the case n = 3, we
obtain the surface 3RP2 of Euler characteristic −1, whose orientable
double cover is the genus 2 surface Σ2.

In the sequel, we will focus on Dyck’s surface 3RP2 since the proof
of the main theorem in this case requires special arguments.

We will denote by X̃ the orientable double cover of a Klein surface X.
If a surface X is hyperelliptic, we will denote by Br(X) ⊂ Ĉ its branch

locus, i.e., the set of isolated branch points of the double cover X → Ĉ.

Definition 2.2. A Klein bottle K is called a companion of a Klein
surface X if we have the inclusion of the branch loci at the level of the
orientable double covers:

Br(K̃) ⊂ Br(X̃) ⊂ Ĉ.

Proposition 2.3. Each Klein surface K homeomorphic to 3RP3 ad-
mits a triplet of companion Klein bottles K1, K2, K3 satisfying the fol-
lowing three conditions:

(1) |Br(K̃j)| = 4;

(2) |Br(K̃i) ∩ Br(K̃j)| = 2 for i 6= j;

(3) ∪3
j=1Br(K̃j) = Br(X̃).

Proof. Given a real Riemann surface (Σg, τ), consider the presenta-
tion (??) with p(x) a real polynomial. We can write the roots of p as a
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collection of conjugate pairs (a, ā). Thus in the genus 2 case, the affine
form of the surface is the locus of the equation

−y2 = (x− a)(x− ā)(x− b)(x− b̄)(x− c)(x− c̄) (2.5)

in C2. Choosing two conjugate pairs, for instance (a, ā, b, b̄), we can
construct a companion surface

−y2 = (x− a)(x− ā)(x− b)(x− b̄), (2.6)

By the Riemann-Hurwitz formula, its genus is one, and therefore the
(smooth completion of the) companion surface is a torus. We will
denote it Ta,b. By construction, its set of zeros is τ -invariant. In
other words, the (affine part in C2 of the) torus is invariant under the
action of complex conjugation. Thus, the surface Ta,b/τ is a Klein
bottle K, namely, a companion Klein bottle of the original Klein sur-
face 3RP2 = Σ2/τ stemming from (??). We thus obtain the three Klein
bottles Ta,b/τ , Tb,c/τ , and Tc,a/τ , proving the proposition. �

The maps constructed so far can be represented by the following
diagram of homomorphisms (note that two out of the four arrows point
in the leftward direction):

3RP2 ← Σ2 → S2 ← Ta,b → K. (2.7)

Complex conjugation τ on Ĉ = S2 fixes a circle called the equatorial
circle, denoted R̂ ⊂ Ĉ.

Definition 2.4. The equator of Σ2 is the circle given by the inverse
image of the equator R̂ under the hyperelliptic projection Σ2 → S2.

Lemma 2.5. The equator of Σ2 coincides with the fixed point set of
the composition τ ◦ J . The equator is invariant under the action of τ .
The action of τ on the equator of Σ2 is fixed point-free.

Proof. The lemma is immediate from Proposition ??. �

Similarly, we obtain the following.

Lemma 2.6. Relative to the double cover Ta,b → Ĉ, the inverse im-

age of the equatorial circle R̂ ⊂ Ĉ is a pair of disjoint circles, the
involution τ acts on the torus by switching the two circles, while the
involution τ ◦ J fixes both circles pointwise.

A loop on a non-orientable surface is called 2-sided if its tubular
neighborhood is homeomorphic to an annulus, and 1-sided if its tubu-
lar neighborhood is homeomorphic to a Möbius band. The following
lemma is immediate from the homotopy lifting property.
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Lemma 2.7. Let X be a Klein surface, and X̃ its orientable double
cover. Let γ ⊂ X be a one-sided loop, and δ ⊂ X a 2-sided loop
in X = X̃/τ . We have the following four properties:

(1) Lifting γ to X̃ yields a path on X̃ connecting a pair of points
which form an orbit of the involution τ ;

(2) lifting δ to X̃ yields a closed curve on X;
(3) the inverse image of γ under the double cover X̃ → X is a

circle (i.e. has a single connected component homeomorphic to
a circle);

(4) the inverse image of δ under the double cover X̃ → X has a
pair of connected components (circles).

The following blend of topological and hyperelliptic information will
be helpful in the sequel. The upperhalf plane in C is a fundamental
domain for the action of complex conjugation τ . Hence points on the
Klein surface 3RP2 = Σ2/τ can be represented by points in the closure
of the upperhalf plane. Consider the northern hemisphere

Ĉ+ ⊂ Ĉ = S2,

with the equator included. We will think of the surface 3RP2 as a
double cover

3RP2 → Ĉ+. (2.8)

The double cover (??) is branched along the equator as well as at three
additional Weierstrass points, corresponding to the points a, b, c of the
usual hyperelliptic cover Σ2 → Ĉ. We also have an analogue of the
hyperelliptic involution, namely the deck transformation

J : 3RP2 → 3RP2, (2.9)

fixing the equator and the three Weierstrass points. Note that the three
remaining Weierstrass points ā, b̄, c̄ ∈ Σ2 are mapped to a, b, c by the
involution τ .

Lemma 2.8. A simple loop ∆ ⊂ Ĉ+ parallel to the equator decomposes
the northern hemisphere into a union of a disk D “north” of ∆ and an
annulus A “south” of ∆:

Ĉ+ = D ∪∆ A, (2.10)

where a, b, c ∈ D (all the branch points of Ĉ+ are in the disk D). The
corresponding decomposition of 3RP2 is

3RP2 = Σ1,1 ∪S1 Mob, (2.11)

where Σ1,1 is the once-holed torus, and Mob, the Möbius band.
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We will refer to this decomposition as the annulus decomposition,
since it is the non-orientable analogue of the decomposition (??), see
Figure ??. In terms of the connected sum notation, the decomposi-
tion (??) corresponds to the topological decomposition 3RP2 = T2#RP2.

∆

•c
•a

•b

Figure 2.1. Klein surface as a hemispherical double cover

The main idea in the proof of the main theorem is to reduce the gen-
eral situation to a case of a metrically controlled annulus decomposition
of the Klein surface, as explained in Proposition ?? below.

3. Reduction to the annulus decomposition

A noncontractible loop on 3RP2 satisfying Bavard’s bound (??) will
be called a Bavard loop.

Proposition 3.1. The Klein surface X = 3RP2 either contains a
Bavard loop, or admits a simple loop δ ⊂ X which separates it as
follows:

X = Σ1,1 ∪δ Mob,

such that moreover

(1) the surface Σ1,1 contains the three Weierstrass points;
(2) the Möbius band Mob contains the equatorial circle;
(3) the loop δ ⊂ X is J-invariant;
(4) the loop δ is of length at most 2CBavard

√
area;

(5) the loop δ double-covers a loop ∆ ⊂ Ĉ+ which lifts to a systolic
loop on a companion torus.

The proposition will be proved in this section. We start with some
preliminary observations. Pulling back the metric to a double cover
results in a metric of twice the area. We therefore obtain the following
lemma.

Lemma 3.2. Given a J-invariant metric on the Klein surface 3RP2,
we have the following relations among the areas of the surfaces appear-
ing in diagram (??):

area(3RP2) = area(S2) = area(K),

as well as the relation area(Σ2) = area(Ta,b) = 2 area(3RP2).

Next, we show that averaging the metric improves the systolic ratio.
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Proposition 3.3. Let Σ be a hyperelliptic orientable double cover of a
Klein surface X. Consider a Riemannian metric on Σ. Then

(1) averaging its metric by the hyperelliptic involution J increases

the systolic ratio sys2

area
of Σ;

(2) averaging its metric by the complex conjugation τ increases the

systolic ratio sys2

area
of Σ;

(3) the ratio disp(τ)2

area
defined in (??) increases under averaging.

Proof. This point was discussed in detail in [?]. We summarize the
argument as follows. Express the metric in terms of a constant curva-
ture metric in its conformal class, by means of a conformal factor f 2.
Thus, in the case of a torus we obtain a metric f 2(p)(dx2 + dy2) at a
typical point p of the torus, where the function f is doubly periodic.
We average the factor f 2 by the hyperelliptic involution J : Σ → Σ,
i.e., we replace f 2(p) by

1

2

(
f 2(p) + f 2(J(p))

)
.

Such averaging preserves the total area of the metric. Similarly, it
preserves the energy of a curve on the surface. Choosing a constant
speed parametrisation of a systolic loop for the original metric, we see
that its energy is preserved under averaging. Hence its length is not
decreased by averaging. Similar remarks apply in the two remaining
cases. �

Given a Klein surface X = 3RP2, we can similarly average the metric
by the hyperelliptic involution (??). Hence we may assume without loss
of generality that the metrics on both 3RP2 and Σ2 are J-invariant.

We now consider a companion Klein bottle K as in Proposition ??.
We will seek to transplant short loops from K to X. A systolic loop
on K is either a 1-sided loop γ, or a 2-sided loop δ (see Lemma ??).

Now consider the real model (??) of Σ2, and its three companion
tori of type (??). For each companion torus, we pass to the quotient
Klein bottle, and find a systolic loop satisfying Bavard’s bound. We
thus obtain three loops δa,b, δb,c, and δa,c. If all three are two-sided,

they lift to loops δ̃a,b ⊂ Ta,b, δ̃b,c ⊂ Tb,c, and δ̃c,a ⊂ Tc,a on the tori.

Let ∆a,b ⊂ Ĉ be the projection of the loop δ̃a,b to the sphere, and

similarly for ∆b,c and ∆c,a. Each loop ∆ ⊂ Ĉ defines a partition of the

6-point set Br(Σ2) ⊂ Ĉ.

Proposition 3.4. Assuming the loops δa,b, etc., are 2-sided, build

the corresponding loops ∆a,b ⊂ Ĉ, etc. Consider the three partitions
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of Br(Σ2) ⊂ Ĉ defined by the three loops ∆ ⊂ S2. If the three parti-
tions are not identical, then there is a Bavard loop on Σ2.

Proof. Consider a Bavard systolic loop δ ⊂ K of a Klein bottle K.
Consider its lift δ̃ ⊂ T to the torus, and the projection ∆ ⊂ Ĉ. If two
such loops are non-homotopic in

S2 \ {Br(Σ2)},
we apply the cut and paste technique of [?] to rearrange segments of
the two loops into a pair of loops that lift to closed paths on the genus 2
surface. One of the lifts is necessarily Bavard. �

Proposition 3.5. If a systolic loop on a companion Klein bottle is 1-
sided, then we can transplant it to the Klein surface 3RP2, which there-
fore satisfies Bavard’s inequality.

Proof. Given a genus 2 surface (??), consider a companion Klein bot-
tle Ka,b = Ta,b/τ . Consider a systolic loop on Ka,b. If a systolic loop γ
is one-sided, then γ lifts to a path connecting a pair of points in an or-
bit of τ on the torus. The proof is completed by combining Lemma ??
and Lemma ?? below. �

Lemma 3.6. Let γ ⊂ K be a 1-sided loop, and let γ̃ ⊂ T be the circle
which is the connected double cover of γ. Then there is a pair of real
points p, τ(p) ⊂ γ̃ which decompose γ̃ into a pair of paths:

γ̃ = γ+ ∪ γ−,
such that each of the paths γ+, γ− projects to a closed curve Γ+, Γ−
on Ĉ.

Proof. Note that γ̃ ⊂ T is invariant under the fixed point-free action
of τ on the torus. The loop γ̃ projects to a loop denoted

Γ ⊂ Ĉ
under the hyperelliptic quotient Q : T → Ĉ. Let R̂ ⊂ Ĉ be the fixed
point set of τ acting on Ĉ. The connected loop Γ ⊂ Ĉ is invariant
under complex conjugation. Therefore it must meet the equator R̂ in
a point p0 ∈ R̂ (see Section ??). Let

Q−1(p0) = {p, τ(p)} ⊂ T.
Note that p0 is a self-intersection point of Γ. It may be helpful to think
of Γ as a figure-eight loop, with its center-point p0 on the equator R̂.

We now view the original loop γ ⊂ K as a path starting at the
image of the point p in K. We lift the path γ to a path γ+ ⊂ T
joining p and τ(p). The path γ+ projects to half the loop Γ ⊂ Ĉ,
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forming one of the hoops of the figure-eight. If we let γ− = τ(γ+), we

can write γ̃ = γ+ ∪ γ−. Thus the loop Γ ⊂ Ĉ is the union of two loops
Γ = Q(γ+) ∪Q(γ−). �

The following lemma refers to the five surfaces appearing in dia-
gram (??).

Lemma 3.7. Let γ+ ⊂ Ta,b be the path constructed in Lemma ??.

Consider the loop Q(γ+) ⊂ Ĉ, and lift it to a path ˜̃γ ⊂ Σ2. Then the
image of ˜̃γ under the covering projection Σ2 → 3RP2 is a closed curve.

Proof. To transplant γ+ to the Klein surface 3RP2, note that the path ˜̃γ ⊂
Σ2 may or may not close up, depending on the position of the third
pair (c, c̄) of branch points of Σ2 → Ĉ. If ˜̃γ is already a loop, then it
projects to a Bavard loop on the Klein surface 3RP2 = Σ/τ . In the
remaining case, the path ˜̃γ connects a pair of opposite points p̃, τ(p̃)
on the surface Σ2, where Q(p̃) = Q(τ(p̃)) = p0. Therefore ˜̃γ projects
to a Bavard loop in this case, as well. �

By Proposition ??, it remains to consider the case when each systolic
loop δ of each of the three companion Klein bottles Ka,b, Ka,c, Kb,c is 2-
sided. Thus each of these Bavard loops δa,b, δa,c, δb,c lifts to a closed

curve δ̃ on the corresponding torus. Let ∆ = Q(δ̃) ⊂ Ĉ = S2 be the
corresponding loop on the sphere.

Lemma 3.8. If ∆ meets the equator, then the original Klein sur-
face 3RP2 contains a Bavard loop.

Proof. Let p0 ∈ ∆ ∩ R̂. Let p, τ(p) ∈ Σ2 be the points above it in Σ2.
We lift the path ∆ starting at p0 to a path δ+ ⊂ Σ2 starting at p. If δ+

closes up, its projection to 3RP2 is the desired Bavard loop. Otherwise,
the path δ+ connects p to τ(p). In this case as well, the path δ+ projects
to a Bavard loop on 3RP2 = Σ2/τ . �

It remains to consider the case when ∆∩ R̂ = ∅. This corresponds to
the annulus decomposition case of Proposition ??, once we show that
the loop is simple in the following lemma.

Lemma 3.9. Let δ̃ be a systolic loop on the torus, and let ∆ = Q(δ̃) ⊂
Ĉ = S2 be the corresponding loop on the sphere. Assume that ∆∩R̂ = ∅.
Then the loop ∆ is simple.

Proof. By hypothesis, the loop ∆ lies in a hemisphere, i.e., one of the
connected components of Ĉ \ R̂. The typical case of a non-simple loop

to keep in mind is a figure-eight curve. Denote by a, b ∈ Ĉ the branch
points with respect to which ∆ has odd winding number. We will
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think of the curve ∆ as defining a connected graph A ⊂ R2 in a plane.
The vertices of the graph are the self-intersection points of ∆. Each
vertex necessarily has valence 4. By adding the bounded “faces” to the
graph, we obtain a “fat” graph Afat (the typical example is the interior
of the figure-eight). More precisely, the complement C\A has a unique
unbounded connected component, denoted E ⊂ C \A. Its complement
in the plane, denoted

Afat = C \ E,
contains both the graph A and its bounded “faces”. Since ∆ has odd
winding number with respect to the branch points a, b of the double
cover Q : T2

a,b → Ĉ, they must both lie inside the connected region Afat:

a, b ∈ Afat.

The boundary of Afat can be parametrized by a closed curve `, thought
of the boundary of the outside component E ⊂ C so as to define an
orientation on ` (in the case of the figure-eight loop, this results in
reversing the orientation on one of the hoops of the figure-eight). Note
that ` ⊂ A is a subgraph. Since both branch points lie inside, the
loop ` had odd winding number with respect to each of the points a
and b. Hence ` lifts to a noncontractible loop on the torus. If ∆ is
not simple, then the boundary of the outside region E is not smooth,
i.e., the loop ` must contain “corners” and can therefore be shortened,
contradicting the hypothesis that δ is a systolic loop. �

4. Improving Gromov’s 3/4 bound

In this section, we will prove the main theorem for n = 3.

Theorem 4.1. Let β =
√

1.333 ' 1.1545. The bound

sys ≤ β
√

area

is satisfied by every metric on Dyck’s surface 3RP2.

The orientable double cover of the hyperbolic Dyck’s surface 3RP2

with the maximal systole was described by Parlier [?]. Silhol [?, ?]
identified a presentation of its affine form:

y2 = x6 + ax3 + 1, a = 434 + 108
√

17.

See also Lelièvre & Silhol [?] and Gendulphe [?]. The maximal sys-

tole on a hyperbolic Dyck’s surface 3RP2 is equal to arccosh 5+
√

17
2

=
2.19 . . . resulting in a systolic ratio of 0.76 . . ..
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To prove Theorem ??, we use the partition 3RP2 = Σ1,1 ∪Mob, as
constructed in Proposition ??. Since we are studying a scale-invariant
systolic ratio, we may and will normalize 3RP2 to unit area:

area(3RP2) = 1.

By Proposition ??, we can assume that the metric on 3RP2 is J-
invariant.

By Proposition ??, our desired bound on the systolic ratio of the
Klein surface 3RP2 = Σ2/τ reduces to the case when the Bavard loops δ

on the companion Klein bottles are 2-sided, but their lifts δ̃ to the
triplet of tori T project to loops ∆ ⊂ Ĉ, where each of the three loops ∆
defines the same partition of the set Br(Σ2) ⊂ Ĉ. By Lemma ??, we

may assume each ∆ lies in the open northern hemisphere Ĉ+, and that
its lift to Σ2 produces a non-closed curve. Thus, we may assume that
each of the simple loops ∆ ⊂ Ĉ separates the six points a, ā, b, b̄, c, c̄
into two triplets (a, b, c) and (ā, b̄, c̄). Hence its connected double cover

in Σ2 is isotopic to the equatorial circle Q−1(R̂) ⊂ Σ2. The latter is a

double cover of the equator R̂ ⊂ Ĉ (see Section ??).

We will start with a few preliminary topological results.

Lemma 4.2. We have sys(3RP2) ≤ 2 dist(Br(3RP2),Eq), where Eq is
the equator of C+.

In particular, if sys(3RP2) ≥ β then

dist(Br(3RP2),Eq) ≥ β
2
. (4.1)

Proof. Every path on Ĉ connecting a branch point to the equator is
double covered by a noncontractible loop in 3RP2. The lemma follows.

�

Definition 4.3. Define Y ⊂ Σ2 as the preimage of Ĉ+ under the
ramified cover Σ2 → Ĉ. Observe that Y is a punctured torus and that
3RP2 = Y/τ by identifying the opposite points on ∂Y by τ .

Lemma 4.4. If sys(3RP2) ≥ β then every arc of Y with endpoints
in ∂Y of length less than 0.6276 is homotopically trivial in π1(Y, ∂Y ).

Proof. Consider a length-minimizing arc c of Y with endpoints in ∂Y
which is not homotopic to an arc of ∂Y keeping its endpoints fixed. The
arc c is a nonselfintersecting geodesic made of two minimizing segments
of the same length meeting at a point x with length(c) = 2 dist(x, ∂Y ).
If c and Jc agree (up to orientation) then the arc c passes through a
Weierstrass point (which agrees with x) and so length(c) ≥ β from (??).
We will therefore suppose otherwise.
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By Proposition ??, the J-invariant simple loop δ ⊂ 3RP2 of length
at most 2CBavard lifts to a J-invariant simple loop in Y with the same
length. This loop will still be denoted by δ.

By construction, the loops δ and ∂Y bound a cylinder in Y . In
particular, the arc c intersects δ at exactly two points by minimality
of c and δ, cf. [?]. These two points decompose c into three subarcs c′,
c1 and c2 with c′ lying in Σ1,1, cf. Figure ??, that is, c = c1 ∪ c′ ∪ c2.
Switching c1 and c2 if necessary, we can assume that c1 is no longer
than c2.

a′ c′ Jc′

c1

c2 Jc1b′

δ ∂Y

c Jc

Figure 4.1. Intersection properties of c and δ

The endpoints of c′ and Jc′, where J is the hyperelliptic involution
on Y , decompose δ into four arcs a′, Ja′, b′ and Jb′, see Figure ??. Since
c and δ are length-minimizing in their homotopy classes, the loop a′∪c′
is noncontractible in 3RP2 and so of length at least β. That is,

length(a′) + length(c′) ≥ β. (4.2)

By construction, the arc c1 ∪ c′ ∪ b′ ∪ Jc1 with symmetric endpoints
induces a noncontractible loop in 3RP2. Indeed, its Z2-intersection
with the projection of ∂Y in 3RP2 is nontrivial. Since the length of
this arc is less or equal to the sum of the lengths of c and b′, we obtain

length(c) + length(b′) ≥ β. (4.3)

On the other hand, we have

length(a′) + length(b′) =
1

2
length(δ)

≤ CBavard (4.4)

Thus, from (??), (??) and (??), we derive

length(c) ≥ 2β − CBavard
2

≥ 0.6276.

�

We can now introduce the following definition.

Definition 4.5. Let Uh be the h-neighborhood of the equator in 3RP2

with

h =
1

2
(β − β−1) ' 0.144211.
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From Lemma ?? (under the assumption that sys(3RP2) ≥ β), the
boundary components of Uh are formed of one loop freely homotopic
to the equator and possibly several other contractible loops. Strictly
speaking, we should first replace h with a nearby regular value of the
distance function from the equator.

Define now Ûh as the union of Uh and the disks bounded by its
contractible boundary components. Note that Ûh is a Möbius band
which does not contain any Weierstrass point from Lemma ??

Proposition 4.6. If sys(3RP2) ≥ β then area(Ûh) ≥ 0.324.

Proof. This area lower bound follows from an estimate due to Blat-
ter [?, ?] and used by Sakai [?]. This is a lower bound for the area
of a Möbius band in terms of its systole and length of path which is
non-homotopic to the boundary, and with endpoints at the boundary
circle. The lower bound equals half the area of a spherical belt formed
by an h-neighborhood of the equator of a suitable sphere of constant
curvature. Here the equator of the suitable sphere has length 2β and
its radius is r = 2β

2π
= β

π
. The antipodal quotient of the spherical belt

is a Möbius band of systole β.
Let γ be the subtending angle γ of the northern half of the belt.

Then γ satisfies

γ =
h

r
=
hπ

β
= hπβ−1 ≥ 0.392403.

(here we use the values h ≥ 0.144211 and β−1 ≥ 0.866133). The height
function is the moment map (Archimedes’s theorem), and hence the
area of the belt is proportional to sin γ ≥ 0.382434. The area of the
corresponding region on the unit sphere is 4π sin γ. Hence the area of

the spherical belt is 4πr2 sin γ = 4πβ2 sin γ
π2 , which after quotienting by

the antipodal map yields a lower bound

area(Ûh) ≥
2β2 sin γ

π
=

2(1.333) sin γ

π
≥ 0.324539,

proving the proposition. �

Let us show that the same lower bound holds for the area of the
Möbius band Mob in 3RP2. For this purpose, we will need the following
result.

Lemma 4.7. If sys(3RP2) ≥ β then length(∆) ≤ β−1.

Proof. Let deq : Ĉ+ → R be the distance function from the equator
of C+ endowed with the metric inherited from 3RP2. The equator is
at distance at least 1

2
β from each of the three isolated branch points
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by Lemma ??. Each noncontractible connected component of the level
curves of deq at distance at most 1

2
β from the equator is longer than ∆.

The coarea inequality gives a lower bound for the area of the strip S
formed by the noncontractible connected components of the level curves
corresponding to distances

h ≤ deq ≤ 1
2
β.

By construction, this strip is disjoint from the projection of Ûh on C+.
If length(∆) ≥ β−1, we obtain the following area lower bound for the

strip:
area(S) ≥ β−1

(
β
2
− h
)

= 1
2
β−2 ≥ 0.374.

Now, the strip S lifts to a region on Σ1,1 of double the area, namely

area at least 0.748, disjoint from Ûh. Combined with the lower bound
of 0.324 for the area of Ûh as in Proposition ??, this gives a total lower
bound

area(3RP2) ≥ 2 area(S) + area(Ûh) ≥ 0.748 + 0.324 = 1.072

for the area of 3RP2, which contradicts the original normalisation
area(3RP2) = 1. �

Proposition 4.8. If sys(3RP2) ≥ β then the loop ∆ is at distance at
least h from the equator. In particular, area(Mob) ≥ 0.324.

Proof. By contraposition, we consider an arc γ of length less than h
connecting ∆ to the equator. By Lemma ??, we have length(∆) ≤ β−1.
Then the path

γ ∪∆ ∪ γ−1

produces a noncontractible loop on 3RP2 of length less than

length(∆) + 2h ≤ β−1 + 2h = β,

proving the first statement of the proposition.
The second statement follows from Proposition ?? since the Möbius

band Mob in 3RP2 contains Ûh. �

We can now proceed to the proof of Theorem ??.

Proof of Theorem ??. Suppose that sys(3RP2) ≥ β. The surface 3RP2

is separated into the union

3RP2 = Σ1,1 ∪Mob,

where area(Σ1,1) ≤ 0.676 and area(Mob) ≥ 0.324 from Proposition ??.
Here, the separating loop is isometric to a circle twice as long as ∆,
and therefore of radius

r =
1

π
length(∆).
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The area of a hemisphere based on such a circle is

2πr2 =
2

π
length(∆)2 ≤ 2β−2

π

by Lemma ??. Attaching the hemisphere to the torus with a disk
removed produces a torus of total area at most 2

πβ2 + 0.676. Applying

Loewner’s bound (??) to the resulting torus, we obtain a systolic loop
of square-length at most

2√
3

(
2

πβ2
+ 0.676

)
≤ 1.333,

proving the theorem. �

5. Other hyperelliptic surfaces

In this section, we prove Theorem ?? in the remaining case n ≥ 4.
Recall that a non-orientable surface is called hyperelliptic if its ori-
entable double cover is.

Proposition 5.1. Let n ≥ 4. Every Riemannian metric from a hyper-
elliptic conformal type on the surface nRP2 satisfies the bound

sys2

area
≤
(

1

4
+
n

8

)−1

.

In particular,
sys2 ≤ 1.333 area .

Proof. Let L = sys(X). Without loss of generality, we can assume that
the hyperelliptic invariant metric on X has the property that the area
of every disk B(R) of radius R with R ≤ L/2 satisfies

area(B(R)) ≥ 2R2, (5.1)

see [?, Lemma 3.5].
For n even with n = 2k ≥ 4, the orientable double cover of the sur-

face X = Σk−1#K is a hyperelliptic surface Σ2k−1 of genus 2k − 1. As

in Lemma ??, the preimage of the equatorial circle R̂ ⊂ Ĉ under the
double cover Σ2k−1 → Ĉ is a pair of disjoint circles. This pair of circles

bounds the preimage Y ⊂ Σ2k−1 of the northern hemisphere Ĉ+ un-
der the previous double cover. The orientation-reversing involution τ
on Σ2k−1 switches the two boundary components of Y . We can ob-
tain X from Y by identifying the pairs of points of ∂Y corresponding
to the orbits of the involution τ . Alternatively, we can define Y by com-
pactifying the open surface X \ π(Fix(J ◦ τ)), where π : Σ2k−1 → X is
the quotient map induced by τ .
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Let γ be a length-minimizing arc of Y joining the two boundary
components of Y . The hyperelliptic involution J takes the endpoints
of the 1-chain γ ∪ (−Jγ) of Y to their opposite. As these endpoints
lie in ∂Y , and since J and τ agree on ∂Y , the previous 1-chain of Y
induces a loop c in X. This loop is noncontractible in X. Indeed, let
X ′ be the complex with fundamental group isomorphic to Z obtained
by collapsing the region of X outside a sufficiently small tubular neigh-
borhood of the equator to a point. By construction, the loop c of X
projects to a loop of X ′ representing twice a generator of π1X

′ ' Z.
Thus, c is noncontractible in X and so of length at least L. We deduce
that the distance between the two boundary components of Y is at
least L

2
. Similarly, the distance between the Weierstrass points of Y

and its boundary components is at least L
2
, see Lemma ??. Likewise,

the distance between any pair of Weierstrass points is at least L
2
. This

shows that the open disks Di of radius L
4

centered at the 2k Weierstrass

points of Y and the open L
4
-tubular neighborhoods, U1 and U2, of the

boundary components of Y are pairwise disjoint.
Now, as in Lemma ??, the level curves at distance at most L

4
from the

boundary components of Y project to curves that separate the isolated
branch points from the equator in Ĉ+. Thus, each of these level curves
has a noncontractible component in X and so is of length at least L.
From the coarea inequality, we deduce that the area of each tubular
neighborhood Uj is at least L2

4
. Since the metric satisfies (??), the area

of Di is at least L2

8
. Adding these lower bounds, we obtain

area(X) ≥
(

1

2
+
n

8

)
L2.

For n odd with n = 2k + 1 ≥ 5, the orientable double cover of X =
Σk#RP2 is a hyperelliptic surface Σ2k of genus 2k. As previously,
the preimage of the equilatorial circle R̂ ⊂ Ĉ under the double cover
Σ2k → Ĉ is a single circle. This circle bounds the preimage Y of
the northern hemisphere Ĉ+ under the previous double cover. The
orientation-reversing involution τ of Σ2k takes the points of ∂Y to their
opposite points. We can obtain X from Y by identifying the pairs of
opposite points of ∂Y .

As previously, the distances between the Weierstrass points of Y
and ∂Y , and between any pair of Weierstrass points are at least L

2
.

Arguing as in the previous case, we deduce from the coarea inequality
that the area of the L

4
-tubular neighborhood of ∂Y is at least L2

4
. Com-

bined with the estimates on the areas of the disjoint disks of radius L
4
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centered at the Weierstrass points of Y , we obtain

area(X) ≥
(

1

4
+
n

8

)
L2,

proving the proposition. �
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Math. France, Paris, 1996.
www.emis.de/journals/SC/1996/1/ps/smf sem-cong 1 291-362.ps.gz

[23] Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces.
Progr. Math. 152, Birkhäuser, Boston, 1999.
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