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February 27, 2013

Abstract

We construct an uncountable family of smooth ergodic zero-entropy diffeo-
morphisms that are pairwise non-Kakutani equivalent, on any smooth compact
connected manifold of dimension greater than two, on which there exists an ef-
fective smooth circle action preserving a positive smooth volume. To that end, we
first construct a smooth ergodic zero-entropy and non-Loosely Bernoulli diffeo-
morphism, by suitably modifying a smooth construction by Anosov and Katok. A
construction of this kind was announced by Katok in 1977 and 1980 [8, p.141], [9,
p.293].

1 Introduction
An important question on the interface between smooth dynamics and abstract ergodic
theory is: what ergodic properties, if any, are imposed upon a dynamical system by
the fact that it should be smooth? [11, p.89] [15, p.232] Only one restriction is known,
which is that the entropy must be finite, because the dimension of the manifold is finite.

The core of the problem is when the invariant measure is smooth, and the manifold
is compact (otherwise, see [10], [2]). No other restriction has been found yet, but exam-
ples have been provided: Brin, Feldman and Katok [5] showed that any compact man-
ifold of dimension greater than one admits a smooth Bernoulli diffeomorphism. Ka-
tok [9] and Rudolph [14] gave examples of smooth non-Bernoulli K-diffeomorphisms.
Ratner [13] showed that the Cartesian square of the horocycle flow is non-Loosely
Bernoulli, thus giving an algebraic (hence analytic) example.

In this paper, we construct an uncountable family of smooth ergodic zero-entropy
diffeomorphisms that are pairwise non-Kakutani equivalent, on any smooth compact
connected manifold of dimension greater than two, on which there exists an effective
smooth circle action preserving a positive smooth volume.

Our construction originates from an example given by Feldman [7], of an ergodic
transformation of zero entropy that is non-Loosely Bernoulli (i.e. non-Kakutani equiv-
alent to an irrational circle rotation). Ornstein, Rudolph and Weiss [12] extended Feld-
man’s construction to obtain an uncountable family of ergodic zero-entropy transfor-
mations that are pairwise non-Kakutani equivalent. Their transformations are discon-
tinuous, they are obtained by "cutting and stacking". The construction given in this
�Contact: mostaphabenhenda@gmail.com. I would like to thank Jean-Paul Thouvenot for communicat-

ing these questions, Sasha Prikhodko for discussion, and Poncelet Laboratory, Moscow, Russia, for hospi-
tality.
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paper corresponds to a smooth version of the construction given by Ornstein, Rudolph
and Weiss. To obtain it, we suitably modify a smooth construction by Anosov and
Katok [1].

In particular, we also obtain a smooth ergodic non-Loosely Bernoulli diffeomor-
phism on any smooth compact connected manifold of dimension greater than two,
on which there exists an effective smooth circle action preserving a positive smooth
volume. This allows to generalize Katok’s result on the existence of a smooth non-
Bernoulli K-diffeomorphism to every manifold of dimension greater than 4 [9, p.293].
This smooth version of Feldman’s transformation has been announced by Katok [8,
p.141], [9, p.293]. However, up to now, it has not been written.

In this paper, we show the theorems:

Theorem 1.1. Let M be a smooth compact connected manifold of dimension d ¥ 2,
on which there exists an effective smooth circle action pS tqtP�1 preserving a positive
smooth measure µ. There exists an ergodic non-Loosely Bernoulli diffeomorphism T P
Diff8pM, µq.

Theorem 1.2. Let M be a smooth compact connected manifold of dimension d ¥ 2,
on which there exists an effective smooth circle action pS tqtP�1 preserving a positive
smooth measure µ. There exists an uncountable family of ergodic diffeomorphisms
Tu P Diff8pM, µq such that if u � v, then Tu and Tv are not Kakutani-equivalent.

First, in sections 2 and 3, we show theorem 1.1, which gives a smooth version of
Feldman’s transformation. In section 4, we show theorem 1.2, by adapting the proof of
Ornstein, Rudolph and Weiss [12, pp. 84-95].

1.1 Main ideas
We recall some definitions found in [7] (we slightly modify the terminology some-
times). We fix an automorphism T of pM,B, µq. Let I be an alphabet of size N and
P � tci, i P Iu a finite measurable partition indexed by this alphabet. For any x P M
and integer n P �, and for any i � 0, ..., n � 1, let ai P I such that T ipxq P cai . The
n-trajectory of x by T with respect to P is the word of length n on the alphabet I given
by: apT, n, xq � a0...an�1, such that , T ipxq P cai (we do not mention the partition
P in the notation when it is fixed once for all). The length of this word is denoted
|apT, n, xq|. The trajectory of x (by T with respect to P) is the infinite word a0a1...
where T ipxq P cai for any i P �.

Let α � a1...an and β � b1...bm be two words on the alphabet I. A match π between
α and β is an injective, order-preserving partial function π : t1, ..., nu Ñ t1, ...,mu such
that for any j in its domain of definition Dpπq � t1, ..., nu, bπp jq � a j. The cardinal of
Dpπq is denoted |Dpπq|. Let Rpπq � π pDpπqq. π is denoted:

π : Dpπq � t1, ..., nu Ñ Rpπq � t1, ...,mu

Let Dpπq � t j1, ..., j|Dpπq|u. We identify Dpπq with the subword a j1 ...a j|Dpπq| of α,
and Rpπq with the subword bπp j1q...bπp j|Dpπq|q of β.

The fit of π, fitpπq is given by:

fitpπq �
|Dpπq|

1
2 pm� nq

Let also
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π�1 : Rpπq � t1, ...,mu Ñ Dpπq � t1, ..., nu

such that π�1pπpiqq � i. Since |Rpπq| � |Dpπq|, then fitpπ�1q � fitpπq.
The distance f̄ pα, βq between α and β is:

f̄ pα, βq � 1�maxtfitpπq, π : αÑ β match u

Since fitpπ�1q � fitpπq for any match π, then f̄ pα, βq � f̄ pβ, αq.
Moreover, if α, β and γ are words of equal length, f̄ pα, γq ¤ f̄ pα, βq � f̄ pβ, γq.
A characterisation of Loosely Bernoulliness in the case of zero entropy is given in

[7, p.22]. In this paper, we rather give a definition of non-Loosely Bernoulliness (nLB)
in the case of zero entropy, because we want to obtain this property.

Definition 1.3. Suppose T has no entropy. T is non-Loosely Bernoulli (nLB) if there
exists ε ¡ 0 and a finite partition P such that, for an infinity of integers n, and for any
A P B, if µpAq ¥ 1� ε, there exists x, y P A, f̄ papT, n, xq, apT, n, yqq ¥ ε.

Our construction is inspired by the example given by Feldman [7] of a transforma-
tion T0 that is ergodic, of zero entropy but non-Loosely Bernoulli. His transformation
is not smooth (not even continuous) and is carried on r0, 1s. He constructs words
(of length Npnq at the nth step) by induction. They are defined by a0,i � ai P I for
i � 0, ...,Np0q � 1, and for n ¥ 0 and i � 0, ...,Npn� 1q � 1:

an�1,i �
�

aNpnq2pi�1q

n,1 ...aNpnq2pi�1q

n,Npnq

	Npnq2pNpn�1q�pi�1qq

T0 is constructed so that, up to minor details, the Npnq-trajectory of points in r0, 1s
are, with equal Lebesgue measure, given by the an,i, i � i, ...,Npnq. Under suitable
assumptions, this property implies that T0 is nLB.

To get a construction looking like Feldman’s, but smooth, we rely on three obser-
vations: first, the f̄ -distance is quite flexible: the fit of a match is a ratio of two lengths,
and therefore, the addition of unknown letters into a word does not sensibly affect its fit
with another word, if the total length of one of the words (or both) is taken sufficiently
large. This property allows to approximate Feldman’s map by smooth maps.

Second, we rely on a phenomenon of "quasi-concatenation" of finite trajectories:
for example, let qn ¡ 0, let ζ � tr0, 1s�ri{qn, pi�1q{qnr, 0 ¤ i ¤ qn�1u the partition
of r0, 1s ��1, S 1

qn
the rotation of angle 1

qn
of r0, 1s ��1. Let w be the qn-trajectory of

0 with respect to S 1
qn

and ζ, and let qn�1 ¡ 0 be an integer that is strictly divided by q2
n.

Let pn�1{qn�1 � 1{qn � 1{qn�1, and σ be the circular permutation on words defined
by: σ : a1a2...ap ÞÑ a2...apa1, where ai, i � 1, ..., p, are letters of a word of length p.
The qn�1-trajectory of 0 by S 1

qn
is:

w
qn�1

q2
n pσpwqq

qn�1
q2
n pσqn�1pwqq

qn�1
q2
n

We assume that q2
n divides qn�1, and not simply that qn divides qn�1, because the

map σ is applied every qn�1{qn iterations, and for convenience, we prefer not to cut a
word in the middle.

If qn�1{qn is sufficiently large, we can neglect the effect of the circular permutation

σ on this trajectory, which fit becomes close to the fit of w
qn�1

qn . This phenomenon is
used to smoothly "quasi-concatenate" words.
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The third observation allows to concatenate different words (the second observation
only allows to concatenate the same word). It consists in introducing a smooth "quasi-
permutation" that allows to permute "tracks" on which rely the "trajectories" of points
by our transformation T . By using quasi-permutations on separated tracks, we can
obtain different trajectories, and thus obtain nLB. This method is possible because the
manifold M has dimension greater than two.

This technique of taking "different tracks" is a novelty with respect to the origi-
nal Anosov-Katok method [1], which does not use dimension two as fully as we do. In
their method, they only use one single "track". Basically, most of their construction can
be carried on a circle. They need dimension two only when they take the limit in the
construction. This approach complicates the coexistence of different trajectories on the
same manifold: indeed, in their method, each trajectory is approximated by periodic
trajectories. At step n�1, we need that the rotation S p1n�1

q1n�1

of the annulus acts on a hori-

zontal partition like a permutation having Npn�1q � qn�1{q1n�1 cycles, each of length
q1n�1. But the main problem is that the cycles are too closely intertwined (figure 1).
This does not allow the convergence of the diffeomorphism Tn�1 � B�1

n�1S p1n�1
q1n�1

Bn�1:

the norm }Bn�1} will be of order qn�1 at least, whereas in order to get a smooth map
at the limit, we need that the series

°
n
}Bn�1}

q1n�1
converges (it is a consequence of a gen-

eralized mean value theorem). In our construction, we put cycles vertically (figure 2),
so that we do not get this problem.

However, we still rely on the core ideas of the Anosov-Katok method: we obtain the
smooth diffeomorphism T as the C8-limit of a sequence Tn � B�1

n S pn
qn

Bn of periodic
diffeomorphisms, with Bn � AnAn�1...A1, An�1S 1

qn
� S 1

qn
An�1 and qn divides qn�1.

Convergence in the C8-norm is possible because Tn�1 is taken very close to Tn:
qn�1 is taken large, so that the distance between S pn�1

qn�1

and S pn
qn

is small with respect

to the norm of the conjugacy }Bn�1}, which norm is related to scale of the smallest
quasi-permutation at step n � 1 (each quasi-permutation has its own scale, different of
others, to allow nLB).

Moreover, in order to get nLB, Tn�1 is also taken very close to Tn: indeed, this
closeness implies that T i

n�1 does not significantly differ with T i
n for i � qn, so that

both transformations give similar i-trajectories. However, these two maps differ when
i ¡¡ qn (typically, when i � qn�1{qn). For example, Tn is qn-periodic but not Tn�1.
This closeness allows approaching Feldman’s construction: Feldman’s maps Tn and
Tn�1 always have the same Npnq-trajectories, these two maps exactly coincide on in-
creasingly larger sets. In our construction, for most points, there are Npn� 1q different
kinds of qn�1-trajectories, obtained by concatenating qn-trajectories in different ways.
Up to a circular permutation of letters, and up to other minor modifications, these qn�1-
trajectories are, for i � 0, ...,Npn� 1q � 1:

an�1,i �

�
a

qn�1
Npnqqn,iqn

n,0 a
qn�1

Npnqqn,iqn

n,1 ... a
qn�1

Npnqqn,iqn

n,Npnq�1


qn,i

(1)

The parameters qn,i are suitably chosen to get nLB: an important characteristic of
this choice is that qn    qn,i    qn,i�1    ...    qn�1.

In section 2, we construct Tn on r0, 1s � �. In section 3, we show that the limit T
is smooth, nLB and ergodic. In subsections 3.3.2 and 3.3.3, we extend the construction
to the cases of r0, 1sd�1 � � and more general manifold M. In section 4, we gener-
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Figure 1: If we take a horizontal partition of r0, 1s � �1, the three cycles are too
intertwined. This is an obstacle for the convergence of Tn � B�1

n S p1n
q1n

Bn towards a

smooth map.

alize the construction to an uncountable family of pairwise non-Kakutani equivalent
diffeomorphisms. Various figures illustrate the construction.

In all the paper, f denotes an explicit function of its variables. The expression
of this function can vary from one estimate to the other, but we still denote all these
estimating functions in the same way.

2 Construction of the transformation Tn

2.1 Smooth quasi-permutations
We introduce smooth quasi-permutations, which are the main tool for the construction
of the map T .

Proposition 2.1. Let a   b and c   d be real numbers such that d � c   b � a.
Let a   a1   pa � bq{2, b1 � a � b � a1, 0   ε   minppa1 � aq{2, pd � cq{2q. Let
τu be the translation of vector pu, 0q. There exists a smooth measure-preserving map
φpa, b, c, d, a1, εq : ra, bs � rc, ds and a fixed numerical function f such that (see figure
3):

φ|ra,bs�rc,ds�pra�ε{2,b�ε{2s�rc�ε{2,d�ε{2sq � id

5



Figure 2: If we take a vertical partition of r0, 1s��1, having to deal with three cycles is
no longer an obstacle for the convergence of the periodic map Tn � B�1

n S pn
qn

Bn towards
a smooth map.
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φ|ra1�ε,b1�εs�rc�ε,d�εs � id

φ|ra�ε,a1�εs�rc�ε,d�εs � τb1�a

φ|rb1�ε,b�εs�rc�ε,d�εs � τa�b1

}φ}n ¤ f pn, a, b, c, d, a1, εq

Remark 2.2. Assumptions given in this proposition are not the most general in order
to define a quasi-permutation. However, they will be easier to write the construction,
allowing to avoid writing some unessential technical details.

Remark 2.3. The estimating function f pn, a, b, c, d, a1, εq could be explicitly deter-
mined, but we do not need its expression in this paper.

The norm of the Cn-norm of φ is denoted with }φ}n. The set where }Dφ}n � 1,
which includes ra1� ε, b1� εs � rc� ε, d� εs Y ra� ε, a1� εs � rc� ε, d� εs Y rb1�
ε, b� εs � rc� ε, d� εs Y ra, bs � rc, ds � pra� ε{2, b� ε{2s � rc� ε{2, d� ε{2sq is
called safe zone. The set where }φ}n � 1 is called turbulence zone.

The basic phenomenon that we use is the following: let S t be the rotation flow on
�, 0   a   b   1, 0   c   d   1, x � pu, vq. We have: S tpu, vq � pu, v� tq.

Let A : � ý such that A|ra,bs�rc,ds � φpa, b, c, d, a1, εq, where φpa, b, c, d, a1, εq is
the quasi-permutation defined in proposition 2.1, and such that A � id elsewhere. Let
Rpxq � A�1S tApxq. We have:

1. If u R ra, bs, then Rpxq � S tpxq.

2. If u P ra� ε, a1� εs, v ¤ c and c� ε ¤ v� t ¤ d� ε, then Rpxq � τb1�a � S tpxq.

3. If u P rb1� ε, b� εs, v ¤ c and c� ε ¤ v� t ¤ d� ε, then Rpxq � τa�b1 � S tpxq.

4. If u P ra1 � ε, b1 � εs, v ¤ c and c� ε ¤ v� t ¤ d � ε, then Rpxq � S tpxq.

Observe also that, since R2pxq � A�1S tAA�1S tApxq � A�1S 2tApxq, then if we
take x inside a safe zone, and if some iterate of x by R falls inside the turbulence
zone, then if we iterate enough by R, we get back into a safe zone, as if we went there
directly, i.e. as if we never crossed turbulences. So even if we lose the trajectory of x
into a turbulence zone, we recover it after sufficient iterations. Therefore, if turbulence
zones are sufficiently thin, we can control most of the trajectory of x.

On the other hand, if x belongs to a turbulence zone, we cannot control its trajectory
by R.

Proof of proposition 2.1. We recall the following proposition, which is found in [6, 4,
3] in a slightly modified version:

Proposition 2.4 ([6]). For any η ¡ 0, there exists a smooth measure-preserving map
φpηq : r0, 1s2 ý such that:

φpηq|rη,1�ηs2 � Rpπ, p1{2, 1{2qq

7



Figure 3: A quasi-permutation: it permutes the two lateral boxes, and keeps the central
one fixed.

where Rpπ, p1{2, 1{2qq denotes the rotation of angle π and center p1{2, 1{2q,

φpηq|r0,1s2�prη{2,1�η{2s2q � id

}φpηq}n ¤ f pn, ηq

Remark 2.5. In [6, 4, 3], the angle of the rotation is π{2, whereas the angle here is π.
Let p ¥ 1 and

Cp : r0, 1s �
�
0, 1

p

�
Ñ r0, 1s � r0, 1s

px, yq ÞÑ px, pyq

Let φpη, pq � C�1
p φpηqCp. The map φpη, pq : r0, 1s �

�
0, 1

p

�
ý is smooth and

measure-preserving. By the Faa-di-Bruno formula,

}φpη, pq}n ¤ f pn, η, pq

By composing φpη, pqwith translations and homotheties, there exists φ1pa, b, c, d, εq :
ra, bs � rc, dsý such that:

φ1
|ra,bs�rc,ds�pra�ε{2,b�ε{2s�rc�ε{2,d�ε{2sq � id

φ1
|ra�ε{2,b�ε{2s�rc�ε{2,d�ε{2s � R

�
π,

�
a� b

2
,

c� d
2




}φ1}n ¤ f pn, a, b, c, d, εq

there exists φ2pa, b, c, d, a1, εq : ra, bs � rc, dsý such that

φ2
|ra1�ε,b1�εs�rc�ε,d�εs � R

�
π,

�
a� b

2
,

c� d
2




and φ2 � id on ra, bs � rc, ds � pra1, b1s � rc� ε{2, d � ε{2sq

}φ2}n ¤ f pn, a, b, c, d, εq
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there exists φ3pa, b, c, d, a1, εq : ra, bs � rc, dsý such that

φ3
|ra�ε,a1�εs�rc�ε,d�εs � R

�
π,

�
a� a1

2
,

c� d
2




and φ3 � id on ra, bs � rc, ds � pra� ε{2, a1s � rc� ε{2, d � ε{2sq

}φ3}n ¤ f pn, a, b, c, d, εq

and there exists φ4pa, b, c, d, a1, εq : ra, bs � rc, dsý such that

φ4
|rb1�ε,b�εs�rc�ε,d�εs � R

�
π,

�
b� b1

2
,

c� d
2




and φ4 � id on ra, bs � rc, ds � prb1, bs � rc� ε{2, d � ε{2sq

}φ4}n ¤ f pn, a, b, c, d, εq

We let φ � φ4 � φ3 � φ2 � φ1. We have:

φ|ra,bs�rc,ds�pra�ε{2,b�ε{2s�rc�ε{2,d�ε{2sq � id

φ|ra1�ε,b1�εs�rc�ε,d�εs � id

φ|ra�ε,a1�εs�rc�ε,d�εs � τb1�a

φ|rb1�ε,b�εs�rc�ε,d�εs � τa�b1

}φ}n ¤ f pn, a, b, c, d, a1, εq

�

2.2 Definition of Tn

Figures 4, 5 and 6 illustrate the definition. We define Tn in the case M � r0, 1s ��. In
subsections 3.3.2 and 3.3.3, we extend the construction to the general case.

For n ¥ 0, let Npnq ¥ 2 be a sequence of integers. Additional assumptions on
Npnq appear in corollary 3.7 of the next section, to get nLB of the limit T . Let Nn �±n

k�0 Npkq, N�1 � 1. Let strictly positive integers qn, qn,0, ..., qn,Npn�1q�1 such that
qn divides qn,0, for i � 0, ...,Npn � 1q � 2, qn,i divides qn,i�1, and Npnqqnqn,Npn�1q�1
divides qn�1. Additional assumptions on the qn,i appear in corollary 3.7, in order to get
nLB of the limit T .

For i � 0, ..,Npn�1q�1, j � 0, ...,Nn�1�1, j1 � 0, ...,Nn�1�1, y � 0, ...,Npnq�1,
x � 0, ..., tpNpnq � yq{2u, if p j � j1q{Nn�1   1 then we define (by using notations of
proposition 2.1):

An�1pi, j, j1, x, yq :
�

j
Nn�1

�
i

Nn�1
�

�
x

Nn
,

Npnq � x � y
Nn

�
1

Nn�1
�

j1

Nn�1

�

�

�
j1

qn,iNn
�

�
y

qn,iNpnq
,

y
qn,iNpnq

�
1

qn,iNn

�

ý
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pu, vq ÞÑ
�

j
Nn�1

�
i

Nn�1
,

j1

qn,iNn



�

φ

�
x

Nn
,

Npnq � x � y
Nn

�
1

Nn�1
�

j1

Nn�1
,

y
qn,iNpnq

,
y

qn,iNpnq
�

1
qn,iNn

,
x

Nn
�

1
Nn�1

, εn�1



pu, vq

if p j� j1q{Nn�1 ¥ 1 then we define (by using notations of proposition 2.1):

An�1pi, j, j1, x, yq :
�

j
Nn�1

�
i

Nn�1
�

�
Npnq � x � y

Nn
�

j1

Nn�1
,

x
Nn

�
1

Nn�1

�

�

�
j1

qn,iNn
�

�
y

qn,iNpnq
,

y
qn,iNpnq

�
1

qn,iNn

�

ý

pu, vq ÞÑ
�

j
Nn�1

�
i

Nn�1
,

j1

qn,iNn



�

φ

�
Npnq � x � y

Nn
,

x
Nn

�
1

Nn�1
�

j1

Nn�1
,

y
qn,iNn

,
y

qn,iNpnq
�

1
qn,iNn

,
Npnq � x � y

Nn
�

1
Nn�1

, εn�1



pu, vq

We distinguish the cases p j � j1q{Nn�1   1 and p j � j1q{Nn�1 ¥ 1, because if
p j� j1q{Nn�1 ¥ 1, then j

Nn�1
� i

Nn�1
�

Npnq�x�y
Nn

� 1
Nn�1

� j1

Nn�1
¡ 1.

We briefly explain the different roles played by the indices i, j, j1, x, y: the index i
is used to label the Npn � 1q different qn�1-trajectories. The parameters x, y serve to
concatenate the Npnq different qn-trajectories in the right order and everywhere. The
parameters j, j1 serve to connect the different ergodic components of Tn properly, to get
ergodicity of the limit transformation T .

We extend An�1pi, j, j1, x, yq to

Epiq �
Nn�1�1¤

j�0

Nn�1� j�1¤
j1�0

Npnq�1¤
y�0

tpNpnq�yq{2u¤
x�0�

j
Nn�1

�
i

Nn�1
�

�
x

Nn
,

Npnq � x � y
Nn

�
1

Nn�1
�

j1

Nn�1

�

�

�
j1

qn,iNn
�

�
y

qn,iNpnq
,

y
qn,iNpnq

�
1

qn,iNn

�
¤
Nn�1�1¤

j�0

Nn�1�1¤
j1�Nn�1� j

Npnq�1¤
y�0

tpNpnq�yq{2u¤
x�0�

j
Nn�1

�
i

Nn�1
�

�
Npnq � x � y

Nn
�

j1

Nn�1
,

x
Nn

�
1

Nn�1

�

�

�
j1

qn,iNn
�

�
y

qn,iNpnq
,

y
qn,iNpnq

�
1

qn,iNn

�

by identity. Then, on each Epiq, i � 0, ..,Npn� 1q � 1, we define:

An�1piq � �
Nn�1�1
j�0 �

Nn�1�1
j1�0 �

Npnq�1
y�0 �

tpNpnq�yq{2u
x�0 An�1pi, j, j1, x, yq

The order in which we compose the maps An�1pi, j, j1, x, yq affects the definition of
An�1piq, because their support are not disjoint: their turbulence zones have intersections
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on sets of small measure. However, this order does not matter for the properties of
An�1piq that we seek.

We extend An�1piq to Epiq�p0, l{qn,iq, l � 0, ..., qn,i�1 by 1{qn,i-equivariance, i.e.:

An�1piqpu, v� l{qn,iq � An�1piqpu, vq � p0, l{qn,iq

The parameter i was sorted out because the qn,i depend on i.
Finally, on r0, 1s � �, we define: An�1 � �

Nn�1�1
i�0 An�1piq.

Again, the order of composition of the maps An�1piq matters for the definition, but
not for the properties that we seek.

Let Bn � An� ...�A0 and Tn � B�1
n S pn

qn
Bn. This defines Tn. In corollary 3.7, we add

assumptions on qn, Npnq and qn,i to obtain that Tn converges towards a smooth, nLB
and ergodic transformation T . T will have zero entropy as the limit of maps conjugated
to rotations.

3 Properties of the transformation T

3.1 Convergence of Tn towards a smooth map T

Showing the convergence of Tn towards a smooth map T is classical (see e.g. [1, 6]). By
construction, there exists fprecgcepn, qn,Nn�1, qn,Npn�1q�1, εn�1q such that }Bn�1}n�1 ¤
fprecgcepn, qn,Nn�1, qn,Npn�1q�1, εn�1q. By the Cauchy criterion, it suffices to show that°

n¥0 dnpTn�1,Tnq converges. We combine the fact that An�1 commutes with S 1
qn

, the
estimation of Bn�1 and the fact that pn�1{qn�1 � pn{qn�1{qn�1. We recall the lemma
[6, p.1812]:

Lemma 3.1. Let k P �. There is a constant Cpk, dq such that, for any h P DiffpMq,
α1, α2 P �, we have:

dkphS α1 h�1, hS α2 h�1q ¤ Cpk, dq}h}k�1
k�1|α1 � α2|

Since Tn � B�1
n S pn

qn
Bn � B�1

n�1S pn
qn

Bn�1 (because An�1 commutes with S 1
qn

), and

since, for n ¥ 2, }φn}n�1 ¤ qR1pnq
n for a sequence R1pnq independent of qn (because

qn ¥ 2 for n ¥ 2), we obtain, for a fixed sequence fcgcepn, qn,Nn�1, qn,Npn�1q�1, εn�1q:

dnpTn�1,Tnq � dnpB�1
n�1S pn�1

qn�1

Bn�1, B�1
n�1S pn

qn
Bn�1q

¤ Cpk, dq}Bn�1}
n�1
n�1

���� pn�1

qn�1
�

pn

qn

���� ¤ fcgcepn, qn,Nn�1, qn,Npn�1q�1, εn�1q

���� pn�1

qn�1
�

pn

qn

����
For a sufficiently increasing sequence qn, this last estimate guarantees the conver-

gence of Tn in the smooth topology.
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Figure 4: Domains of the different trajectories for the first three iterations of the con-
struction, with Npkq � 2, k � 0, ..., 3. Some quasi-permutations are represented in
dotted lines.
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Figure 5: Representation of A1 and partial representation of A2 (dashed lines), with
Npkq � 2, k � 0, ..., 2. The rectangle pi, jq is quasi-permuted with the rectangle p j, iq
of the same height. In particular, Al (l � 1, 2) is the identity on pi, iq.
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Figure 6: Partial representation of A1, with Np0q � 4 and Np1q � 2. The rectan-
gle pi, jq is quasi-permuted with the rectangle p j, iq of the same height. Some quasi-
permutations are represented in dotted lines.
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3.2 T is non-Loosely Bernoulli
To get nLB, the idea is that the two words aaaabbbb and abababab are far from each
other in the f̄ -distance.

We fix the partition: P �
!

c j �
�

j
Np0q ,

j�1
Np0q

�
� �1, j � 0, ...,Np0q � 1

)
The aim of this subsection is to show the following proposition, which is slightly

stronger than the nLB property:

Proposition 3.2. For any ε ¡ 0, there exists T P Diff8p�q such that for any A P B
such that µpAq ¡ 2ε, there exists n0 ¥ 0 such that for any n ¥ n0, there exists x, y P A
such that f̄ papT, qn, xq, apT, qn, yqq ¥ 1� 3ε.

First, we show that it suffices to consider qn-trajectories by Tn, instead of consider-
ing qn-trajectories by T .

Lemma 3.3. For any ε ¡ 0, there exists a numerical map fnlbpε, n, qn,Nn�1, qn,Npn�1q�1, εn�1q ¥
fcgcepn, qn,Nn�1, qn,Npn�1q�1, εn�1q, there exists Enlb � � such that µpEnlbq ¥ 1 � ε,
and such that for any n P �, if qn�1 ¥ fnlbpε, n, qn,Nn�1, qn,Npn�1q�1, εn�1q, then for
any x P Enlb the qn-trajectory of x by Tn is the same as the qn-trajectory of x by T .

Proof. Let fnlbpε, n, qn,Nn�1, qn,Npn�1q�1, εn�1q ¥ fcgcepn, qn,Nn�1, qn,Npn�1q�1, εn�1q ¥
2nqn such that, if qn�1 ¥ fnlbpε, n, qn,Nn�1, qn,Npn�1q�1, εn�1q, then for any m P �,

¸
n¥m

fcgcepn, qn,Nn�1, qn,Npn�1q�1, εn�1q

qn�1
¤

ε

q2
mNp0q2m�1

Remark that as far as qn�1 ¥ 2nqn, fnlb does not depend on the qp, p ¥ n�1. Since

dpT,Tmq ¤
¸

n¥m

fcgcepn, qn,Nn�1, qn,Npn�1q�1, εn�1q

qn�1

then
dpT,Tmq ¤

ε

q2
mNp0q2m�1

Therefore, for 0 ¤ i ¤ qn � 1,

d0pT i,T i
mq ¤

ε

qmNp0q2m�1 (2)

Moreover, for any F,G continuous and measure-preserving transformations, and
A P B,

µ pFpAq XGpAqq ¥ µpAq � µ
�
FpAq f̄GpAq

�
¥ µpAq � d0pF,Gq (3)

Now, let

Enlb �
£
n¥0

qn�1£
i�0

��Np0q�1¤
j�0

T�i
n c j X T�ic j

��
Since, by (3),

µ
�
T�i

n c j X T�ic j
�
¥ µpc jq � dpT�i

n ,T�iq
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and since T�ic j X T�ic j1 � H if j � j1, then

µ

��Np0q�1¤
j�0

T�i
n c j X T�ic j

�� Np0q�1¸
j�0

µ
�
T�i

n c j X T�ic j
�

¥

Np0q�1¸
j�0

µpc jq � dpT�i
n ,T�iq ¥ 1�

ε

qn2n�1

Moreover, for any A, B P B, εA, εB ¥ 0 such that µpAq ¥ 1� εA and µpBq ¥ 1� εB,
we have:

µpAX Bq � µpAq � µpBq � µpAY Bq ¥ 1� pεA � εBq (4)

Therefore,

µpEnlbq ¥ 1�
¸
n¥0

qn�1̧

i�0

ε

qn2n�1 � 1� ε

Finally, if x P Enlb, then for any n P �, for any i � 0, ..., qn � 1, there exists
j � 0, ...,Np0q � 1 such that x P T�i

n c j X T�ic j. Therefore, T i
nx P c j and T ix P c j.

Therefore, x has the same qn-trajectory by Tn and by T .
�

Second, we show that the trajectory by Tn of most points is well approximated by
the "theoretical" trajectories an,i, defined in (1).

Let η0 � 0, and for any n ¥ 1, let

ηn � 2
n�1̧

k�0

εk�1Nk�1 max
0¤i¤Npk�1q�1

qk,i�
1

min0¤i¤Npk�1q�1 qk,i
� max

0¤i¤Npk�1q�1

Npkq2q2
kqk,i

qk�1

and

Esafepnq �
n£

k�0

safe pAkq

We have the lemma:

Lemma 3.4. We have a partition Esafepnq � tc0pnq, ..., cNpnq�1pnqu such that for any
i � 0, ...,Npnq � 1, ����µpcipnqq �

1
Npnq

���� ¤ µ pturbpBnqq

and for any x P cipnq,
f̄ papTn, qn, xq, an,iq ¤ ηn

Proof. The proof is by induction on n. If n � 0, Esafep0q � �. Moreover, apT0, q0, xq �
ix, where ix P I is such that x P cix . Therefore, apT0, q0, xq � a0,ix , and f̄ papT0, q0, xq, a0,ixq ¤
η0 � 0.

Suppose the lemma holds at step n, and let x P Esafepn�1q. Since safepAnq is stable
by An, then Esafepn � 1q � safe pBn�1q, and therefore, x P safe pBn�1q. By construc-
tion, up to a circular permutation, x has Npn�1q possible types of qn�1-trajectories (i.e.
Npn�1q if we neglect turbulences, otherwise there are Nn�1 possible qn�1-trajectories),
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depending on which "track" it stands. We denote these (non-connected) elements of
this partition c0pn� 1q, ..., cNpn�1q�1pn� 1q. We have:����µpcipn� 1qq �

1
Npn� 1q

���� ¤ µ pturbpBn�1qq

We show the second estimate. By construction, up to a circular permutation, any y P
Esafepnq � safe pBnq has Npnq possible types of qn-trajectories by Tn. We denote them
an,i,eff, with i � 0, ...,Npnq � 1. Labels i of an,i,eff are chosen such that, by induction
assumption, f̄ pan,i,eff, an,iq ¤ ηn. an,i,eff is the "effective" trajectory: it corresponds to
an "ideal" trajectory an,i perturbed by turbulences coming from Bn. These turbulences
depend on the point y, and for better precision, we could write an,i,effpyq.

First, we neglect turb pAn�1q (we suppose it infinitely thin). By construction, the
qn�1-trajectory of x, an�1,i,neg (for 0 ¤ i ¤ Npn� 1q � 1) is of the form:

an�1,i,negl � σu

����σl0pan,0,effq
� qn�1

Npnqqn,iqn
...
�
σlNpnq�1pan,Npnq�1,effq

� qn�1
Npnqqn,iqn

� qn,i
qn

...

��
σqn�1�l0pan,0,effq

� qn�1
Npnqqn,iqn

...
�
σqn�1�lNpnq�1pan,Npnq�1,effq

� qn�1
Npnqqn,iqn

� qn,i
qn

��
for some integers u, l0, ..., lNpnq�1. In particular, at y fixed, there are only Npnq

possible words an,i,effpyq, i � 0, ...,Npnq�1 that compose the qn�1-trajectory of y in the
formula above. Turbulences coming from Bn are the same in all these words. This fact
is important for the construction of the uncountable family of pairwise non-Kakutani
equivalent diffeomorphisms.

For all i � 0, ...,Npn� 1q � 1, let also:

an�1,i,semeff �
�

a
qn�1

Npnqqn,iqn

n,0,eff a
qn�1

Npnqqn,iqn

n,1,eff ... a
qn�1

Npnqqn,iqn

n,Npnq�1,eff


qn,i

(the index "semeff" is for "semi-effective": an�1,i,semeff is halfway between the
"effective" trajectory an�1,i,eff and the "ideal" trajectory an�1,i). Moreover, for any
integer N ¥ 2, integer k, and word a, σkpaNq � a1aN�2a2, where a1 and a2 are words
such that |a1| � |a2| � |a|. Therefore,

f̄ paN , σkpaNqq ¤ 1�
pN � 2q|a|

N|a|
�

2
N

(5)

Therefore,

f̄
�

an�1,i,neg, σu
�
an�1,i,semeff

�	
¤

2Npnq2q2
nqn,i

qn�1
(6)

Now, we take into account turb pAn�1q. The qn�1-trajectory of x crosses turbu-
lences from quasi-permutations making up its own trajectory, but also from quasi-
permutations making up other trajectories (see figure 4). Therefore, it crosses at most

2Nn�1 max0¤i¤Npn�1q�1 qn,i turbulence zones (the factor 2 is because we cross one
turbulence zone to get in and another to get out), each of width εn�1. Therefore,
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f̄
�
apTn�1, qn�1, xq, an�1,i,neg

�
¤ 2εn�1Nn�1 max

0¤i¤Npn�1q�1
qn,i (7)

To conclude the proof, we also need the lemma:

Lemma 3.5. Let a, b, a1, b1 words such that |a| � |b| � |a1| � |b1|. We have:

f̄ pab, a1b1q ¤
1
2

�
f̄ pa, a1q � f̄ pb, b1q

�
By applying lemma 3.5 and the induction assumption, for any integer u, we get:

f̄ pσupan�1,i,semeffq, σ
upan�1,iqq � f̄ pan�1,i,semeff, an�1,iq ¤ max

0¤ j¤Npnq�1
f̄ pan, j,eff, an, jq ¤ ηn

(8)
Moreover, by estimation (5),

f̄ pσupan�1,iq, an�1,iq ¤
2

qn,i
(9)

Therefore, by combining estimates (6), (7), (8), (9), we get:

f̄ papTn�1, qn�1, xq, an�1,iq ¤ f̄
�
apTn�1, qn�1, xq, an�1,i,neg

�
� f̄

�
an�1,i,neg, σu

�
an�1,i,semeff

�	
� f̄ pσupan�1,i,semeffq, σ

upan�1,iqq

� f̄ pσupan�1,iq, an�1,iq ¤ 2εn�1Nn�1 max
0¤i¤Npn�1q�1

qn,i�
2Npnq2q2

nqn,i

qn�1
�ηn� max

0¤i¤Npn�1q�1

2
qn,i

Therefore,

f̄ papTn�1, qn�1, xq, an�1,iq ¤ ηn�1

Proof of lemma 3.5. Let πa : a Ñ a1 and πb : b Ñ b1 two matches. Let π : ab Ñ a1b1

defined by π|a � πa and π|b � πb. π is a match because πa and πb are matches (it is an
order-preserving, injective function). Moreover,

fitpπaq�fitpπbq �
|Dpπaq|

1
2 p|a| � |a1|q

�
|Dpπbq|

1
2 p|b| � |b1|q

� 2
|Dpπaq| � |Dpπbq|

1
2 p|a| � |a1| � |b| � |b1|q

� 2fitpπq

Moreover, fitpπq ¤ 1 � f̄ pab, a1b1q. By taking the maximum on possible fits of πa

and πb in the previous equality, we get: 1� f̄ pa, a1q�1� f̄ pb, b1q ¤ 2
�
1� f̄ pab, a1b1q

�
.

Hence lemma 3.5.
�

�

To get nLB, it remains to give a lower bound on f̄ pan�1,i, an�1, jq, when i � j. Our
method is analogous to [7, p. 34].

Let

un � max
!

fitpπq{ π : ar
n,i Ñ as

n, j match, r, s P �, 0 ¤ i   j ¤ Npnq � 1
)

For i � 0, ...,Npn � 1q � 1, let rn�1,i �
qn�1

Npnqqn,iqn
, and for j � 0, ...,Npn � 1q � 1,

j ¡ i, let λn,i, j � qn, j{qn,i. Note that since j ¡ i, λn,i, j is a positive integer.
We show the slightly stronger lemma:

18



Lemma 3.6. We have:

un�1 ¤

�
un �

2
Npnq


�
1� max

0¤i  j¤Npn�1q�1

2Npnq
λn,i, j


�
1� max

0¤i  j¤Npn�1q�1

2λn,i, j

rn�1,i



Corollary 3.7. If Npnq ¥ 2n�3{ε, and if for any 0 ¤ i   j ¤ Npn � 1q � 1, λn,i, j ¥
2n�5Npnq, and rn�1,i ¥ 2n�5λn,i, j, then for any r, s ¡ 0,

f̄ par
n,i, a

s
n, jq ¥ 1� ε

Proof of lemma 3.6. We denote λ � λn,i, j. We have:

ar
n�1,i �

�
arn�1,i

n,0 ...arn�1,i

n,Npnq�1

	qn,ir

as
n�1, j �

�
a

rn�1,i
λ

n,0 ...a
rn�1,i

λ

n,Npnq�1


qn,i sλ

For l � 0, ...,Npnq � 1, let αn,l � a
rn�1,i

λ

n,l .
We can write:

ar
n�1,i �

�
αλn,0...α

λ
n,Npnq�1

	qn,ir
� ᾱλn,0...ᾱ

λ
n,Npnqqn,ir�1

Let
π : Dpπq � ar

n�1,i Ñ Rpπq � as
n�1, j

be a match. For l � 0, ...,Npnqqn,ir � 1, letDpπql � Dpπq X ᾱλn,l (i.e. Dpπql is the part
of the wordDpπq that is included in the subword ᾱλn,l of ar

n�1,i). We have:

Dpπq � Dpπq0...DpπqNpnqqn,ir�1

Let Rpπql � πpDpπqlq. We can write:

as
n�1, j � an�1, j,0...an�1, j,Npnqqn,ir�1

such that Rpπql � an�1, j,l, for l � 0, ...,Npnqqn,ir � 1.
Let

πl : Dpπql � ᾱλn,l Ñ Rpπql � an�1, j,l

be a match, with πl � π|Dpπql . We have: Dpπlq � Dpπql.
an�1, j,l is of the form:

an�1, j,l � α̃lpαn,0...αn,Npnq�1q
tlpαl

with tl ¥ 0, and such that max p|α̃l|, |pαl|q ¤ Npnq|αn,0|.
Moreover, we have fitpπlq � fitpπ�1

l q because |Dpπlq| � |Rpπlq|. We have:

π�1
l : Rpπlq � α̃lpαn,0...αn,Npnq�1q

tlpαl Ñ Dpπlq � ᾱλn,l

Let
π̃�1

l : Rpπlq � pαn,0...αn,Npnq�1q
tl�2 Ñ Dpπlq � ᾱλn,l

such that π̃�1
l � π�1

l (we just extend the domain (not the "domain of definition")
of the function π�1

l ).
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Like previously, we can write: pαn,0...αn,Npnq�1q
tl�2 � ᾱn,0...ᾱn,ptl�2qNpnq�1.

Moreover, let Rpπlqp � Rpπlq X ᾱn,p, for p � 0, ...,Npnqptl � 2q � 1. We have:

Rpπlq � Rpπlq0...RpπlqNpnqptl�2q�1

LetDpπlqp � π�1
l rRpπlqps.

We can also write:
ᾱλn,l � αn,l,0...αn,l,ptl�2qNpnq�1

for l � 0, ...,Npnqqn,ir � 1, with αn,l,p such thatDpπlqp � αn,l,p. Moreover, since

|Dpπlqp| � |Rpπlqp| ¤ |ᾱn,p| � |αn,0|

we can choose αn,l,p such that, if l � p mod Npnq, |αn,l,p| ¤ |αn,0|.
Let

πl,p : Rpπlqp � ᾱn,p Ñ Dpπlqp � αn,l,p

αn,l,p is of the form αn,l,p � ãau
n,lpa. with max p|ã|, |pa|q ¤ |an,l| � qn. We have:

Dpπl,pq � Rpπlqp

We have:
πl,p : Dpπl,pq � ᾱn,p � a

rn�1,i
λ

n,p Ñ Rpπl,pq � ãau
n,lpa

Let
π̃l,p : Dpπl,pq � a

rn�1,i
λ

n,p Ñ Rpπl,pq � au�2
n,l

Let 0 ¤ p1   Npnq such that p1 � p mod Npnq and 0 ¤ l1   Npnq such that l1 � l
mod Npnq.

If p1   l1, then fitpπ̃l,pq ¤ un, by induction hypothesis.
If p1 ¡ l1, then we can apply the induction hypothesis to pπ̃l,pq

�1, and therefore,
fitpπ̃l,pq � fitpπ̃�1

l,p q ¤ un.
If p1 � l1, then fitpπ̃l,pq ¤ 1 (i.e. we cannot say anything).

Now, let us relate fits of π̃l,p, πl,p, π̃
�1
l , πl and π. First, we relate fits of πl,p and π̃l,p.

We have:

fitpπ̃l,pq �
2|Dpπl,pq|� rn�1,i

λ
� u� 2

�
|an,l|

and on the other hand:

fitpπl,pq �
2|Dpπl,pq|

rn�1,i

λ
|an,l| � u|an,l| � |ã| � |pa| ¤ 2|Dpπl,pq|

p
rn�1,i

λ
� uq|an,l|

Therefore,

fitpπl,pq ¤

rn�1,i

λ
� u� 2

rn�1,i

λ
� u

fitpπ̃l,pq ¤

�
1�

2
rn�1,i

λ
� u

�
fitpπ̃l,pq

Since u ¥ 0, we get:

fitpπl,pq ¤

�
1�

2λ
rn�1,i



fitpπ̃l,pq (10)

We relate fits of πl,p and π̃�1
l . We have:
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fitpπl,pq �
2|Dpπl,pq|

|ᾱn,p| � |αn,l,p|

Therefore,

Npnqptl�2q�1¸
p�0

|Dpπl,pq| �
1
2

Npnqptl�2q�1¸
p�0

fitpπl,pq r|ᾱn,p| � |αn,l,p|s

If p � l mod Npnq, then by estimation (10), fitpπl,pq ¤
�

1� 2λ
rn�1,i

	
un. If p � l

mod Npnq, we still have fitpπl,pq ¤ 1 (all fits are smaller or equal to one). Therefore,
we get:

Npnqptl�2q�1¸
p�0

|Dpπl,pq| ¤

�
1�

2λ
rn�1,i



un

1
2

Npnqptl�2q�1¸
p�0,p�l mod Npnq

|ᾱn,p| � |αn,l,p|

�
1
2

Npnqptl�2q�1¸
p�0,p�l mod Npnq

|ᾱn,p| � |αn,l,p|

On the other hand,

fitpπ̃�1
l q �

2|Rpπlq|

ptl � 2qNpnq|αn,0| � |ᾱλn,l|
�

2
°Npnqptl�2q�1

p�0 |Dpπl,pq|°Npnqptl�2q�1
p�0 |ᾱn,p| � |αn,l,p|

Therefore,

fitpπ̃�1
l q ¤

�
1�

2λ
rn�1,i



un

°Npnqptl�2q�1
p�0,p�l mod Npnq |ᾱn,p| � |αn,l,p|°Npnqptl�2q�1

p�0 |ᾱn,p| � |αn,l,p|
�

°Npnqptl�2q�1
p�0,p�l mod Npnq |ᾱn,p| � |αn,l,p|°Npnqptl�2q�1

p�0 |ᾱn,p| � |αn,l,p|

fitpπ̃�1
l q ¤

�
1�

2λ
rn�1,i



un �

°Npnqptl�2q�1
p�0,p�l mod Npnq |ᾱn,p| � |αn,l,p|°Npnqptl�2q�1

p�0 |ᾱn,p| � |αn,l,p|

Moreover, |ᾱn,p| � |αn,0|, and when p � l mod Npnq, by construction, |αn,l,p| ¤
|αn,0|. We also have:

Npnqptl�2q�1¸
p�0,p�l mod Npnq

1 ¤ tl � 2

Therefore,

fitpπ̃�1
l q ¤

�
1�

2λ
rn�1,i



un�

2ptl � 2q|αn,0|

Npnqptl � 2q|αn,0| � λ|αn,0|
¤

�
1�

2λ
rn�1,i



un�

2
Npnq
(11)

We relate fits of π̃�1
l and πl. We have:
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fitpπ̃�1
l q �

2|Rpπlq|

ptl � 2qNpnq|αn,0| � |ᾱλn,l|
�

2|Rpπlq|

pptl � 2qNpnq � λq|αn,0|

On the other hand, since an�1, j,l is of the form an�1, j,l � α̃lpαn,0...αn,Npnq�1q
tlpαl, we

get:

fitpπlq � fitpπ�1
l q �

2|Rpπlq|

pNpnqt � λq|αn,0| � |α̃l| � |pαl|
¤

2|Rpπlq|

pNpnqtl � λq|αn,0|

fitpπlq ¤
ptl � 2qNpnq � λ

Npnqtl � λ
fitpπ̃�1

l q ¤

�
1�

2Npnq
Npnqtl � λ



fitpπ̃�1

l q ¤

�
1�

2Npnq
λ



fitpπ̃�1

l q

Finally,

fitpπq �

°rqn,i�1
l�0 2|Dpπlq|°rqn,i�1

l�0 |αλn,l| � |an�1, j,l|
¤

°rqn,i�1
l�0 max0¤rqn,i�1 pfitpπlqq |α

λ
n,l| � |an�1, j,l|°rqn,i�1

l�0 |αλn,l| � |an�1, j,l|

¤ max
0¤l¤rqn,i�1

pfitpπlqq

By taking the max on all possible fitpπq, we get:

un�1 ¤

�
un �

2
Npnq


�
1�

2Npnq
λ


�
1�

2λ
rn�1,i



By taking the max on all possible λ, we get the conclusion.

�

Proof of corollary 3.7. By induction on n, we show:

un ¤ ε

�
1�

1
2n



If n � 0, u0 � 0, so the estimate holds. Suppose the estimate holds at rank n. By

lemma 3.6,

un�1 ¤

�
un �

2
Npnq


�
1� max

0¤i  j¤Npn�1q�1

2Npnq
λn,i, j


�
1� max

0¤i  j¤Npn�1q�1

2λn,i, j

rn�1,i



Moreover, for any i   j, �

1�
2λn,i, j

rn�1,i



¤ 1�

1
2n�4

and �
1�

2Npnq
λn,i, j



¤ 1�

1
2n�4

Therefore,
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�
1�

2λn,i, j

rn�1,i


�
1�

2
λn,i, j



¤

�
1�

1
2n�4


2

� 1�
2

2n�4 �
1

p2n�4q2 ¤ 1�
1

2n�2

Moreover, by induction assumption,

un �
2

Npnq
¤ ε

�
1�

1
2n �

1
2n�2



By combining these two estimates, we get:

un�1 ¤ ε

�
1�

1
2n�1



Hence the estimate at step n� 1.

�

Proof of proposition 3.2. Let ε1n�1 � 4εn�1N2
n�1qn,Npn�1q�1. Each quasi-permutation

constituting An�1 has a Lebesgue density of at most 4εn�1. Moreover, there is less than
N2

n�1qn,Npn�1q�1 quasi-permutations in An�1. Therefore,

µpturbpAn�1qq ¤ ε1n�1

By applying estimation (4), we get:

µpEsafeq ¥ 1�
¸
n¥0

ε1n�1

There exists fturbpε, n,Nn�1, qn,Npn�1q�1q such that if εn�1 ¤ fturbpε, n,Nn�1, qn,Npn�1q�1q,
then

µpEsafeq ¥ 1� ε

Therefore,

µpEsafe X Enlbq ¥ 1� 2ε

There also exists fdistpε, n,Nn�1, qn,Npn�1q�1q such that if εn�1 ¤ fdistpε, n,Nn�1, qn,Npn�1q�1q,
then ηn ¤ ε. We take for εn�1 a function of ε, n,Nn�1, qn,Npn�1q�1 such that

εn�1 ¤ minp fdistpε, n,Nn�1, qn,Npn�1q�1q, fturbpε, n,Nn�1, qn,Npn�1q�1qq

Let A P B such that µpAq ¡ 2ε. Then µ
�
AX pEsafe X Enlbq

�
¡ 0.

Since Npnq ÑnÑ�8 �8 then µpmax0¤i¤Npnq�1 cipnqq ÑnÑ�8 0. Therefore, for
any n sufficiently large, and by applying lemmas 3.3, 3.4 and corollary 3.7, there exists
x, y P AX pEsafe X Enlbq and i � j such that

f̄ papT, qn, xq, an,iq ¤ ηn

f̄ papT, qn, yq, an, jq ¤ ηn

Therefore,
f̄ papT, qn, xq, apT, qn, yqq ¥ 1� 3ε

�
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3.3 Ergodicity
3.3.1 The case M � r0, 1s � �

Let

Pn �

"�
i

Nn
,

i� 1
Nn

�
�

�
j

qn
,

j
qn

�
, 0 ¤ i ¤ Nn � 1, 0 ¤ j ¤ qn � 1

*
Since Pn is a partition generating the Lebesgue sigma-algebra, it is sufficient to

show that T is ergodic with respect to BpPnq.

Lemma 3.8. Let q ¡ 0 that divides qm and η � tri{q, pi� 1q{qr, 0 ¥ i ¥ q� 1u. R pm
qm

is ergodic with respect to pBpηq, λq, where λ denotes the Lebesgue measure on �, and
for any A, B P Bpηq,

1
qm

qm�1¸
l�0

λ
�

R lpm
qm
pAq X B

	
� λpAqλpBq

Proof. Let A P Bpηnq, λpAq ¡ 0 that is R pm
qm

-invariant. Then there is 0 ¤ i0 ¤

qn � 1 such that ri0{qn, pi0 � 1q{qnr� A. Therefore, � � Y0¤i¤qm�1R ipm
qm
pri0{qn, pi0 �

1q{qnrq � A, and R pm
qm

is Bpηnq-ergodic. By qm-periodicity and the ergodic theorem,
for any integer L ¡ 0,

1
qm

qm�1¸
i�0

λpR ipm
qm
pAq X Bq �

1
Lqm

Lqm�1¸
i�0

λpR ipm
qm
pAq X Bq ÑLÑ�8 λpAqλpBq

�

Now, we define the finite algebra Bpζnq that contains the elements of An�1pPnq,
modulo small turbulences (see figure 7). Let

C � tl � pli1, jq, 0 ¤ i1 ¤ Nn�1�1, 0 ¤ j ¤
qn,i

qn,0
, 0 ¤ i ¤ Npn�1q�1, i � i1 mod Npn�1qu

For l P C, let

Cplq �
Npn�1q�1¤

i�0

¤
0¤i1¤Nn�1,i1�i mod Npn�1q

�
i1

Nn�1
,

i1 � 1
Nn�1

�
�Y

qn,i
qn,0

�1

j�0

�
li, j

Nnqn,i
,

li, j � 1
Nnqn,i

�

Lemma 3.9. Let ζn � tCplq, l P Cu (ζn recovers r0, 1s � �, but it is not a partition).
For any m ¡ n, S pm

qm
is ergodic with respect to Bpζnq, and for any A, B P Bpζnq,

1
qm

qm�1¸
l�0

µ
�

S lpm
qm
pAq X B

	
� µpAqµpBq

Proof. For i1 � 0, ...,Nn�1 � 1, let

Pi1 �

"�
i1

Nn�1
,

i1 � 1
Nn�1

�
�

�
j

Nnqn,i
,

j� 1
Nnqn,i

�
, 0 ¤ j ¤ Nnqn,i � 1

*
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Figure 7: An element of ζn with Nn � 3, qn,0 � 1, qn,1 � 3qn,0, qn,2 � 2qn,1. S pm
qm

is
ergodic with respect to Bpζnq.
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pS pm
qm
|BpPi1 q

, µ
|
�

i1
Nn�1

, i1�1
Nn�1

�
��
q is metrically isomorphic to pR pm

qm
, ηNnqn,i , λq via the map

π :
�

i1

Nn�1
,

i1 � 1
Nn�1

�
�

�
j

Nnqn,i
,

j� 1
Nnqn,i

�
ÞÑ

�
j

Nnqn,i
,

j� 1
Nnqn,i

�
In particular,

λ

�
π

�
AX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �




� µpAq

Moreover, for any A P Bpζnq, ri1{Nn�1, pi1�1q{Nn�1r��XA P BpPi1q. Therefore,
we have:

1
qm

qm�1¸
l�0

µ
�

S lpm
qm
pAq X B

	

�
1

qm

qm�1¸
l�0

Nn�1�1¸
i1�0

µ

�
S lpm

qm
pAX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �q X

�
BX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �





�
1

qm

qm�1¸
l�0

Nn�1�1¸
i1�0

Nn�1µ|
�

i1
Nn�1

, i1�1
Nn�1

�
��

�
S lpm

qm
pAX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �q X

�
BX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �





�
1

qm

qm�1¸
l�0

Nn�1�1¸
i1�0

Nn�1µ|
�

i1
Nn�1

, i1�1
Nn�1

�
��

�
S lpm

qm
pAX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �q X

�
BX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �





�
1

qm

qm�1¸
l�0

Nn�1�1¸
i1�0

Nn�1λ

�
R lpm

qm
pπpAX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �qq X π

��
BX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �






�
1

qm

qm�1¸
l�0

Nn�1�1¸
i1�0

Nn�1λ

�
R lpm

qm
pπpAX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �qq X π

��
BX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �






�
1

Nn�1
Nn�1λ

�
πpAX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �q



λ

�
π

�
BX

�
i1

Nn�1
,

i1 � 1
Nn�1

�
� �




� µpAqµpBq

�

Lemma 3.10. For any A, B P Pn,

1
qm

qm�1¸
l�0

µ
�
T l

mpAq X B
�
ÑmÑ�8 µpAqµpBq
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Proof. By construction, there exists A1, B1 P Bpζmq such that

µpA1 f̄ BmpAqq ¤ µpturbpBmqq � ε2m

µpB1 f̄ BmpBqq ¤ ε2m

Therefore,

1
qm

qm�1¸
l�0

µ
�
T l

mpAq X B
�
�

1
qm

qm�1¸
l�0

µ
�

S l pm
qm

BmpAq X BmpBq
	

¤
1

qm

qm�1¸
l�0

µ
�

S l pm
qm

BmpA1q X BmpB1q
	
�µpA1 f̄ BmpAqq�µpA1 f̄ BmpAqq�µpB1 f̄ BmpBqq

By lemma 3.9, we get

1
qm

qm�1¸
l�0

µ
�
T l

mpAq X B
�
¤ µpA1qµpB1q � 2ε2m

¤
�
µpBmpAqq � µpA1 f̄ BmpAqq

� �
µpBmpBqq � µpB1 f̄ BmpBqq

�
� 2ε2m

¤ µpAqµpBq � 5ε2m

Therefore,

lim sup
mÑ�8

1
qm

qm�1¸
l�0

µ
�
T l

mpAq X B
�
¤ µpAqµpBq

Likewise,

lim inf
mÑ�8

1
qm

qm�1¸
l�0

µ
�
T l

mpAq X B
�
¥ µpAqµpBq

�

Lemma 3.11. For any A, B P BpPnq,

1
qm

qm�1¸
l�0

µ
�
T lpAq X B

�
ÑmÑ�8 µpAqµpBq

Proof.

1
qm

qm�1¸
l�0

µ
�
T lpAq X B

�
¤

1
qm

qm�1¸
l�0

µ
�
T l

mpAq X B
�
� max

0¤l¤qm�1
d0pT l,T l

mq

� µpAqµpBq � max
0¤l¤qm�1

d0pT l,T l
mq

By estimate (2), we get
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1
qm

qm�1¸
l�0

µ
�
T lpAq X B

�
¤ µpAqµpBq �

ε

qmNp0q2m�1

Therefore,

lim sup
mÑ�8

1
qm

qm�1¸
l�0

µ
�
T lpAq X B

�
¤ µpAqµpBq

Likewise,

lim inf
mÑ�8

1
qm

qm�1¸
l�0

µ
�
T lpAq X B

�
¥ µpAqµpBq

�

Lemma 3.12. T is ergodic with respect to BpPnq.

Proof. Let A P BpPnq T -invariant modulo zero. By taking B � A in lemma 3.11, we
get µpAq � pµpAqq2, and so µpAq � 0 or 1. �

3.3.2 Construction in the case M � r0, 1sd�1 � �, d ¥ 3

The construction in the case M � r0, 1sd�1 ��, d ¥ 3 is the same as in the case of the
annulus, except that we "fold" other dimensions to obtain ergodicity, in the same way
as in [6, 4, 3]. However, the proof of ergodicity needs to be different from those works.

For n ¥ 1, let

Pn �

"�
i1
Nn
,

i1 � 1
Nn

�
�

�
i2

qn�1
,

i2 � 1
qn�1

�
� ...�

�
id

qn�1
,

id � 1
qn�1

�
,

0 ¤ i1 ¤ Nn � 1, 0 ¤ i j ¤ qn�1 � 1, 2 ¤ j ¤ du

Since the diameter of elements of Pn tends to zero as n Ñ �8, then as in the case
of the annulus, it is sufficient to show that T is ergodic with respect to BpPnq, in order
to get ergodicity with respect to the Lebesgue algebra.

Let also, for i � 0, ...,Nn � 1,

ζn,i �

#�
i

Nn
,

i� 1
Nn

�
� r0, 1sd�2 �

�
id

qd�1
n�1

,
id � 1

qd�1
n�1

�
, 0 ¤ i j ¤ qd�1

n�1 � 1, 2 ¤ j ¤ d

+

In our construction of the sequence qn, we can assume that qd�1
n�1 divides qn. There-

fore, by lemma 3.8, for any i � 0, ...,Nn � 1 fixed, S pn
qn
|Bpζn,iq is ergodic.

We denote by Ãn�1 � pÃn�1,1, Ãn�1,2q the map An�1 of the annulus case, and
A1

n�1px1, ..., xdq � pÃn�1,1px1, xdq, x2, ..., xd�1, Ãn�1,2px1, xdqq. We denote by A2
n�1

the application that "folds" other dimensions, i.e. that essentially transforms Pn into
YNn�1

i�0 ζn,i (except on turbulences). We define A2
n�1 below. Moreover, in the definition

of Pn, we took larger elements, because after their compression by A2
n�1, they need to

be sufficiently wide so that A1
n�1 can give ergodicity (we use that qd�1

n�1 ¤ qn ¤ Nnqn,i).
We let An�1 � A1

n�1A2
n�1. Now, we define A2

n�1.
We recall the definition of a "quasi-rotation" by π{2 [6]:
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Proposition 3.13. For any n ¥ 1, there is a smooth measure preserving map φn :
r0, 1s2 Ñ r0, 1s2 (called "quasi-rotation") such that φn � Rπ{2 on r 1

2n , 1 � 1
2n s

2 and
φn � Id on r0, 1s2 � r 1

2n�1 , 1� 1
2n�1 s

2.

Let p ¥ 2 and

Cp : r0, 1s � r0, 1
p s Ñ r0, 1s � r0, 1s

px, yq ÞÑ px, pyq

Let φn,p � C�1
p φnCp. The map φn,p is measure preserving. By the Faa-di-Bruno

formula, there exists a fixed function R2p jq such that

}φn,p} j ¤ pR2p jq}φn} j

For i � 1, ..., d�1, let φi
n,qn�1

px1, ..., xdq � px1, .., xi�1, φn,qn�1pxi, xi�1q, xi�2, ..., xdq,
extended by 1{qn�1-equivariance along the xi�1 coordinate. We let

A2
n�1px1, ..., xdq � φd�1

n,qn�1
...φ1

n,qn�1
px1, ..., xdq

Modulo turbulence zones, A2
n�1 essentially transforms an element of Pn into an

element of ζn,i for some i, i.e. into a parallelepipede of height 1{qd�1
n�1 along the xd co-

ordinate, of width 1{Nn along the coordinate x1, and of width 1 on all other dimensions.
Then, we use the ergodicity of S pn

qn
|Bpζn,iq as we used the ergodicity of S pn

qn
|Bpζnq in the

case of dimension 2. Then, we can proceed with A1
n�1 (because qd�1

n�1 divides Nnqn,i for
any i) as in dimension 2 to get ergodicity.

3.3.3 The general case

We apply the proposition, found in [1, 6, 4, 3]:

Proposition 3.14 ([6]). Let M be a d-dimensional smooth compact connected mani-
fold, with a free modulo zero circle action pS , preserving a smooth volume µ. Let S t

denote the circle action on r0, 1sd�1 � �. There exists a continuous surjective map
Γ : r0, 1sd�1 � �Ñ M such that:

1. the restriction of Γ to s0, 1rd�1�� is a smooth diffeomorphic embedding.

2. µpΓpBpr0, 1sd�1 � �qqq � 0

3. B � ΓpBpr0, 1sd�1 � �qq

4. Γ�pLebq � µ

5. pSΓ � ΓS
Let pTn : M Ñ M defined by pTnpxq � ΓB�1

n S pn
qn

BnΓ
�1pxq if x P Γps0, 1rd�1��q

and pTnpxq � pS pn
qn
pxq otherwise.

We proceed as in [4]: we take qn�1 large enough so that the possible divergence of
Γ on the border of s0, 1rd�1�� does not affect the convergence of pTn towards a smooth,
nLB and ergodic diffeomorphism.
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4 Generalization to an uncountable family of pairwise
non-Kakutani equivalent diffeomorphisms

In order to obtain an uncountable family of pairwise non-Kakutani equivalent diffeo-
morphisms, we adapt the construction of Rudolph, Ornstein and Weiss [12], which
generalizes the construction of Feldman. Let u P t0, 1u� be a sequence of 0 and 1.
We construct a family Tu of diffeomorphisms in the following way: if un�1 � 0, then
we define the diffeomorphism An�1, appearing in the successive conjugacies, as previ-
ously, i.e. such that, up to small perturbations, the qn�1-trajectories are of the form:

an�1,i �

�
a

qn�1
Npnqqn,iqn

n,0 a
qn�1

Npnqqn,iqn

n,1 ... a
qn�1

Npnqqn,iqn

n,Npnq�1


qn,i

On the other hand, if un�1 � 1, we define the diffeomorphism An�1 such that, up
to small perturbations, the qn�1-trajectories are of the form:

an�1,i �

�
a

qn�1
Npnqqn,iqn

n,Npnq�1 ... a
qn�1

Npnqqn,iqn

n,1 a
qn�1

Npnqqn,iqn

n,0


qn,i

Thus, the constructions of Tu and T are analogous, we do not write the explicit
definition of An�1 for Tu. We have:

Theorem 4.1. If u, v P t0, 1u� such that un � vn infinitely many times. Then Tu and
Tv are not Kakutani-equivalent.

To show theorem 4.1, we follow and adapt the proof of Ornstein, Rudolph, and
Weiss [12]. The proof is based on two ideas: the first idea, as in the nLB case, is that
the two words aaaabbbb and abababab are far from each other in the f̄ -distance. The
second idea is that the two words abcabcabc and bcabcabca are also far from each
other in the f̄ -distance (see figure 15). We can adapt their proof to the smooth case for
two reasons: first, turbulences from An�1 are "grouped" in vanishingly small places,
and consequently, they rarely affect qn�1-trajectories, and second, turbulences from Bn

are periodic in the qn�1-trajectories. However, the detailed proof is a little technical.
We need to introduce some additional definitions.

4.1 Definitions
4.1.1 The distances f̄ and d̄

The definitions recalled here are mainly taken from [12, p.8]. First, we can generalize
the distance f̄ to a semi-distance on infinite words. Let

w � ...a�1a0a1... w1 � ...a1�1a10a11...

be infinite words, i.e. w,w1 P I�. Let wn,w1
n P I2n�1 be the truncated words defined

by:

wn � a�n...a�1a0a1...an w1 � a1�n...a
1
�1a10a11...a

1
n

Let f̄ pw,w1q � lim supnÑ�8 f̄ pwn,w1
nq.

Likewise, we can define the Hamming distance d̄pwn,w1
nq � #ti{ai � a1iu and

d̄pw,w1q � lim supnÑ�8 d̄pwn,w1
nq.
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Now, we define the f̄ and d̄ distances between two ergodic transformations T and
T 1 coded with the partitions P and P1 respectively (T and T 1 are not necessarily defined
on the same space, and possibly P � P1).

Let ν, ν1 be two measures on IZ and let νn, ν
1
n be two measures on In defined by ν, ν1

via the projection IZ Ñ In onto the coordinates p1, ..., nq. Let:

f̄ pνn, ν
1
nq � inf

λ

»
In�In

f̄ pwn,w1
nq dλ

Where the inf is taken on measures λ on In� In whose marginals are νn and ν1n. We
let:

f̄ pν, ν1q � inftε ¡ 0{ f̄ pνn, ν
1
nq ¤ ε for an infinity of nu

Let T : M Ñ M be an ergodic transformation, and P be a measurable partition
indexed by I that is generating, i.e. B � B

���8
i��8 T ipPq

�
. Then pT,M, µq is metri-

cally isomorphic to pσ, IZ, νq, where σ is the shift on IZ and preserves ν, and we have:
µpciq � νpπ�1

0 piqq, where π0 : IZ Ñ I is the projection on the coordinate 0. Let ν, ν1

associated with pT, Pq, pT 1, P1q respectively. We define:

f̄ ppT, Pq, pT 1, P1qq � f̄ pν, ν1q

d̄ppT, Pq, pT 1, P1qq � d̄pν, ν1q

We also use the proposition [12, p.8]:

Proposition 4.2. If f̄ pν, ν1q � ε, then there are generic points x, x1 for µ, µ1 respectively
such that

f̄ px, x1q ¤ ε

Let P � tc0, ..., cNp0q�1u and P1 � tc10, ..., c
1
Np0q�1u two measurable partitions of

the same size. Their distance is defined by:

dpP, P1q � min
θPSNp0q

Np0q�1¸
i�0

µ
�

ci∆c1
θpiq

	
where SNp0q denotes the set of permutations of t0, ...,Np0q� 1u, and ∆ denotes the

symmetric difference.

Let µpAq ¡ 0 and rA,T : A Ñ N�, defined by rA,T pxq � mintk ¥ 1,T kpxq P Au, be
the first return map of T in A. By the Poincaré recurrence theorem, rA,T is finite almost
everywhere, and by ergodicity (see [12, p.1]),»

A
rA,T pxq dµpxq � 1

We denote by µA � µp.q{µpAq the measure induced by µ on A, and BA the sigma-
algebra induced by B. For almost every x P A, let

TApxq � T rA,T pxqpxq

TA is the transformation induced by T on A. TA is a measure preserving transfor-
mation of pA,BA, µAq.

31



Let also S be an ergodic and measure preserving transformation of pM,B, µq. T
and S are Kakutani-equivalent (Russians called it monotone equivalent [8]) if there
exists A, B P B such that µpAq ¡ 0, µpBq ¡ 0, and such that TA and S B are metrically
isomorphic.

4.1.2 The tower construction

We introduce the tower construction (see figure 8). Let g : M Ñ �� integrable. Let

Mg � tpx, iq P M ���, 1 ¤ i ¤ gpxqu

T g
v : Mg Ñ Mg

T g
v px, iq �

"
px, i� 1q if i� 1 ¤ gpxq
pTvpxq, 1q if i� 1 ¡ gpxq

If Tv is ergodique, then T g
v is also ergodic. Let P � tc0, c1, ..., cNp0q�1u be a mea-

surable partition of M. Let H � tpx, iq P Mg{i ¥ 2u, and Pg � tc0, c1, ..., cNp0q�1,Hu
be the corresponding measurable partition of Mg. If pT g

v q
jpx, iq P H, the correspond-

ing letter in the trajectory is denoted h. The pT g
v , Pgq-trajectory is obtained from the

pT g
v , Pgq-trajectory by adding letters h.

Figure 8: The tower construction pMg,T g
v , Pgq

We will also need the lemma:

Lemma 4.3. For any γ ¡ 0, there exists an integer N, a set EN � Mg such that
µpENq ¥ 1� γ and such that if px, iq P EN and n ¥ N, then����1n#t j P t1, ..., nu{pT g

v q
jpx, iq P Hu � µpHq

���� ¤ γ
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Proof. For any integer n, let

En � tpx, iq P Mg { if p ¥ n then
���� 1p#t j P t1, ..., pu{pT g

v q
jpx, iq P Hu � µpHq

���� ¤ γ

The sequence of En is increasing for the inclusion, and by the ergodic theorem,
µ
��

n¥0 En
�
� 1. Therefore, µpMg�Enq ÑnÑ�8 0. Let N such that µpMg�ENq ¤ γ.

We have µpENq ¥ 1� γ.
�

In subsection 4.2, we show:

Proposition 4.4. For any g : M Ñ �� integrable, such that g � 1 (1 is the con-
stant function equal to 1), and any sequences u, v (even if u � v), Tu and T g

v are not
isomorphic.

Corollary 4.5. If µpAq � µpBq, then pTuqA and pTvqB are not isomorphic.

In subsection 4.3, we show:

Proposition 4.6. If µpAq � µpBq, and un � vn infinitely many times, then pTuqA and
pTvqB are not isomorphic (i.e. Tu and Tv are not evenly equivalent).

By combining corollary 4.5 and proposition 4.6, we obtain theorem 4.1.

Proof of corollary 4.5. We show how proposition 4.4 implies corollary 4.5. By absurd,
we suppose that pTuqA is isomorphic to pTvqB. We can suppose µpAq   µpBq. Let
Φ : pA, µAq Ñ pB, µBq a metric isomorphism such that ΦpTuqA � pTvqBΦ.

For any g : M Ñ N� integrable, ppTuqAq
g is isomorphic to ppTvqBq

g�Φ�1
via the

isomoprhism Φ̃ : Mg ý defined by Φ̃ppx, iqq � pΦpxq, iq. We have:»
B

rB,Tvpx
1q dµBpx1q �

1
µpBq

On the other hand, since Φ : pA, µAq Ñ pB, µBq is an isomorphism, then»
B

rA,TupΦ
�1px1qq dµBpx1q �

»
A

rA,Tupxq dµApxq �
1

µpAq
¡

1
µpBq

Moreover, by relation (7) in [12, p.2], Tu is isomorphic to pTuq
rA,Tu
A , which is iso-

morphic to pTvq
rA,Tu�Φ

�1

B . Likewise, Tv is isomorphic to pTvq
rB,Tv
B . Therefore, by lemma

1.3 of [12, p.3], there exists g : M Ñ N� integrable, g � 1, such that T g
v is isomorphic

to Tu. This contradicts proposition 4.4.
�

4.2 Tu and T g
v are not isomorphic

By absurd, we suppose there is a metric isomorphism Φ : pTu, Pq Ñ pT g
v , Pgq. Then

for any τ ¡ 0, there exists Kpτq ¡ 0, Ppτq �
�Kpτq

i��Kpτq T i
upPq such that |Ppτq| � |Pg|

and dpΦ�1pPgq, Ppτqq ¤ τ, where d denotes the distance between partitions. We can
put an equivalence relation on

�Kpτq
i��Kpτq T i

upPq: two elements Q1,Q2 of this partition
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are equivalent if there exists Q3 P Ppτq that contains both Q1 and Q2. We denote Q̄1
this equivalent class.

For x P Enlb, we consider the pTu, Pq-trajectory of x:

...a�1a0a1...

where T i
upxq P cai . From this pTu, Pq-trajectory, we can derive a pTu,

�Kpτq
i��Kpτq T i

upPqq-
trajectory:

pa�Kpτq�1a�Kpτq...a�1a0...aKpτq�1qpa�Kpτqa�Kpτq�1...a0a1...aKpτqq

pa�Kpτq�1a�Kpτq�2...a1a2...aKpτq�1q

where pa�Kpτq�ia�Kpτq�i�1...aiai�1...aKpτq�iq is such that:

x P T�pi�Kpτqq
u pcai�Kpτqq X ...X T�pi�Kpτqq

u pcai�Kpτqq

By taking the equivalent classes, we can derive a pTu, Ppτqq-trajectory (an overline
denotes the equivalent class):

pa�Kpτq�1a�Kpτq...a�1a0...aKpτq�1qpa�Kpτqa�Kpτq�1...a0a1...aKpτqq

pa�Kpτq�1a�Kpτq�2...a1a2...aKpτq�1q

where pa�Kpτq�ia�Kpτq�i�1...aiai�1...aKpτq�iq is such that:

x P T�pi�Kpτqq
u pcai�Kpτqq X ...X T�pi�Kpτqq

u pcai�Kpτqq

We also consider the pTu,Φ
�1pPgqq-trajectory of x, which is identified with the

pT g
v , Pgq-trajectory of Φpxq. It corresponds to a pTv, Pq-trajectory, in which we insert

letters h. Thus, this trajectory is of the form:

...b�1hhb0hb1b2hhh...

Since, by absurd, we assumed

dpΦ�1pPgq, Ppτqq ¤ τ

then by the ergodic theorem,

d̄papTu,Φ
�1pPgq, xq, apTu, Ppτq, xqq � d̄papT g

v , Pg,Φpxqq, apTu, Ppτq, xqq ¤ τ

We let τ � 1
64

1�4ε³
g

�
1� 1³

g

	
, and to get a contradiction, we show:

Proposition 4.7. For any x P Enlb,

d̄papT g
v , Pg,Φpxqq, apTu, Ppτq, xqq ¥

1
32

1� 4ε³
g

�
1�

1³
g



Proof. The proof of proposition 4.7 has two steps. First (lemma 4.8), when segments
of the pTu, Pq-trajectory of x, and segments of the pT g

v , Pgq-trajectory of Φpxq, have
different types, we show that the d̄-distance between their pTu, Ppτqq and pT g

v , Pgq-
trajectories is larger than a fixed bound.
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Indeed, in this case, repetitions of the words an,i,eff in the pTu, Pq-trajectory, and
repetitions of the words ãn,i,eff in the pT g

v , Pgq-trajectory, have different periodicities
(moreover, the periodicity of repetitions of ǎn,i,eff in the pTu, Ppτqq-trajectory is the
same as the periodicity of repetitions of an,i,eff in the pTu, Pq-trajectory, because Kpτq  
qn{2). Turbulences remain packed in rare locations, and do not sensibly affect d̄.

Second (lemma 4.9), we show that segments of the pTu, Pq and pT g
v , Pgq-trajectories

are not very often of the same type, because the T g
v -trajectory is an expansion of the

Tv-trajectory by g. On average, the trajectory is expanded by a factor
³

g because of
the ergodic theorem, and as a consequence, only 1³

g of segments are of the same type,

which reduces the d̄-distance by a factor 1� 1³
g . Combining lemmas 4.8 and 4.9 gives

proposition 4.7.

First, we explain how we decompose the pTu, Pq and pT g
v , Pgq-trajectories in over-

laps of segments of the same type. By lemma 3.3, the qn�2-trajectories of x P Enlb with
respect to pTu, Pq and pTn�2,u, Pq are the same (Tn�2,u is the periodic approximation of
Tu at step n� 2). If we neglect turbpAn�2q, they are of the form:

an�2,i,negl � σu

����σl0pan�1,0,effq
� qn�2

Npn�1qqn�1,iqn�1 ...
�
σlNpn�1q�1pan�1,Npn�1q�1,effq

� qn�2
Npn�1qqn�1,iqn�1

� qn�1,i
qn�1

...

��
σqn�2�1�l0pan�1,0,effq

� qn�2
Npn�1qqn�1,iqn�1 ...

�
σqn�1�1�lNpn�1q�1pan�1,Npn�1q�1,effq

� qn�2
Npn�1qqn�1,iqn�1

� qn�1,i
qn�1

��
where σ is a circular permutation (see proof of lemma 3.4 page 16).
What is important is that at x and i fixed, the an�1,i,eff are identical. Therefore, the

pTu, Ppτqq qn�2-trajectory of x will have the same form most of the time (i.e. repeated
words of the form ǎn�1,i,effǎn�1,i,eff....).

We take into account turbpAn�2q. Given the localization of turbpAn�2q, the pTu, Pq
qn�2-trajectory of x meets a new turbulence zone of An�2 at most every qn�2{pNn�2qn�1,Npn�2qq
iterations (see figure 4). This qn�2-trajectory is of the form, where t denotes letters
in turbpAn�2q (or boundary effects due to the cyclic permutation σ, which have total
lengths qn�1):

ât an�1,0,eff...an�1,0,effloooooooooomoooooooooon
¤

qn�2
Nn�2qn�1,Npn�2q

�2εn�2qn�2 letters

tloomoon
¥2εn�2qn�2 letters

an�1,0,eff...an�1,0,efft...tan�1,1,eff...

with |â| ¤ qn�2{qn�1,0. The pT g
v , Pgq-trajectory of Φpxq is of the form:

˜̂at̃ ãn�1,0,eff...ãn�1,0,effloooooooooomoooooooooon
�
³

g
�

qn�2
Nn�2qn�1,Npn�2q

�2εn�2qn�2



letters

t̃loomoon
�
³

gp2εn�2qn�2q letters

ãn�1,0,eff...ãn�1,0,eff t̃...t̃ãn�1,1,eff...

Tilded words are like untilded words, except that we added letters h in them.
We decompose �, the set of indices of trajectories, into

...t̃G�1G0G1...G qn�2
Nn�2qn�1,Npn�2q

...tG2...t̃...
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where Gi � an�1,l,eff X ãn�1,l1,eff, i.e. Gi is the intersection of the sets of indices
of an element an�1,l,eff in the pTu, Pq-trajectory, and of the set of indices of an element
ãn�1,l1,eff in the pT g

v , Pgq-trajectory. Gi is an overlap of a n � 1-block in the pTu, Pq-
trajectory and a n� 1-block in the pT g

v , Pgq-trajectory (see figure 9).
In the decomposition of � in different Gi, we put aside turbulences, because in

general 2εn�2qn�2 � |t| ¡¡ |Gi| � qn�1. One turbulence is much larger than any
individual Gi (when the turbulence comes from An�2, not from the effect of the cyclic
permutation).

Figure 9: The decomposition of � into Gi and turbulences t and t̃.

To show proposition 4.7, we combine the lemmas:

Lemma 4.8. Let 1
2
³

g ¡ ε1 ¡ 0. In Gi � an�1,l,eff X ãn�1,l1,eff, if the n � 1-types l1 of

an�1,l,eff and l11 of ãn�1,l1,eff are different, and if |Gi| ¥ ε
1
qn�1, then for n sufficiently

large,

d̄pGipT
g
v , Pgq,GipTu, Ppτqqq ¥ p1� ε1q

1� 4ε
32
³

g

Lemma 4.9. For any p
³

g�1q{2 ¥ ε1 ¡ 0, and almost every x P Enlb, for n sufficiently
large, the density of the set of indices tGi{l1 � l11u is less than 1{

³
g� ε1.

Proof of proposition 4.7. We show that for any ε1 ¡ 0 such that ε1  
³

g�1
2 , ε1   1

2
³

g ,
for any x P Enlb,

d̄papT g
v , Pg,Φpxqq, apTu, Ppτq, xqq ¥ p1�3ε1qp1�ε1q

1
32

1� 4ε³
g

�
1�

1³
g
� ε1



(12)

For almost every x P Enlb, in the pTu, Pq-trajectory of x, the density of turbulences
t from An�2 (and from cyclic permutation σ) is less than 2εn�2Nn�2qn�1,Npn�2q.

Moreover, for almost every x P M, in the pT g
v , Pgq-trajectory of Φpxq, by lemma

4.3, for n sufficiently large, the density of turbulences t̃ from An�2 is less than ε1.
Therefore, for n sufficiently large, the density of indices Gi in Z is more than 1� 2ε1

Moreover, in each an�1,l,eff, there is at most one Gi such that |Gi|   ε1qn�1. There-
fore, for n sufficiently large, the total density of Gi such that |Gi| ¥ ε1qn�1 is greater
than 1� 3ε1 . Therefore, by combining lemmas 4.8 and 4.9, we get (12).

�
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Proof of lemma 4.8. First, we suppose l1 ¡ l11, i.e. qn,l1 ¡ qn,l11
(and rn,l1   rn,l11

).
We denote GipTu, Pq the pTu, Pq-trajectory of x on the set of indices Gi. We can

write
GipTu, Pq � paGi,1pTu, Pq...Gi,wpTu, Pqpa1

where:

Gi,lpTu, Pq � an,1,eff...an,1,efft.....tan,Npnq,eff...an,Npnq,efft

where |pa| ¤ qn�1{qn,l1 and |pa1| ¤ qn�1{qn,l1 , i.e.

GipTu, Pq � pa an,1,eff...t...an,Npnq,efftlooooooooooomooooooooooon
Gi,1pTu,Pq

an,1,eff...t...an,Npnq,efftlooooooooooomooooooooooon
Gi,2pTu,Pq

...

The Gi,lpTu, Pq are complete cycles of n-types. Gi,lpTu, Pq include turbulences from
An�1, because their density in Gi,lpTu, Pq is vanishingly small (although |t| ¡¡ an,i,eff
for each i).

Since at i fixed, all the an,i,eff are identical, and since Kpτq   qn, then Gi,lpTu, Ppτqq
is of the form:

Gi,lpTu, Ppτqq � ǎn,1,eff.ť..ťǎn,Npnq,eff ť

Moreover, |ť| ¤ |t|p2Kpτq�1q. Therefore, for any integers j, k, and for n sufficiently
large,

f̄ pGi, jpTu, Ppτqq,Gi,kpTu, Ppτqqq ¤ 2p2Kpτq � 1q2εn�1Nn�1qn,Npn�1q ¤
1

2n�2 (13)

On the other hand, we can write (we do not neglect boundary effects similar to pa
and pa1 here):

GipT
g
v , Pgq � Ḡi,1pT

g
v , Pgq...Ḡi,w̄pT

g
v , Pgq

such that:

GipT
g
v , Pgq � ãn,i1,eff...ãn,i1,eff t̃loooooooomoooooooon

Ḡi,1pT
g
v ,Pgq

ãn, j1,eff...ãn, j1,eff t̃loooooooomoooooooon
Ḡi,2pT

g
v ,Pgq

...

Modulo turbulences, Ḡi, jpT
g
v , Pgq is a segment of the same n-type.

If 1   j   w̄, then |Ḡi, j| ¥
qn�1

Npnqqn,l11

. Since |Gi, j| ¤
qn�1

qn,l1
, then Ḡi, j contains at least

qn,l1
pNpnqqn,l11

� 1 ¥ 2n sets of indices Gi, j. We can write:

Ḡi, j � âGi, j1 ...Gi, ju â1

with ju � j1 ¥ 2n. Therefore, â and â1 occupy a density of less than 1{2n of Ḡi, j.
Therefore,

f̄ pḠi, jpTu, Ppτqq, Ḡi,kpTu, Ppτqqq ¤ p1� 1{2nq
1

2n�2 (14)

For j � 1 or w̄, if |Ḡi, j| ¥ 2n qn�1

qn,l1
, the same reasoning applies.

If |Ḡi, j|   2n qn�1

qn,l1
, then we do not do this estimate. However, we become able to

neglect this segment: at most two Ḡi, j in Gi are short like that. Therefore, in the worst
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case, since |Gi| ¥ qn�1ε
1, then these boundary effects only take a fraction 2n{pqn,l1ε

1q
of Gi, and we can write:

Gi � ĜḠi,2...Ḡi,w̄�1Ĝ1

with |Ĝ| and |Ĝ1| ¤ 2nqn�1{qn,l1
We want a lower bound on f̄ pḠi, jpT

g
v , Pgq, Ḡi,kpT

g
v , Pgqq, when they are of different

n-types.
For i1 � j1 (0 ¤ i1 ¤ Npnq � 1 and 0 ¤ j1 ¤ Npnq � 1 are n-types), and for n

sufficiently large, by combining corollary 3.7 and lemma 3.4, we get:

f̄ pan,i1,eff...an,i1,efftloooooooomoooooooon
qn�1

Npnqqn,l11

letters

, an, j1,eff...an, j1,efftloooooooomoooooooon
qn�1

Npnqqn,l11

letters

q ¥ f̄ pa
qn�1

Npnqqnqn,l1

n,i1,eff
, a

qn�1
Npnqqnqn,l11

n, j1,eff
q � 3εn�1Nn�1qn,Npn�1q

¥ 1� 3ε � ε � 1� 4ε (15)

To get a lower bound on f̄ pḠi, jpT
g
v , Pgq, Ḡi,kpT

g
v , Pgqq, we need the following lemma,

which is straightforward:

Lemma 4.10. Let two words A, A1 on the alphabet I, and we obtain Ā and Ā1 by
inserting at most pβ� 1q|A| letters h in A, and pβ� 1q|A1| letters h in A1, where h is a
letter not in the alphabet I. We have:

f̄ pĀ, Ā1q ¥
f̄ pA, A1q

β

By lemma 4.3, we have, for n sufficiently large, except on a set of density less than
ε1: ����� |Ḡi, j| �

qn�1

Npnqqn,l1

|Ḡi, j|
�

³
g� 1³

g

����� ¤ 1
2
³

g

Therefore, except on a set of density less than ε1,

|Ḡi, j|
qn�1

Npnqqn,l1

¤ 2
»

g (16)

By lemma 4.10 and estimate (15), we get, except on a set of density less than ε1,
for Ḡi, jpT

g
v , Pgq and Ḡi,kpT

g
v , Pgq of different n-types:

f̄ pḠi, jpT
g
v , Pgq, Ḡi,kpT

g
v , Pgqq ¥

1� 4ε
2
³

g
(17)

We denote by F0 the set of Ḡi, j that do not satisfy (16). For n sufficiently large, the
set of indices tḠi, j{Ḡi, j P F0u has a density of less than ε1. The number w1 of segments
Ḡi, j satisfying (16) satisfies, for n sufficiently large:

w1 ¥ ε1p1� ε1qqn�1
Npnqqn,l1

qn�12
³

g
¥ 2n � 2
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This estimate allows to control the effect of the possible boundaries Ĝ and Ĝ1 on
the total d̄-distance.

Now, let ρ � min j d̄ pḠi, jpTu, Ppτqq, Ḡi, jpT
g
v , Pgqq. If ρ ¥ 1

8
1�4ε
2
³

g , then the propo-
sition obtains. Otherwise, let j0 be an indice realizing this minimum. The proportion
of segments Ḡi, j not in F0 and such that Ḡi, j and Ḡi, j0 have a different a n-type is more
than 1� 2{Npnq. For n sufficiently large, we get, by applying estimates (14) and (17):

d̄ pḠipT
g
v , Pgq, ḠipTu, Ppτqqq

¥ p1� ε1qp1� 1{2nq
1

w̄� 2� |F0|

w̄�1̧

j�2,Ḡi, jRF0

d̄ pḠi, jpT
g
v , Pgq, Ḡi, jpTu, Ppτqqq

¥ p1� ε1qp1� 1{2nq
1

w̄� 2� |F0|

w̄�1̧

j�2,Ḡi, jRF0

f̄ pḠi, jpT
g
v , Pgq, Ḡi, j0pT

g
v , Pgqq

� f̄ pḠi, j0pT
g
v , Pgq, Ḡi, j0pTu, Ppτqqq � f̄ pḠi, j0pTu, Ppτqq, Ḡi, jpTu, Ppτqqq

¥ p1�ε1qp1�1{2nq

�
pp1� 2{Npnqq

�
1� 4ε
2
³

g



�

1
8

�
1� 4ε
2
³

g



� p1� 1{2nq

1
2n�2




¥ p1� ε1q
1� 4ε
8
³

g

The case qn,l1   qn,l11
is analogous: we decompose GipT

g
v , Pgq into segments of

complete cycles (instead of segments of the same type), and we decompose GipTu, Ppτqq
into segments of the same type (instead of segments of complete cycles), and we pro-
ceed in the same way.

�

Proof of lemma 4.9. We decompose the pT g
v , Pgq-trajectory of px, iq into

ãn�2,0,effãn�2,1,eff...t̃...

ãn�2,i,eff denotes the ith word. Its n � 2-type is i1 (i1 P t0, ...,Npn � 2q � 1u). Let
B̃n�2,i be the set of indices such that B̃n�2,ipT

g
v , Pgq � ãn�2,i,eff.

By lemma 4.3, for n sufficiently large, the set of indices of B̃n�2,i which does not
belong to a word ãn�1, j,eff that satisfies:����� |ãn�1, j,eff|

|an�1, j,eff|
�

»
g

����� ¤ ε1{2

has a density of at most ε1{2. Thus, the density of indices that we consider is
1� ε1{2.
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Figure 10: Overlap of a pTu, Pq and pT g
v , Pgq-trajectories when rn�1, j1 ¡¡ rn�1,i1 .

Turbulences are not represented for simplification.

On B̃n�2,i, which has a pT g
v , Pgq-trajectory of n� 2-type i1, we distinguish different

segments according to the n � 2-type j1 of the pTu, Pq-trajectory. We distinguish the
cases j1   i1, j1 ¡ i1 and j1 � i1 ( j1 P t0, ...,Npn� 2q � 1u).

We suppose j1   i1 (i.e. rn�1, j1 ¡ rn�1,i1 ). Let B̃n�2,i, j be a set of indices such
that B̃n�2,i, jpTu, Pq is a segment of rn�1, j1 words of the same n � 1-type l (modulo
turbulences from An�2 and from the effect of the cyclic permutation), i.e. is of the form

B̃n�2,i, jpTu, Pq � an�1,l,eff...an�1,l,efftan�1,l,eff...an�1,l,efftloooooooooooooooooooooooomoooooooooooooooooooooooon
qn�1rn�1, j1�

qn�2
Npn�1qqn�1, j1

letters

Since, for n sufficiently large,
³

g � ε1{2 ¥ 2nrn�1,i1{rn�1, j1 , then B̃n�2,i, j contains
at least 2n complete cycles of n � 1-types ãn�1,0,eff...ãn�1,Npn�1q�1,eff (see figure 10).
Therefore, the density of ãn�1,l,eff words (i.e. words of n � 1-type l) in B̃n�2,i, j is less
than 2{Npn� 1q � 1{2n.

We neglected turbpAn�1q (and cyclic permutation effect), so we need to add an error
of density at most 3εn�1Nn�1qn,Npn�1q.

If j1 ¡ i1 (i.e. rn�1, j1   rn�1,i1 ), then except maybe on boundaries, there is another
segment of indices B̃n�2,i,k such that B̃n�2,i,kpT

g
v , Pgq is a segment of rn�1, j1 words of

the same n� 1-type l, i.e. of the form

B̃n�2,i,kpT
g
v , Pgq � ãn�1,l,eff t̃...ãn�1,l,effloooooooooomoooooooooon

¥qn�1rn�1,i1 letters

There are more than qn�1rn�1,i1 letters because
³

g� ε1 ¡ 1.
Since

³
g � ε1{2 ¤ rn�1, j1{p2

nrn�1,i1q, then B̃n�2,i,lpTu, Pq contains at least 2n com-
plete cycles of n � 1-types an�1,0,eff...an�1,Npn�1q�1,eff (see figure 11). Therefore, on
this segment, the n � 1-types of pT g

v , Pgq and pTu, Pq coincide on a set of density at
most 2{Npn� 1q � 1{2n.

Again, we add an error of density at most 3εn�1Nn�1qn,Npn�1q, due to turbpAn�1q
and cyclic permutation effect.
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Figure 11: Overlap of a pTu, Pq and pT g
v , Pgq-trajectories when rn�1, j1    rn�1,i1 .

Since Npn � 1q ¡
³

g � ε1 for n sufficiently large, the case j1 � i1 occurs at most
once on every set of indices where pT g

v , Pgq is of the form (see figure 12):

ãn�1,l,eff t̃...ãn�1,l,effloooooooooomoooooooooon
¥qn�1rn�1,i1 letters

Therefore, there exists n0 such that for any n ¥ n0 the density of indices on which
the n� 1-types of the pT g

v , Pgq and pTu, Pq-trajectories coincide is less than ε1 � 1{
³

g.

The proof works because for n sufficiently large, scales for pT g
v , Pgq and pTu, Pq are

either extremely different, or equal. A more problematic case would be if those scales
were different but comparable, e.g. if rn�1,i1 |ãn�1,1| � rn�1, j1 |an�1,1| (see figure 13).

�

�

4.3 Even equivalence
We show that if un � vn infinitely often, then Tu and Tv are not evenly equivalent. We
apply the proposition [12, p.92]:

Proposition 4.11. If pS , Pq and pT,Qq are evenly equivalent, then for any τ ¡ 0, there
is Kpτq ¡ 0 and Ppτq �

�Kpτq
i��Kpτq T ipQq such that f̄ ppS , Pq, pT, Ppτqqq   τ.

We contradict this proposition with τ � p1� 4εq{200. Indeed, we show:

Proposition 4.12. Let x, y two points in Enlb and Ppτq �
�Kpτq

i��Kpτq T i
upPq. Then

lim inf
mÑ�8

f̄ papTu, Ppτq,m, xq, apTv, P,m, yqq ¥
1� 4ε

128

Proof. The scheme of the proof is not sensibly different from the scheme of the proof
of proposition 4.7: we decompose successively the trajectories from scale n�2 to scale
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Figure 12: Overlap of a pTu, Pq and pT g
v , Pgq-trajectories when rn�1, j1 � rn�1,i1 . In the

next segment, rn�1, j1 � rn�1,i1�1    rn�1,i1

n, but along a maximal match, because we are working with f̄ (whereas in proposition
4.7, we decomposed along identical ranks of indices, because we were working with d̄).
For un�1 � vn�1, the orders of complete cycles of the pTu, Pq and pTv, Pq-trajectories
are the reverse of each other (see figure 15). It implies that in most cases, a pTu, Pq-
segment of a given n � 1-type must be matched with a pTv, Pq-segment that has a
different n � 1-type. Here, the "reverse orders of cycles" separate trajectories for f̄
in the same way as the expansion of trajectories by g separated trajectories for d̄ in
proposition 4.7 (see lemma 4.9).

In this case, the fit of their match is small, because repetitions of the words an,i,eff
in the pTv, Pq-trajectory and of the words ǎn,i,eff in the pTu, Ppτqq-trajectory have dif-
ferent periodicities (the periodicity of repetitions of ǎn,i,eff in the pTu, Ppτqq-trajectory
is the same as the periodicity of repetitions of an,i,eff in the pTu, Pq-trajectory, because
Kpτq   qn{2).

Turbulences remain packed in rare locations, and do not sensibly affect f̄ . Thus,
we can conclude as in proposition 4.7.

Let n be sufficiently large such that qn ¥ 2n�4p2Kpτqq, and such that un�1 � vn�1
(e.g. un�1 � 0, vn�1 � 1). Let m � 2nqn�2. Let α � 1� 3ε.

If f̄ papTu, Ppτq,m, xq, apTv, P,m, yqq ¥ 1�3ε
64 then we obtain the proposition. Oth-

erwise, let π : apTv, P,m, yq Ñ apTu, Ppτq,m, xq a match minimizing the f̄ -distance.
We see it as a match π : apTv, P,m, yq Ñ apTu, P,m, xq (we can do this because π is a
function of t1, ...,mu into itself). We decompose these two words in qn�2-trajectories:

apTu, P,m, xq � pa1an�2,1,effan�2,2,eff...t... pa2

apTv, P,m, yq � pa11a1
n�2,1,effa1

n�2,2,eff...t...
pa12

such that | pa1|, | pa11|, | pa2|, | pa12| ¤ qn�2, and where t is a turbulence from An�3 (or a
cyclic permutation effect). We write apTu, P,m, xq and apTv, P,m, yq in the form (see
figure 14):
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Figure 13: Overlap of a pTu, Pq and pT g
v , Pgq-trajectories when rn�1,i1 |ãn�1,1| �

rn�1, j1 |an�1,1|. This case does not happen with our assumptions.

apTv, P,m, yq � G1pTv, P, yqG2pTv, P, yq...t...GwpTv, P, yq

apTu, P,m, xq � G1
1pTu, P, xqG1

2pTu, P, xq...t...G1
wpTu, P, xq

where Gi, G1
i are sets of indices maximal for the inclusion such that Gi � an�2, jv,eff,

G1
i � an�2, ju,eff for some ranks jv, ju, and with G1

i � tw1, ...,w2u such that:

w1 � 1�maxtπpuq, u   Gi, u P Dpπqu

w2 �

"
maxtπpuq, u P Gi XDpπqu if Gi XDpπq � H
w1 otherwise

In particular, πpGiq � G1
i). G1

i lies between (but excluding) the rightmost letter
matched with a letter left of Gi and (including) the rightmost letter identified with
a letter to the left and including Gi. Again, we exclude An�3-turbulences from Gi,
because |t| ¡¡ qn�2 � |Gi|.

If f̄ pGipTv, P, yq,G1
ipTu, Ppτq, xqq ¥ α

64 , then we can stop the decomposition here.
Otherwise, then

1� 1{27 ¤
|Gi|

|G1
i|
¤ 1� 1{27

In each an�2,l,eff, there is at most one Gi such that |Gi| ¤ qn�2{2n�4 (and so
|G1

i| ¤ qn�2{2n�3, and there is at most one G1
i like that in each an�2,l1,eff), and there-

fore, the total density of indices of this kind is at most 1{2n�2. If both |Gi| and
|G1

i| ¥ qn�2{2n�3 ¥ 2n�2qn�1Npn� 1q, we write:

Gi � xG1Gi,1...Gi,rxG2

with r ¥ 2n�1, such that each Gi, jpTv, P, yq is a complete cycle of n � 1-types, i.e.
GipTv, P, yq is of the form (since we assumed vn�1 � 1):
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Figure 14: The decomposition of trajectories apTv, P,m, yq and apTu, P,m, xq in seg-
ments Gi and G1

i .

GipTv, P, yq � xG1 an�1,Npn�1q�1,eff...t...an�1,0,efftloooooooooooooooooomoooooooooooooooooon
Gi,1pTv,P,yq

an�1,Npn�1q�1,eff...t...an�1,0,efftloooooooooooooooooomoooooooooooooooooon
Gi,2pTv,P,yq

...xG2

Moreover, |xG1|, |xG2| ¤ Npn� 1qqn�1, and they occupy a density of less than 1{2n.
Here, we include An�2-turbulences in Gi, j, because their density is relatively small. We
also write:

G1
i �

xG1
1G1

i,1...G
1
i,r
xG1

2

such that G1
i, j corresponds to Gi, j by π, in the same way as G1

i corresponded to Gi,
(i.e. G1

i, j lies between the rightmost letter matched with a letter left of Gi, j and the
rightmost letter identified with a letter to the left and including Gi, j).

If f̄ pGi, jpTv, P, yq,G1
i, jpTu, Ppτq, xqq ¥ α

64 , then we can stop the decomposition here.
Otherwise, then

1� 1{27 ¤
|Gi, j|

|G1
i, j|

¤ 1� 1{27

We write:

Gi, j � Gi, j,1...t..Gi, j,s

and

G1
i, j � G1

i, j,1...t...G
1
i, j,s

where t is a turbulence of An�2 (or a cyclic permutation effect), and Gi, j,k, G1
i, j,k

are analogous to Gi and G1
i , but at rank n � 1, i.e. they are sets of indices maximal

for the inclusion such that Gi, j,k � an�1,kv,eff, G1
i, j,k � an�1,ku,eff for some ranks kv, ku,

and G1
i, j,k lies between the rightmost letter matched with a letter left of Gi, j,k and the

rightmost letter identified with a letter to the left and including Gi, j,k.
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If f̄ pGi, j,kpTv, P, yq,G1
i, j,kpTu, Ppτq, xqq ¥ α

64 , then we can stop the decomposition
here. Otherwise, then

1� 1{27 ¤
|Gi, j,k|

|G1
i, j,k|

¤ 1� 1{27

If either |Gi, j,k| ¤ qn�1{2n�3 or |G1
i, j,k| ¤ qn�1{2n�3, we can neglect both.

Otherwise, let k1 denotes the n � 1-type of an�1,k1v,eff � Gi, j,k (k1 P t0, ...,Npn �
1q � 1u. Since qn�1{2n�3 ¥ 2nrn,k1 Npnqqn, then Gi, j,kpTv, P, yq contains 2n complete
cycles of n-types. We can write:

Gi, j,k � pa1an,0,eff...an,1,efft....an,Npnq�1,eff pa2

where | pa1|, | pa2| ¤ Npnqqn, and pa1, pa2 occupy a density of less than 1{2n.
Let k2 be the n� 1-type of an�1,ku,eff � G1

i, j,k. We observe that any match between
the words 12...N12...N12...N and N...21N...21N...21 (same word repeated p times) has
a fit smaller than 2p�1

p
1
N ¤ 3{N, where N is the number of types (see figure 15). There-

fore, Gi, j,kpTv, P, yq and G1
i, j,kpTu, P, xq have the same type in only a fraction 3{Npn�1q

of cases, which makes a density of indices of less than 4{Npn� 1q.

Figure 15: The f̄ -distance between these two words is large.

If k1 ¡ k2, then rn,k1   rn,k2 and we proceed as in proposition 4.7. We can write:

G1
i, j,k � pa3G1

i, j,k,1...G
1
i, j,k,L pa4

such that G1
i, j,k,lpTu, P, xq � an,il,eff...t...an,il,efft is a segment of words of the same

n-type il. G1
i, j,k,l corresponds by π to Gi, j,k,l (as before).

If f̄ pGi, j,k,lpTv, P, yq,G1
i, j,k,lpTu, Ppτq, xqq ¥ α

64 , then we can stop the work with this
segment here. Otherwise, then

1� 1{27 ¤
|Gi, j,k,l|

|G1
i, j,k,l|

¤ 1� 1{27

Gi, j,k,lpTv, P, yq contains at least 2n complete cycles of n-types (with turbulences),
because 2n�1rn,k1   rn,k2 .

At i, j, k fixed, the G1
i, j,k,lpTu, P, xq, when l varies, have the same n-type in a pro-

portion of less than 2{Npnq. Since Kpτq ¤ qn{2, and the an,il,eff are the same (turbu-
lences coming from Bn are located at the same place throughout every an,il,eff), then
the G1

i, j,k,lpTu, Ppτq, xq also have the same n-type in a proportion of less than 2{Npnq. If
l1 � l2, then because of turbpAn�1q (and cyclic permutation effect),

f̄ pG1
i, j,k,l1pTu, Ppτq, xq,G1

i, j,k,l2pTu, Ppτq, xqq ¥ α� 4p2Kpτq � 1qεn�1Nn�1qn,Npn�1q
(18)
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On the other hand, since Gi, j,k,lpTv, P, yq contains at least 2n complete cycles of
n-types (with turbulences), then for any l1, l2,

f̄ pGi, j,k,l1pTv, P, yq,Gi, j,k,l2pTv, P, yqq ¤
1
2n � 4εn�1Nn�1qn,Npn�1q (19)

If k1   k2, the proof is analogous.
Let ρ0 � minl f̄ pG1

i, j,k,lpTu, Ppτq, xq,Gi, j,k,lpTv, P, yqq and l0 an indice realizing this
minimum. If ρ0 ¡ α{128, we can stop here. Otherwise, by applying estimates (18)
and (19), and by taking into account boundary effects, and for n sufficiently large such
that an�1 � bn�1:

f̄ pG1
i, j,kpTu, Ppτq, xq,Gi, j,kpTv, P, yqq ¥ p1�1{2nq

1
L

Ļ

l�1

f̄ pG1
i, j,k,lpTu, Ppτq, xq,Gi, j,k,lpTv, P, yqq

¥ p1� 1{2nq
1
L

Ļ

l�1

f̄ pG1
i, j,k,lpTu, Ppτq, xq,G1

i, j,k,l0pTu, Ppτq, xqq

� f̄ pG1
i, j,k,l0pTu, Ppτq, xq,Gi, j,k,l0pTv, P, yqq � f̄ pGi, j,k,l0pTv, P, yq,Gi, j,k,lpTv, P, yqq

¥
1� 4ε

128
�
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