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Abstract

We construct an uncountable family of smooth ergodic zero-entropy diffeo-
morphisms that are pairwise non-Kakutani equivalent, on any smooth compact
connected manifold of dimension greater than two, on which there exists an ef-
fective smooth circle action preserving a positive smooth volume. To that end, we
first construct a smooth ergodic zero-entropy and non-Loosely Bernoulli diffeo-
morphism, by suitably modifying a smooth construction by Anosov and Katok. A
construction of this kind was announced by Katok in 1977 and 1980 [8, p.141], [9,
p-293].

1 Introduction

An important question on the interface between smooth dynamics and abstract ergodic
theory is: what ergodic properties, if any, are imposed upon a dynamical system by
the fact that it should be smooth? [11, p.89] [15, p.232] Only one restriction is known,
which is that the entropy must be finite, because the dimension of the manifold is finite.

The core of the problem is when the invariant measure is smooth, and the manifold
is compact (otherwise, see [10], [2]). No other restriction has been found yet, but exam-
ples have been provided: Brin, Feldman and Katok [5] showed that any compact man-
ifold of dimension greater than one admits a smooth Bernoulli diffeomorphism. Ka-
tok [9] and Rudolph [14] gave examples of smooth non-Bernoulli K-diffeomorphisms.
Ratner [13] showed that the Cartesian square of the horocycle flow is non-Loosely
Bernoulli, thus giving an algebraic (hence analytic) example.

In this paper, we construct an uncountable family of smooth ergodic zero-entropy
diffeomorphisms that are pairwise non-Kakutani equivalent, on any smooth compact
connected manifold of dimension greater than two, on which there exists an effective
smooth circle action preserving a positive smooth volume.

Our construction originates from an example given by Feldman [7], of an ergodic
transformation of zero entropy that is non-Loosely Bernoulli (i.e. non-Kakutani equiv-
alent to an irrational circle rotation). Ornstein, Rudolph and Weiss [12] extended Feld-
man’s construction to obtain an uncountable family of ergodic zero-entropy transfor-
mations that are pairwise non-Kakutani equivalent. Their transformations are discon-
tinuous, they are obtained by "cutting and stacking". The construction given in this
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paper corresponds to a smooth version of the construction given by Ornstein, Rudolph
and Weiss. To obtain it, we suitably modify a smooth construction by Anosov and
Katok [1].

In particular, we also obtain a smooth ergodic non-Loosely Bernoulli diffeomor-
phism on any smooth compact connected manifold of dimension greater than two,
on which there exists an effective smooth circle action preserving a positive smooth
volume. This allows to generalize Katok’s result on the existence of a smooth non-
Bernoulli K-diffeomorphism to every manifold of dimension greater than 4 [9, p.293].
This smooth version of Feldman’s transformation has been announced by Katok [8,
p-141], [9, p.293]. However, up to now, it has not been written.

In this paper, we show the theorems:

Theorem 1.1. Let M be a smooth compact connected manifold of dimension d > 2,
on which there exists an effective smooth circle action (S,);e1 preserving a positive
smooth measure . There exists an ergodic non-Loosely Bernoulli diffeomorphism T €

Diff* (M, p).

Theorem 1.2. Let M be a smooth compact connected manifold of dimension d = 2,
on which there exists an effective smooth circle action (S,);em preserving a positive
smooth measure y. There exists an uncountable family of ergodic diffeomorphisms
T, € Diff* (M, u) such that if u # v, then T, and T, are not Kakutani-equivalent.

First, in sections 2 and 3, we show theorem 1.1, which gives a smooth version of
Feldman’s transformation. In section 4, we show theorem 1.2, by adapting the proof of
Ornstein, Rudolph and Weiss [12, pp. 84-95].

1.1 Main ideas

We recall some definitions found in [7] (we slightly modify the terminology some-
times). We fix an automorphism T of (M, B,u). Let I be an alphabet of size N and
P = {c¢;,i € I} a finite measurable partition indexed by this alphabet. For any x € M
and integer n € N, and for any i = 0,...,n — 1, let @; € I such that 7?(x) € c,,. The
n-trajectory of x by T with respect to P is the word of length n on the alphabet I given
by: a(T,n,x) = ay...a,—1, such that , T'(x) € ¢, (we do not mention the partition
P in the notation when it is fixed once for all). The length of this word is denoted
|a(T,n, x)|. The trajectory of x (by T with respect to P) is the infinite word apa; ...
where T'(x) € c,, for any i € N.

Leta = ay...a, and 8 = b;...b,, be two words on the alphabet I. A match m between
« and B is an injective, order-preserving partial function z : {1, ...,n} — {1,...,m} such
that for any j in its domain of definition D(7) < {1, ..., n}, by(;) = a;. The cardinal of
D(r) is denoted |D(rr)|. Let R(mr) = m (D(xr)). mis denoted:

n:D(r) c{l,...,n} - R(r) < {l,...,m}

Let D(7) = {j1, - jjp(x)|}- We identify D(rr) with the subword aj, ...a;,,,,, of a,
and R(rr) with the subword by j,).-br( i) OF B-
The fit of x, fit(r) is given by:
D
i) = 12601
3(m+n)

Let also



a i R(r) c {1,...,m} — D(x) c {1,....,n}

such that 7~ (n(i)) = i. Since |R(xr)| = |D(x)], then fit(x~") = fit(r).
The distance f(a,[3) between @ and 3 is:

f(a,B) = 1 — max{fit(n), 7 : « — B match }

Since fit(z~!) = fit(x) for any match x, then f(a,8) = f(B, ).

Moreover, if @, 8 and y are words of equal length, f(e,y) < f(a,8) + f(8.7).

A characterisation of Loosely Bernoulliness in the case of zero entropy is given in
[7, p.22]. In this paper, we rather give a definition of non-Loosely Bernoulliness (nLB)
in the case of zero entropy, because we want to obtain this property.

Definition 1.3. Suppose T has no entropy. T is non-Loosely Bernoulli (nLB) if there
exists € > 0 and a finite partition P such that, for an infinity of integers n, and for any
A€ B ifu(A) = 1 — ¢ there exists x,y € A, f(a(T,n, x),a(T,n,y)) > €.

Our construction is inspired by the example given by Feldman [7] of a transforma-
tion T that is ergodic, of zero entropy but non-Loosely Bernoulli. His transformation
is not smooth (not even continuous) and is carried on [0, 1]. He constructs words
(of length N(n) at the n™ step) by induction. They are defined by ag; = a; € I for
i=0,..,N0)—1,andforn >0andi =0,..,Nn+1) — 1

N(n)z(i+l) N(n)z(i-H)
Any1i = 4, ...an’N(n)

N(n)2NO+D=(+1)

Ty is constructed so that, up to minor details, the N(n)-trajectory of points in [0, 1]
are, with equal Lebesgue measure, given by the a,;, i = i,..., N(n). Under suitable
assumptions, this property implies that T} is nLB.

To get a construction looking like Feldman’s, but smooth, we rely on three obser-
vations: first, the f -distance is quite flexible: the fit of a match is a ratio of two lengths,
and therefore, the addition of unknown letters into a word does not sensibly affect its fit
with another word, if the total length of one of the words (or both) is taken sufficiently
large. This property allows to approximate Feldman’s map by smooth maps.

Second, we rely on a phenomenon of "quasi-concatenation" of finite trajectories:
for example, let g, > 0, let £ = {[0, 1] x [i/qn, (i+1)/gn[,0 < i < g, — 1} the partition
of [0,1] x T, § 1 the rotation of angle o7 of [0,1] x T". Let w be the g,-trajectory of

0 with respect to S 1 and £, and let g, > 0 be an integer that is strictly divided by ¢>.

qn

Let put1/qni1 = 1/qn + 1/qn+1, and o be the circular permutation on words defined
by: o : aia...a, — as...apar, where a;,i = 1, ..., p, are letters of a word of length p.
The g,,41-trajectory of O by S 1 is:

qn

dn41 dn41 dn1

W (o) (o (w)

We assume that ¢2 divides ¢, 1, and not simply that g, divides ¢, 1, because the
map o is applied every g, 1/q, iterations, and for convenience, we prefer not to cut a
word in the middle.

If gn+1/gn is sufficiently large, we can neglect the effect of the circular permutation

o on this trajectory, which fit becomes close to the fit of w™a . This phenomenon is
used to smoothly "quasi-concatenate” words.



The third observation allows to concatenate different words (the second observation
only allows to concatenate the same word). It consists in introducing a smooth "quasi-
permutation” that allows to permute "tracks" on which rely the "trajectories" of points
by our transformation 7. By using quasi-permutations on separated tracks, we can
obtain different trajectories, and thus obtain nLB. This method is possible because the
manifold M has dimension greater than two.

This technique of taking "different tracks" is a novelty with respect to the origi-
nal Anosov-Katok method [1], which does not use dimension two as fully as we do. In
their method, they only use one single "track". Basically, most of their construction can
be carried on a circle. They need dimension two only when they take the limit in the
construction. This approach complicates the coexistence of different trajectories on the
same manifold: indeed, in their method, each trajectory is approximated by periodic
trajectories. Atstep n+ 1, we need that the rotation S, of the annulus acts on a hori-

Int1
zontal partition like a permutation having N(n+1) = ¢,+1/q,, | cycles, each of length
q, 4+1- But the main problem is that the cycles are too closely intertwined (figure 1).

This does not allow the convergence of the diffeomorphism 7,1 = B, +]S ,7”+1 Bui1:
B
the norm || B,+1| will be of order g, at least, whereas in order to get a smooth map

at the limit, we need that the series ),

[Brsr] ”“” converges (it is a consequence of a gen-

eralized mean value theorem). In our constructlon, we put cycles vertically (figure 2),
so that we do not get this problem.

However, we still rely on the core ideas of the Anosov-Katok method: we obtain the
smooth diffeomorphism 7" as the C*-limit of a sequence T, = B, 'S b B, of periodic
diffeomorphisms, with B, = A,A,_...A}, n+1S L= =S 1 An+1 and g, d1V1des qn+1-

Convergence in the C*-norm is possible because Tn+1 is taken very close to T),:

gn+1 1s taken large, so that the distance between S r.1 and S m is small with respect
It an

to the norm of the conjugacy |B,+1]|, which norm is related to scale of the smallest
quasi-permutation at step n + 1 (each quasi-permutation has its own scale, different of
others, to allow nLB).

Moreover, in order to get nLB, 7, is also taken very close to T,: indeed, this
closeness implies that Tfl 1 does not significantly differ with T! for i ~ gy, so that
both transformations give similar i-trajectories. However, these two maps differ when
i >> g, (typically, when i ~ g,+1/q,). For example, T, is g,-periodic but not 7.
This closeness allows approaching Feldman’s construction: Feldman’s maps 7, and
T, always have the same N(n)-trajectories, these two maps exactly coincide on in-
creasingly larger sets. In our construction, for most points, there are N (n + 1) different
kinds of g, -trajectories, obtained by concatenating g,-trajectories in different ways.
Up to a circular permutation of letters, and up to other minor modifications, these g, 1-
trajectories are, for i = 0,..., N(n+ 1) — 1:

In41 In41 dn41 qn,i
_ N(m)apign  N(n)qp ian N(n)ap,ian
Anv1i = <an,0 an,l an,N(n)—l) M

The parameters g, ; are suitably chosen to get nLB: an important characteristic of
this choice is that g, << @n; << Gnit+1 << ... << Gnt1-

In section 2, we construct 7, on [0, 1] x T. In section 3, we show that the limit T
is smooth, nLLB and ergodic. In subsections 3.3.2 and 3.3.3, we extend the construction
to the cases of [0,1]9"! x T and more general manifold M. In section 4, we gener-




Cycle 3

Cycle 2

Cycle 1

Cycle 3 ,

Cycle 2 Q'+
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v On+1

Figure 1: If we take a horizontal partition of [0,1] x T!, the three cycles are too

intertwined. This is an obstacle for the convergence of 7, = B, s o, B towards a
an

Cycle 1

smooth map.

alize the construction to an uncountable family of pairwise non-Kakutani equivalent
diffeomorphisms. Various figures illustrate the construction.

In all the paper, f denotes an explicit function of its variables. The expression
of this function can vary from one estimate to the other, but we still denote all these
estimating functions in the same way.

2 Construction of the transformation 7,

2.1 Smooth quasi-permutations

We introduce smooth quasi-permutations, which are the main tool for the construction
of the map T'.

Proposition 2.1. Let a < b and ¢ < d be real numbers such thatd — c < b — a.
Leta <d < (a+b)/2,b' =a+b—d,0<e<min((d —a)/2,(d—c)/2). Let
7, be the translation of vector (u,0). There exists a smooth measure-preserving map
#(a,b,c,d,d ,€) : [a,b] x [c,d] and a fixed numerical function f such that (see figure
3):

¢\ [a.b] x [c.d]—([a+€/2.b—€/2] X [c+€/2,d—€/2]) = id



Cycle 1 | Cycle 2 | Cycle 3

1

3

Figure 2: If we take a vertical partition of [0, 1] x T', having to deal with three cycles is

no longer an obstacle for the convergence of the periodic map T, = B, 'S . B, towards
qn

a smooth map.



¢|[a’+5,b’fe]><[c+e,dfe] =id
Pllatea'—e] x[c+ed—e] = Th'—a
¢|[b’+e,b75] x[c+ed—e] = Ta—b’

|¢ln < f(n,a,b,c.d,d€)

Remark 2.2. Assumptions given in this proposition are not the most general in order
to define a quasi-permutation. However, they will be easier to write the construction,
allowing to avoid writing some unessential technical details.

Remark 2.3. The estimating function f(n,a,b,c,d,d’,€) could be explicitly deter-
mined, but we do not need its expression in this paper.

The norm of the C"-norm of ¢ is denoted with |¢|,. The set where |D¢|, = 1,
which includes [@' + €,0' —€] x [c+e,d—€] U [a+€,a —€] x [c+e,d—€e] U [b +
eb—¢€] x[c+ed—€|ulab]x[c,d]—([a+€/2,b—€/2] x [c+€/2,d—€/2]) is
called safe zone. The set where ||@||, # 1 is called turbulence zone.

The basic phenomenon that we use is the following: let S, be the rotation flow on
A, 0<a<b<l,0<c<d<1,x=(uv). Wehave: S;(u,v) = (u,v +1).

Let A : A O such that A|[,p]x[caq) = ¢(a.b,c,d,d,€), where ¢(a,b,c,d,d’, €) is
the quasi-permutation defined in proposition 2.1, and such that A = id elsewhere. Let
R(x) = A~!'S,A(x). We have:

1. If u ¢ [a,b], then R(x) = S,(x).

2. Ifuelat+ed —el,v<candc+e<v+t<d—e then R(x) = Tp_,08,(x).

+ o+

3. Ifue [ +eb—¢€l,v<candc+e < v+t <d—¢ then R(x) = T, 05,(x).
4 Ifueld +€b —€l,v<candc+e<v+r1<d—e then R(x) = S,(x).
Observe also that, since R?(x) = A7!S,AA7!S,A(x) = A71S,A(x), then if we

take x inside a safe zone, and if some iterate of x by R falls inside the turbulence

zone, then if we iterate enough by R, we get back into a safe zone, as if we went there

directly, i.e. as if we never crossed turbulences. So even if we lose the trajectory of x

into a turbulence zone, we recover it after sufficient iterations. Therefore, if turbulence

zones are sufficiently thin, we can control most of the trajectory of x.

On the other hand, if x belongs to a turbulence zone, we cannot control its trajectory

by R.

Proof of proposition 2.1. We recall the following proposition, which is found in [6, 4,
3] in a slightly modified version:

Proposition 2.4 ([6]). For any n > O, there exists a smooth measure-preserving map
¢(n) : [0,1]*> O such that:

() |ma—np = R(m, (1/2,1/2))



2 Turbulence zone id

Th'-a Id Ta-b'

a a b’

Figure 3: A quasi-permutation: it permutes the two lateral boxes, and keeps the central
one fixed.

where R(r, (1/2,1/2)) denotes the rotation of angle m and center (1/2,1/2),

¢(Tl)\[0,1]2—([17/2,1—77/2]2) =id

l¢(m)|n < f(n.m)
Remark 2.5. In [6, 4, 3], the angle of the rotation is 7r/2, whereas the angle here is 7.
Letp > 1 and

C,: [0,1]><[0,%] ~ [0,1] x [0,1]
(x,y) = (x,py)

Let ¢(n, p) = C;'¢(17)Cp. The map ¢(n, p) : [0,1] x [O,Ilj] O is smooth and
measure-preserving. By the Faa-di-Bruno formula,

(. p)ln < f(n,n, p)

By composing ¢(7, p) with translations and homotheties, there exists ¢! (a, b, ¢, d, €) :

[a,b] x [c,d] O such that:

1 .
D [ab] x [ed]— ([a+e/2h—e/2] x [e+e/2.d—e2]) =

| a+b c+d
Dlate/2b—e/2]x[ore/rd—ef2] = R (”’ ( 5 "o >)

||¢1 Hn < f(n, a, b, c, d, e)
there exists ¢2(a, be.d,d,€) : [a,b] x [¢,d] O such that

2 B a+b c+d
¢|[a’+e,b’—e]><[c+e,d—e] =R (ﬂ’< 2 7 2 ))

and ¢ = id on [a,b] x [c,d] — ([d',b'] % [c + €/2,d — €/2])

|62 < f(n,a,b,c,d,€)

2



there exists ¢*(a, b, c,d,d’, €) : [a,b] x [c,d] O such that

3 _ a+d c+d
¢\[a+e,a’fe]x[c+e,dfe] =R (71', < 2 2 ))

and ¢> = id on [a,b] x [c,d] — ([a + €/2,d'] x [c + €/2,d — €/2])

|6*]. < f(n,a,b,c.d,€)
and there exists ¢4(a, b,e,d,d,e€) : [a,b] x [¢,d] © such that

b+b c+d
4
¢\[b’+s,b—e]><[c+e,d—6] =R (71’, ( 2 72 >)

and ¢* = id on [a,b] x [c,d] — ([b',b] x [c + €/2,d — €/2])

”¢4Hn < f(n, a, b, c, d, e)
We let ¢ = ¢* 0 ¢* 0 ¢* 0 ¢'. We have:

B\[ap] x [e.d]— ([a+e/2.b—e/2] x [c+e/2.d—e/2]) = id
Bl +eb —e] x [e+ed—e] = id
D|lated —e] x[c+ed—e] = Th'—a
O|[p' +eb—e] x [c+ed—e] = Ta—b/

[6]n < f(n.a.b.c.d.d€)

2.2 Definition of T,

Figures 4, 5 and 6 illustrate the definition. We define T, in the case M = [0, 1] x T. In
subsections 3.3.2 and 3.3.3, we extend the construction to the general case.

For n > 0, let N(n) > 2 be a sequence of integers. Additional assumptions on
N(n) appear in corollary 3.7 of the next section, to get nLB of the limit 7. Let N,, =
[TizoN(k), Ny = 1. Let strictly positive integers g,, ¢n0. ---» gnn(n+1)—1 such that
qn divides g0, for i = 0,...,N(n + 1) — 2, g, divides g, 1, and N(1n)gngun(n+1)—1
divides g,+. Additional assumptions on the g, ; appear in corollary 3.7, in order to get
nLB of the limit 7.

Fori =0,.,N(n+1)—1,j=0,...,N,—1—1,j =0,..,N,_1—1,y =0,..., N(n)—1,
x=0,..,[(N(n)+y)/2],if (j + j')/Na—1 < 1 then we define (by using notations of
proposition 2.1):

. . . 1 )
An+1(i,j,j',x,y):< J ! +[i (1) Y., j DX

+ : +
Nn—l Nn+l Nn Nn Nn+1 Nn—l

o )
+ , + O
(qn,iNn Qn,iN(n) qn,iN(n) Qn,iNn



. . .
J ! J
u,v) — + ) +
( ) <Nn—1 Nn+1 qn,iNn>

N(n) — x + 1 i 1 1
¢<i (n) Y4 L y y x ,En+1>(u,v)

> > ’ [ +
Nn Nn Nn+1 anl qn,lN(n) qn,iN(n) Qn,iNn Nn Nn+1

if (j 4+ j)/Na—1 = 1 then we define (by using notations of proposition 2.1):

. j i [N —xty  Jox 1
A i /’x’ . + =+ + ,_+ X
n1(is o J's %) <Nn—l Ny [ N, No—1 Ny Ny

J [ y y 1 D
+ , + ©
(qn,iNn Qn,iN(n) Qn,iN(n) Qn,iNn

J i J )
u,v) — + s +
( ) (an Nn+1 qn,iNn

N(n) —x+ 1 i 1 Nn —x+
¢(M1+ L) y y (n) Y,

Nn ’ Nn Nn+1 anl ’ Qn,iNn, qn,iN(n) Qn,iNn ’ Nn Nn+l

We distinguish the cases (j + j')/Na—1 < 1 and (j + j/)/N,—1 = 1, because if
(G J)/Nacr = 1 then e 4 gl MU g Dy T s,

We briefly explain the different roles played by the indices i, j, j/, x, y: the index i
is used to label the N(n + 1) different g,+-trajectories. The parameters x,y serve to
concatenate the N(n) different g,-trajectories in the right order and everywhere. The
parameters j, j’ serve to connect the different ergodic components of T, properly, to get

ergodicity of the limit transformation 7.

We extend A,1(i, j, /', x,y) to

Ny =1 Ny = j= 1 N(n)=1 [(N(n)+y)/2]

=49

y=0 x=0

Y

1

J i x N(n)—x+y 1 J D ( J [ y
+ + | =, + + X + , +
(an N1 |:Nn N, Noy1 N,_i Qn,iNn Qn,iN(n) Qn,iN(n)

No—i=1 Ny =1 N(n)=1[(N(n)+y)/2]

U

j=0 j=N,_1—j y=0 x=0

M

qn,iN

1

j j N(n) —x + i’ 1 i
(RN LTSS S WY AN S
anl Nn+1 Nn anl Nn Nn+1 qn,iNn Qn,lN(n) qn,iN(n)

by identity. Then, on each E(i), i = 0,..,N(n + 1) — 1, we define:

Ny—1—1 N,—1—1 N(n)—
1 1 o _(’(l))

Anar (i) = 0,15 0} (N(m+3)/2] 4

1 ..
O,cho w1 (i, 4o Js %, y)

The order in which we compose the maps A, (i, j, j, x, y) affects the definition of
A, +1(i), because their support are not disjoint: their turbulence zones have intersections

10

+

qn,iNn

) ()

U

)



on sets of small measure. However, this order does not matter for the properties of
A, 1(i) that we seek.
We extend A, 11 (i) to E(i) +(0,1/gn;), I = 0, ..., gn; — 1 by 1/g, ;-equivariance, i.e.:

A1 (D) (v + 1/ qni) = Aps1 (D) (u,v) + (0,1/n)
The parameter i was sorted out because the g,,; depend on i.

Finally, on [0, 1] x T, we define: A, = oﬁi&‘*lAnH(i).

Again, the order of composition of the maps A, (i) matters for the definition, but
not for the properties that we seek.

LetB, = A,0..0Apand T, = B;lS %Bn. This defines 7,. In corollary 3.7, we add
assumptions on ¢,, N(n) and g,; to obtanin that 7}, converges towards a smooth, nL.B
and ergodic transformation 7. T will have zero entropy as the limit of maps conjugated
to rotations.

3 Properties of the transformation 7

3.1 Convergence of 7, towards a smooth map T

Showing the convergence of T, towards a smooth map 7 is classical (seee.g. [1, 6]). By
construction, there exists fyrecgce (7 @n> N1, un(nt1)—1> €n+1) such that | B,y i]i11 <
Sorecgee (s @ns Nus 15 @uN(nt1)—1, €+1). By the Cauchy criterion, it suffices to show that
ano dy(Ty41, T,) converges. We combine the fact that A, commutes with S L the
estimation of B,,;1 and the fact that p,1/gn+1 = Pu/gn +1/gn+1. We recall the lemma
[6, p.1812]:

Lemma 3.1. Let k € N. There is a constant C(k,d) such that, for any h € Difi M),

ay,a € R, we have:

di(hS o, h™" hS o,h™") < C(k, d) R[]y — ez

Since T,, = B,TIS mB, = B’;llSLnB,,H (because A, commutes with S 1), and
4qn qn

qn
since, for n = 2, |[¢pllnr1 < qf' ™ for a sequence R;(n) independent of ¢, (because
gn = 2 for n > 2), we obtain, for a fixed sequence fegce (7, Gns Nut 15 Gun(ns-1)—10 €nt1):

dn(Tn-‘rl, Tn) = dn(Bn__;:]SMBH+I’BH__:IS%Bn+I)
dn+1 "

Pny1 Pn
qn+1 qn

Pn+1 V4%
< Clk,d)||Bug |11} | 7= = ==
gn+1 qn

For a sufficiently increasing sequence g, this last estimate guarantees the conver-
gence of T, in the smooth topology.

< fcgce(ns qn» Nn+13Qn,N(n+1)—1’6n+l)
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Figure 4: Domains of the different trajectories for the first three iterations of the con-
struction, with N(k) = 2,k = 0,...,3. Some quasi-permutations are represented in
dotted lines.
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Ao a4
[0,1]
a’I,O a1,1 a1’0 a1’1
azo : az 1 azo : az,1 azo l az 1 azo : az 1
! |
- — ——
———J| —— = 12 —— - 21
|
] 1,2 —| 2,1
— — | |
|
N —— = 11 —— - 22
| |
— — - =
| |
12 | 21 |
1,1 —I 2,2 _!
_ —— = 1,2 —— — 1,2
1,2 2,1 |
11 1| 22 ] 2,2
12 | 21 |
] T2 |
_ - 11 1 22
1,2 | 2.1 |
1,1 —! 2,2 —!

Figure 5: Representation of A; and partial representation of A, (dashed lines), with
N(k) = 2,k =0, ...,2. The rectangle (i, j) is quasi-permuted with the rectangle (}, i)
of the same height. In particular, A; (I = 1,2) is the identity on (i, ).

13



1
n,0

1
cIn,1

!

[0,1]

aq as as s
1,4 2,3 3,2 4,1
13 2,2 3,1 4.4
1,2 2,1 3,4 4,3
| | | |
| | | |
1,4 2,3 3,4 4,1
1,3 2,2 3,1 4.4
1,1 2,4 3,3 4,2
1,2 2,1 3,4 4,3
1,1 2,4 3,3 4,2

Figure 6: Partial representation of A;, with N(0) = 4 and N(1) = 2. The rectan-
gle (i, j) is quasi-permuted with the rectangle (j, /) of the same height. Some quasi-
permutations are represented in dotted lines.

14




3.2 T is non-Loosely Bernoulli

To get nLB, the idea is that the two words aaaabbbb and abababab are far from each
other in the f-distance.

We fix the partition: P = {cj = ]ﬁo)’ %] x T, j=0,..,N(0) - 1}
The aim of this subsection is to show the following proposition, which is slightly

stronger than the nLLB property:

Proposition 3.2. For any € > 0, there exists T € Diff*(A) such that for any A € B
such that ,u_(A) > 2, there exists ng = 0 such that for any n = ny, there exists x,y € A
such that f(a(T, gy, x),a(T,qn,y)) = 1 — 3e.

First, we show that it suffices to consider g,-trajectories by T, instead of consider-
ing g,-trajectories by T.

Lemma 3.3. Forany € > 0, there exists a numerical map fop(€, 1, @n, Nyt 1, GuN(nt1)—1 €ntl) =
Segee(Rs Gns Nug 15 GuN(ns1)—15 €ns1), there exists E,py © A such that u(Eqp) = 1 — €

and such that for any n € N, if quy1 = fup(€ 15 Gns Ny 15 GuNns1)—1> €nt1), then for

any x € Eyp the g,-trajectory of x by T, is the same as the q,-trajectory of x by T.

PFOOf Letfnlb(e,na qunJrlsCIn,N(n-&-l)—l’En+1) = fcgce(nsqn,Nn+1,qn,N(n+l)—l,6n+1) =
2"q, such that, if g, 1 = fun (€, 7, Gns Nuy 15 @un(n+1)—1- €n+1), then for any m € N,

2 fcgm(n’Qn’Nn+lsQn,N(n+l)fl’ €n+1) < €
Gni1 = AN (0)2m!

n=zm

Remark that as far as g, = 2"q,, fu» does not depend on the g,,, p > n+ 1. Since

d(T, Tm) < Z fcgce(i’l, Qn,Nn+laqu(n+l)_|,E,H_l)

nzm Qn-&-l
then B
dT,.T,) < 57
(T-Tw) < G N

Therefore, for0 < i< g, — 1,
d (Ti Ti) <—5 )
0 stm) X qu(O)Zm+1

Moreover, for any F,G continuous and measure-preserving transformations, and
Ae B,

H(F(A) A G(A) > u(A) — u [F(AFGA)] = u(A) —do(FG) ()

Now, let
gn—1 | N(0)—1

Eup = ﬂ ﬂ U T, 'c;nT 'c;

n=0 i=0 | j=0

Since, by (3),

u (T cjn T7ie;) = pley) —d(T;, T
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and since T'c; n T 'c; = @ if j # j/, then

N(0)—1 N(0)—1
U T,l_icj N T_icj = Z U (T,,_icj N T_icj)
j=0 j=0
N(0)—1 .
= ZE) pulej) —d(T, "\ T7") =1 - 2T
=

Moreover, for any A, B € B, €4, €g = 0 such that u(A) > 1 —€4 and u(B) > 1 — 5,
we have:

WA N B) = p(A) +pu(B) —pu(Avu B) = 1 — (e + €p) 4)
Therefore,
gn—1 €
,U(Enlb)Zl—Z Z —n+1=1—€
n=0 i=0 qnz

Finally, if x € E,;, then for any n € N, for any i = 0,...,q, — 1, there exists
j=0,..,N(0) — 1 such that x € T, 'c; n T~'c;. Therefore, Tix € c; and T'x € c;.
Therefore, x has the same g,-trajectory by T,, and by T'.

O

Second, we show that the trajectory by T, of most points is well approximated by
the "theoretical" trajectories a,;, defined in (1).
Let o = 0, and for any n > 1, let

n—1 2.2
1 N(k) P
M =2 ) &Nt max qrit+— + max _—
=0 0<iSN(k+1)—1 MINg<<N(k+1)—1 Gk,i  O<SiISN(k+1)=1  Giy1
and

Egafe(n) = [ safe (Ay)
k=0

We have the lemma:

Lemma 3.4. We have a partition Eg,f, (n) = {co(n), ..., cn(my—1(n)} such that for any
i=0,..,N(n)—1,

‘ﬂ(ci(n)) = U < urb(8,))

N(n)

and for any x € c;(n), )
f(a(Tn» C]n, )C), an,i) < 77n

Proof. The proofis by inductionon n. If n = 0, Eq,¢,(0) = A. Moreover, a(Ty, qo, X) =
iy, where i, € Iis such that x € ¢;_. Therefore, a(Ty, qo, x) = ag, , and f(a(To, qo, X), ag,,) <
no = 0.

Suppose the lemma holds at step 7, and let x € Eg, g, (n+1). Since safe(A,) is stable
by A,, then Eg o (n + 1)  safe (B,1), and therefore, x € safe (B,11). By construc-
tion, up to a circular permutation, x has N(n+ 1) possible types of ¢, 1-trajectories (i.e.
N(n+1) if we neglect turbulences, otherwise there are N, 1 possible g, 1-trajectories),
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depending on which "track" it stands. We denote these (non-connected) elements of
this partition co(n + 1), ..., cy(ng-1)—1 (7 + 1). We have:

u(ci(n+ 1)) — < p (turb(By41))

N(n+1)
We show the second estimate. By construction, up to a circular permutation, any y €
Eqafe(n) < safe (B,) has N(n) possible types of g,-trajectories by 7,,. We denote them
a, ; eff> with i = 0,..., N(n) — 1. Labels i of a, ; off are chosen such that, by induction
assumption, f' (an’ ieffs ani) < 1y a, ; off is the "effective” trajectory: it corresponds to
an "ideal" trajectory a,; perturbed by turbulences coming from B,. These turbulences
depend on the point y, and for better precision, we could write a,; eff(y)
First, we neglect turb (A, ) (we suppose it infinitely thin). By construction, the
Gn+1-trajectory of x, a,41ineg (for 0 < i < N(n + 1) — 1) is of the form:

n,i

In+1 In+1 qn
_u Iy N(n)qpiqn InGny—1 N(n)qy,iqn
Gyt1inegl =9 [‘7 (an,o,eff)] e[ (an,zv(n)q,eff)

In+1 n+1 qn
qn—1+1y N(n)dp,iqn an—1+Ingy—1 N(n)dp,iqn
I:O- " (an,O,eﬂ)] o | (an,N(n)fl,eﬁ‘)

for some integers u, l, ..., [y(;y—1. In particular, at y fixed, there are only N (n)
possible words ;i eff(y) i =0,..., N(n) — 1 that compose the g, -trajectory of y in the
formula above. Turbulences coming from B,, are the same in all these words. This fact
is important for the construction of the uncountable family of pairwise non-Kakutani
equivalent diffeomorphisms.

Foralli =0,..,N(n+ 1) — 1, let also:

n+1 n+1 n+1 qn.i
a _ aN(”)‘in,i‘ln N(n)ap,ian N(n)ap,iqn
n+Lisemeft noeff “nireff 7 Tan(n)-1eff

(the index "semefl" is for "semi-effective”: a, .,  semeff 1S halfway between the
“effective” trajectory a, .oy and the "ideal" trajectory a,;). Moreover, for any
integer N > 2, integer k, and word a, c*(a") = a'aV~2a", where a’ and a” are words

such that |@’| + |a@”| = |al. Therefore,

_ N —2)|aq| 2
N ki N < 1 _ (— - = 5
fla, o (@) Nla] N )
Therefore,
2N (1) qpqn.

f (anﬂ,i,neg,o-” [anﬂ,t,semeff]) < (6)

qdn+1

Now, we take into account turb (4,1). The g,i-trajectory of x crosses turbu-
lences from quasi-permutations making up its own trajectory, but also from quasi-
permutations making up other trajectories (see figure 4). Therefore, it crosses at most

2Ny 41 MaXogi<N(nt1)—1 gn.i turbulence zones (the factor 2 is because we cross one
turbulence zone to get in and another to get out), each of width €, . Therefore,
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f(a(TnJrl,QnJrls )C), Cln+1,i,neg) S 26n+1Nn+1 . max qn,i (7)
0<i<N(n+1)—1

To conclude the proof, we also need the lemma:

Lemma 3.5. Let a,b,d’, b’ words such that |a| = |b| = |d’| = |b’|. We have:

flab,d'b’) < % (fla,d") + f(b,1"))

By applying lemma 3.5 and the induction assumption, for any integer u, we get:

Flo"(a, 11 ; semefr): o (@nr14)) = f(anﬂ,i,semeff’ any1i) < 0<j211\2,1(7§l)71 f(an,j,eff’ nj) <1l
3)

Moreover, by estimation (5),

©))

o 2
flo*(ant1), angr) < —

n,i

Therefore, by combining estimates (6), (7), (8), (9), we get:

F@(Tur1, guir, X)sani1i) < F (@(Tugis guit, X), dny1ineg)
+f (an+1,i,neg,0u [a,,ﬂvi’semeff]) + ]F(Uu(anﬂ,i,semeﬁf),O'M(anﬂ,i))

_ 2N(n)%qq,. 2
+ (0" (anr10), ani1i) < 2641Npp1  Max g+ ———"""+ny,+  max —
0<i<N(n+1)—1 qn+1 0<iSN(n+1)—1 gy

Therefore,

f(a(Tn+l,CIn+l:x)a an+l,i) < Mh+1

Proof of lemma 3.5. Letn, :a — a' and m, : b — b’ two matches. Let 7 : ab — a'b’
defined by Mg = Ta and Ty =Tp. 7 is a match because 7, and 7, are matches (it is an
order-preserving, injective function). Moreover,

D) 1@, D)+ D)
Mt 8m) = T e T+ )~ Tl ol o)

Moreover, fit(r) < 1 — f(ab,a’'b’). By taking the maximum on possible fits of 7,
and m, in the previous equality, we get: 1—f(a,a’)+1—f(b,b') <2 (1 — f(ab,a'V')).
Hence lemma 3.5.

i

]

To get nLB, it remains to give a lower bound on f(d,41,, @nt1,;), wheni # j. Our
method is analogous to [7, p. 34].
Let

u, = max {ﬁt(ﬂ')/ﬂ' ta,; — a, ;match, s € N, 0 <i<j<N(n— 1}

%n=awNm+n—maMﬁ=MﬁgﬂmmuzawNm+U—L

J>1i,1et A, ; = qu j/qn;. Note that since j > i, A,,; ; is a positive integer.
We show the slightly stronger lemma:
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Lemma 3.6. We have:

2 2N(I’l) 2/1,“"1'
Upp1 S Uy + —— 1+ max 1+ max —
N(n) 0i<j<N(n+D)—1 Ay ; 0<i<j<N(n+1)—1 Fpal,

Corollary 3.7. If N(n) > 2""3/e, and if forany 0 < i < j < N(n+1)— 1, 4,;; >
2"V3N(n), and ry.1; = 2" A, j, then for any r, s > 0,

fla,pa,;) =1 —¢€

Proof of lemma 3.6. We denote 1 = A,,; ;. We have:

a _ arn+1,i arn+],i Init
n+1,i n0 nN(n)—1
Tt 1i g 1i qn,isA
& =la a 7
n+1,j n0  nN(n)—1
T Li

Forl=0,..,N(n) — 1, leta,; = an’T.
We can write:

qn,il
r _ A A T =A ~ A
Apy1i = (anyo"'an,N(n)—]> - an,o"'an,N(n)q,,.[r—]

Let

n:D(r) ca,,; — R(r) < afLH’j

be a match. For [ = 0, ..., N(n)gur — 1, let D(n); = D(n) n @, (i.e. D(x), is the part
of the word D(r) that is included in the subword @, of a, , ;). We have:

D(r) = D(m)0--D(7) N(n)gr—1

Let R(n); = n(D(n);). We can write:

s —
Ayi1,j = Ant1,j,0--0n+1,jN(n)gir—1

such that R(nr); < ayy1,jy, for I =0,...,N(n)g,;r — 1.
Let
m D(m) < C_Yil — R(7); C apg1,ju

be a match, with 71, = 7| (r),. We have: D(m;) = D(r);.
@n1,j1 1s of the form:

_ A
At 1,j1 = QA0 AN (m)—1)" A

with #; > 0, and such that max (|&/, |&;]) < N(n)|a,ol-
Moreover, we have fit(r;) = fit(r, ') because |D(m;)| = |R(m;)|. We have:

w7 R(m) € @ng (1)@ — D(m) < @,

Let
77 R(m) < (anoepym—1)"T — D(m) C @,

such that 7“rf1 = nfl (we just extend the domain (not the "domain of definition")
of the function ﬂ;l).
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Like previously, we can write: (a,,,o...a,,,N(n)_l)’l” = @0+ Qn, (1 4+2)N(n)—1-
Moreover, let R(7;), = R(71;) N @n,p, for p = 0,...,N(n)(t; +2) — 1. We have:

R(m1) = R(71)0- R(T) N () (14+2) -1

Let D(m), = n" [R(m),).
We can also write:
07;,1 = An10---Un L, (5+2)N(n)—1

for/ =0,...,N(n)g,;r — 1, with @,,; , such that D(n1;),, < a,,,. Moreover, since

[D(m),| = [R(m),| < |@np| = lanol

we can choose @, such that, if I = p mod N(n), |@np| < |anol.
Let
Mp: R(ﬂ'l)p C app — Z)(ﬂl)p C Anip

@pyp is of the form @, = aa, a. with max(|al,[da]) < |a.| = g.. We have:
D(ﬂ'[,p) = R(ﬂ'[)p
We have: i

My D(my) € @np = ayy  — R(m,) € aay a

Let

n41.i

Fip: D(myp) C anp — R(my,) ca't?

n,l

Let0 < p’ < N(n) suchthat p’ = p mod N(n)and 0 < /' < N(n) such that/ =/
mod N(n).

If p" < I, then fit(7;,) < u,, by induction hypothesis.

If p' > I, then we can apply the induction hypothesis to (7;,) ", and therefore,
fit(7,,) = fit(7;,)) < up.

If p’ = I, then fit(77;,) < 1 (i.e. we cannot say anything).

Now, let us relate fits of 7, 7 p, ﬁ;l, n; and n. First, we relate fits of 7, and 7.
‘We have:

2|D(mp)|
(r%‘ +u+ 2) ||

ﬁt(ﬁ'[’p) =

and on the other hand:

2|D(,p)| . 2D(m,)]

ﬁt(ﬂ'[’ ) = : ~ a ‘
! %|an,l| + M|an,l| + |a| + |Cl| h (% + u)|(1n,[|

Therefore,

Tn4-1,i
D4y 42 2
z ~ -
fit(m ) < ZrT fit(7,,) < (1 + —,”;]J_ u) fit(7,p)

Since u = 0, we get:

fit(m,) < (1 - ) ft() (10)

Fn+1,i

We relate fits of 7; , and irfl. We have:
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2|D(r1,p)|

fit(m,) = —— )
Y |@np| + lnpl
Therefore,
N(n)(4+2)—1 RGIGRE
Z |D ()| = B Z fit(mp) [|@np| + |nipl]
p=0 p=0

If p # [ mod N(n), then by estimation (10), fit(r;,) < (1 + 2 )u Ifp =1

Tnt1,i
mod N(n), we still have fit(r;,) < 1 (all fits are smaller or equal to one). Therefore,

we get:

N(n)(142)—1 . | V@)
Y 0l < (145 g % ]+ ol

o
p=0 ntLi p=0p#l mod N(n)

N(n) (4+2)—1

+5 Z |@np| + |npl
p=0,p=I mod N(n)

On the other hand,

N(n 2)—1
fit(7 1) = 20R () 2 DGy
L 2Nl ] SN g, ) e
Therefore,

N(n)(14+2)—1 N(n)(n+2)—1

(1 24 > Zp:O,pqél mod N(n) |&n,p| + |a"’l’p| Z[}:O,p:l mod N(n) |(_yn,p| + |an,l,p|

21\/(7[)([{-’-2)71 ZN(VL)(T[+2)71

Tntl,i
n S p:O p:O

|5‘n,p| + |0‘n,l,p| |5’n.p| + |a’n.l,p|

N(n)(n+2)—1

22 2ot mod Ny |@npl T @ p]
fit(7,") < <1+ >u,,+ p=0p=_mod Nin)

~
Tni1,i Zgino)(tﬂﬂ)il |C_Vn,p| + |a/n,l,p|

Moreover, |@,,,| = |anwo
|n0]. We also have:

, and when p = [ mod N(n), by construction, |a,,| <

N(n)(1+2)—1
1<y+2
p=0,p=I mod N(n)

Therefore,

B 21 2(t; + 2)|ano| 21 2
fitm )< (1+ L+ d < (14 nt
@) ( ) Nt + 2)letno] + Aaeng] i) NG

We relate fits of ﬁl_l and ;. We have:
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2|R ()| 2|R(m)|

) N el T 1] T+ DN + Dl

On the other hand, since a,, 41 ;; is of the form a, 41 ;1 = @/(@n0-..Qn N (m)—1)" @1, We

get:
ﬁt(ﬂ']) — ﬁt(ﬂ';l) — 2|R(7l'[)| _ < 2|R(7T[)|
(N(n)t + Dlano| + @] + ||~ (N(n)t + )|ang]
(H+2)Nn) +A, 2N(n) ~—1 2N(n) ~—1
fit < —————fit < |1+ ———|fit < (1 fit
(m1) Non+ 4 A N+ 1) 1Em) 2 )
Finally,
Tqni— "qni—1
bty = o D TiZy maosray- (ft(m) | + a1
rqni—1 = rqni—1
lio |ai1| + |an+1,j,l| zio |a/i’l| + |an+l,j,l|

<
S oel o (M0

By taking the max on all possible fit(r), we get:

ht € <u n ﬁ) (1 + 21\;(’1)) (1 + FZTAI)

By taking the max on all possible A, we get the conclusion.

Proof of corollary 3.7. By induction on n, we show:

1
nSell——

If n = 0, up = 0, so the estimate holds. Suppose the estimate holds at rank n. By

lemma 3.6,

2 2N(I’l) 2/1n,i,j
Upp1 < | Uy + —— 1+ max 1+ max —_—
N(n) OSi<jEN(n+1)=1 Ay 0<i<j<N{n+1)—1 Fpy1,

Moreover, for any i < j,
24, 1
1+ — ) <1+ —
( Tntl,i 2nt4

- 2N(n) <14 1
i = on+4

and

Therefore,
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2 2 1\* 2 1 1
1+ =22 ) (1 <(l+—) =14+ —+ ——= <14+ —
( " Vn+1,i) < * /ln,,-,,-) ( " 2’”4) Tt (2nt4)2 T

Moreover, by induction assumption,

N 2 <1 1 N 1
U+ — <€e{l——+—
N(n) on " gnt2

By combining these two estimates, we get:

1
Up1 SE(l—W>

Hence the estimate at step n + 1.
O

Proof of proposition 3.2. Let €, = 4En+1Nr2l +19n.N(n+1)—1. Each quasi-permutation
constituting A, ;| has a Lebesgue density of at most 4¢,, ;. Moreover, there is less than

Nf +19n.N(n+1)—1 quasi-permutations in A, . Therefore,

p(turb(A,11)) < €,
By applying estimation (4), we get:
M(Egafe) 21— Z A
n=0

There exists ﬁurb(f’ n, Nn+1, Qn,N(anl)fl) such thatif [SHBIES ﬁurb(es n, NnJrl’ Qn,N(nJrl)fl)y
then

M(Egafe) = 1 —€

Therefore,

#(Esate 0 Enpp) = 1 - 2€

There also exists fyis (€, 71, Ny 1, gun(ns1)—1) such thatif €, 1 < foisi(€, 7 N1, Gunint1)—1)-
then 77, < €. We take for €,, a function of €,n, N1, Gn.N(n+1)—1 such that

€1 < MIN(faist (€, 7, Nus 15 Gun(na 1)—1)s Sfourt (€1 Nut 1, @un(n1)—1))

Let A € B such that u(A) > 2e. Then p (A n (Egafe N Eqpp)) > 0.

Since N(n) —,—1o +00 then p(maxo<icy(n)—1 €i(n)) —n—+o 0. Therefore, for
any n sufficiently large, and by applying lemmas 3.3, 3.4 and corollary 3.7, there exists
x,y€ AN (Egyfe N Epp) and i # j such that

f(a(T, qns x),an,i) < M

fa(T,qu.y)anj) < nn

Therefore,

f((,l(T, qn X), a(T’ qmy)) > 1-—3e
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3.3 Ergodicity
3.3.1 Thecase M =[0,1] x

o o
o=t L | L L o<isN - 1,0<j<qn—1
N, N, qn qn

Since P, is a partition generating the Lebesgue sigma-algebra, it is sufficient to
show that T is ergodic with respect to B(P,).

Let

Lemma 3.8. Let g > 0 that divides q,, andn = {[i/q, (i +1)/q[,0 = i — 1} R

qm
is ergodic with respect to (8(n), 1), where A denotes the Lebesgue measure on T, and

forany A, B € B(n),

1 Gm—1

— Y (R@(A) A B) = A(A)A(B)

qdm =0 am
Proof. Let A € B(nm,), A(A) > 0 that is Re-invariant. Then there is 0 < iy <
gn — 1 such that [io/qy, (io + 1)/g.|< A. Therefore, T = Uo<i<g,—1Rim ([io/qn, (io +
1)/gu[) < A, and Rew is B(1,)-ergodic. By g, -periodicity and the ergodic theorem,
for any integer L > 0,

Ly —

Z (Rim (A) N B) =11 A(A)A(B)

qm

1 Gm—1 1

— A(Ripw (A = —

2 AR ()0 B) =
O

Now, we define the finite algebra B(¢,) that contains the elements of A, (P,),
modulo small turbulences (see figure 7). Let

C={l=1r;),0<i <Nyp1—1,0< < < I 0 <i<Nm+1)—1,i=7 mod N(n+1)}
qn0
Forl e C, let
N(n+1)=1 P
+1 =1 L L+
cn=J U [—N’ v [x Nz [—N pathe [
i—0 0<i"<Npg 1, =i mod N(n+1) n+1 n+1 nqn,i nqn,i

Lemma 3.9. Ler ¢, = {C(l),l € C} (£, recovers [0,1] x T, but it is not a partition).
Forany m > n, S m is ergodic with respect to B((,), and for any A, B € B({,),

qam

— 1 (Suald) A B) =u(a)u(B)

qdm =0 am

Proof. Fori’ =0,...,N,y1 — 1, let

. . 1 . . 1
Pi’:{|: ! ,l+ |:X|: J ,J+ |:,O<j<qun’j_l}
Nn+1 Nn+1 qun,i NnCIn,i
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A 2
= = zZ =
= == = | =
(=] = %]
rd — —

Figure 7: An element of £, with N, = 3, g0 = 1, gn1 = 3910, gn2 = 2qn1. S b is
ergodic with respect to B(¢,).
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(S :ﬁw(pi,),u‘[Nﬂ e [ ) is metrically isomorphic to (R:I;:, NN,q.;» A) via the map
n+1 n+1

[ i’ i’+1[x[ J j+1[ [ J j+1[
7T: 9 9 — 9
Nuy1 Npgr Nugni Nugni Nugni Nugni

In particular,
i+
Alxn[ANn s x T = u(A
( ( [Nnﬂ Nn+1[ )) u4)

Moreover, for any A € B(Z,), [i'/Nut1, (' + 1) /Ny [XT N A € B(Py). Therefore,
we have:

m—1
1 q

,u(S/Lm(A)mB)

am 12

gm—1 Nn+l ./ - . .y
1 1
LR (s [ riy [mm(sm[’_,l* [T))
" = n Npt1 Nuta Npt1 Npt

i"=0

Gn—1 Npy1— roo . - o M -
i i"+1 i 7 +1
Z Z N,,H,u . (S,,J,,,(A A —, x T) A (B A —, x T))
qm =0 i'=0 N1 Nr1+l[x am _Nn+l Nn+l | _Nn+l Nn+1 |
Gm—1 Nn+l_] r o ./ r r o of r
i i"+1 i i+1
Z Z N,,Hy s i T(S:,;,,L(Am , x T) N (Bm _— xT))
qm =0 i'=0 [Nn+l Nn+|[>< am _Nn+l Nn+l | _Nn+l Nn+l |

25 8 e (reian [ S o on (o0 [ 5[ 7)
NyiiA | Ripw (m(A | ——, xT))nnm Bn|——r, x T
Qm lz;) Z o ‘571(( Nn+1 Nn+1 )) Nn+1 Nn+1

i"=0

Gn—1 Npp1— -y . . .
1 1
Z > N,,H/l(Rz,,m(;r(Am l—,i[xT))mﬂ<<Bm[l—,i[xT>>>
am _Nn+1 Nn+1 Nn+1 Nn+1

q’" =0 i'=0

1 i+ ) ( ( [ i’ i’+1[ ))
= —NydA|{n(An | ——, xT)|Alxn|Bn|———| xT = u(A)u(B
Nn+1 * < ( |:Nn+1 Nn+1 | ) Nn+1 Nn+1 Iu( )/J( )

Lemma 3.10. Forany A,B € P,,
Gn—

LI () 0 B) e )

dm 12
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Proof. By construction, there exists A’, B’ € 8({,,) such that
N(Alme (A)) < ﬂ(turb(Bm)) = frlrlz
“(BlfBl1z(B)) < 6’/111
Therefore,

1 gm—1 Gm—1

LN () _ Z (slm mBm(B))

am 120 q’" 1=0

gm—1
L 1 (S 162 Bul) 0 B (B)) +(A B (A)) + (A TB(A)) + (B TB(B))

qlﬂ 1=0

/N

By lemma 3.9, we get

1 qn—1
o 2 #(Tu(A) 0 B) < u(Au(B) + 26
™ 1=0

< [1(Bu(A)) + (A" fBu(A))] [1(Bn(B)) + u(B'fBu(B))] + 2€,,

< u(A)u(B) + 5,
Therefore,

gm—1
lim sup L Z u (T),(A) n B) < pu(A)u(B)

m—+u 4m 15,

Likewise,
Gm—1

lim inf > u(Th(A) A B) = u(A)u(B)

m—+oC qdm =0

Lemma 3.11. Forany A, B € B(P,),

gm—1
qim 2w (T'0A) 0 B) = A(B)
Proof.
1 ! l K 1 1
q_m Z(:) g (T ( YGm =0 ,U m B) * OS?SI?J;):—I dO(T ’Tm)

= u(A)u(B) + max do(T',T!)

0<i<qgn—1

By estimate (2), we get
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1 qm—1 1 €
— > u(T'(A) n B) < u(A)u(B) +
Therefore,
Gm—1
limsup — Y. u (T'(A) n B) < pu(A)u(B)
m—+w 4m 1=,
Likewise,

gm—1

lim inf — D, #(T'(A) " B) = p(A)u(B)
mo=0

Lemma 3.12. T is ergodic with respect to B(P,).

Proof. Let A € B(P,) T-invariant modulo zero. By taking B = A in lemma 3.11, we
get u(A) = (u(A))?, and so u(A) = 0 or 1. o
3.3.2 Construction in the case M = [0,1]"! x T,d >3

The construction in the case M = [0, 1]‘1 —I'x T, d > 3 is the same as in the case of the

annulus, except that we "fold" other dimensions to obtain ergodicity, in the same way

as in [6, 4, 3]. However, the proof of ergodicity needs to be different from those works.
Forn > 1, let

{|:i1 i1+1|: [iz i2+1|: [id id+l|:
P, = —_—, X s X o X , ™|,
Nn Nn qn—1 4n—1 qn—1 Y4n—1

0<ii<N,—-1,0<i;<gu1 —1,2<j<d}

Since the diameter of elements of P, tends to zero as n — +00, then as in the case
of the annulus, it is sufficient to show that T is ergodic with respect to 8(P,), in order
to get ergodicity with respect to the Lebesgue algebra.

Let also, fori =0,...,N, — 1,

i i+1 _ ig ig+1 . _ .
bni = [F’ N [X[O’l]d Px | e |0 < g - 2K <d
n n qn—l qn—l

In our construction of the sequence g,, we can assume that qu divides g,. There-
fore, by lemma 3.8, forany i = 0, ..., N,, — 1 fixed, S’;—,’jIB(,(n,,) is ergodic.

We denote by A,,; = (A,;1.1,A,112) the map A,;; of the annulus case, and
A;11+1 ()C] 5 aeey xd) = (A’,,_;,_]’] (.X] s xd), XDseny xd_l,An_H,z(X] , Xd)). We denote by AiJrl
the application that "folds" other dimensions, i.e. that essentially transforms P, into
ué\ia 14’,[,[ (except on turbulences). We define A,ZI 41 below. Moreover, in the definition

of P,, we took larger elements, because after their compression by Aﬁ +1» they need to
be sufficiently wide so that A}q 41 can give ergodicity (we use that qff:} < gn < Nugui)-
WeletA, | = Arll+1A3;+l' Now, we define A3+].

We recall the definition of a "quasi-rotation" by /2 [6]:
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Proposition 3.13. For any n > 1, there is a smooth measure preserving map ¢, :
[0,1]1* — [0,1]? (called "quasi-rotation”) such that ¢, = Ry on [3,1 — 5 1* and
¢n=1Idon [0,1]* — [52.1 — 52>

Let p > 2 and
Cp: [0,1] % [0,4] [0,1] x [0,1]
(x, py)

I

Let ¢, = C;lxp,,CP. The map ¢, , is measure preserving. By the Faa-di-Bruno
formula, there exists a fixed function R,(j) such that

|6l < POl ;

Fori = 1, aeey d— 1, let ¢£l,qn71 (X] 3 evey Xd) = ()C] s e Xi—1, (]5”’%71 (X,', XH_]), Xit2seees xd),
extended by 1/g,_1-equivariance along the x;,; coordinate. We let

AiJrl (X] 5 eees )Cd) = ¢i;n171 "‘¢111‘11n71 (.X] 5 eeesy Xd)

Modulo turbulence zones, A2 N

element of ¢, ; for some i, i.e. into a parallelepipede of height 1/ qz:} along the x, co-

ordinate, of width 1/N,, along the coordinate x;, and of width 1 on all other dimensions.

Then, we use the ergodicity of S m g,y as we used the ergodicity of S m g, in the
an 4qn

ni

, essentially transforms an element of P, into an

case of dimension 2. Then, we can proceed with A,ll 41 (because qﬁ:{ divides N,q,,; for
any i) as in dimension 2 to get ergodicity.

3.3.3 The general case

We apply the proposition, found in [1, 6, 4, 3]:

Proposition 3.14 ([6]). Let M be a d-dimensional smooth compact connected mani-
fold, with a free modulo zero circle action S, preserving a smooth volume u. Let S;
denote the circle action on [0,1]~! x T. There exists a continuous surjective map
[:[0,1]1" x T — M such that:

1. the restriction of T to |0, 1[4~ xT is a smooth diffeomorphic embedding.

2. u(0(a([0, 117 x T))) = 0

3. BcT(4([0,1]9°! x T))

4. Ty(Leb) = pu

5. 8r=rs

Let T, : M — M defined by 7,(x) = FB;ISZ,:B,IF*I(X) if x € T(]0, 1[“~!'xT)
and T,(x) = S m (x) otherwise.

We proceed as in [4]: we take g, large enough so that the possible divergence of

I on the border of ]0, 1[‘1 ~!'x T does not affect the convergence of T, towards a smooth,
nLB and ergodic diffeomorphism.
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4 Generalization to an uncountable family of pairwise
non-Kakutani equivalent diffeomorphisms

In order to obtain an uncountable family of pairwise non-Kakutani equivalent diffeo-
morphisms, we adapt the construction of Rudolph, Ornstein and Weiss [12], which
generalizes the construction of Feldman. Let u € {0, 1}N be a sequence of 0 and 1.
We construct a family T, of diffeomorphisms in the following way: if u,,; = 0, then
we define the diffeomorphism A, |, appearing in the successive conjugacies, as previ-
ously, i.e. such that, up to small perturbations, the g, -trajectories are of the form:

In+1 n+1 In+1 qn.i
N(n)gniqn _ N(n)qpid N(n)qy,i4
an+1‘i — <a n,idn a ni4qn a n,idn )

n,0 n,1 T a,N(n)—1

On the other hand, if u,,+; = 1, we define the diffeomorphism A, such that, up
to small perturbations, the g, -trajectories are of the form:

n41 n41 n41 qn,i
_ N(n)qp,iqn N(n)dyiqn _ N(n)dp jan
Antl1,i = <an,N(n)—l an,l anvo )

Thus, the constructions of T, and T are analogous, we do not write the explicit
definition of A, for T,,. We have:

Theorem 4.1. Ifu,v € {0, 1}~ such that u, # v, infinitely many times. Then T, and
T, are not Kakutani-equivalent.

To show theorem 4.1, we follow and adapt the proof of Ornstein, Rudolph, and
Weiss [12]. The proof is based on two ideas: the first idea, as in the nLB case, is that
the two words aaaabbbb and abababab are far from each other in the f-distance. The
second idea is that the two words abcabcabc and bcabcabca are also far from each
other in the f-distance (see figure 15). We can adapt their proof to the smooth case for
two reasons: first, turbulences from A, are "grouped" in vanishingly small places,
and consequently, they rarely affect ¢, -trajectories, and second, turbulences from B,
are periodic in the g, -trajectories. However, the detailed proof is a little technical.
We need to introduce some additional definitions.

4.1 Definitions
4.1.1 The distances f and d

The definitions recalled here are mainly taken from [12, p.8]. First, we can generalize
the distance f to a semi-distance on infinite words. Let
W= ..a_1apdj... w = ..d_ad)..
be infinite words, i.e. w,w’ € IZ. Let w,, w!, € I*"*! be the truncated words defined
by:
! ! !

7 !
Wy = A_p...a_1Gpa]...4y w =a_,.a_,ayd..a,

Let f(w,w') = limsup,_,, . f(wa,w}).
_ Likewise, we can define the Hamming distance d(w,,w,) = #{i/a; # a/} and

dw,w') = limsup,_,, . d(wn, w},).
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Now, we define the f and d distances between two ergodic transformations 7" and
T’ coded with the partitions P and P’ respectively (T and T’ are not necessarily defined
on the same space, and possibly P # P’).

Let v, be two measures on I~ and let v,,, v/, be two measures on I" defined by v,/
via the projection IZ — I" onto the coordinates (1, ...,7). Let:

Fonv) =inf | Fomwiyaa
/'. 111 X 171

Where the inf is taken on measures A on I" x I" whose marginals are v, and v,,. We
let:

f(»v,v') = inf{€ > 0/f(v,, V) < € for an infinity of n}

Let T : M — M be an ergodic transformation, and P be a measurable partition
indexed by I that is generating, i.e. 8 = 8 (\/;-~_, T'(P)). Then (T, M, 1) is metri-
cally isomorphic to (o, 7, v), where o is the shift on I% and preserves v, and we have:
p(ci) = v(ny (i), where my : I* — I is the projection on the coordinate 0. Let v,/

associated with (7, P), (T, P") respectively. We define:
FUT.P)(T". P)) = f(v.¥)
d((T,P),(T',P")) =d(»,v')

We also use the proposition [12, p.8]:

Proposition 4.2. If f(v,V') = €, then there are generic points x, x' for u, i’ respectively
such that

flxx) <e

Let P = {co,....cn(0y—1} and P = {cj, ""C;v(o)q} two measurable partitions of
the same size. Their distance is defined by:
N(0)—1
N : AN
d(P,P') = min Z 7 (c,Acg(l.))

e GN(U) i=0

where Sy gy denotes the set of permutations of {0, ..., N(0) — 1}, and A denotes the
symmetric difference.

Let u(A) > 0 and ro7 : A — N*, defined by r4 7(x) = min{k > 1,T*(x) € A}, be
the first return map of 7 in A. By the Poincaré recurrence theorem, r4 7 is finite almost
everywhere, and by ergodicity (see [12, p.1]),

Lmﬂmwm=1

We denote by us = u(.)/u(A) the measure induced by p on A, and B, the sigma-
algebra induced by 8. For almost every x € A, let

Ta ()C) — TVA.T(X) (X)

T4 is the transformation induced by T on A. T4 is a measure preserving transfor-
mation of (A, Ba, ta).
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Let also S be an ergodic and measure preserving transformation of (M, B,u). T
and S are Kakutani-equivalent (Russians called it monotone equivalent [8]) if there
exists A, B € B such that u(A) > 0,u(B) > 0, and such that T4 and S p are metrically
isomorphic.

4.1.2 The tower construction

We introduce the tower construction (see figure 8). Let g : M — IN* integrable. Let

ME = {(x,i)e M x N*,1 <i<g(x)}
TS : M8 — M#

e o (i) ifit1<g()
To(x1) —{ (To(x), 1) ifi+ 1> g(x)

If 7, is ergodique, then T? is also ergodic. Let P = {co, i, ..., cN(O)_l} be a mea-
surable partition of M. Let H = {(x,i) € M#/i > 2}, and P* = {c¢,c1,....cy(0)—1. H}
be the corresponding measurable partition of M#. If (T5)/(x,i) € H, the correspond-
ing letter in the trajectory is denoted h. The (T%, P$)-trajectory is obtained from the
(T%, P8)-trajectory by adding letters A.

A
9g(x) M®
A
3 H
1 e — o
Ty S
AN

2 1 o

Tl LN \
1 | R -

(x,1) (Tu(x),1) M X

Figure 8: The tower construction (M#, TS, P¢)

We will also need the lemma:

Lemma 4.3. For any v > 0, there exists an integer N, a set Ey < MS$ such that
H(Eyn) = 1 — vy and such that if (x,i) € Ey and n = N, then

L4 € {1} (TEY (x0) € H) — p(H)| <y
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Proof. For any integer n, let
1 :
E,={(x,i)e M® /if p=nthen |—#{je {1,..p}/(T$) (x,i)e H} —u(H)| <y
p

The sequence of E, is increasing for the inclusion, and by the ergodic theorem,

# (Uy=0 En) = 1. Therefore, u(M&—E,) =4, 0. Let N such that u(M8—Ey) < y.
We have u(Ey) > 1 — .

O

In subsection 4.2, we show:

Proposition 4.4. For any g : M — IN* integrable, such that g # 1 (1 is the con-
stant function equal to 1), and any sequences u,v (even if u = v), T, and TS are not
isomorphic.

Corollary 4.5. If u(A) # u(B), then (T,) 4 and (T,)g are not isomorphic.
In subsection 4.3, we show:

Proposition 4.6. If u(A) = u(B), and u, # v, infinitely many times, then (T,)s and
(T,)p are not isomorphic (i.e. T, and T, are not evenly equivalent).

By combining corollary 4.5 and proposition 4.6, we obtain theorem 4.1.

Proof of corollary 4.5. We show how proposition 4.4 implies corollary 4.5. By absurd,
we suppose that (7,)4 is isomorphic to (T,)p. We can suppose u(A) < u(B). Let
@ : (A, ua) — (B, up) a metric isomorphism such that ®(7,)4 = (T,)p®.

For any g : M — N* integrable, ((T,)4)¢ is isomorphic to ((T,)5)¢°® " via the
isomoprhism @ : M¢ © defined by ®((x, 7)) = (®(x), ). We have:

/ no b
L () dn() =~

On the other hand, since @ : (A, u4) — (B, up) is an isomorphism, then

1 1
ra, (07 () din() = [ rag (9 dua() = o > =
L A u(A) ~ u(B)
Moreover, by relation (7) in [12, p.2], T}, is isomorphic to (TM)X"T“ , which is iso-
morphic to (Tv)g”“oqu. Likewise, 7, is isomorphic to (7,),". Therefore, by lemma

1.3 of [12, p.3], there exists g : M — N* integrable, g # 1, such that T¢ is isomorphic
to T,. This contradicts proposition 4.4.
O

4.2 T,and TS are not isomorphic

By absurd, we suppose there is a metric isomorphism @ : (7,, P) — (T%,P¢). Then

for any 7 > 0, there exists K(7) > 0, P(r) ¢ \/S?K(T) Ti(P) such that |P(1)| = |P¢]

and d(®~'(P#), P(t)) < 7, where d denotes the distance between partitions. We can

put an equivalence relation on \/f(:(? K(r Ti(P): two elements Q;, Q, of this partition

)
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are equivalent if there exists Q3 € P() that contains both 9 and Q,. We denote Q;
this equivalent class.
For x € E,;,, we consider the (T, P)-trajectory of x:

..a_1apadi...

o) TiCP))-

where T(x) € ¢,,. From this (T, P)-trajectory, we can derive a (T,,, \/._" (o) T

trajectory:

(a—K(T)—lafK(T) ...a_1ao...aK(T),l)(a,K(T)a,K(T)H...aOa] ...aK(T))
(a—K(T).Ha_K(T)+2...a1a2...aK(T)+] )

where (a_g (1) 4+i0—k(r)+i+1---@idit1.-.Ag(r)+) is such that:

KO e o Ve n T, RO

X€ Tl: Cﬂi+1<(r))
By taking the equivalent classes, we can derive a (T, P(7))-trajectory (an overline

denotes the equivalent class):

(a—K(T)—la—K(T) --d—140...dK (7)1 ) (a—K(T)a—K(‘r)+ 1---@od1...AK (1) )

(afK(T)Jr1a—K(T)Jrz...a]az...aK(T)Jr1)

where (a_K(T)+ia_K(T)+i+1...a,-ai+1 ...aK(T)_H) is such that:

xe T, KD, VAT KD e,

We also consider the (T, ®~'(P¢))-trajectory of x, which is identified with the
(T$, P8)-trajectory of ®(x). It corresponds to a (T, P)-trajectory, in which we insert
letters h. Thus, this trajectory is of the form:

...b_1hhbohbbyhhh...
Since, by absurd, we assumed
d(® ' (P),P(1)) <1
then by the ergodic theorem,

d(a(T,, @' (P?), x),a(T,, P(1),x)) = d(a(T¢, P, ®(x)),a(T,, P(1),x)) < T

Welett = 6—14 % (1 — Slg) , and to get a contradiction, we show:

Proposition 4.7. For any x € E,;;,

A(a(TE, P5,0(x)), a(Ta, P(1), %)) > =12 (1 - i)
32 ¢ fe
Proof. The proof of proposition 4.7 has two steps. First (lemma 4.8), when segments
of the (7T, P)-trajectory of x, and segments of the (7%, P$)-trajectory of ®(x), have
different types, we show that the d-distance between their (7, P(r)) and (T$, P$)-
trajectories is larger than a fixed bound.
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Indeed, in this case, repetitions of the words a,;eff in the (T, P)-trajectory, and
repetitions of the words &, ; of in the (T%, P8)-trajectory, have different periodicities
(moreover, the periodicity of repetitions of &, ;o in the (7, P(7))-trajectory is the
same as the periodicity of repetitions of a, ; o in the (7, P)-trajectory, because K (1) <
dn/2). Turbulences remain packed in rare locations, and do not sensibly affect d.

Second (lemma 4.9), we show that segments of the (T, P) and (T, P#)-trajectories
are not very often of the same type, because the T%-trajectory is an expansion of the
T,-trajectory by g. On average, the trajectory is expanded by a factor § g because of
the ergodic theorem, and as a consequence, only SLg of segments are of the same type,

which reduces the d-distance by a factor 1 — SLg' Combining lemmas 4.8 and 4.9 gives

proposition 4.7.

First, we explain how we decompose the (T, P) and (T?¢, P¢)-trajectories in over-
laps of segments of the same type. By lemma 3.3, the g,,4»-trajectories of x € E,;, with
respect to (T, P) and (7,12, P) are the same (7,1, is the periodic approximation of
T, at step n + 2). If we neglect turb(A,,2), they are of the form:

In+1.i
In+2 In+2 1

u N(t+1)4y41,in41 IN(n1)—1 N1y 4 1,i9n+1
|0 (an+1,N(n+l)—l,eff)

— lo
Gyt2inegl =7 [‘T (an+1,0,eff)]

dn+1,i

( )qn+2 . )‘In+2 Gnt
Gn+2—1+ly Nt Ddnp1idn+1 Gnp1—= 1+ v 1)—1 N+ Ddpp1idn1
[U (@, 410.eff) | (an+1,1v(n+1)71,eff)

where o is a circular permutation (see proof of lemma 3.4 page 16).

What is important is that at x and i fixed, the a, .\, eff are identical. Therefore, the
(Tu, P(T)) gqni2-trajectory of x will have the same form most of the time (i.e. repeated
words of the form a, +1,i,€ffan Lrieffe)

We take into account turb(A,+ ). Given the localization of turb(A,,), the (T, P)
gn+2-trajectory of x meets a new turbulence zone of A,,;» at most every gn12/(Nus2Gnt1,8(n+2))
iterations (see figure 4). This g, -trajectory is of the form, where ¢ denotes letters
in turb(A,+2) (or boundary effects due to the cyclic permutation -, which have total

lengths g,,11):

ar.— Ay py0eff-ny10eff L Gpoeff i oefft g eff
S 226,124,042 lELEETS

dn+2
SEorG e Jetlers

with |&] < gn+2/Gn+1.0- The (TS, P8)-trajectory of @(x) is of the form:

at 8y 0. eff+nr 00ff N Ay 0eff i1 0effl1a, 1 eff
" 388(25n+2q”+z) letters
~ D2
_Sg(N,,+2q,,+1'N(,,+2) 25n+2‘1n+2) letters

Tilded words are like untilded words, except that we added letters % in them.
We decompose Z, the set of indices of trajectories, into

...folGoGl...G In2 lef

Nup29n+1.N (n+2)
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where G; = a, Ligeff O a, L1reffs i.e. G; is the intersection of the sets of indices
of an element a, , |, of in the (T, P)-trajectory, and of the set of indices of an element
a, 11 off in the (T, P¥)-trajectory. G; is an overlap of a n + 1-block in the (7, P)-
trajectory and a n + 1-block in the (T%, P¢)-trajectory (see figure 9).

In the decomposition of Z in different G;, we put aside turbulences, because in
general 2€,12¢,12 = |t| >> |G| =~ gn+1. One turbulence is much larger than any
individual G; (when the turbulence comes from A, ,, not from the effect of the cyclic
permutation).

An+1,0,eff An+1,1,eff An+1,2,eff An+1,3,eff t (Tu,P)
I I I I I I
a 3 3 t(T.0P%)
n+1,0,eff n+1,1,eff n+1,2,eff Vo
I I I I
Go G G Gs G, t t

Figure 9: The decomposition of Z into G; and turbulences ¢ and 7.

To show proposition 4.7, we combine the lemmas:
Lemma 4.8. Let ﬁ > >0 InG; = Aoy rieff O Gpsrreff if the n + 1-types I, of

dyirteff and I\ of an+l,l’,€ﬁ are different, and if |G;| = € quy1, then for n sufficiently
large,

1—4e

AGTE,P) G T () 2 (1 =€)

Lemma 4.9. Forany ({g—1)/2 = € > 0, and almost every x € E,, for n sufficiently
large, the density of the set of indices {G;/l, = l|} is less than 1/ { g + €.

!

Proof of proposition 4.7. We show that for any € > 0 such that €’ < Sngl’ € < 2;Sg’

for any x € E, 5,

d(a(T$, P8, ®(x)),a(T,, P(1),x)) = (1—36’)(1—6’)3%% (1 — Sig - e') (12)

For almost every x € E,, in the (T, P)-trajectory of x, the density of turbulences
t from A, ;, (and from cyclic permutation o) is less than 2€1+2Nn4+2Gn41,N(n+2)-

Moreover, for almost every x € M, in the (T5, P¢)-trajectory of ®(x), by lemma
4.3, for n sufficiently large, the density of turbulences 7 from A, , is less than €.
Therefore, for n sufficiently large, the density of indices G; in Z is more than 1 — 2¢’

Moreover, in each a, | , off» there is at most one G; such that |G:| < €'¢nt1. There-
fore, for n sufficiently large, the total density of G; such that |G;| > €'g,4; is greater
than 1 — 3¢’ . Therefore, by combining lemmas 4.8 and 4.9, we get (12).

[m]
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Proof of lemma 4.8. First, we suppose [ > I{,1.e. gny, > Gny; (@and ruy, <1y p).
We denote G;(T,, P) the (T, P)-trajectory of x on the set of indices G;. We can
write
G(T,,P) = aG;,(T,, P)...G;,,(T,, P)d’

where:

G (T,,P)= a1 eff- 0y 1 efft- tan,N(n),eff'"an,N(n),efft
where [a| < gu+1/qns, and [@'] < gur1/qny,. ice.
G(T,,P) = A, | off-Lloy y() eff! D1 eff---T-y () efFT -

~" ~"

Gii (Tu,P) Gia(Tu:P)

The G;(T,, P) are complete cycles of n-types. G;,(T,, P) include turbulences from
Ap+1, because their density in G;;(Ty, P) is vanishingly small (although [t| >> a, ; of
for each i).

Since at i fixed, all the a, ; o are identical, and since K(7) < gy, then G(T,, P(7))
is of the form:

Gi,l(Tua P(T)) = én,l,eff'i"ién,N(n),eﬂ‘f

Moreover, |#| < |t|(2K(7)+1). Therefore, for any integers j, k, and for n sufficiently
large,

F(Gij(Tu, P(7)), Gix(Tu, P(7))) < 2(2K(7) + 1)2604 1Nt 1GnN (1) < (13)

2n+2

On the other hand, we can write (we do not neglect boundary effects similar to a
and @’ here):
Gi(T§, P?) = G, 1 (TS, P%)...G; 5 (TS, P?)

such that:

(TS P8 = & Y q T
G,(TS, P8) = ?n,i’,eff"'an,i’,efff A, i off--0y jr effl -

— ~
Gy (T$.Ps) Gi2(TS,Ps)

Modulo turbulences, G; ;(T%, P#) is a segment of the same n-type.

If 1 < j<w,then|G,;| > N(q"l’)*'ql . Since |G; ;| < ‘;”—J:', then G; ; contains at least
il il

— 1 = 2" sets of indices G; ;. We can write:

qn,ly
W),

=~ A Al
Gi,j = aGi,jl ...Gi,jua

with j, — ji = 2". Therefore, @ and @’ occupy a density of less than 1/2" of G, ;.
Therefore,

F(Gij(Tu, P(1)), Gia(Tu P(7))) < (1 4 1/2")

7 (14

For j = 1orw,if |G;;| > 2" i’;f‘ , the same reasoning applies.
iy
If |G;;| < 2"%, then we do not do this estimate. However, we become able to
nly

neglect this segment: at most two G; ; in G; are short like that. Therefore, in the worst
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case, since |G;| = g,+1€', then these boundary effects only take a fraction 2" /(g €')
of G;, and we can write:

G; = GAG_,"Q...G_,"W_1GA/
with |G| and |G| < 2"Guy1/qny,
We want a lower bound on f(G; ;(T%, P¢),Gix(T%, P)), when they are of different
n-types.
Fori; # ji (0 < i < N(n) — 1 and 0 < j; < N(n) — 1 are n-types), and for n
sufficiently large, by combining corollary 3.7 and lemma 3.4, we get:

It T — ”)"""
= = NODang, N(n q"qn,l’]
Hanieff-n efft G jieft-~nj efit) = 1(a,, g 0@, o) = 3etNusi1dnnnen)
v~ "
In+1 n41
W letters Wiy letters
>21-3e—e=1—4e (15)

To getalower bound on f(G; ;(T5, P#), Gix(T5, P#)), we need the following lemma,
which is straightforward:

Lemma 4.10. Let two words A,A’ on the alphabet I, and we obtain A and A’ by
inserting at most (8 — 1)|A| letters h in A, and (8 — 1)|A’| letters h in A’, where h is a
letter not in the alphabet 1. We have:

o F(A A
B
By lemma 4.3, we have, for n sufficiently large, except on a set of density less than
€
o7 . (L%
|Gl,]| N(n)q,h,1 _ Sg —1 < 1
|Gi,jl Se 2{g
Therefore, except on a set of density less than €/,
Gl (16)
Gnt1 S 8

N(n)qnuy
By lemma 4.10 and estimate (15), we get, except on a set of density less than €/,
for G; ;(T5, P¢) and G(T5, P#) of different n-types:
7 s - 1-4
F(Gij(T5, P%),Gix(T, P8)) = 2 <
8

We denote by Fy the set of G; ; that do not satisfy (16). For n sufficiently large, the
set of indices {G; ;/G; j € Fy} has a density of less than €. The number w’ of segments
G, satisfying (16) satisfies, for n sufficiently large:

N(”)Qn,ll
qn-HZSg

a7

/

w =€ (l —€)gni1 >2"+2



This estimate allows to control the effect of the possible boundaries G and G’ on
the total d-distance.

Now, let p = min;d (G, j(T,, P(7)),G; ;(T5, P?)). If p > é;{‘;, then the propo-
sition obtains. Otherwise, let jy be an indice realizing this minimum. The proportion
of segments G; ; not in Fyy and such that G; ; and G; j, have a different a n-type is more

than 1 — 2/N(n). For n sufficiently large, we get, by applying estimates (14) and (17):

d(Gi(T%, P$),Gi(T,, P()))

w—1
1 - _
>(1-€)(1-1/2") ——— d(Gi (T, P¥), Gij(Tu, P(1)))
W—2—|F0|. =
J=2.G; j¢Fo
1 w—1
>(1-€)(1-1/2")——— F(Gi (TS, P%), G, (TS, P8
(=112 g 3, TG (TP Gy (T5.PY)

i=2.Gi;#Fo

—f(Gijy (T3, P¥), Gijy (Tu P(7))) — £ (Gijo (T P(7)). Gij(Tu. P(7)))

> 1=)(1-172) (((1 = 2/N ) <12_s:> -3 (‘Z‘S;‘) -2 )
18—84:

The case gn;, < g, is analogous: we decompose G;(T§, P?) into segments of
complete cycles (instead of segments of the same type), and we decompose G; (T, P(7))
into segments of the same type (instead of segments of complete cycles), and we pro-
ceed in the same way.

>(1-¢)

]

Proof of lemma 4.9. We decompose the (T¢, P¢)-trajectory of (x, i) into

Ay y20effgo 1 eff--L-

@, .o ;eff denotes the i word. Its n + 2-type is i; (i; € {0,...,N(n +2) — 1}). Let
By, 42, be the set of indices such that B, 2,;(T, P¢) = @, off-

By lemma 4.3, for n sufficiently large, the set of indices of B,.,; which does not
belong to a word a ( that satisfies:

|‘~1n+1,j,eﬂf| f
T 7 | 8
|an+1,j,eff|

n+1,j,e

<€)2

has a density of at most €'/2. Thus, the density of indices that we consider is
1—€/2.
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r(n+1,j1)

an+1,| (TU,P)

(TVg ’ Pg)

S

dn+1|

Figure 10: Overlap of a (T, P) and (7%, P#)-trajectories when ry1j, >> Fpti,-
Turbulences are not represented for simplification.

On B, .5, which has a (T, P¢)-trajectory of n + 2-type i1, we distinguish different
segments according to the n 4+ 2-type j; of the (T, P)-trajectory. We distinguish the
cases j; < iy, j; > i and j; =iy (j; € {0,...,N(n+2) — 1}).

We suppose ji < i (.. Fuy1j, > Tasii)- Let Bn+2,i,j be a set of indices such
that B,.,;. j(Tu, P) is a segment of r,,; j words of the same n + 1-type / (modulo
turbulences from A, 1, and from the effect of the cyclic permutation), i.e. is of the form

Bui2ij(Tu, P) = a,y eff 1 1eff10 s 1 soff-- Oy 1 1off!

~"

— n+2
An+1Tn+1,j; 71\/(“4—{1)7‘]""'”1 letters

Since, for n sufficiently large, § g — €' /2 > 2"r,11, /Tus1.j,» then B, 12 ; contains
at least 2" complete cycles of n + 1-types an+1,0,eff"'an+l,N(n+1)—1,eff (see figure 10).
Therefore, the density of a
than 2/N(n + 1) + 1/2".

We neglected turb(A,,+1) (and cyclic permutation effect), so we need to add an error
of density at most 3€n-+1Nn+ 190N (nt1)-

If ji > 1 (i.e. rpy1,j, < Tnt1,,), then except maybe on boundaries, there is another
segment of indices B, 4 such that Bn+2,,-,k(T§ , P#) is a segment of r, 1 j words of
the same n + 1-type /, i.e. of the form

o ieff words (i.e. words of n + 1-type [) in I?,,Jrz,,;j is less

B . 8 pg&\ — 7 7o~
B2 (15, P¥) = @, effl--8, 1 eff

"

Zqn+ 170410 letters

There are more than g,.417,+1,, letters because { g — € > 1.

Since { g + €/2 < rug1,,/(2"Fat14,), then B,y (T, P) contains at least 2" com-
plete cycles of n + 1-types @10 eff G LN (1) —1.efF (see figure 11). Therefore, on
this segment, the n + 1-types of (7%, P¢) and (T, P) coincide on a set of density at
most 2/N(n + 1) + 1/2".

Again, we add an error of density at most 3€n+1Nn+ 190N (1) due to turb(A,+1)
and cyclic permutation effect.
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r(n+1,j1
An1 (n+1,j1)

) | L M)

(T\%,P°)

= r(n+1,i1)
An+1|

Figure 11: Overlap of a (T, P) and (T$, P¢)-trajectories when r, 11 j, << Fui1,-

Since N(n + 1) > { g + € for n sufficiently large, the case j; = i; occurs at most
once on every set of indices where (75, P¢) is of the form (see figure 12):

Gy 1,1,efft'"an+1,l,eff

Zqut 11, lEHETS
Therefore, there exists ny such that for any n > ny the density of indices on which
the n + 1-types of the (75, P¢) and (T, P)-trajectories coincide is less than € + 1/ g.

The proof works because for n sufficiently large, scales for (7%, P$) and (T,, P) are
either extremely different, or equal. A more problematic case would be if those scales
were different but comparable, e.g. if 7,11, |Gnt1,1] = Fut 1., |@nr1,1] (see figure 13).

O

]

4.3 Even equivalence

We show that if u, # v, infinitely often, then 7}, and 7', are not evenly equivalent. We
apply the proposition [12, p.92]:

Proposition 4.11. If (S, P) and (T, Q) are evenly equivalent, then for any T > 0, there
is K(t) > 0 and P(7) < Vfi(i)K(,) Ti(Q) such that F((S,P), (T, P(1))) < 7.

We contradict this proposition with 7 = (1 — 4€)/200. Indeed, we show:

Proposition 4.12. Let x,y two points in Eyy and P(t) < \/*7  Ti(P). Then

i=—K(1)
liminf F(a(T,. P(t), m, x), a(Ty, Pm,y)) > ot
min us ’ £ £ ve Lo ’ =
amant a T),m,x),a m,y 128

Proof. The scheme of the proof is not sensibly different from the scheme of the proof
of proposition 4.7: we decompose successively the trajectories from scale n+2 to scale
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(TVgi Pg)

= r(n+1,i1)
dn+1,|

Figure 12: Overlap of a (T, P) and (T%, P?)-trajectories when r,.41 j, = ryt1,,. In the
next segment, 1,41, = Fp+1i+1 << Futli

n, but along a maximal match, because we are working with f (whereas in proposition
4.7, we decomposed along identical ranks of indices, because we were working with d).
For u,1 # vu+1, the orders of complete cycles of the (T, P) and (T,, P)-trajectories
are the reverse of each other (see figure 15). It implies that in most cases, a (T, P)-
segment of a given n + l-type must be matched with a (7, P)-segment that has a
different n + 1-type. Here, the "reverse orders of cycles" separate trajectories for f
in the same way as the expansion of trajectories by g separated trajectories for d in
proposition 4.7 (see lemma 4.9).

In this case, the fit of their match is small, because repetitions of the words a,;eff
in the (7), P)-trajectory and of the words &, ; of in the (7}, P(7))-trajectory have dif-
ferent periodicities (the periodicity of repetitions of &, ; of in the (7, P(7))-trajectory
is the same as the periodicity of repetitions of a, ; o in the (T, P)-trajectory, because
K(1) < gn/2). )

Turbulences remain packed in rare locations, and do not sensibly affect f. Thus,
we can conclude as in proposition 4.7.

Let n be sufficiently large such that ¢, > 2"7#(2K(7)), and such that u, {1 # v,
(e.g. upt1 =0,v,1 =1). Letm =2"g, 5. Leta = 1 — 3e.

If f(a(T,, P(t),m, x),a(T,, P,m,y)) > lgf‘ then we obtain the proposition. Oth-
erwise, let 7 : a(T,, P,m,y) — a(T,, P(t),m,x) a match minimizing the f-distance.
We see it as a match  : a(T,, P,m,y) — a(T,, P,m, x) (we can do this because r is a
function of {1, ..., m} into itself). We decompose these two words in g, 1,-trajectories:

/

/ i
a .t..a
n+2,1,eff n+2,2,eﬂ: 2

a(T,, P,m,y) = aja
such that |4, |aA’1 |, |az], |c’z\’2| < ¢u12, and where 7 is a turbulence from A, 3 (or a

cyclic permutation effect). We write a(T,, P,m, x) and a(T,, P, m,y) in the form (see
figure 14):
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an+2,j1

- > 1
an+1,1 (TU,P)
| | |
| | |
- T g Pg
Bt (TP

A

>

an+2,i1

Figure 13: Overlap of a (T,, P) and (TS5, P%)-trajectories when r,4y |du11] =
Fnt1,j, |@n+1,1]- This case does not happen with our assumptions.

a(T,, P,m,y) = G(T,, P,y)Go(T,, P, y)...t..G(T,, P, y)

a(Ty, P,m,x) = G|(T,, P,x)G5(T, P, x)...t...G,,(T,, P, x)

where G;, G are sets of indices maximal for the inclusion such that G;  a,, +2,eff>
G c ayog i eff for some ranks jy, j,, and with G! = {wy, ..., w,} such that:

wy =1 + max{n(u),u < G;,u € D(n)}

_ | max{n(u),u€ G;n D(n)} ifGinD(n)+# &
W2E otherwise

In particular, 7(G;) < G!). G! lies between (but excluding) the rightmost letter
matched with a letter left of G; and (including) the rightmost letter identified with
a letter to the left and including G;. Again, we exclude A, 3-turbulences from G;,
because [t| >> gn42 ~ |Gyl

If f(Gi(T\, P,y),G}(Tu, P(1),x)) = &, then we can stop the decomposition here.
Otherwise, then

1—1/27<ﬂ<1+1/27
|G|

In each a,_, o, there is at most one G; such that |Gi| < qny2/2"* (and so
IG!| < gns2 /2"+3 and there is at most one G| like that in each a,, +2veff) and there-
fore, the total density of indices of this kind is at most 1/2"*2. If both |G;| and
|GI| = Gn42/2"13 = 2"F2g, 11N (n + 1), we write:

G, = é\IGi,l ---Gi,ré\Z

with r > 2"*!, such that each G; ;(7,, P, y) is a complete cycle of n + 1-types, i.e.
G,(T,, P,y) is of the form (since we assumed v, = 1):
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An+2 | eff t

>
(TVx P’y)
| I
\/\_/
Gi Gi+1
AN AN T
\ \
G'iv1 (Tu,P,.x)
L ”W/\ I
%
An+2,' eff t

Figure 14: The decomposition of trajectories a(T,, P,m,y) and a(T,, P,m, x) in seg-
ments G; and G'.

Gi(Ty, P.y) = G141 n(ui1)— 1 eff~L @i 0eff Dyt N(nt 1)1 eff LGy 1 0 efft G2

h h
G (T,.Py) Gia(T,.Py)

Moreover, |é\1 , A| < N(n+ 1)gu+1, and they occupy a density of less than 1/2".
Here, we include A, »-turbulences in G; j, because their density is relatively small. We
also write:

G, = G|G;,..G;,G)
such that G’ corresponds to G; j by x, in the same way as G! corresponded to G;,
(e G, i lies between the rightmost letter matched with a letter left of G;; and the
rightmost letter identified with a letter to the left and including G; ;).

If (G ;(T\, Py), G, (T,,, P(7),x)) = &.then we can stop the decomposition here.
Otherwise, then

|G ul
1-1/2" < <141/27
We write:
Gi,j = Gi,j!l...l‘..Gi!jJ
and
/A 1A 1
Gi = Gljl...t...GUS

where 7 is a turbulence of A, , (or a cyclic permutation effect), and G; x, G’ ik
are analogous to G; and Gf, but at rank n + 1, i.e. they are sets of indices maximal

for the inclusion such that G; jx < a, L1k eff G: ik C Qg eff for some ranks k,, k,,
and G’ . lies between the rightmost letter matched with a letter left of G; jx and the

rlghtmost letter identified with a letter to the left and including G; j«.
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If f(Gijx(T,, P, ¥), G 1 (Tu, P(7),x)) = &, then we can stop the decomposition

here. Otherwise, then
|Gijil

G!

1-1/27 <
t,j,k|

<1+1/27

If either |Gy j| < gn+1/2"7 or |G} ;| < gur1/2"3, we can neglect both.

Otherwise, let k; denotes the n + 1-type of a, |,/ off 2 Gijk (k1 € {0,...,N(n+
1) — 1}. Since gut1/2"T3 = 21,4, N(n)gn, then G; jx(T,, P,y) contains 2" complete
cycles of n-types. We can write:

Gijk = a’\lan,O,eff"'an,l,eﬂ"t""an,N(n)fl,eﬂ"d\z

where ||, |az| < N(n)gqy,, and a, @ occupy a density of less than 1/2".

Let k be the n + 1-type of a, | | off D Gij’k. We observe that any match between
the words 12...N12...N12...N and N...21N...21N...21 (same word repeated p times) has
a fit smaller than 2’7771% < 3/N, where N is the number of types (see figure 15). There-
fore, Gi jx(Ty, P,y) and G; ; (T, P, x) have the same type in only a fraction 3/N(n +1)

of cases, which makes a density of indices of less than 4/N(n + 1).

12345112345112345
NI O
= \, Sy ~3 s

54321 54321 54321

Figure 15: The f-distance between these two words is large.

If k; > ko, then r,, < ryx, and we proceed as in proposition 4.7. We can write:

! o~ ! ~
Gijk = @G, j41Gi ji s

such that G; ;, (T, P,x) = a,; off.--1...a, ; off! is a segment of words of the same
n-type i. G;j «; corresponds by 7 to G; j«; (as before).
If £(Gijxi(Ty, Py), G i1(Tus P(7), X)) = &, then we can stop the work with this

l
segment here. Otherwise, then

G jikl

G'

1-1/27 <
1,j,k,l|

<1+1/27

G jxi(Ty, P,y) contains at least 2" complete cycles of n-types (with turbulences),
because 2"y, 1, < Tus,-

At i, j, k fixed, the G;,j,k,l(Tu’ P, x), when [ varies, have the same n-type in a pro-
portion of less than 2/N(n). Since K(7) < g,/2, and the a, ; o are the same (turbu-
lences coming from B, are located at the same place throughout every g, ; o), then
the G}, ,(Tu, P(7), x) also have the same n-type in a proportion of less than 2/N(n). If
Iy # by, then because of turb(A,+) (and cyclic permutation effect),

f(Gg,j,k,ll (TM’P(T)’ )C), G;,j,k,lz(Tu’P(T)’x)) Za— 4(2K(T) + l)enJranJrlCIn,N(n-&-l)
(18)
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On the other hand, since G x;(T, P,y) contains at least 2" complete cycles of
n-types (with turbulences), then for any /y, [,

_ 1
f(Gi,j,kJ] (TV’ P’y)’Gi.j,kqlz(Tva’y)) < 2_,, + 46n+1Nn+IQn,N(n+l) (19)

If ki < ko, the proof is analogous.

Let pg = min; f(G i jkt(Tus P(7), %), Gi jia (T, P.y)) and [ an indice realizing this
minimum. If pg > /128, we can stop here. Otherwise, by applying estimates (18)
and (19), and by taking into account boundary effects, and for n sufficiently large such
that a, 1 # byi1:

L
F(G i (Tus P(7), %), G j(Ty, Py)) = (1-1/2") Z (G4 )(Tus P(7), %), Gi jaa(To, PY))

L

L
(1-1/2") Z Gf,kz T, P(1),x )’G;,j,k,lo(TM’P(T)’x))

LN I

—F(Gi jats (T P(0): ), Gty (Tvn P.3)) = F(Gijicy(T: ). Gijaa (T P.y))

1—4e
128

=
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