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An uncountable family of pairwise non-Kakutani equivalent smooth diffeomorphisms

 1980 [8, p.141], [9, p.293].

© Npnq 2pNpn 1q¡pi 1qq

T 0 is constructed so that, up to minor details, the Npnq-trajectory of points in r0, 1s are, with equal Lebesgue measure, given by the a n,i , i i, ..., Npnq. Under suitable assumptions, this property implies that T 0 is nLB.

To get a construction looking like Feldman's, but smooth, we rely on three observations: first, the f -distance is quite flexible: the fit of a match is a ratio of two lengths, and therefore, the addition of unknown letters into a word does not sensibly affect its fit with another word, if the total length of one of the words (or both) is taken sufficiently large. This property allows to approximate Feldman's map by smooth maps.

Second, we rely on a phenomenon of "quasi-concatenation" of finite trajectories:

for example, let q n ¡ 0, let ζ tr0, 1s¢ri{q n , pi 1q{q n r, 0 ¤ i ¤ q n ¡1u the partition of r0, 1s ¢ 1 , S 1 qn the rotation of angle 1 q n of r0, 1s ¢ 1 . Let w be the q n -trajectory of 0 with respect to S 1 qn and ζ, and let q n 1 ¡ 0 be an integer that is strictly divided by q 2 n .

and φ 3 id on ra, bs ¢ rc, ds ¡ pra {2, a I s ¢ rc {2, d ¡ {2sq }φ 3 } n ¤ f pn, a, b, c, d, q and there exists φ 4 pa, b, c, d, a I , q : ra, bs ¢ rc, ds ý such that

We have: φ |ra,bs¢rc,ds¡pra {2,b¡ {2s¢rc {2,d¡ {2sq id φ |ra I ,b I ¡ s¢rc ,d¡ s id φ |ra ,a I ¡ s¢rc ,d¡ s τ b I ¡a φ |rb I ,b¡ s¢rc ,d¡ s τ a¡b I }φ} n ¤ f pn, a, b, c, d, a I , q 2.2 Definition of T n

Introduction

An important question on the interface between smooth dynamics and abstract ergodic theory is: what ergodic properties, if any, are imposed upon a dynamical system by the fact that it should be smooth? [11, p.89] [15, p.232] Only one restriction is known, which is that the entropy must be finite, because the dimension of the manifold is finite.

The core of the problem is when the invariant measure is smooth, and the manifold is compact (otherwise, see [START_REF] Krieger | On entropy and generators of measure-preserving transformations[END_REF], [START_REF] Arnoux | Cutting and stacking, interval exchanges and geometric models[END_REF]). No other restriction has been found yet, but examples have been provided: Brin, Feldman and Katok [START_REF] Brin | Bernoulli diffeomorphisms and group extensions of dynamical systems with non-zero characteristic exponents[END_REF] showed that any compact manifold of dimension greater than one admits a smooth Bernoulli diffeomorphism. Katok [START_REF] Katok | Smooth non-Bernoulli K-automorphisms[END_REF] and Rudolph [START_REF] Rudolph | Asymptotically Brownian skew products give non-loosely Bernoulli K-automorphisms[END_REF] gave examples of smooth non-Bernoulli K-diffeomorphisms. Ratner [START_REF] Ratner | The Cartesian square of the horocycle flow is not loosely Bernoulli[END_REF] showed that the Cartesian square of the horocycle flow is non-Loosely Bernoulli, thus giving an algebraic (hence analytic) example.

In this paper, we construct an uncountable family of smooth ergodic zero-entropy diffeomorphisms that are pairwise non-Kakutani equivalent, on any smooth compact connected manifold of dimension greater than two, on which there exists an effective smooth circle action preserving a positive smooth volume.

Our construction originates from an example given by Feldman [START_REF] Feldman | New K-automorphisms and a problem of Kakutani[END_REF], of an ergodic transformation of zero entropy that is non-Loosely Bernoulli (i.e. non-Kakutani equivalent to an irrational circle rotation). Ornstein, Rudolph and Weiss [START_REF] Ornstein | Equivalence of measure-preserving transformations[END_REF] extended Feldman's construction to obtain an uncountable family of ergodic zero-entropy transformations that are pairwise non-Kakutani equivalent. Their transformations are discontinuous, they are obtained by "cutting and stacking". The construction given in this ¦ Contact: mostaphabenhenda@gmail.com. I would like to thank Jean-Paul Thouvenot for communicat- ing these questions, Sasha Prikhodko for discussion, and Poncelet Laboratory, Moscow, Russia, for hospitality.

paper corresponds to a smooth version of the construction given by Ornstein, Rudolph and Weiss. To obtain it, we suitably modify a smooth construction by Anosov and Katok [START_REF] Anosov | New examples in smooth ergodic theory. Ergodic diffeomorphisms[END_REF].

In particular, we also obtain a smooth ergodic non-Loosely Bernoulli diffeomorphism on any smooth compact connected manifold of dimension greater than two, on which there exists an effective smooth circle action preserving a positive smooth volume. This allows to generalize Katok's result on the existence of a smooth non-Bernoulli K-diffeomorphism to every manifold of dimension greater than 4 [9, p.293]. This smooth version of Feldman's transformation has been announced by Katok [8,p.141], [9, p.293]. However, up to now, it has not been written.

In this paper, we show the theorems:

Theorem 1.1. Let M be a smooth compact connected manifold of dimension d ¥ 2, on which there exists an effective smooth circle action pS t q t 1 preserving a positive smooth measure µ. There exists an ergodic non-Loosely Bernoulli diffeomorphism T Diff V pM, µq. Theorem 1.2. Let M be a smooth compact connected manifold of dimension d ¥ 2, on which there exists an effective smooth circle action pS t q t 1 preserving a positive smooth measure µ. There exists an uncountable family of ergodic diffeomorphisms T u Diff V pM, µq such that if u $ v, then T u and T v are not Kakutani-equivalent.

First, in sections 2 and 3, we show theorem 1.1, which gives a smooth version of Feldman's transformation. In section 4, we show theorem 1.2, by adapting the proof of Ornstein, Rudolph and Weiss [12, pp. 84-95].

Main ideas

We recall some definitions found in [START_REF] Feldman | New K-automorphisms and a problem of Kakutani[END_REF] (we slightly modify the terminology sometimes). We fix an automorphism T of pM, B, µq. Let I be an alphabet of size N and P tc i , i Iu a finite measurable partition indexed by this alphabet. For any x M and integer n , and for any i 0, ..., n ¡ 1, let a i I such that T i pxq c a i . The n-trajectory of x by T with respect to P is the word of length n on the alphabet I given by: apT, n, xq a 0 ...a n¡1 , such that , T i pxq c a i (we do not mention the partition P in the notation when it is fixed once for all). The length of this word is denoted |apT, n, xq|. The trajectory of x (by T with respect to P) is the infinite word a 0 a 1 ... where T i pxq c a i for any i .

Let α a 1 ...a n and β b 1 ...b m be two words on the alphabet I. A match π between α and β is an injective, order-preserving partial function π : t1, ..., nu Ñ t1, ..., mu such that for any j in its domain of definition Dpπq t1, ..., nu, b πp jq a j . The cardinal of Dpπq is denoted |Dpπq|. Let Rpπq π pDpπqq. π is denoted: π : Dpπq t1, ..., nu Ñ Rpπq t1, ..., mu Let Dpπq tj 1 , ..., j |Dpπq| u. We identify Dpπq with the subword a j 1 ...a j |Dpπq| of α, and Rpπq with the subword b πp j 1 q ...b πp j |Dpπq| q of β.

The fit of π, fitpπq is given by: fitpπq |Dpπq| 1 2 pm nq Let also π ¡1 : Rpπq t1, ..., mu Ñ Dpπq t1, ..., nu such that π ¡1 pπpiqq i. Since |Rpπq| |Dpπq|, then fitpπ ¡1 q fitpπq. The distance f pα, βq between α and β is: f pα, βq 1 ¡ maxtfitpπq, π : α Ñ β match u

Since fitpπ ¡1 q fitpπq for any match π, then f pα, βq f pβ, αq. Moreover, if α, β and γ are words of equal length, f pα, γq ¤ f pα, βq f pβ, γq.

A characterisation of Loosely Bernoulliness in the case of zero entropy is given in [7, p.22]. In this paper, we rather give a definition of non-Loosely Bernoulliness (nLB) in the case of zero entropy, because we want to obtain this property. Definition 1.3. Suppose T has no entropy. T is non-Loosely Bernoulli (nLB) if there exists ¡ 0 and a finite partition P such that, for an infinity of integers n, and for any A B, if µpAq ¥ 1 ¡ , there exists x, y A, f papT, n, xq, apT, n, yqq ¥ .

Our construction is inspired by the example given by Feldman [START_REF] Feldman | New K-automorphisms and a problem of Kakutani[END_REF] of a transformation T 0 that is ergodic, of zero entropy but non-Loosely Bernoulli. His transformation is not smooth (not even continuous) and is carried on r0, 1s. He constructs words (of length Npnq at the n th step) by induction. They are defined by a 0,i a i I for i 0, ..., Np0q ¡ 1, and for n ¥ 0 and i 0, ..., Npn 1q ¡ 1:

a n 1,i ¡ a Npnq 2pi 1q n,1 ...a Npnq 2pi 1q n,Npnq
Let p n 1 {q n 1 1{q n 1{q n 1 , and σ be the circular permutation on words defined by: σ : a 1 a 2 ...a p Þ Ñ a 2 ...a p a 1 , where a i , i 1, ..., p, are letters of a word of length p.

The q n 1 -trajectory of 0 by S 1 qn is:

w q n 1 q 2 n pσpwqq q n 1 q 2 n pσ q n ¡1 pwqq q n 1 q 2 n
We assume that q 2 n divides q n 1 , and not simply that q n divides q n 1 , because the map σ is applied every q n 1 {q n iterations, and for convenience, we prefer not to cut a word in the middle.

If q n 1 {q n is sufficiently large, we can neglect the effect of the circular permutation σ on this trajectory, which fit becomes close to the fit of w q n 1 qn . This phenomenon is used to smoothly "quasi-concatenate" words.

The third observation allows to concatenate different words (the second observation only allows to concatenate the same word). It consists in introducing a smooth "quasipermutation" that allows to permute "tracks" on which rely the "trajectories" of points by our transformation T . By using quasi-permutations on separated tracks, we can obtain different trajectories, and thus obtain nLB. This method is possible because the manifold M has dimension greater than two.

This technique of taking "different tracks" is a novelty with respect to the original Anosov-Katok method [START_REF] Anosov | New examples in smooth ergodic theory. Ergodic diffeomorphisms[END_REF], which does not use dimension two as fully as we do. In their method, they only use one single "track". Basically, most of their construction can be carried on a circle. They need dimension two only when they take the limit in the construction. This approach complicates the coexistence of different trajectories on the same manifold: indeed, in their method, each trajectory is approximated by periodic trajectories. At step n 1, we need that the rotation S p I

n 1 q I n 1
of the annulus acts on a horizontal partition like a permutation having Npn 1q q n 1 {q I n 1 cycles, each of length q I n 1 . But the main problem is that the cycles are too closely intertwined (figure 1).

This does not allow the convergence of the diffeomorphism

T n 1 B ¡1 n 1 S p I n 1 q I n 1 B n 1 :
the norm }B n 1 } will be of order q n 1 at least, whereas in order to get a smooth map at the limit, we need that the series

°n }B n 1 } q I n 1
converges (it is a consequence of a generalized mean value theorem). In our construction, we put cycles vertically (figure 2), so that we do not get this problem.

However, we still rely on the core ideas of the Anosov-Katok method: we obtain the smooth diffeomorphism T as the C V -limit of a sequence T n B ¡1

n S pn qn B n of periodic diffeomorphisms, with B n A n A n¡1 ...A 1 , A n 1 S 1 qn S 1 qn A n 1 and q n divides q n 1 .

Convergence in the C V -norm is possible because T n 1 is taken very close to T n :

q n 1 is taken large, so that the distance between S p n 1

q n 1 and S pn qn is small with respect to the norm of the conjugacy }B n 1 }, which norm is related to scale of the smallest quasi-permutation at step n 1 (each quasi-permutation has its own scale, different of others, to allow nLB). Moreover, in order to get nLB, T n 1 is also taken very close to T n : indeed, this closeness implies that T i n 1 does not significantly differ with T i n for i q n , so that both transformations give similar i-trajectories. However, these two maps differ when i ¡¡ q n (typically, when i q n 1 {q n ). For example, T n is q n -periodic but not T n 1 .

This closeness allows approaching Feldman's construction: Feldman's maps T n and T n 1 always have the same Npnq-trajectories, these two maps exactly coincide on increasingly larger sets. In our construction, for most points, there are Npn 1q different kinds of q n 1 -trajectories, obtained by concatenating q n -trajectories in different ways. Up to a circular permutation of letters, and up to other minor modifications, these q n 1trajectories are, for i 0, ..., Npn 1q ¡ 1:

a n 1,i ¢ a q n 1 Npnqq n,i qn n,0 a q n 1 Npnqq n,i qn n,1 ... a q n 1 Npnqq n,i qn n,Npnq¡1 q n,i (1) 
The parameters q n,i are suitably chosen to get nLB: an important characteristic of this choice is that q n q n,i q n,i 1 ... q n 1 .

In section 2, we construct T n on r0, 1s ¢ . In section 3, we show that the limit T is smooth, nLB and ergodic. In subsections 3.3.2 and 3.3.3, we extend the construction to the cases of r0, 1s d¡1 ¢ and more general manifold M. In section 4, we gener- In all the paper, f denotes an explicit function of its variables. The expression of this function can vary from one estimate to the other, but we still denote all these estimating functions in the same way.

2 Construction of the transformation T n

Smooth quasi-permutations

We introduce smooth quasi-permutations, which are the main tool for the construction of the map T . Let a a I pa bq{2, b I a b ¡ a I , 0 minppa I ¡ aq{2, pd ¡ cq{2q. Let τ u be the translation of vector pu, 0q. There exists a smooth measure-preserving map φpa, b, c, d, a I , q : ra, bs ¢ rc, ds and a fixed numerical function f such that (see figure 3): φ |ra,bs¢rc,ds¡pra {2,b¡ {2s¢rc {2,d¡ {2sq id Remark 2.2. Assumptions given in this proposition are not the most general in order to define a quasi-permutation. However, they will be easier to write the construction, allowing to avoid writing some unessential technical details.

Remark 2.3. The estimating function f pn, a, b, c, d, a I , q could be explicitly determined, but we do not need its expression in this paper.

The norm of the C n -norm of φ is denoted with }φ} n . The set where }Dφ} n 1, which includes ra

I , b I ¡ s ¢ rc , d ¡ s ra , a I ¡ s ¢ rc , d ¡ s rb I , b ¡ s ¢ rc , d ¡ s ra, bs ¢ rc, ds ¡ pra {2, b ¡ {2s ¢ rc {2, d ¡ {2sq is called safe zone.
The set where }φ} n $ 1 is called turbulence zone.

The basic phenomenon that we use is the following: let S t be the rotation flow on º, 0 a b 1, 0 c d 1, x pu, vq. We have: S t pu, vq pu, v tq.

Let A : º ý such that A |ra,bs¢rc,ds φpa, b, c, d, a I , q, where φpa, b, c, d, a I , q is the quasi-permutation defined in proposition 2.1, and such that A id elsewhere. Let Rpxq A ¡1 S t Apxq. We have:

1. If u ra, bs, then Rpxq S t pxq. On the other hand, if x belongs to a turbulence zone, we cannot control its trajectory by R.

Proof of proposition 2.1. We recall the following proposition, which is found in [START_REF] Fayad | Non-standard smooth realizations of Liouville rotations[END_REF][START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF][START_REF] Benhenda | Non-standard couples of angles of rotations[END_REF] in a slightly modified version: Proposition 2.4 ( [START_REF] Fayad | Non-standard smooth realizations of Liouville rotations[END_REF]). For any η ¡ 0, there exists a smooth measure-preserving map φpηq : r0, 1s 2 ý such that: φpηq |rη,1¡ηs 2 Rpπ, p1{2, 1{2qq where Rpπ, p1{2, 1{2qq denotes the rotation of angle π and center p1{2, 1{2q, φpηq |r0,1s 2 ¡prη{2,1¡η{2s 2 q id }φpηq} n ¤ f pn, ηq Remark 2.5. In [START_REF] Fayad | Non-standard smooth realizations of Liouville rotations[END_REF][START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF][START_REF] Benhenda | Non-standard couples of angles of rotations[END_REF], the angle of the rotation is π{2, whereas the angle here is π.

Let p ¥ 1 and

C p : r0, 1s ¢ 0, 1 p % Ñ r0, 1s ¢ r0, 1s px, yq Þ Ñ px, pyq
Let φpη, pq C ¡1 p φpηqC p . The map φpη, pq : r0, 1s ¢ 0, 1 p % ý is smooth and measure-preserving. By the Faa-di-Bruno formula, }φpη, pq} n ¤ f pn, η, pq By composing φpη, pq with translations and homotheties, there exists φ 1 pa, b, c, d, q : ra, bs ¢ rc, ds ý such that: b,c,d, q there exists φ 2 pa, b, c, d, a I , q : ra, bs ¢ rc, ds ý such that For n ¥ 0, let Npnq ¥ 2 be a sequence of integers. Additional assumptions on Npnq appear in corollary 3.7 of the next section, to get nLB of the limit T . Let N n ± n k0 Npkq, N ¡1 1. Let strictly positive integers q n , q n,0 , ..., q n,Npn 1q¡1 such that q n divides q n,0 , for i 0, ..., Npn 1q ¡ 2, q n,i divides q n,i 1 , and Npnqq n q n,Npn 1q¡1 divides q n 1 . Additional assumptions on the q n,i appear in corollary 3.7, in order to get nLB of the limit T .

φ 1 |ra,bs¢rc,ds¡pra {2,b¡ {2s¢rc {2,d¡ {2sq id φ 1 |ra {2,b¡ {2s¢rc {2,d¡ {2s R ¢ π, ¢ a b 2 , c d 2 }φ 1 } n ¤ f pn, a,
φ 2 |ra I ,b I ¡ s¢rc ,d¡ s R ¢ π, ¢ a b 2 , c
For i 0, .., Npn 1q¡1, j 0, ..., N n¡1 ¡1, j I 0, ..., N n¡1 ¡1, y 0, ..., Npnq¡1, x 0, ..., tpNpnq yq{2u, if pj j I q{N n¡1 1 then we define (by using notations of proposition 2.1):

A n 1 pi, j, j I , x, yq :

¢ j N n¡1 i N n 1 x N n , Npnq ¡ x y N n 1 N n 1 j I N n¡1 & ¢ ¢ j I q n,i N n y q n,i Npnq , y q n,i Npnq 1 q n,i N n & ý pu, vq Þ Ñ ¢ j N n¡1 i N n 1 , j I q n,i N n φ ¢ x N n , Npnq ¡ x y N n 1 N n 1 j I N n¡1
, y q n,i Npnq , y q n,i Npnq

1 q n,i N n , x N n 1 N n 1
, n 1 pu, vq if pj j I q{N n¡1 ¥ 1 then we define (by using notations of proposition 2.1):

A n 1 pi, j, j I , x, yq :

¢ j N n¡1 i N n 1 Npnq ¡ x y N n j I N n¡1 , x N n 1 N n 1 & ¢ ¢ j I q n,i N n y q n,i Npnq , y q n,i Npnq 1 q n,i N n & ý pu, vq Þ Ñ ¢ j N n¡1 i N n 1 , j I q n,i N n φ ¢ Npnq ¡ x y N n , x N n 1 N n 1 j I N n¡1 , y q n,i N n , y q n,i Npnq 1 q n,i N n , Npnq ¡ x y N n 1 N n 1
, n 1

pu, vq

We distinguish the cases pj j I q{N n¡1 1 and pj j I q{N n¡1 ¥ 1, because if

pj j I q{N n¡1 ¥ 1, then j N n¡1 i N n 1 Npnq¡x y N n 1 N n 1 j I N n¡1 ¡ 1.
We briefly explain the different roles played by the indices i, j, j I , x, y: the index i is used to label the Npn 1q different q n 1 -trajectories. The parameters x, y serve to concatenate the Npnq different q n -trajectories in the right order and everywhere. The parameters j, j I serve to connect the different ergodic components of T n properly, to get ergodicity of the limit transformation T .

We extend A n 1 pi, j, j I , x, yq to

Epiq N n¡1 ¡1 ¤ j0 N n¡1 ¡j¡1 ¤ j I 0 Npnq¡1 ¤ y0 tpNpnq yq{2u ¤ x0 ¢ j N n¡1 i N n 1 x N n , Npnq ¡ x y N n 1 N n 1 j I N n¡1 & ¢ ¢ j I q n,i N n y q n,i Npnq , y q n,i Npnq 1 q n,i N n & ¤ N n¡1 ¡1 ¤ j0 N n¡1 ¡1 ¤ j I N n¡1 ¡j Npnq¡1 ¤ y0 tpNpnq yq{2u ¤ x0 ¢ j N n¡1 i N n 1 Npnq ¡ x y N n j I N n¡1 , x N n 1 N n 1 & ¢ ¢ j I q n,i N n y q n,i Npnq , y q n,i Npnq 1 q n,i N n
& by identity. Then, on each Epiq, i 0, .., Npn 1q ¡ 1, we define:

A n 1 piq ¥ N n¡1 ¡1 j0 ¥ N n¡1 ¡1 j I 0 ¥ Npnq¡1 y0 ¥ tpNpnq yq{2u x0
A n 1 pi, j, j I , x, yq The order in which we compose the maps A n 1 pi, j, j I , x, yq affects the definition of A n 1 piq, because their support are not disjoint: their turbulence zones have intersections on sets of small measure. However, this order does not matter for the properties of A n 1 piq that we seek.

We extend A n 1 piq to Epiq p0, l{q n,i q, l 0, ..., q n,i ¡1 by 1{q n,i -equivariance, i.e.:

A n 1 piqpu, v l{q n,i q A n 1 piqpu, vq p0, l{q n,i q

The parameter i was sorted out because the q n,i depend on i.

Finally, on r0, 1s ¢ , we define:

A n 1 ¥ N n¡1 ¡1 i0
A n 1 piq. Again, the order of composition of the maps A n 1 piq matters for the definition, but not for the properties that we seek. Let B n A n ¥...¥A 0 and T n B ¡1 n S pn qn B n . This defines T n . In corollary 3.7, we add assumptions on q n , Npnq and q n,i to obtain that T n converges towards a smooth, nLB and ergodic transformation T . T will have zero entropy as the limit of maps conjugated to rotations.

3 Properties of the transformation T

Convergence of T n towards a smooth map T

Showing the convergence of T n towards a smooth map T is classical (see e.g. [START_REF] Anosov | New examples in smooth ergodic theory. Ergodic diffeomorphisms[END_REF][START_REF] Fayad | Non-standard smooth realizations of Liouville rotations[END_REF]). By construction, there exists f precgce pn, q n , N n 1 , q n,Npn 1q¡1 , n 1 q such that }B n 1 } n 1 ¤ f precgce pn, q n , N n 1 , q n,Npn 1q¡1 , n 1 q. By the Cauchy criterion, it suffices to show that °n¥0 d n pT n 1 , T n q converges. We combine the fact that A n 1 commutes with S 1 qn , the estimation of B n 1 and the fact that p n 1 {q n 1 p n {q n 1{q n 1 . We recall the lemma [6, p.1812]: Lemma 3.1. Let k . There is a constant Cpk, dq such that, for any h DiffpMq, α 1 , α 2 , we have:

d k phS α 1 h ¡1 , hS α 2 h ¡1 q ¤ Cpk, dq}h} k 1 k 1 |α 1 ¡ α 2 | Since T n B ¡1 n S pn qn B n B ¡1 n 1 S pn qn B n 1 (because A n 1 commutes with S 1 qn ), and since, for n ¥ 2, }φ n } n 1 ¤ q R 1 pnq
n for a sequence R 1 pnq independent of q n (because q n ¥ 2 for n ¥ 2), we obtain, for a fixed sequence f cgce pn, q n , N n 1 , q n,Npn 1q¡1 , n 1 q:

d n pT n 1 , T n q d n pB ¡1 n 1 S p n 1 q n 1 B n 1 , B ¡1 n 1 S pn qn B n 1 q ¤ Cpk, dq}B n 1 } n 1 n 1 § § § § p n 1 q n 1 ¡ p n q n § § § § ¤ f cgce pn, q n , N n 1 , q n,Npn 1q¡1 , n 1 q § § § § p n 1 q n 1 ¡ p n q n § § § §
For a sufficiently increasing sequence q n , this last estimate guarantees the convergence of T n in the smooth topology. 

T is non-Loosely Bernoulli

To get nLB, the idea is that the two words aaaabbbb and abababab are far from each other in the f -distance.

We fix the partition:

P 3 c j % j Np0q , j 1 Np0q % ¢ 1 , j 0, ..., Np0q ¡ 1 A
The aim of this subsection is to show the following proposition, which is slightly stronger than the nLB property: Proposition 3.2. For any ¡ 0, there exists T Diff V pºq such that for any A B such that µpAq ¡ 2 , there exists n 0 ¥ 0 such that for any n ¥ n 0 , there exists x, y A such that f papT, q n , xq, apT, q n , yqq ¥ 1 ¡ 3 .

First, we show that it suffices to consider q n -trajectories by T n , instead of considering q n -trajectories by T . Lemma 3.3. For any ¡ 0, there exists a numerical map f nlb p , n, q n , N n 1 , q n,Npn 1q¡1 , n 1 q ¥ f cgce pn, q n , N n 1 , q n,Npn 1q¡1 , n 1 q, there exists E nlb º such that µpE nlb q ¥ 1 ¡ , and such that for any n , if q n 1 ¥ f nlb p , n, q n , N n 1 , q n,Npn 1q¡1 , n 1 q, then for any x E nlb the q n -trajectory of x by T n is the same as the q n -trajectory of x by T . Proof.

Let f nlb p , n, q n , N n 1 , q n,Npn 1q¡1 , n 1 q ¥ f cgce pn, q n , N n 1 , q n,Npn 1q¡1 , n 1 q ¥ 2 n q n such that, if q n 1 ¥ f nlb p , n, q n , N n 1 , q n,Npn 1q¡1 , n 1 q, then for any m , ņ¥m f cgce pn, q n , N n 1 , q n,Npn 1q¡1 , n 1 q q n 1 ¤ q 2 m Np0q2 m 1
Remark that as far as q n 1 ¥ 2 n q n , f nlb does not depend on the q p , p ¥ n 1. Since dpT, T m q ¤ ņ¥m f cgce pn, q n , N n 1 , q n,Npn 1q¡1 , n 1 q

q n 1 then dpT, T m q ¤ q 2 m Np0q2 m 1 Therefore, for 0 ¤ i ¤ q n ¡ 1, d 0 pT i , T i m q ¤ q m Np0q2 m 1 (2)
Moreover, for any F, G continuous and measure-preserving transformations, and

A B, µ pFpAq GpAqq ¥ µpAq ¡ µ FpAq f GpAq $ ¥ µpAq ¡ d 0 pF,Gq (3) 
Now, let

E nlb £ n¥0 q n ¡1 £ i0 ! Np0q¡1 ¤ j0 T ¡i n c j T ¡i c j ( ) Since, by (3), µ T ¡i n c j T ¡i c j ¨¥ µpc j q ¡ dpT ¡i n , T ¡i q and since T ¡i c j T ¡i c j I r if j $ j I , then µ ¤ ¥ Np0q¡1 ¤ j0 T ¡i n c j T ¡i c j Np0q¡1 j0 µ T ¡i n c j T ¡i c j ¥ Np0q¡1 j0 µpc j q ¡ dpT ¡i n , T ¡i q ¥ 1 ¡ q n 2 n 1 Moreover, for any A, B B, A , B ¥ 0 such that µpAq ¥ 1 ¡ A and µpBq ¥ 1 ¡ B ,
we have:

µpA Bq µpAq µpBq ¡ µpA Bq ¥ 1 ¡ p A B q (4) 
Therefore,

µpE nlb q ¥ 1 ¡ ņ¥0 q n ¡1 i0 q n 2 n 1 1 ¡
Finally, if x E nlb , then for any n , for any i 0, ..., q n ¡ 1, there exists j 0, ..., Np0q ¡ 1 such that x T ¡i n c j T ¡i c j . Therefore, T i n x c j and T i x c j .

Therefore, x has the same q n -trajectory by T n and by T .

Second, we show that the trajectory by T n of most points is well approximated by the "theoretical" trajectories a n,i , defined in [START_REF] Anosov | New examples in smooth ergodic theory. Ergodic diffeomorphisms[END_REF].

Let η 0 0, and for any n ¥ 1, let

η n 2 n¡1 ķ0 k 1 N k 1 max 0¤i¤Npk 1q¡1 q k,i 1 min 0¤i¤Npk 1q¡1 q k,i max 0¤i¤Npk 1q¡1
Npkq 2 q 2 k q k,i q k 1 and

E safe pnq n £ k0 safe pA k q
We have the lemma: Lemma 3.4. We have a partition E safe pnq tc 0 pnq, ..., c Npnq¡1 pnqu such that for any i 0, ...,

Npnq ¡ 1, § § § § µpc i pnqq ¡ 1 Npnq § § § § ¤ µ pturbpB n qq and for any x c i pnq, f papT n , q n , xq, a n,i q ¤ η n Proof.
The proof is by induction on n. If n 0, E safe p0q º. Moreover, apT 0 , q 0 , xq i x , where i x I is such that x c i x . Therefore, apT 0 , q 0 , xq a 0,i x , and f papT 0 , q 0 , xq, a 0,i x q ¤ η 0 0.

Suppose the lemma holds at step n, and let x E safe pn 1q. Since safepA n q is stable by A n , then E safe pn 1q safe pB n 1 q, and therefore, x safe pB n 1 q. By construction, up to a circular permutation, x has Npn 1q possible types of q n 1 -trajectories (i.e. Npn 1q if we neglect turbulences, otherwise there are N n 1 possible q n 1 -trajectories), depending on which "track" it stands. We denote these (non-connected) elements of this partition c 0 pn 1q, ..., c Npn 1q¡1 pn 1q. We have:

§ § § § µpc i pn 1qq ¡ 1 Npn 1q § § § § ¤ µ pturbpB n 1 qq
We show the second estimate. By construction, up to a circular permutation, any y E safe pnq safe pB n q has Npnq possible types of q n -trajectories by T n . We denote them a n,i,eff , with i 0, ..., Npnq ¡ 1. Labels i of a n,i,eff are chosen such that, by induction assumption, f pa n,i,eff , a n,i q ¤ η n . a n,i,eff is the "effective" trajectory: it corresponds to an "ideal" trajectory a n,i perturbed by turbulences coming from B n . These turbulences depend on the point y, and for better precision, we could write a n,i,effpyq .

First, we neglect turb pA n 1 q (we suppose it infinitely thin). By construction, the q n 1 -trajectory of x, a n 1,i,neg (for 0 ¤ i ¤ Npn 1q ¡ 1) is of the form:

a n 1,i,negl σ u ! £ σ l 0 pa n,0,eff q % q n 1 Npnqq n,i qn ... σ l Npnq¡1 pa n,Npnq¡1,eff q % q n 1 Npnqq n,i qn q n,i qn ... £ σ q n ¡1 l 0 pa n,0,eff q % q n 1 Npnqq n,i qn ... σ q n ¡1 l Npnq¡1 pa n,Npnq¡1,eff q % q n 1
Npnqq n,i qn q n,i qn ( ) for some integers u, l 0 , ..., l Npnq¡1 . In particular, at y fixed, there are only Npnq possible words a n,i,effpyq , i 0, ..., Npnq¡1 that compose the q n 1 -trajectory of y in the formula above. Turbulences coming from B n are the same in all these words. This fact is important for the construction of the uncountable family of pairwise non-Kakutani equivalent diffeomorphisms. For all i 0, ..., Npn 1q ¡ 1, let also:

a n 1,i,semeff ¢ a q n 1 Npnqq n,i qn n,0,eff a q n 1 Npnqq n,i qn n,1,eff ... a q n 1 Npnqq n,i qn n,Npnq¡1,eff q n,i
(the index "semeff" is for "semi-effective": a n 1,i,semeff is halfway between the "effective" trajectory a n 1,i,eff and the "ideal" trajectory a n 1,i ). Moreover, for any integer N ¥ 2, integer k, and word a, σ k pa N q a I a N¡2 a P , where a I and a P are words such that |a I | |a P | |a|. Therefore,

f pa N , σ k pa N qq ¤ 1 ¡ pN ¡ 2q|a| N|a| 2 N (5) Therefore, f ¡ a n 1,i,neg , σ u a n 1,i,semeff %© ¤ 2Npnq 2 q 2 n q n,i q n 1 (6)
Now, we take into account turb pA n 1 q. The q n 1 -trajectory of x crosses turbulences from quasi-permutations making up its own trajectory, but also from quasipermutations making up other trajectories (see figure 4). Therefore, it crosses at most 2N n 1 max 0¤i¤Npn 1q¡1 q n,i turbulence zones (the factor 2 is because we cross one turbulence zone to get in and another to get out), each of width n 1 . Therefore,

f apT n 1 , q n 1 , xq, a n 1,i,neg ¨¤ 2 n 1 N n 1 max 0¤i¤Npn 1q¡1 q n,i (7) 
To conclude the proof, we also need the lemma: f pab, a I b I q ¤ 1 2 f pa, a I q f pb, b I q By applying lemma 3.5 and the induction assumption, for any integer u, we get:

f pσ u pa n 1,i,semeff q, σ u pa n 1,i qq f pa n 1,i,semeff , a n 1,i q ¤ max 0¤ j¤Npnq¡1
f pa n, j,eff , a n, j q ¤ η n (8) Moreover, by estimation (5),

f pσ u pa n 1,i q, a n 1,i q ¤ 2 q n,i (9) 
Therefore, by combining estimates ( 6), ( 7), ( 8), ( 9), we get: 

f papT n 1 , q n 1 , xq, a n 1,i q ¤ f apT n 1 , q n 1 , xq, a n 1,i,neg ¨ f ¡ a n 1,i,neg , σ u a n 1,i,semeff %© f pσ u pa n 1,i,semeff q, σ u pa n 1,i qq f pσ u pa n 1,i q, a n 1,i q ¤ 2 n 1 N n 1 max 0¤i¤Npn 1q¡1 q n,i 2Npnq 2 q 2 n q n,i q n 1 η n max 0¤i¤Npn 1q¡1 2 q n,i Therefore, f papT n 1 , q n 1 , xq, a n 1,i q ¤ η n 1 Proof of lemma 3.
I q 1¡ f pb, b I q ¤ 2 1 ¡ f pab, a I b I q ¨.
Hence lemma 3.5.

To get nLB, it remains to give a lower bound on f pa n 1,i , a n 1, j q, when i $ j. Our method is analogous to [7, p. 34].

Let

u n max 3 fitpπq{ π : a r n,i Ñ a s n, j match, r, s , 0 ¤ i j ¤ Npnq ¡ 1 A For i 0, ..., Npn 1q ¡ 1, let r n 1,i q n 1
Npnqq n,i q n , and for j 0, ..., Npn 1q ¡ 1, j ¡ i, let λ n,i, j q n, j {q n,i . Note that since j ¡ i, λ n,i, j is a positive integer.

We show the slightly stronger lemma: Lemma 3.6. We have:

u n 1 ¤ ¢ u n 2 Npnq ¢ 1 max 0¤i j¤Npn 1q¡1 2Npnq λ n,i, j ¢ 1 max 0¤i j¤Npn 1q¡1 2λ n,i, j r n 1,i
Corollary 3.7. If Npnq ¥ 2 n 3 { , and if for any 0 ¤ i j ¤ Npn 1q ¡ 1, λ n,i, j ¥ 2 n 5 Npnq, and r n 1,i ¥ 2 n 5 λ n,i, j , then for any r, s ¡ 0, f pa r n,i , a s n, j q ¥ 1 ¡ Proof of lemma 3.6. We denote λ λ n,i, j . We have:

a r n 1,i ¡ a r n 1,i n,0 ...a r n 1,i n,Npnq¡1 © q n,i r a s n 1, j ¢ a r n 1,i λ n,0 ...a r n 1,i λ n,Npnq¡1 q n,i sλ For l 0, ..., Npnq ¡ 1, let α n,l a r n 1,i λ n,l
. We can write:

a r n 1,i ¡ α λ n,0 ...α λ n,Npnq¡1 © q n,i r ᾱλ n,0 ... ᾱλ n,Npnqq n,i r¡1 Let π : Dpπq a r n 1,i Ñ Rpπq a s n 1, j
be a match. For l 0, ..., Npnqq n,i r ¡ 1, let Dpπq l Dpπq ᾱλ n,l (i.e. Dpπq l is the part of the word Dpπq that is included in the subword ᾱλ n,l of a r n 1,i ). We have:

Dpπq Dpπq 0 ...Dpπq Npnqq n,i r¡1 Let Rpπq l πpDpπq l q. We can write: a s n 1, j a n 1, j,0 ...a n 1, j,Npnqq n,i r¡1 such that Rpπq l a n 1, j,l , for l 0, ..., Npnqq n,i r ¡ 1. Let π l : Dpπq l ᾱλ n,l Ñ Rpπq l a n 1, j,l be a match, with π l π |Dpπq l . We have: Dpπ l q Dpπq l .

a n 1, j,l is of the form:

a n 1, j,l αl pα n,0 ...α n,Npnq¡1 q t l p α l with t l ¥ 0, and such that max p|α l |, |p α l |q ¤ Npnq|α n,0 |.

Moreover, we have fitpπ l q fitpπ ¡1 l q because |Dpπ l q| |Rpπ l q|. We have:

π ¡1 l : Rpπ l q αl pα n,0 ...α n,Npnq¡1 q t l p α l Ñ Dpπ l q ᾱλ n,l
Let π¡1 l : Rpπ l q pα n,0 ...α n,Npnq¡1 q t l 2 Ñ Dpπ l q ᾱλ n,l such that π¡1 Like previously, we can write: pα n,0 ...α n,Npnq¡1 q t l 2 ᾱn,0 ... ᾱn,pt l 2qNpnq¡1 . Moreover, let Rpπ l q p Rpπ l q ᾱn,p , for p 0, ..., Npnqpt l 2q ¡ 1. We have: Rpπ l q Rpπ l q 0 ...Rpπ l q Npnqpt l 2q¡1

Let Dpπ l q p π ¡1 l rRpπ l q p s.

We can also write: ᾱλ n,l α n,l,0 ...α n,l,pt l 2qNpnq¡1 for l 0, ..., Npnqq n,i r ¡ 1, with α n,l,p such that Dpπ l q p α n,l,p . Moreover, since

|Dpπ l q p | |Rpπ l q p | ¤ |ᾱ n,p | |α n,0 | we can choose α n,l,p such that, if l p mod Npnq, |α n,l,p | ¤ |α n,0 |.
Let π l,p : Rpπ l q p ᾱn,p Ñ Dpπ l q p α n,l,p α n,l,p is of the form α n,l,p ãa u n,l p a. with max p|ã|, |p a|q ¤ |a n,l | q n . We have: Dpπ l,p q Rpπ l q p

We have:

π l,p : Dpπ l,p q ᾱn,p a r n 1,i λ n,p Ñ Rpπ l,p q ãa u n,l p a Let πl,p : Dpπ l,p q a r n 1,i λ n,p Ñ Rpπ l,p q a u 2 n,l
Let 0 ¤ p I Npnq such that p I p mod Npnq and 0 ¤ l I Npnq such that l I l mod Npnq.

If p I l I , then fitpπ l,p q ¤ u n , by induction hypothesis. If p I ¡ l I , then we can apply the induction hypothesis to pπ l,p q ¡1 , and therefore, fitpπ l,p q fitpπ ¡1 l,p q ¤ u n . If p I l I , then fitpπ l,p q ¤ 1 (i.e. we cannot say anything). Now, let us relate fits of πl,p , π l,p , π¡1 l , π l and π. First, we relate fits of π l,p and πl,p . We have: fitpπ l,p q 2|Dpπ l,p q|

r n 1,i λ u 2 ¨|a n,l |
and on the other hand:

fitpπ l,p q 2|Dpπ l,p q| r n 1,i λ |a n,l | u|a n,l | |ã| |p a| ¤ 2|Dpπ l,p q| p r n 1,i λ uq|a n,l | Therefore, fitpπ l,p q ¤ r n 1,i λ u 2 r n 1,i λ u fitpπ l,p q ¤ £ 1 2 r n 1,i λ u fitpπ l,p q
Since u ¥ 0, we get:

fitpπ l,p q ¤ ¢ 1 2λ r n 1,i fitpπ l,p q (10)
We relate fits of π l,p and π¡1 l . We have: 

Npnqpt l 2q¡1 p0,pl mod Npnq 1 ¤ t l 2 Therefore, fitpπ ¡1 l q ¤ ¢ 1 2λ r n 1,i u n 2pt l 2q|α n,0 | Npnqpt l 2q|α n,0 | λ|α n,0 | ¤ ¢ 1 2λ r n 1,i u n 2 Npnq (11)
We relate fits of π¡1 l and π l . We have:

fitpπ ¡1 l q 2|Rpπ l q| pt l 2qNpnq|α n,0 | |ᾱ λ n,l | 2|Rpπ l q| ppt l 2qNpnq λq|α n,0 |
On the other hand, since a n 1, j,l is of the form a n 1, j,l αl pα n,0 ...α n,Npnq¡1 q t l p α l , we get:

fitpπ l q fitpπ ¡1 l q 2|Rpπ l q| pNpnqt λq|α n,0 | |α l | |p α l | ¤ 2|Rpπ l q| pNpnqt l λq|α n,0 | fitpπ l q ¤ pt l 2qNpnq λ Npnqt l λ fitpπ ¡1 l q ¤ ¢ 1 2Npnq Npnqt l λ fitpπ ¡1 l q ¤ ¢ 1 2Npnq λ fitpπ ¡1 l q
Finally, fitpπq

°rq n,i ¡1 l0 2|Dpπ l q| °rq n,i ¡1 l0 |α λ n,l | |a n 1, j,l | ¤ °rq n,i ¡1 l0 max 0¤rq n,i ¡1 pfitpπ l qq |α λ n,l | |a n 1, j,l | °rq n,i ¡1 l0 |α λ n,l | |a n 1, j,l | ¤ max 0¤l¤rq n,i ¡1 pfitpπ l qq
By taking the max on all possible fitpπq, we get:

u n 1 ¤ ¢ u n 2 Npnq ¢ 1 2Npnq λ ¢ 1 2λ r n 1,i
By taking the max on all possible λ, we get the conclusion.

Proof of corollary 3.7. By induction on n, we show:

u n ¤ ¢ 1 ¡ 1 2 n
If n 0, u 0 0, so the estimate holds. Suppose the estimate holds at rank n. By lemma 3.6,

u n 1 ¤ ¢ u n 2 Npnq ¢ 1 max 0¤i j¤Npn 1q¡1 2Npnq λ n,i, j ¢ 1 max 0¤i j¤Npn 1q¡1 2λ n,i, j r n 1,i
Moreover, for any i j,

¢ 1 2λ n,i, j r n 1,i ¤ 1 1 2 n 4
and

¢ 1 2Npnq λ n,i, j ¤ 1 1 2 n 4
Therefore,

¢ 1 2λ n,i, j r n 1,i ¢ 1 2 λ n,i, j ¤ ¢ 1 1 2 n 4 2 1 2 2 n 4 1 p2 n 4 q 2 ¤ 1 1 2 n 2
Moreover, by induction assumption,

u n 2 Npnq ¤ ¢ 1 ¡ 1 2 n 1 2 n 2
By combining these two estimates, we get:

u n 1 ¤ ¢ 1 ¡ 1 2 n 1
Hence the estimate at step n 1.

Proof of proposition 3.2. Let I n 1 4 n 1 N 2 n 1 q n,Npn 1q¡1 . Each quasi-permutation constituting A n 1 has a Lebesgue density of at most 4 n 1 . Moreover, there is less than N 2 n 1 q n,Npn 1q¡1 quasi-permutations in A n 1 . Therefore,

µpturbpA n 1 qq ¤ I n 1
By applying estimation (4), we get:

µpE safe q ¥ 1 ¡ ņ¥0 I n 1
There exists f turb p , n, N n 1 , q n,Npn 1q¡1 q such that if n 1 ¤ f turb p , n, N n 1 , q n,Npn 1q¡1 q, then µpE safe q ¥ 1 ¡ Therefore,

µpE safe E nlb q ¥ 1 ¡ 2 There also exists f dist p , n, N n 1 , q n,Npn 1q¡1 q such that if n 1 ¤ f dist p , n, N n 1 , q n,Npn 1q¡1 q, then η n ¤ . We take for n 1 a function of , n, N n 1 , q n,Npn 1q¡1 such that

n 1 ¤ minp f dist p , n, N n 1 , q n,Npn 1q¡1 q, f turb p , n, N n 1 , q n,Npn 1q¡1 qq Let A B such that µpAq ¡ 2 . Then µ A pE safe E nlb q ¨¡ 0. Since Npnq Ñ nÑ V V then µpmax 0¤i¤Npnq¡1 c i pnqq Ñ nÑ V 0. Therefore, for
any n sufficiently large, and by applying lemmas 3.3, 3.4 and corollary 3.7, there exists x, y A pE safe E nlb q and i $ j such that f papT, q n , xq, a n,i q ¤ η n f papT, q n , yq, a n, j q ¤ η n Therefore, f papT, q n , xq, apT, q n , yqq ¥ 1 ¡ 3 23 3.3 Ergodicity

3.3.1 The case M r0, 1s ¢ Let P n 4 i N n , i 1 N n ¢ j q n , j q n , 0 ¤ i ¤ N n ¡ 1, 0 ¤ j ¤ q n ¡ 1

B

Since P n is a partition generating the Lebesgue sigma-algebra, it is sufficient to show that T is ergodic with respect to BpP n q. Lemma 3.8. Let q ¡ 0 that divides q m and η tri{q, pi 1q{qr, 0 ¥ i ¥ q ¡ 1u. R pm qm is ergodic with respect to pBpηq, λq, where λ denotes the Lebesgue measure on , and for any A, B Bpηq,

1 q m q m ¡1 ļ0 λ ¡ R lpm qm pAq B © λpAqλpBq
Proof. Let A Bpη n q, λpAq ¡ 0 that is R pm qm -invariant. Then there is 0 ¤ i 0 ¤ q n ¡ 1 such that ri 0 {q n , pi 0 1q{q n r A. Therefore, 0¤i¤q m ¡1 R ipm qm pri 0 {q n , pi 0 1q{q n rq A, and R pm qm is Bpη n q-ergodic. By q m -periodicity and the ergodic theorem, for any integer L ¡ 0,

1 q m q m ¡1 i0 λpR ipm qm pAq Bq 1 Lq m Lq m ¡1 i0 λpR ipm qm pAq Bq Ñ LÑ V λpAqλpBq
Now, we define the finite algebra Bpζ n q that contains the elements of A n 1 pP n q, modulo small turbulences (see figure 7). Let C tl pl i I , j q, 0 ¤ i I ¤ N n 1 ¡1, 0 ¤ j ¤ q n,i q n,0

, 0 ¤ i ¤ Npn 1q¡1, i i I mod Npn 1qu For l C, let Cplq Npn 1q¡1 ¤ i0 ¤ 0¤i I ¤N n 1 ,i I i mod Npn 1q i I N n 1 , i I 1 N n 1 ¢ q n,i q n,0 ¡1 j0 l i, j N n q n,i , l i, j 1 N n q n,i Lemma 3.9. Let ζ n tCplq, l Cu (ζ n recovers r0, 1s ¢ , but it is not a partition).
For any m ¡ n, S pm qm is ergodic with respect to Bpζ n q, and for any A, B Bpζ n q,

1 q m q m ¡1 ļ0 µ ¡ S lpm qm pAq B © µpAqµpBq
Proof. For i I 0, ..., N n 1 ¡ 1, let

P i I 4 i I N n 1 , i I 1 N n 1 ¢ j N n q n,i , j 1 N n q n,i , 0 ¤ j ¤ N n q n,i ¡ 1 B Figure 7:
An element of ζ n with N n 3, q n,0 1, q n,1 3q n,0 , q n,2 2q n,1 . S pm qm is ergodic with respect to Bpζ n q.

pS pm

qm |BpP i Iq , µ | i I N n 1 , i I 1 N n 1
¢ q is metrically isomorphic to pR pm qm , η N n q n,i , λq via the map

π : i I N n 1 , i I 1 N n 1 ¢ j N n q n,i , j 1 N n q n,i Þ Ñ j N n q n,i , j 1 N n q n,i
In particular,

λ ¢ π ¢ A i I N n 1 , i I 1 N n 1 ¢ µpAq
Moreover, for any A Bpζ n q, ri I {N n 1 , pi I 1q{N n 1 r¢ A BpP i Iq. Therefore, we have:

1 q m q m ¡1 ļ0 µ ¡ S lpm qm pAq B © 1 q m q m ¡1 ļ0 N n 1 ¡1 i I 0 µ ¢ S lpm qm pA i I N n 1 , i I 1 N n 1 ¢ q ¢ B i I N n 1 , i I 1 N n 1 ¢ 1 q m q m ¡1 ļ0 N n 1 ¡1 i I 0 N n 1 µ | i I N n 1 , i I 1 N n 1 ¢ ¢ S lpm qm pA i I N n 1 , i I 1 N n 1 ¢ q ¢ B i I N n 1 , i I 1 N n 1 ¢ 1 q m q m ¡1 ļ0 N n 1 ¡1 i I 0 N n 1 µ | i I N n 1 , i I 1 N n 1 ¢ ¢ S lpm qm pA i I N n 1 , i I 1 N n 1 ¢ q ¢ B i I N n 1 , i I 1 N n 1 ¢ 1 q m q m ¡1 ļ0 N n 1 ¡1 i I 0 N n 1 λ ¢ R lpm qm pπpA i I N n 1 , i I 1 N n 1 ¢ qq π ¢¢ B i I N n 1 , i I 1 N n 1 ¢ 1 q m q m ¡1 ļ0 N n 1 ¡1 i I 0 N n 1 λ ¢ R lpm qm pπpA i I N n 1 , i I 1 N n 1 ¢ qq π ¢¢ B i I N n 1 , i I 1 N n 1 ¢ 1 N n 1 N n 1 λ ¢ πpA i I N n 1 , i I 1 N n 1 ¢ q λ ¢ π ¢ B i I N n 1 , i I 1 N n 1 ¢ µpAqµpBq Lemma 3.10. For any A, B P n , 1 q m q m ¡1 ļ0 µ T l m pAq B ¨ÑmÑ V µpAqµpBq Proof. By construction, there exists A I , B I Bpζ m q such that µpA I f B m pAqq ¤ µpturbpB m qq P m µpB I f B m pBqq ¤ P m Therefore, 1 q m q m ¡1 ļ0 µ T l m pAq B ¨ 1 q m q m ¡1 ļ0 µ ¡ S l pm qm B m pAq B m pBq © ¤ 1 q m q m ¡1 ļ0 µ ¡ S l pm qm B m pA I q B m pB I q © µpA I f B m pAqq µpA I f B m pAqq µpB I f B m pBqq
By lemma 3.9, we get

1 q m q m ¡1 ļ0 µ T l m pAq B ¨¤ µpA I qµpB I q 2 P m ¤ µpB m pAqq µpA I f B m pAqq $ µpB m pBqq µpB I f B m pBqq $ 2 P m ¤ µpAqµpBq 5 P m Therefore, lim sup mÑ V 1 q m q m ¡1 ļ0 µ T l m pAq B ¨¤ µpAqµpBq Likewise, lim inf mÑ V 1 q m q m ¡1 ļ0 µ T l m pAq B ¨¥ µpAqµpBq Lemma 3.11. For any A, B BpP n q, 1 q m q m ¡1 ļ0 µ T l pAq B ¨ÑmÑ V µpAqµpBq Proof. 1 q m q m ¡1 ļ0 µ T l pAq B ¨¤ 1 q m q m ¡1 ļ0 µ T l m pAq B ¨ max 0¤l¤q m ¡1 d 0 pT l , T l m q µpAqµpBq max 0¤l¤q m ¡1 d 0 pT l , T l m q
By estimate (2), we get

1 q m q m ¡1 ļ0 µ T l pAq B ¨¤ µpAqµpBq q m Np0q2 m 1 Therefore, lim sup mÑ V 1 q m q m ¡1 ļ0 µ T l pAq B ¨¤ µpAqµpBq Likewise, lim inf mÑ V 1 q m q m ¡1 ļ0 µ T l pAq B ¨¥ µpAqµpBq
Lemma 3.12. T is ergodic with respect to BpP n q.

Proof. Let A BpP n q T -invariant modulo zero. By taking B A in lemma 3.11, we get µpAq pµpAqq 2 , and so µpAq 0 or 1.

Construction in the case

M r0, 1s d¡1 ¢ , d ¥ 3
The construction in the case M r0, 1s d¡1 ¢ , d ¥ 3 is the same as in the case of the annulus, except that we "fold" other dimensions to obtain ergodicity, in the same way as in [START_REF] Fayad | Non-standard smooth realizations of Liouville rotations[END_REF][START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF][START_REF] Benhenda | Non-standard couples of angles of rotations[END_REF]. However, the proof of ergodicity needs to be different from those works.

For n ¥ 1, let

P n 4 i 1 N n , i 1 1 N n ¢ i 2 q n¡1 , i 2 1 q n¡1 ¢ ... ¢ i d q n¡1 , i d 1 q n¡1 , 0 ¤ i 1 ¤ N n ¡ 1, 0 ¤ i j ¤ q n¡1 ¡ 1, 2
¤ j ¤ du Since the diameter of elements of P n tends to zero as n Ñ V, then as in the case of the annulus, it is sufficient to show that T is ergodic with respect to BpP n q, in order to get ergodicity with respect to the Lebesgue algebra.

Let also, for i 0, ..., N n ¡ 1,

ζ n,i 5 i N n , i 1 N n ¢ r0, 1s d¡2 ¢ i d q d¡1 n¡1 , i d 1 q d¡1 n¡1 , 0 ¤ i j ¤ q d¡1 n¡1 ¡ 1, 2 ¤ j ¤ d C
In our construction of the sequence q n , we can assume that q d¡1 n¡1 divides q n . Therefore, by lemma 3.8, for any i 0, ..., N n ¡ 1 fixed, S pn qn |Bpζ n,i q is ergodic.

We denote by Ãn 1 p Ãn 1,1 , Ãn 1,2 q the map A n 1 of the annulus case, and

A 1 n 1 px 1 , ..., x d q p Ãn 1,1 px 1 , x d q, x 2 , ..., x d¡1 , Ãn 1,2 px 1 , x d qq. We denote by A 2 n 1
the application that "folds" other dimensions, i.e. that essentially transforms P n into

N n ¡1
i0 ζ n,i (except on turbulences). We define A 2 n 1 below. Moreover, in the definition of P n , we took larger elements, because after their compression by A 2 n 1 , they need to be sufficiently wide so that A 1 n 1 can give ergodicity (we use that q d¡1 n¡1 ¤ q n ¤ N n q n,i ). We let A n 1 A 1 n 1 A 2 n 1 . Now, we define A 2 n 1 . We recall the definition of a "quasi-rotation" by π{2 [6]: Proposition 3.13. For any n ¥ 1, there is a smooth measure preserving map φ n : r0, 1s 2 Ñ r0, 1s 2 (called "quasi-rotation") such that φ n R π{2 on r 1 2 n , 1 ¡ 1 2 n s 2 and φ n Id on r0, 1s 2 ¡ r For i 1, ..., d¡1, let φ i n,q n¡1 px 1 , ..., x d q px 1 , .., x i¡1 , φ n,q n¡1 px i , x i 1 q, x i 2 , ..., x d q,

extended by 1{q n¡1 -equivariance along the x i 1 coordinate. We let

A 2 n 1 px 1 , ..., x d q φ d¡1
n,q n¡1 ...φ 1 n,q n¡1 px 1 , ..., x d q Modulo turbulence zones, A 2 n 1 essentially transforms an element of P n into an element of ζ n,i for some i, i.e. into a parallelepipede of height 1{q d¡1 n¡1 along the x d coordinate, of width 1{N n along the coordinate x 1 , and of width 1 on all other dimensions. Then, we use the ergodicity of S pn qn |Bpζ n,i q as we used the ergodicity of S pn qn |Bpζ n q in the case of dimension 2. Then, we can proceed with A 1 n 1 (because q d¡1 n¡1 divides N n q n,i for any i) as in dimension 2 to get ergodicity.

The general case

We apply the proposition, found in [START_REF] Anosov | New examples in smooth ergodic theory. Ergodic diffeomorphisms[END_REF][START_REF] Fayad | Non-standard smooth realizations of Liouville rotations[END_REF][START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF][START_REF] Benhenda | Non-standard couples of angles of rotations[END_REF]: Proposition 3.14 ([6]). Let M be a d-dimensional smooth compact connected manifold, with a free modulo zero circle action p S , preserving a smooth volume µ. Let S t denote the circle action on r0, 1s d¡1 ¢ . There exists a continuous surjective map Γ : r0, 1s d¡1 ¢ Ñ M such that: 1. the restriction of Γ to s0, 1r d¡1 ¢ is a smooth diffeomorphic embedding. We proceed as in [START_REF] Benhenda | Non-standard smooth realization of translations on the torus[END_REF]: we take q n 1 large enough so that the possible divergence of Γ on the border of s0, 1r d¡1 ¢ does not affect the convergence of p

T n towards a smooth, nLB and ergodic diffeomorphism.

Generalization to an uncountable family of pairwise non-Kakutani equivalent diffeomorphisms

In order to obtain an uncountable family of pairwise non-Kakutani equivalent diffeomorphisms, we adapt the construction of Rudolph, Ornstein and Weiss [START_REF] Ornstein | Equivalence of measure-preserving transformations[END_REF], which generalizes the construction of Feldman. Let u t0, 1u be a sequence of 0 and 1. We construct a family T u of diffeomorphisms in the following way: if u n 1 0, then we define the diffeomorphism A n 1 , appearing in the successive conjugacies, as previously, i.e. such that, up to small perturbations, the q n 1 -trajectories are of the form:

a n 1,i ¢ a q n 1 Npnqq n,i qn n,0 a q n 1 Npnqq n,i qn n,1 ... a q n 1 Npnqq n,i qn n,Npnq¡1 q n,i
On the other hand, if u n 1 1, we define the diffeomorphism A n 1 such that, up to small perturbations, the q n 1 -trajectories are of the form:

a n 1,i ¢ a q n 1 Npnqq n,i qn n,Npnq¡1 ... a q n 1 Npnqq n,i qn n,1 a q n 1 Npnqq n,i qn n,0 q n,i
Thus, the constructions of T u and T are analogous, we do not write the explicit definition of A n 1 for T u . We have: Theorem 4.1. If u, v t0, 1u such that u n $ v n infinitely many times. Then T u and T v are not Kakutani-equivalent.

To show theorem 4.1, we follow and adapt the proof of Ornstein, Rudolph, and Weiss [START_REF] Ornstein | Equivalence of measure-preserving transformations[END_REF]. The proof is based on two ideas: the first idea, as in the nLB case, is that the two words aaaabbbb and abababab are far from each other in the f -distance. The second idea is that the two words abcabcabc and bcabcabca are also far from each other in the f -distance (see figure 15). We can adapt their proof to the smooth case for two reasons: first, turbulences from A n 1 are "grouped" in vanishingly small places, and consequently, they rarely affect q n 1 -trajectories, and second, turbulences from B n are periodic in the q n 1 -trajectories. However, the detailed proof is a little technical. We need to introduce some additional definitions. Let f pw, w I q lim sup nÑ V f pw n , w I n q.

Definitions

Likewise, we can define the Hamming distance dpw n , w I n q #ti{a i $ a I i u and dpw, w I q lim sup nÑ V dpw n , w I n q.

Now, we define the f and d distances between two ergodic transformations T and T I coded with the partitions P and P I respectively (T and T I are not necessarily defined on the same space, and possibly P $ P I ).

Let ν, ν I be two measures on I Z and let ν n , ν I n be two measures on I n defined by ν, ν I via the projection I Z Ñ I n onto the coordinates p1, ..., nq. Let:

f pν n , ν I n q inf λ » I n ¢I n
f pw n , w I n q dλ Where the inf is taken on measures λ on I n ¢ I n whose marginals are ν n and ν I n . We let: f pν, ν I q inft ¡ 0{ f pν n , ν I n q ¤ for an infinity of nu Let T : M Ñ M be an ergodic transformation, and P be a measurable partition indexed by I that is generating, i.e. B B V i¡V T i pPq ¨. Then pT, M, µq is metrically isomorphic to pσ, I Z , νq, where σ is the shift on I Z and preserves ν, and we have:

µpc i q νpπ ¡1
0 piqq, where π 0 : I Z Ñ I is the projection on the coordinate 0. Let ν, ν I associated with pT, Pq, pT I , P I q respectively. We define: f ppT, Pq, pT I , P I qq f pν, ν I q dppT, Pq, pT I , P I qq dpν, ν I q

We also use the proposition [12, p.8]:

Proposition 4.2. If f pν, ν I q , then there are generic points x, x I for µ, µ I respectively such that f px, x I q ¤ Let P tc 0 , ..., c Np0q¡1 u and P I tc I 0 , ..., c I Np0q¡1 u two measurable partitions of the same size. Their distance is defined by: dpP, P I q min Let also S be an ergodic and measure preserving transformation of pM, B, µq. T and S are Kakutani-equivalent (Russians called it monotone equivalent [START_REF] Katok | Monotone equivalence in ergodic theory[END_REF]) if there exists A, B B such that µpAq ¡ 0, µpBq ¡ 0, and such that T A and S B are metrically isomorphic.

The tower construction

We introduce the tower construction (see figure 8). Let g : M Ñ ¦ integrable. Let

M g tpx, iq M ¢ ¦ , 1 ¤ i ¤ gpxqu T g v : M g Ñ M g T g v px, iq 4 px, i 1q if i 1 ¤ gpxq pT v pxq, 1q if i 1 ¡ gpxq If T v is ergodique, then T g
v is also ergodic. Let P tc 0 , c 1 , ..., c Np0q¡1 u be a measurable partition of M. Let H tpx, iq M g {i ¥ 2u, and P g tc 0 , c 1 , ..., c Np0q¡1 , Hu be the corresponding measurable partition of M g . If pT g v q j px, iq H, the corresponding letter in the trajectory is denoted h. The pT g v , P g q-trajectory is obtained from the pT g v , P g q-trajectory by adding letters h. We will also need the lemma:

Lemma 4.3. For any γ ¡ 0, there exists an integer N, a set E N M g such that µpE N q ¥ 1 ¡ γ and such that if px, iq E N and n ¥ N, then § § § §

1 n #t j t1, ..., nu{pT g v q j px, iq Hu ¡ µpHq § § § § ¤ γ Proof. For any integer n, let

E n tpx, iq M g { if p ¥ n then § § § § 1 p #t j t1, ..., pu{pT g v q j px, iq Hu ¡ µpHq § § § § ¤ γ
The sequence of E n is increasing for the inclusion, and by the ergodic theorem, µ n¥0 E n ¨ 1. Therefore, µpM g ¡E n q Ñ nÑ V 0. Let N such that µpM g ¡E N q ¤ γ. We have µpE N q ¥ 1 ¡ γ.

In subsection 4.2, we show: Proposition 4.4. For any g : M Ñ ¦ integrable, such that g $ 1 (1 is the constant function equal to 1), and any sequences u, v (even if u v), T u and T g v are not isomorphic.

Corollary 4.5. If µpAq $ µpBq, then pT u q A and pT v q B are not isomorphic.

In subsection 4.3, we show: Proposition 4.6. If µpAq µpBq, and u n $ v n infinitely many times, then pT u q A and pT v q B are not isomorphic (i.e. T u and T v are not evenly equivalent).

By combining corollary 4.5 and proposition 4.6, we obtain theorem 4.1.

Proof of corollary 4.5. We show how proposition 4.4 implies corollary 4.5. By absurd, we suppose that pT u q A is isomorphic to pT v q B . We can suppose µpAq µpBq. Let Φ : pA, µ A q Ñ pB, µ B q a metric isomorphism such that ΦpT u q A pT v q B Φ.

For any g : M Ñ N ¦ integrable, ppT u q A q g is isomorphic to ppT v q B q g¥Φ ¡1 via the isomoprhism Φ : M g ý defined by Φppx, iqq pΦpxq, iq. We have:

» B r B,T v px I q dµ B px I q 1 µpBq
On the other hand, since Φ : pA, µ A q Ñ pB, µ B q is an isomorphism, then

» B r A,T u pΦ ¡1 px I qq dµ B px I q » A r A,T u pxq dµ A pxq 1 µpAq ¡ 1 µpBq Moreover, by relation (7) in [12, p.2], T u is isomorphic to pT u q r A,Tu
A , which is iso-

morphic to pT v q r A,Tu ¥Φ ¡1 B . Likewise, T v is isomorphic to pT v q r B,Tv B . Therefore, by lemma 1.3 of [12, p.3], there exists g : M Ñ N ¦ integrable, g $ 1, such that T g v is isomorphic to T u . This contradicts proposition 4.4.

T u and T g v are not isomorphic

By absurd, we suppose there is a metric isomorphism Φ : pT u , Pq Ñ pT g v , P g q. Then for any τ ¡ 0, there exists Kpτq ¡ 0, Ppτq Kpτq i¡Kpτq T i u pPq such that |Ppτq| |P g | and dpΦ ¡1 pP g q, Ppτqq ¤ τ, where d denotes the distance between partitions. We can put an equivalence relation on Kpτq i¡Kpτq T i u pPq: two elements Q 1 , Q 2 of this partition are equivalent if there exists Q 3 Ppτq that contains both Q 1 and Q 2 . We denote Q1 this equivalent class.

For x E nlb , we consider the pT u , Pq-trajectory of x:

...a ¡1 a 0 a 1 ... where T i u pxq c a i . From this pT u , Pq-trajectory, we can derive a pT u , Kpτq i¡Kpτq T i u pPqqtrajectory: pa ¡Kpτq¡1 a ¡Kpτq ...a ¡1 a 0 ...a Kpτq¡1 qpa ¡Kpτq a ¡Kpτq 1 ...a 0 a 1 ...a Kpτq q pa ¡Kpτq 1 a ¡Kpτq 2 ...a 1 a 2 ...a Kpτq 1 q where pa ¡Kpτq i a ¡Kpτq i 1 ...a i a i 1 ...a Kpτq i q is such that:

x T ¡pi¡Kpτqq u pc a i¡Kpτq q ... T ¡pi Kpτqq u pc a i Kpτq q By taking the equivalent classes, we can derive a pT u , Ppτqq-trajectory (an overline denotes the equivalent class): pa ¡Kpτq¡1 a ¡Kpτq ...a ¡1 a 0 ...a Kpτq¡1 qpa ¡Kpτq a ¡Kpτq 1 ...a 0 a 1 ...a Kpτq q pa ¡Kpτq 1 a ¡Kpτq 2 ...a 1 a 2 ...a Kpτq 1 q where pa ¡Kpτq i a ¡Kpτq i 1 ...a i a i 1 ...a Kpτq i q is such that:

x T ¡pi¡Kpτqq u pc a i¡Kpτq q ... T ¡pi Kpτqq u pc a i Kpτq q

We also consider the pT u , Φ ¡1 pP g qq-trajectory of x, which is identified with the pT g v , P g q-trajectory of Φpxq. It corresponds to a pT v , Pq-trajectory, in which we insert letters h. Thus, this trajectory is of the form:

...b ¡1 hhb 0 hb 1 b 2 hhh... Since, by absurd, we assumed dpΦ ¡1 pP g q, Ppτqq ¤ τ then by the ergodic theorem, dpapT u , Φ ¡1 pP g q, xq, apT u , Ppτq, xqq dpapT g v , P g , Φpxqq, apT u , Ppτq, xqq

¤ τ We let τ 1 64 1¡4 ³ g ¡ 1 ¡ 1 ³ g ©
, and to get a contradiction, we show: Proposition 4.7. For any x E nlb ,

dpapT g v , P g , Φpxqq, apT u , Ppτq, xqq ¥ 1 32 1 ¡ 4 ³ g ¢ 1 ¡ 1 ³ g
Proof. The proof of proposition 4.7 has two steps. First (lemma 4.8), when segments of the pT u , Pq-trajectory of x, and segments of the pT g v , P g q-trajectory of Φpxq, have different types, we show that the d-distance between their pT u , Ppτqq and pT g v , P g qtrajectories is larger than a fixed bound.

Indeed, in this case, repetitions of the words a n,i,eff in the pT u , Pq-trajectory, and repetitions of the words ãn,i,eff in the pT g v , P g q-trajectory, have different periodicities (moreover, the periodicity of repetitions of ǎn,i,eff in the pT u , Ppτqq-trajectory is the same as the periodicity of repetitions of a n,i,eff in the pT u , Pq-trajectory, because Kpτq q n {2). Turbulences remain packed in rare locations, and do not sensibly affect d.

Second (lemma 4.9), we show that segments of the pT u , Pq and pT g v , P g q-trajectories are not very often of the same type, because the T g v -trajectory is an expansion of the T v -trajectory by g. On average, the trajectory is expanded by a factor ³ g because of the ergodic theorem, and as a consequence, only 1 ³ g of segments are of the same type, which reduces the d-distance by a factor 1 ¡ 1 ³ g . Combining lemmas 4.8 and 4.9 gives proposition 4.7.

First, we explain how we decompose the pT u , Pq and pT g v , P g q-trajectories in overlaps of segments of the same type. By lemma 3.3, the q n 2 -trajectories of x E nlb with respect to pT u , Pq and pT n 2,u , Pq are the same (T n 2,u is the periodic approximation of T u at step n 2). If we neglect turbpA n 2 q, they are of the form:

a n 2,i,negl σ u ! £ σ l 0 pa n 1,0,eff q % q n 2 Npn 1qq n 1,i q n 1 ... σ l Npn 1q¡1 pa n 1,Npn 1q¡1,eff q % q n 2 Npn 1qq n 1,i q n 1 q n 1,i q n 1 ... £ σ q n 2 ¡1 l 0 pa n 1,0,eff q % q n 2 Npn 1qq n 1,i q n 1 ... σ q n 1 ¡1 l Npn 1q¡1 pa n 1,Npn 1q¡1,eff q % q n 2 Npn 1qq n 1,i q n 1 q n 1,i q n 1 ( )
where σ is a circular permutation (see proof of lemma 3.4 page 16). What is important is that at x and i fixed, the a n 1,i,eff are identical. Therefore, the pT u , Ppτqq q n 2 -trajectory of x will have the same form most of the time (i.e. repeated words of the form ǎn 1,i,eff ǎn 1,i,eff ....).

We take into account turbpA n 2 q. Given the localization of turbpA n 2 q, the pT u , Pq q n 2 -trajectory of x meets a new turbulence zone of A n 2 at most every q n 2 {pN n 2 q n 1,Npn 2q q iterations (see figure 4). This q n 2 -trajectory is of the form, where t denotes letters in turbpA n 2 q (or boundary effects due to the cyclic permutation σ, which have total lengths q n 1 ): ât a n 1,0,eff ...a n 1,0,eff loooooooooomoooooooooon ¤ q n 2 N n 2 q n 1,Npn 2q ¡2 n 2 q n 2 letters t lo omo on ¥2 n 2 q n 2 letters a n 1,0,eff ...a n 1,0,eff t...ta n 1,1,eff ... with |â| ¤ q n 2 {q n 1,0 . The pT g v , P g q-trajectory of Φpxq is of the form:

ãt ãn 1,0,eff ...ã n 1,0,eff loooooooooomoooooooooon ³ g ¢ q n 2
N n 2 q n 1,Npn 2q ¡2 n 2 q n 2 letters t lo omo on ³ gp2 n 2 q n 2 q letters ãn 1,0,eff ...ã n 1,0,eff t... t ãn 1,1,eff ... Tilded words are like untilded words, except that we added letters h in them. We decompose , the set of indices of trajectories, into

... tG ¡1 G 0 G 1 ...G q n 2 N n 2 q n 1,Npn 2q ...tG 2 ... t...
where G i a n 1,l,eff ãn 1,l I ,eff , i.e. G i is the intersection of the sets of indices of an element a n 1,l,eff in the pT u , Pq-trajectory, and of the set of indices of an element ãn 1,l I ,eff in the pT g v , P g q-trajectory. G i is an overlap of a n 1-block in the pT u , Pqtrajectory and a n 1-block in the pT g v , P g q-trajectory (see figure 9).

In the decomposition of in different G i , we put aside turbulences, because in general 2 n 2 q n 2 |t| ¡¡ |G i | q n 1 . One turbulence is much larger than any individual G i (when the turbulence comes from A n 2 , not from the effect of the cyclic permutation). 

³

g , for any x E nlb , dpapT g v , P g , Φpxqq, apT u , Ppτq, xqq ¥ p1¡3 I qp1¡ I q

1 32 1 ¡ 4 ³ g ¢ 1 ¡ 1 ³ g ¡ I (12) 
For almost every x E nlb , in the pT u , Pq-trajectory of x, the density of turbulences t from A n 2 (and from cyclic permutation σ) is less than 2 n 2 N n 2 q n 1,Npn 2q .

Moreover, for almost every x M, in the pT g v , P g q-trajectory of Φpxq, by lemma 4.3, for n sufficiently large, the density of turbulences t from A n 2 is less than I .

Therefore, for n sufficiently large, the density of indices G i in Z is more than 1 ¡ 2 I Moreover, in each a n 1,l,eff , there is at most one G i such that |G i | I q n 1 . Therefore, for n sufficiently large, the total density of G i such that |G i | ¥ I q n 1 is greater than 1 ¡ 3 I . Therefore, by combining lemmas 4.8 and 4.9, we get (12). case, since |G i | ¥ q n 1 I , then these boundary effects only take a fraction 2 n {pq n,l 1 I q of G i , and we can write:

G i Ĝ Ḡi,2 ... Ḡi, w¡1 ĜI with | Ĝ| and | ĜI | ¤ 2 n q n 1 {q n,l 1
We want a lower bound on f p Ḡi, j pT g v , P g q, Ḡi,k pT g v , P g qq, when they are of different n-types.

For i 1 $ j 1 (0 ¤ i 1 ¤ Npnq ¡ 1 and 0 ¤ j 1 ¤ Npnq ¡ 1 are n-types), and for n sufficiently large, by combining corollary 3.7 and lemma 3.4, we get:

f pa n,i 1 ,eff ...a n,i 1 ,eff t loooooooomoooooooon q n 1 Npnqq n,l I 1 letters , a n, j 1 ,eff ...a n, j 1 ,eff t loooooooomoooooooon q n 1 Npnqq n,l I 1 letters q ¥ f pa q n 1 Npnqqn q n,l I n,i 1 ,eff , a q n 1 Npnqqnq n,l I 1 n, j 1 ,eff q ¡ 3 n 1 N n 1 q n,Npn 1q ¥ 1 ¡ 3 ¡ 1 ¡ 4 (15)
To get a lower bound on f p Ḡi, j pT g v , P g q, Ḡi,k pT g v , P g qq, we need the following lemma, which is straightforward: f p Ā, ĀI q ¥ f pA, A I q β By lemma 4.3, we have, for n sufficiently large, except on a set of density less than

I : § § § § § | Ḡi, j | ¡ q n 1 Npnqq n,l 1 | Ḡi, j | ¡ ³ g ¡ 1 ³ g § § § § § ¤ 1 2 ³ g
Therefore, except on a set of density less than I ,

| Ḡi, j | q n 1 Npnqq n,l 1 ¤ 2 » g (16) 
By lemma 4.10 and estimate [START_REF] Thouvenot | Entropy, isomorphism and equivalence in ergodic theory[END_REF], we get, except on a set of density less than I , for Ḡi, j pT g v , P g q and Ḡi,k pT g v , P g q of different n-types:

f p Ḡi, j pT g v , P g q, Ḡi,k pT g v , P g qq ¥ 1 ¡ 4 2 ³ g (17) 
We denote by F 0 the set of Ḡi, j that do not satisfy (16). For n sufficiently large, the set of indices t Ḡi, j { Ḡi, j F 0 u has a density of less than I . The number w I of segments Ḡi, j satisfying (16) satisfies, for n sufficiently large:

w I ¥ I p1 ¡ I qq n 1 Npnqq n,l 1 q n 1 2 ³ g ¥ 2 n 2
This estimate allows to control the effect of the possible boundaries Ĝ and ĜI on the total d-distance. Now, let ρ min j d p Ḡi, j pT u , Ppτqq, Ḡi, j pT g v , P g qq.

If ρ ¥ 1 8 1¡4 2
³ g , then the proposition obtains. Otherwise, let j 0 be an indice realizing this minimum. The proportion of segments Ḡi, j not in F 0 and such that Ḡi, j and Ḡi, j 0 have a different a n-type is more than 1 ¡ 2{Npnq. For n sufficiently large, we get, by applying estimates ( 14) and ( 17

): d p Ḡi pT g v , P g q, Ḡi pT u , Ppτqqq ¥ p1 ¡ I qp1 ¡ 1{2 n q 1 w ¡ 2 ¡ |F 0 | w¡1 j2, Ḡi, j F 0 d p Ḡi, j pT g v , P g q, Ḡi, j pT u , Ppτqqq ¥ p1 ¡ I qp1 ¡ 1{2 n q 1 w ¡ 2 ¡ |F 0 | w¡1 j2, Ḡi, j F 0 f p Ḡi, j pT g v , g q, Ḡi, j 0 pT g v , P g qq ¡ f p Ḡi, j 0 pT g v , P g q, Ḡi, j 0 pT u , Ppτqqq ¡ f p Ḡi, j 0 pT u , Ppτqq, Ḡi, j pT u , Ppτqqq ¥ p1¡ I qp1¡1{2 n q ¢ pp1 ¡ 2{Npnqq ¢ 1 ¡ 4 2 ³ g ¡ 1 8 ¢ 1 ¡ 4 2 ³ g ¡ p1 1{2 n q 1 2 n 2 ¥ p1 ¡ I q 1 ¡ 4 8 ³ g
The case q n,l 1 q n,l I

1 is analogous: we decompose G i pT g v , P g q into segments of complete cycles (instead of segments of the same type), and we decompose G i pT u , Ppτqq into segments of the same type (instead of segments of complete cycles), and we proceed in the same way.

Proof of lemma 4.9. We decompose the pT g v , P g q-trajectory of px, iq into ãn 2,0,eff ãn 2,1,eff ... t... ãn 2,i,eff denotes the i th word. Its n 2-type is i 1 (i 1 t0, ..., Npn 2q ¡ 1u). Let Bn 2,i be the set of indices such that Bn 2,i pT g v , P g q ãn 2,i,eff .

By lemma 4.3, for n sufficiently large, the set of indices of Bn 2,i which does not belong to a word ãn 1, j,eff that satisfies: §

§ § § § |ã n 1, j,eff | |a n 1, j,eff | ¡ » g § § § § § ¤ I {2
has a density of at most I {2. Thus, the density of indices that we consider is 1 ¡ I {2. v , P g q-trajectories when r n 1, j 1 ¡¡ r n 1,i 1 .

Turbulences are not represented for simplification.

On Bn 2,i , which has a pT g v , P g q-trajectory of n 2-type i 1 , we distinguish different segments according to the n 2-type j 1 of the pT u , Pq-trajectory. We distinguish the cases j 1 i 1 , j 1 ¡ i 1 and j 1 i 1 ( j 1 t0, ..., Npn 2q ¡ 1u).

We suppose j 1 i 1 (i.e. r n 1, j 1 ¡ r n 1,i 1 ). Let Bn 2,i, j be a set of indices such that Bn 2,i, j pT u , Pq is a segment of r n 1, j 1 words of the same n 1-type l (modulo turbulences from A n 2 and from the effect of the cyclic permutation), i.e. is of the form Bn 2,i, j pT u , Pq a n 1,l,eff ...a n 1,l,eff ta n 1,l,eff ...a n 1,l,eff t loooooooooooooooooooooooomoooooooooooooooooooooooon q n 1 r n 1, j 1 q n 2 Npn 1qq n 1, j 1 letters Since, for n sufficiently large, ³ g ¡ I {2 ¥ 2 n r n 1,i 1 {r n 1, j 1 , then Bn 2,i, j contains at least 2 n complete cycles of n 1-types ãn 1,0,eff ...ã n 1,Npn 1q¡1,eff (see figure 10). Therefore, the density of ãn 1,l,eff words (i.e. words of n 1-type l) in Bn 2,i, j is less than 2{Npn 1q 1{2 n . We neglected turbpA n 1 q (and cyclic permutation effect), so we need to add an error of density at most 3 n 1 N n 1 q n,Npn 1q .

If j 1 ¡ i 1 (i.e. r n 1, j 1 r n 1,i 1 ), then except maybe on boundaries, there is another segment of indices Bn 2,i,k such that Bn 2,i,k pT g v , P g q is a segment of r n 1, j 1 words of the same n 1-type l, i.e. of the form Bn 2,i,k pT g v , P g q ãn 1,l,eff t...ã n 1,l,eff loooooooooomoooooooooon ¥q n 1 r n 1,i 1 letters

There are more than q n 1 r n 1,i 1 letters because

³ g ¡ I ¡ 1.
Since ³ g I {2 ¤ r n 1, j 1 {p2 n r n 1,i 1 q, then Bn 2,i,l pT u , Pq contains at least 2 n complete cycles of n 1-types a n 1,0,eff ...a n 1,Npn 1q¡1,eff (see figure 11). Therefore, on this segment, the n 1-types of pT g v , P g q and pT u , Pq coincide on a set of density at most 2{Npn 1q 1{2 n .

Again, we add an error of density at most 3 n 1 N n 1 q n,Npn 1q , due to turbpA n 1 q and cyclic permutation effect.

Figure 13: Overlap of a pT u , Pq and pT g v , P g q-trajectories when r n 1,i 1 |ã n 1,1 | r n 1, j 1 |a n 1,1 |. This case does not happen with our assumptions. where G i , G I i are sets of indices maximal for the inclusion such that G i a n 2, j v ,eff , G I i a n 2, j u ,eff for some ranks j v , j u , and with G I i tw 1 , ..., w 2 u such that:

w 1 1 maxtπpuq, u G i , u Dpπqu w 2 4 maxtπpuq, u G i Dpπqu if G i Dpπq $ r w 1 otherwise
In particular, πpG i q G I i ). G I i lies between (but excluding) the rightmost letter matched with a letter left of G i and (including) the rightmost letter identified with a letter to the left and including G i . Again, we exclude A n 3 -turbulences from G i , because |t| ¡¡ q n 2 |G i |.

If f pG i pT v , P, yq, G I i pT u , Ppτq, xqq ¥ α 64 , then we can stop the decomposition here. Otherwise, then

1 ¡ 1{2 7 ¤ |G i | |G I i | ¤ 1 1{2 7
In each a n 2,l,eff , there is at most one G i such that |G i | ¤ q n 2 {2 n 4 (and so |G I i | ¤ q n 2 {2 n 3 , and there is at most one G I i like that in each a n 2,l I ,eff ), and there- fore, the total density of indices of this kind is at most 1{2 n 2 . If both |G i | and |G I i | ¥ q n 2 {2 n 3 ¥ 2 n 2 q n 1 Npn 1q, we write:

G i x G 1 G i,1 ...G i,r x G 2
with r ¥ 2 n 1 , such that each G i, j pT v , P, yq is a complete cycle of n 1-types, i.e. G i pT v , P, yq is of the form (since we assumed v n 1 1): Here, we include A n 2 -turbulences in G i, j , because their density is relatively small. We also write:

G I i x G I 1 G I i,1 ...G I i,r
x G I 2 such that G I i, j corresponds to G i, j by π, in the same way as G I i corresponded to G i , (i.e. G I i, j lies between the rightmost letter matched with a letter left of G i, j and the rightmost letter identified with a letter to the left and including G i, j ).

If f pG i, j pT v , P, yq, G I i, j pT u , Ppτq, xqq ¥ α 64 , then we can stop the decomposition here. Otherwise, then

1 ¡ 1{2 7 ¤ |G i, j | |G I i, j | ¤ 1 1{2 7
We write: where t is a turbulence of A n 2 (or a cyclic permutation effect), and G i, j,k , G I i, j,k are analogous to G i and G I

G i, j G i,
i , but at rank n 1, i.e. they are sets of indices maximal for the inclusion such that G i, j,k a n 1,k v ,eff , G I i, j,k a n 1,k u ,eff for some ranks k v , k u , and G I i, j,k lies between the rightmost letter matched with a letter left of G i, j,k and the rightmost letter identified with a letter to the left and including G i, j,k .

If f pG i, j,k pT v , P, yq, G I i, j,k pT u , Ppτq, xqq ¥ α 64 , then we can stop the decomposition here. Otherwise, then 1 ¡ 1{2 7 ¤ |G i, j,k | |G I i, j,k | ¤ 1 1{2 7 If either |G i, j,k | ¤ q n 1 {2 n 3 or |G I i, j,k | ¤ q n 1 {2 n 3 , we can neglect both.

Otherwise, let k 1 denotes the n 1-type of a n 1,k I v ,eff G i, j,k (k 1 t0, ..., Npn 1q ¡ 1u. Since q n 1 {2 n 3 ¥ 2 n r n,k 1 Npnqq n , then G i, j,k pT v , P, yq contains 2 n complete cycles of n-types. We can write: If f pG i, j,k,l pT v , P, yq, G I i, j,k,l pT u , Ppτq, xqq ¥ α 64 , then we can stop the work with this segment here. Otherwise, then 1 ¡ 1{2 7 ¤ |G i, j,k,l | |G I i, j,k,l | ¤ 1 1{2 7 G i, j,k,l pT v , P, yq contains at least 2 n complete cycles of n-types (with turbulences), because 2 n 1 r n,k 1 r n,k 2 . At i, j, k fixed, the G I i, j,k,l pT u , P, xq, when l varies, have the same n-type in a proportion of less than 2{Npnq. Since Kpτq ¤ q n {2, and the a n,i l ,eff are the same (turbulences coming from B n are located at the same place throughout every a n,i l ,eff ), then the G I i, j,k,l pT u , Ppτq, xq also have the same n-type in a proportion of less than 2{Npnq. If l 1 $ l 2 , then because of turbpA n 1 q (and cyclic permutation effect), f pG I i, j,k,l 1 pT u , Ppτq, xq, G I i, j,k,l 2 pT u , Ppτq, xqq ¥ α ¡ 4p2Kpτq 1q n 1 N n 1 q n,Npn 1q

(18)

On the other hand, since G i, j,k,l pT v , P, yq contains at least 2 n complete cycles of n-types (with turbulences), then for any l 1 , l 2 , f pG i, j,k,l 1 pT v , P, yq, G i, j,k,l 2 pT v , P, yqq ¤ 1 2 n 4 n 1 N n 1 q n,Npn 1q (

If k 1 k 2 , the proof is analogous.

Let ρ 0 min l f pG I i, j,k,l pT u , Ppτq, xq, G i, j,k,l pT v , P, yqq and l 0 an indice realizing this minimum. If ρ 0 ¡ α{128, we can stop here. Otherwise, by applying estimates ( 18) and ( 19), and by taking into account boundary effects, and for n sufficiently large such that a n 1 $ b n 1 : f pG I i, j,k pT u , Ppτq, xq, G i, j,k pT v , P, yqq ¥ p1¡1{2 n q 1 L L ļ1 f pG I i, j,k,l pT u , Ppτq, xq, G i, j,k,l pT v , P, yqq

¥ p1 ¡ 1{2 n q 1 L L ļ1
f pG I i, j,k,l pT u , Ppτq, xq, G I i, j,k,l 0 pT u , Ppτq, xqq ¡ f pG I i, j,k,l 0 pT u , Ppτq, xq, G i, j,k,l 0 pT v , P, yqq ¡ f pG i, j,k,l 0 pT v , P, yq, G i, j,k,l pT v , P, yqq ¥ 1 ¡ 4 128

Figure 1 :

 1 Figure 1: If we take a horizontal partition of r0, 1s ¢ 1 , the three cycles are too intertwined. This is an obstacle for the convergence of T n B ¡1 n S p I n q I n B n towards a

Proposition 2 . 1 .

 21 Let a b and c d be real numbers such that d ¡ c b ¡ a.

Figure 2 :

 2 Figure 2: If we take a vertical partition of r0, 1s¢ 1 , having to deal with three cycles is no longer an obstacle for the convergence of the periodic map T n B ¡1 n S pn qn B n towards a smooth map.

Figure 3 :

 3 Figure 3: A quasi-permutation: it permutes the two lateral boxes, and keeps the central one fixed.

Figure 4 :

 4 Figure 4: Domains of the different trajectories for the first three iterations of the construction, with Npkq 2, k 0, ..., 3. Some quasi-permutations are represented in dotted lines.

Figure 5 :

 5 Figure 5: Representation of A 1 and partial representation of A 2 (dashed lines), withNpkq 2, k 0, ..., 2. The rectangle pi, jq is quasi-permuted with the rectangle pj, iq of the same height. In particular, A l (l 1, 2) is the identity on pi, iq.

Figure 6 :

 6 Figure 6: Partial representation of A 1 , with Np0q 4 and Np1q 2. The rectangle pi, jq is quasi-permuted with the rectangle pj, iq of the same height. Some quasipermutations are represented in dotted lines.

Lemma 3 . 5 .

 35 Let a, b, a I , b I words such that |a| |b| |a I | |b I |. We have:

5 .

 5 Let π a : a Ñ a I and π b : b Ñ b I two matches. Let π : ab Ñ a I b I defined by π |a π a and π |b π b . π is a match because π a and π b are matches (it is an order-preserving, injective function). Moreover, fitpπ a q fitpπ b q |Dpπ a q| 1 2 p|a| |a I |q |Dpπ b q| 1 2 p|b| |b I |q 2 |Dpπ a q| |Dpπ b q| 1 2 p|a| |a I | |b| |b I |q 2fitpπq Moreover, fitpπq ¤ 1 ¡ f pab, a I b I q. By taking the maximum on possible fits of π a and π b in the previous equality, we get: 1¡ f pa, a

  extend the domain (not the "domain of definition") of the function π ¡1 l ).

q| 1 2 1 2λ r n 1 2

 1112 fitpπ l,p q 2|Dpπ l,p q| |ᾱ n,p | |α n,l,p | Therefore, Npnqpt l 2q¡1 p0 fitpπ l,p q r|ᾱ n,p | |α n,l,p |sIf p $ l mod Npnq, then by estimation[START_REF] Krieger | On entropy and generators of measure-preserving transformations[END_REF], fitpπ l,p q ¤ ¡ ,i © u n . If p l mod Npnq, we still have fitpπ l,p q ¤ 1 (all fits are smaller or equal to one). Therefore, Npnqpt l 2q¡1 p0,p$l mod Npnq |ᾱ n,p | |α n,l,p | 1 Npnqpt l 2q¡1 p0,pl mod Npnq |ᾱ n,p | |α n,l,p | On the other hand, fitpπ ¡1 l q 2|Rpπ l q| pt l 2qNpnq|α n,0 | |ᾱ λ n,l | 2 °Npnqpt l 2q¡1 p0 |Dpπ l,p q| °Npnqpt l 2q¡1 p0 |ᾱ n,p | |α n,l,p | p0,p$l mod Npnq |ᾱ n,p | |α n,l,p | °Npnqpt l 2q¡1 p0 |ᾱ n,p | |α n,l,p | °Npnqpt l 2q¡1 p0,pl mod Npnq |ᾱ n,p | |α n,l,p | °Npnqpt l 2q¡1 p0 |ᾱ n,p | |α n,l,p | fitpπ ¡1 p0,pl mod Npnq |ᾱ n,p | |α n,l,p | °Npnqpt l 2q¡1 p0 |ᾱ n,p | |α n,l,p | Moreover, |ᾱ n,p | |α n,0 |, and when p l mod Npnq, by construction, |α n,l,p | ¤ |α n,0 |. We also have:

4. 1 . 1

 11 The distances f and dThe definitions recalled here are mainly taken from[12, p.8]. First, we can generalize the distance f to a semi-distance on infinite words. Let w ...a ¡1 a 0 a 1 ... w I ...a I ¡1 a I 0 a I 1 ... be infinite words, i.e. w, w I I . Let w n , w I n I 2n 1 be the truncated words defined by: w n a ¡n ...a ¡1 a 0 a 1 ...a n w I a I ¡n ...a I ¡1 a I 0 a I 1 ...a I n

  Np0q denotes the set of permutations of t0, ..., Np0q ¡1u, and ∆ denotes the symmetric difference. Let µpAq ¡ 0 and r A,T : A Ñ N ¦ , defined by r A,T pxq mintk ¥ 1, T k pxq Au, be the first return map of T in A. By the Poincaré recurrence theorem, r A,T is finite almost everywhere, and by ergodicity (see [12, p.1]), » A r A,T pxq dµpxq 1 We denote by µ A µp.q{µpAq the measure induced by µ on A, and B A the sigmaalgebra induced by B. For almost every x A, let T A pxq T r A,T pxq pxq T A is the transformation induced by T on A. T A is a measure preserving transformation of pA, B A , µ A q.

Figure 8 :

 8 Figure 8: The tower construction pM g , T g v , P g q

Figure 9 : 2 ³g 4 . 9 .

 9249 Figure 9: The decomposition of into G i and turbulences t and t. To show proposition 4.7, we combine the lemmas: Lemma 4.8. Let 1 2 ³ g ¡ I ¡ 0. In G i a n 1,l,eff ãn 1,l I ,eff , if the n 1-types l 1 of

Lemma 4 . 10 .

 410 Let two words A, A I on the alphabet I, and we obtain Ā and ĀI by inserting at most pβ ¡ 1q|A| letters h in A, and pβ ¡ 1q|A I | letters h in A I , where h is a letter not in the alphabet I. We have:

Figure 10 :

 10 Figure 10: Overlap of a pT u , Pq and pT gv , P g q-trajectories when r n 1, j 1 ¡¡ r n 1,i 1 .

  apT v , P, m, yq G 1 pT v , P, yqG 2 pT v , P, yq...t...G w pT v , P, yq apT u , P, m, xq G I 1 pT u , P, xqG I 2 pT u , P, xq...t...G I w pT u , P, xq

Figure 14 : 2 Moreover, | x G 1 |

 1421 Figure 14: The decomposition of trajectories apT v , P, m, yq and apT u , P, m, xq in segments G i and G I i .

1 N

 1 G i, j,k p a 1 a n,0,eff ...a n,1,eff t....a n,Npnq¡1,eff p a 2 where | p a 1 |, | p a 2 | ¤ Npnqq n , and p a 1 , p a 2 occupy a density of less than 1{2 n . Let k 2 be the n 1-type of a n 1,k u ,eff G I i, j,k . We observe that any match between the words 12...N12...N12...N and N...21N...21N...21 (same word repeated p times) has a fit smaller than 2p¡1p ¤ 3{N, where N is the number of types (see figure15). Therefore, G i, j,k pT v , P, yq and G I i, j,k pT u , P, xq have the same type in only a fraction 3{Npn 1q of cases, which makes a density of indices of less than 4{Npn 1q.

Figure 15 :

 15 Figure 15: The f -distance between these two words is large. If k 1 ¡ k 2 , then r n,k 1 r n,k 2 and we proceed as in proposition 4.7. We can write: G I i, j,k p a 3 G I i, j,k,1 ...G I i, j,k,L p a 4

  2. If u ra , a I ¡ s, v ¤ c and c ¤ v t ¤ d ¡ , then Rpxq τ b I ¡a ¥S t pxq.3. If u rb I , b ¡ s, v ¤ c and c ¤ v t ¤ d ¡ , then Rpxq τ a¡b I ¥S t pxq. 4. If u ra I , b I ¡ s, v ¤ c and c ¤ v t ¤ d ¡ , then Rpxq S t pxq.Observe also that, since R 2 pxq A ¡1 S t AA ¡1 S t Apxq A ¡1 S 2t Apxq, then if we take x inside a safe zone, and if some iterate of x by R falls inside the turbulence zone, then if we iterate enough by R, we get back into a safe zone, as if we went there directly, i.e. as if we never crossed turbulences. So even if we lose the trajectory of x into a turbulence zone, we recover it after sufficient iterations. Therefore, if turbulence zones are sufficiently thin, we can control most of the trajectory of x.

  d 2 and φ 2 id on ra, bs ¢ rc, ds ¡ pra I , b I s ¢ rc {2, d ¡ {2sq }φ 2 } n ¤ f pn, a, b, c, d, qthere exists φ 3 pa, b, c, d, a I , q : ra, bs ¢ rc, ds ý such that

	φ 3 |ra ,a I ¡ s¢rc ,d¡ s R	¢	π,	¢	a a I 2	,	c d 2
	Figures 4, 5 and 6 illustrate the definition. We define T n in the case M r0, 1s ¢ . In
	subsections 3.3.2 and 3.3.3, we extend the construction to the general case.

  φ n C p . The map φ n,p is measure preserving. By the Faa-di-Bruno formula, there exists a fixed function R 2 pjq such that }φ n,p } j ¤ p R 2 pjq }φ n } j

	1 2 n 1 , 1 ¡ 1 2 n 1 s 2 .
	Let p ¥ 2 and
	C p : r0, 1s ¢ r0, 1 p s Ñ r0, 1s ¢ r0, 1s px, yq Þ Ñ px, pyq
	Let φ n,p C ¡1

p

  j,1 ...t..G i, j,s

	and
	G I i, j G I i, j,1 ...t...G I i, j,s

Proof of lemma 4.8. First, we suppose l 1 ¡ l I 1 , i.e. q n,l 1 ¡ q n,l I 1 (and r n,l 1 r n,l I 1 ).

We denote G i pT u , Pq the pT u , Pq-trajectory of x on the set of indices G i . We can write G i pT u , Pq p aG i,1 pT u , Pq...G i,w pT u , Pqp a I where:

G i,l pT u , Pq a n,1,eff ...a n,1,eff t.....ta n,Npnq,eff ...a n,Npnq,eff t where |p a| ¤ q n 1 {q n,l 1 and |p a I | ¤ q n 1 {q n,l 1 , i.e. The G i,l pT u , Pq are complete cycles of n-types. G i,l pT u , Pq include turbulences from A n 1 , because their density in G i,l pT u , Pq is vanishingly small (although |t| ¡¡ a n,i,eff for each i).

Since at i fixed, all the a n,i,eff are identical, and since Kpτq q n , then G i,l pT u , Ppτqq is of the form: G i,l pT u , Ppτqq ǎn,1,eff . ť.. ť ǎn,Npnq,eff ť Moreover, | ť| ¤ |t|p2Kpτq 1q. Therefore, for any integers j, k, and for n sufficiently large,

On the other hand, we can write (we do not neglect boundary effects similar to p a and p a I here):

G i pT g v , P g q Ḡi,1 pT g v , P g q... Ḡi, wpT g v , P g q such that:

G i pT g v , P g q ãn,i I ,eff ...ã n,i I ,eff t loooooooomoooooooon Ḡi,1 pT g v ,P g q ãn, j I ,eff ...ã n, j I ,eff t loooooooomoooooooon Ḡi,2 pT g v ,P g q ... Modulo turbulences, Ḡi, j pT g v , P g q is a segment of the same n-type.

, then Ḡi, j contains at least

. We can write:

Ḡi, j âG i, j 1 ...G i, j u âI with j u ¡ j 1 ¥ 2 n . Therefore, â and âI occupy a density of less than 1{2 n of Ḡi, j . Therefore,

, the same reasoning applies.

, then we do not do this estimate. However, we become able to neglect this segment: at most two Ḡi, j in G i are short like that. Therefore, in the worst Figure 11: Overlap of a pT u , Pq and pT g v , P g q-trajectories when r n 1, j 1 r n 1,i 1 .

Since Npn 1q ¡ ³ g I for n sufficiently large, the case j 1 i 1 occurs at most once on every set of indices where pT g v , P g q is of the form (see figure 12):

Therefore, there exists n 0 such that for any n ¥ n 0 the density of indices on which the n 1-types of the pT g v , P g q and pT u , Pq-trajectories coincide is less than I 1{ ³ g.

The proof works because for n sufficiently large, scales for pT g v , P g q and pT u , Pq are either extremely different, or equal. A more problematic case would be if those scales were different but comparable, e.g. if r n 1,i 1 |ã n 1,1 | r n 1, j 1 |a n 1,1 | (see figure 13).

Even equivalence

We show that if u n $ v n infinitely often, then T u and T v are not evenly equivalent. We apply the proposition [12, p.92]:

Proposition 4.11. If pS, Pq and pT, Qq are evenly equivalent, then for any τ ¡ 0, there is Kpτq ¡ 0 and Ppτq Kpτq i¡Kpτq T i pQq such that f ppS, Pq, pT, Ppτqqq τ. We contradict this proposition with τ p1 ¡ 4 q{200. Indeed, we show: Proposition 4.12. Let x, y two points in E nlb and Ppτq Kpτq i¡Kpτq T i u pPq. Then

Proof. The scheme of the proof is not sensibly different from the scheme of the proof of proposition 4.7: we decompose successively the trajectories from scale n 2 to scale Figure 12: Overlap of a pT u , Pq and pT g v , P g q-trajectories when r n 1, j 1 r n 1,i 1 . In the next segment, r n 1, j 1 r n 1,i 1 1 r n 1,i 1 n, but along a maximal match, because we are working with f (whereas in proposition 4.7, we decomposed along identical ranks of indices, because we were working with d).

For u n 1 $ v n 1 , the orders of complete cycles of the pT u , Pq and pT v , Pq-trajectories are the reverse of each other (see figure 15). It implies that in most cases, a pT u , Pqsegment of a given n 1-type must be matched with a pT v , Pq-segment that has a different n 1-type. Here, the "reverse orders of cycles" separate trajectories for f in the same way as the expansion of trajectories by g separated trajectories for d in proposition 4.7 (see lemma 4.9).

In this case, the fit of their match is small, because repetitions of the words a n,i,eff in the pT v , Pq-trajectory and of the words ǎn,i,eff in the pT u , Ppτqq-trajectory have different periodicities (the periodicity of repetitions of ǎn,i,eff in the pT u , Ppτqq-trajectory is the same as the periodicity of repetitions of a n,i,eff in the pT u , Pq-trajectory, because Kpτq q n {2).

Turbulences remain packed in rare locations, and do not sensibly affect f . Thus, we can conclude as in proposition 4.7.

Let n be sufficiently large such that q n ¥ 2 n 4 p2Kpτqq, and such that u n 1 $ v n 1 (e.g. u n 1 0, v n 1 1). Let m 2 n q n 2 . Let α 1 ¡ 3 .

If f papT u , Ppτq, m, xq, apT v , P, m, yqq ¥ 1¡3 64 then we obtain the proposition. Otherwise, let π : apT v , P, m, yq Ñ apT u , Ppτq, m, xq a match minimizing the f -distance.

We see it as a match π : apT v , P, m, yq Ñ apT u , P, m, xq (we can do this because π is a function of t1, ..., mu into itself). We decompose these two words in q n 2 -trajectories: 2 | ¤ q n 2 , and where t is a turbulence from A n 3 (or a cyclic permutation effect). We write apT u , P, m, xq and apT v , P, m, yq in the form (see figure 14):