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Abstract     

Cemented carbides are used in rock drilling for mining tools and wear resistant parts. These composite materials possess an 

excellent compromise between hardness and toughness. Nowadays, the concept of graded structure is widely studied to 

improve these two properties simultaneously, and so to increase the service life of drilling tools. 

A continuous composition gradient on several millimetres is generated in commercial WC-Co substrate for PDC cutters by 

using Reactive Imbibition method. The effects of this process are analysed in terms of microhardness, cobalt concentration and 

WC grain size. A continuous gradient of about 300HV on 8mm-height substrate is obtained in one-step by imbibition process 

into combination with a boron-rich coating deposed on its free surface. In part, this gradient of hardness and its shape are 

preserved after HPHT (high pressure-high temperature) process that is used for the diamond table deposition on the WC-Co 

substrate. Such gradient must significantly increase the cutter service life.  
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Introduction 

The goal of this study is to develop a new process to enhance the service life of drilling tools cutters. Indeed, drilling 

conditions in deep and heterogeneous wells lead to premature wear and fracture of tools because of abrasive rocks and 

repeated shocks. Drilling tools are made of cemented carbides which are composed of WC hard phase embedded in a Co-

based ductile metallic matrix. 

In order to increase hardness and toughness, which are antagonistic properties, Functionally Graded Material (FGM) way is 

chosen. Gradation of cemented carbides is not a recent idea, its interest has been demonstrated in 1972 [1]. Since, a lot of 

processes have been developed to grade WC-Co: Infiltration [2], Dual Properties (DP) carbides [3], [4], [5], Carbide Free Layer 

(CFL) [6], [7], [8], [9], Ion implantation [10], Cr3C2 coating on cemented carbides before sintering [11] and multilayers or stacking 

of different cemented carbides by their cobalt content and carbide grain size [12], [17]. These processes rely on different 

techniques, which have two common drawbacks:  

- the small distance on which is developed the cobalt redistribution, 

- the discontinuity of gradients of the hardness and cobalt content. 

But, there is another gradation process which overcomes these drawbacks: Imbibition from dense cemented carbides allows 

to continuously enrich the substrates in binder phase (between 10 and 20wt.% Co) over several millimetres (about 10 to 20mm). 

First results on this process were published in 1972 by Lisovsky and Babich [13]. 

Recently, Reactive Imbibition [14], patented by Varel Europe/Armines is a one step process combining imbibition from dense 

cemented carbides and a boron-rich coating on their free surfaces. This new process generates a continuous variation of cobalt 

through several millimetres and with an excellent gradient shape control to increase at the same time the surface hardness and 

core toughness.  

In this article, this new process has been chosen to grade the substrate of commercial cutters. The underlying principles 

governing the cobalt phase migration and distribution are examined and based on thermodynamic properties and phase 

reactions during imbibition and HPHT treatments with the aim of gaining an understanding of the phenomena. 

 

Reactive Imbibition process 

A. Imbibition treatment 

Imbibition consists in a migration of liquid arising from a reservoir (filler material) in a two-phase system (solid / liquid) which 

is raised to high temperature. This phenomenon is different from well-known diffusion mechanism, because the liquid migration 

has the same composition than liquid within sample. The imbibition phenomenon is also different from infiltration mechanism 

which implies a three-phase system (solid / liquid / gas, i.e. a porous media). According to Lisovsky [13], three conditions are 

required in a two-phase system to make imbibition possible: a good wetting of solid grains by the liquid matrix, a partial 

dissolution of solid grains in this liquid matrix and the absence of equilibrium dihedral angle defined by γSS/2γSL>1. So, if the ratio 



of the solid-solid to solid-liquid surface energy is high (>2), then the penetration of grain boundaries by liquid is possible 

because it is energetically more favourable to system evolution. Also, in the process of imbibition, the liquid phase in contact 

with a fully dense cemented carbide flows through the liquid channels formed by refractory particles (WC grains). A complete 

reconstruction of the refractory skeleton by particle rearrangement occurs during migration and Park [15] deals with this 

phenomenon by determination of the minimum interface energy configurations of solid / liquid system with varying dihedral 

angles and liquid contents. A similar approach is undertaken by Delannay and al [23] that expresses the variation of driving 

force for the absorption of liquid by solid/liquid system as a function of the liquid volume fraction, U, and the coordination 

number, nc. On the other hand, the Ostwald ripening with a modification of grain shape, without necessary grain growth is not a 

condition essential to liquid migration in imbibition process, according to Sorlier [14]. However, the driving force of liquid 

migration for the assemblies of fully dense cemented carbides is the reduction of the interfacial energy by the grain shape 

accommodation, according to Colin [16], [17]. The author puts forward the dwell time very long (several hours) used for these 

assemblies which allows the grain shape accommodation. 

 Usually, WC particles have an anisotropic solid / liquid interfacial energy. The system reaches its minimum energy for a 

certain amount of binder phase which allows adopting its equilibrium configuration, corresponding to lower energy level. Until 

the critical amount of binder phase has not been reached, a migration pressure exists in the system. The phenomenologic 

expression of the liquid migration pressure Pmig (MPa), established by Lisovsky is given by expression corrected by Sorlier [14]:  

 

 
where U is the volume fraction of liquid and dWC (µm) is the mean WC grain size. It is thus predicted that the liquid migration 

pressure increases when the WC grain size and the Co content are smaller. This expression also points out that this migration 

pressure reaches zero for a critical volume fraction of liquid (Um=0.61) which corresponds to 32 wt.% Co. Thus, a WC-Co 

containing more than 30 wt.% Co cannot be enriched in binder phase. 

 

B. Reactive coating mechanism 

A boron nitride coating is uniformly deposited on WC-Co part by spraying (Fig. 1a). Just before the migration of liquid from a 

reservoir composed of green part with eutectic composition, the BN coating is destabilized by liquid phase, after the solidus of 

the cemented carbide is reached. According the mechanism proposed by Sorlier [14], this destabilization leads to a diffusion of 

boron inside the substrate through its liquid phase (Fig. 1b). The solubility of boron into the liquid phase is small and so, its 

saturation is quickly reached. Also, borides, in particular WCoB, precipitate under the substrate surface. The formation of this 

ternary compound involves a decrease of W and Co contents into the liquid phase. So, the carbon in excess in the liquid can 

diffuse towards the bulk (Fig. 1c), causing the diffusion of the cobalt in the same direction, as for the DP carbides. Indeed, it is 

well-known that when there is a carbon gradient into the liquid, cobalt appears to migrate in the direction of carbon diffusion, 

resulting in a redistribution of cobalt in the cemented carbide [18]. However, the microstructure shows no free-carbon nor η-

Co3W3C phase. 

   

(a) (b) (c) 
Fig. 1. Reactive coating mechanism proposed by Sorlier [14] 

Experimentation 

A. Materials and sample preparation 

The WC-Co substrates used in this study are commercial ones. The cylinder-shape substrates for cutters have a 14.40mm 

diameter and a height ranging from 7.35 to 8.10mm. Their initial Co content is 12.25 wt.%, their grain size measured by linear 

intercept ranges from 0.5 to 4µm and they are fully dense (Porosity< 0.02% according to ASTM B276). The hardness of these 

substrates is measured under a 2kg load and reaches 1245 +/- 30 HV. 

The green part composed of the eutectic composition (WC-65wt.% Co) is prepared with powders supplied by Ceratizit. Once 

the powders have been blended in a mixer for 24h, 10mm diameter compacts are cold pressed at 200MPa by uniaxial 

compaction. During this time, the commercial substrates are cleaned in an ultrasonic alcohol bath for 5min. Coating is applied to 

those which need it. 



Once the green part and the substrate have been prepared, the BN-coated substrate is superimposed on the green part 

before being put in a graphite furnace. The sample is processed at 1450°C under an Ar-5vol.% H 2 atmosphere in order to 

approximate industrial conditions. Then, the processed substrate has undergone a classic High Pressure / High Temperature 

(HPHT) step in order to assembly the diamond table on the WC-Co substrate. This treatment consisting in a quick heating of the 

substrate with diamond powder in a refractory metallic cap is carried out for a few minutes under a stable temperature / 

pressure condition adapted to diamond. In order to clarify the running of the experiment, Fig. 2 presents a schematic 

representation of the major steps of the process. 
After the reactive imbibition treatment or the HPHT process, depending on the sample, the cutters are electric-discharge 

machined in order to cut them into two equal parts, ready to be polished and analysed. The samples are then ground and 

polished to a 1µm finish for microstructural examinations. 

The diamond tables are processed under two Pressure/Temperature combinations, with the second combination at higher 

Pressure/Temperature. Two grain size distributions are used for the diamond (coarse and fine). The table 1 summarizes 

processed samples. 

 
Table 1. Summary of the samples 

WC-Co Cutters HPHT Conditions 
 

As-received Reactive Imbibition Diamond Pressure/Temperature 

A X    

B  X   

C X  Coarse 1 

D  X Coarse 1 

E X  Fine 1 

F  X Fine 1 

G X  Coarse 2 

H  X Coarse 2 

I X  Fine 2 

J  X Fine 2 
 

B. Characterization of cutters 

To characterize the microstructure, a Zeiss-DSM982 Scanning Electron Microscope (SEM) in secondary electron (SE) and 

back-scattered electron (BSE) modes under a 10 kV voltage is used. After microstructure binarization, linear intercept analysis 

is performed on nine SEM micrographie at x5000 magnification for each position. These nine micrographie are performed 

around hardness indentations in order to control the WC grain size along the revolution axis. This grain size measurement 

allows to verify that the two successive thermal treatments (imbibition and HPHT) have not generated normal and abnormal 

grain growth (Fig. 3.a).  

 In order to quantify the liquid migration in the sample, three experimental techniques based upon different principles have 

been compared. This first one is founded on the hardness measurement, since it is related to Co content for a constant grain 

size. A Buehler microhardness tester with a Vickers diamond tip is used to determine the Vickers hardness with a load of 2kg 

and an indentation time of 10s, according to NF A 03-154. Indentations are performed along the revolution axis and on the right 

part of the sample, because the Co migration is symmetrical across this axis. Three hardness measurements are performed for 

each pre-determined position. The second method to measure the Co content is based upon image analysis. For an isotropic 

microstructure, surface fraction is equivalent to volume fraction of each phase in a two-phase structure. Then, the volume 

fraction of cobalt (VCo) is converted into mass content (XCo) from the relation as follows: 

Fig. 2. Major steps of the process 



 where ρCo and ρWC are the density of cobalt phase and tungsten carbide, respectively. In this case, the β-phase (solid 

solution with a large solubility of W) is assimilated to pure Co.  

In the third method, Co content is evaluated using a microprobe (CAMECA-SX100) to make composition profiles along the 

symmetrical axis of the sample. Measurements are undertaken under 10kV voltage and 80nA intensity. The beam is defocused 

with a 20µm spot size. For each measurement, five spots around a hardness indentation are used. Contrary to image analysis 

method, it is directly obtained the Co content in weight percent by microprobe. 

An experimental relation between hardness (HV) and Co mass content (XCo) obtained by image analysis is established from 

several samples (as-received, imbibed and HPHT processed samples). 

 

 

 where HV (kg/mm2) is the Vickers Hardness (between 1000 and 1600HV) and XCo (wt.%) is Co mass content. These values 

of cobalt content deduced from microhardness are compared to values measured by image analysis and microprobe 

experiments. Fig. 3.b compares the results obtained with the three methods. These methods are well correlated, and so the 

microhardness is considered for Co gradient characterization. 

  
(a) (b) 

Fig. 3. WC grain size distribution after each process step (a); Comparison of Co content measured along the revolution axis by 
three methods from a reactive imbibed substrate (b) 

Results 

A. Gradient before HPHT 

 Microhardness measurements are used to quantify the gradients generated by the reactive imbibition process. The 

microhardness profiles (Fig. 4) are produced along the axis of symmetry (r=0) and the axis oblique (r=z). Fig. 5. show Co 

distribution for sample A and B along the axis of symmetry. The hardness maps on the right part of the samples are presented 

in Fig. 6. On the maps, each black spot represents a hardness test mark.  

Sample A (as-received substrate) is an unprocessed sample. No significant gradient is present on the hardness maps. The 

hardness variation is mainly in the range from 1215 to1275HV with an average value around 1245HV. 

Sample B is a processed substrate by Reactive Imbibition. On this sample, hardness varies from a minimum of 1080HV in 

the lower part to a maximum of 1350HV in the upper part. The decrease of hardness in the lower part is undoubtedly due to the 

migration of the Co-rich liquid phase from the green part. The hardness increase in the upper part is due to the borides 

formation. 

 

  
(a) r= 0 (b) r=z 

Fig. 4. Microhardness profiles along the axis of symmetry (a); along the oblique axis r=z (b) for as-received (sample A) and 
reactive imbibed substrates (sample B) 

 

    



    
Sample A (z = 4mm) Sample B (z = 0.25mm) Sample B (z = 4mm) Sample B (z = 7.75mm) 

Fig. 5. SEM micrographs showing Co distribution in samples A and B on r = 0 axis 
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Fig. 6. Microhardness maps 
B. Gradient after HPHT: effect of substrate gradation 

 Whatever the effect studied (substrate gradation, HPHT cycle and diamond grain size), the HPHT process induces a 

decrease of Co content in the cemented carbide with a hardening of the substrate. 

Fig.  6 underlines that the samples C, E, G and I are harder than sample A, in the case of an ungraded substrate. For HPHT 

processed samples from as-received substrates, the difference of hardness varies from 1275 to 1485HV against 1215 to 

1275HV for unprocessed sample by HPHT treatment. So, HPHT process clearly develops a gradation from homogeneous 

substrates with a amplitude that can reach about 200HV on 6mm-height. These hardness gradients, more particularly, the iso-

Borides 



values of hardness are parallel to the lower surface. 

On the same way, it is observed a similar phenomenon with the graded substrates. The samples D, F, H and J are harder 

than sample B. In this case, the maximum variation of hardness for HPHT processed samples from a graded substrate ranges 

from 1160 to 1485HV against 1080 to 1350HV for unprocessed sample by HPHT treatment. The HPHT treatment significantly 

increases the difference of hardness (∆HV=325 against ∆HV=270) but it always displays a dome-shaped gradient, generated by 

reactive coating enriched in boron. This dome-shaped gradient allows associating a hard shell with a softer bulk. The global or 

mean hardness of these new processed cutters (D, F, H and J) is lower than that of the commercial cutters (C, E, G and I). 

C. Gradient after HPHT: effect of HPHT treatment at “low” and ‘high” Pressure/Temperature 

It can be observed the effect of HPHT treatment at "low" and “high” Pressure/Temperature on Fig. 8 and Fig. 9, respectively. 

A slight decrease of the hardness appears between 3 and 5mm from the bottom of each ungraded substrate (C and E). This 

phenomenon doesn’t occur for HPHT process at “high” Pressure/Temperature from the same substrate ungraded (G and I). 

On graded substrates, the “low” Pressure/Temperature more preserves the dome-shaped gradient and its amplitude is 

lowered (D and F), compared to “high” Pressure/Temperature (H and J). This difference of hardness can reach about 150HV on 

6mm for samples C/E and D/F against about 200HV to 300 HV on 6mm for samples G/I and H/J on the revolution axis. The 

same statement can be done on the r=z axis. So, for “High” HPHT treatment, the amplitude of gradient can be strongly 

increased (on an average of 50 to 150HV). All these results support the conclusion established earlier by several authors [19], 

[20] that the binder phase of the WC-Co substrate migrates, more exactly infiltrates into the diamond compact during the HPHT 

process in order to act as catalyst for the sintering of diamond powder (neck formation between diamond grains).  

D. Gradient after HPHT: effect of diamond grain size distribution 

 Fig. 7 and Fig. 8 summarize hardness profiles obtained after HPHT treatment for coarse and fine diamond grain size 

distributions, respectively.  Hardness gradients seem to be very close and then independent of the mean diamond grain size, as 

shown in Fig. 9 and Fig. 10 These results are surprising and disagree with previous researches [22]. 

  

Axis r=0 Axis r=z 
Fig. 7. Hardness profiles with a coarse diamond grain size distribution 

  
Axis r=0 Axis r=z 

Fig. 8. Hardness profiles with a fine diamond grain size distribution 

  
Axis r=0 Axis r=z  

Fig. 9. Hardness profiles at "low" Pressure/Temperature for different diamond grain size distributions 



  
Axis r=0  Axis r=z  

Fig. 10. Hardness profiles at “high” Pressure/Temperature for different diamond grain size distributions 
Discussion 
The goal of this article was to grade a commercial substrate for PDC cutters in order to improve their shock resistance 

without reducing their abrasion resistance. Nowadays, it is widely accepted that a component presenting a tough bulk and a 

hard surface shows superior mechanical properties. The most important gradient obtained in this study reaches 300 HV on 

6mm-height, due to a variation of the binder phase into the graded substrate, after HPHT treatment at “high” 

Pressure/Temperature.  

Furthermore, the special shape of the gradient, obtained thanks to the use of the reactive coating, is truly innovative and 

interesting for mining applications. This particular shape is due to two phenomena before HPHT process: a competition between 

the liquid migration from the green part and the reaction of the BN coating with the cutter surface, leading to the formation of 

hardening phases and to a diffusion of the carbon and cobalt towards the bulk i.e. in the opposite direction to liquid migration by 

imbibition. To confirm the borides formation mechanism proposed by Sorlier [14], some TEM observations were performed in 

order to validate the presence of the WCoB phase (Fig. 11). This phase is a ternary orthorhombic compound known to enhance 

the wear resistance of carbide alloys in metal cutting due to its extremely high hardness (about 4300HV).The hardening of the 

cutter surface under the coating providing the dome shape is thus explained by the formation of a finely dispersed WCoB phase 

and by the decrease in the amount of the binder phase. 

   
(a) (b) © 

Fig. 11. TEM observation of a WCoB phase (lighter phase) in a WC-Co substrate (a), diffraction of the WCoB phase on [110] (b), 
diffraction of the WCoB phase on [120] (c) 

The most interesting result is the conservation or even sometimes improvement of the gradient amplitude after HPHT 

treatment. This process at high temperature, involves the formation of a liquid phase which could give rise to a complete 

homogenization of the binder phase into the substrate. In fact, the gradients are modified but preserved after HPHT treatment. 

According to Sorlier [14], the liquid phase quickly infiltrates by capillarity into the polycrystalline diamond powder compact before 

sintering takes place. As long as porosity is concerned in powder compact, this infiltration generates a liquid flow under pressure 

in substrate similar to mass transport during creep tests at high temperatures in cemented carbides [21]. 

A surprising result is that the initial diamond grain size has no obvious influence on the redistribution of cobalt in the 

cemented carbides. However, it is widely known that the diamond grain size distribution would have a great influence on the 

porosity of powder compact before infiltration. Uehara [22] has studied the relation between the volume fraction of cobalt and 

the initial diamond grain size. The Co content increases in diamond table as the mean diamond grain size decreases. We can 

assume the different diamond grain size distributions ensure the same porosity in powder compact just before infiltration by 

liquid phase arising from substrate. This point would be further verified. 

Another surprising result comes from the hardness decrease in the center of the ungraded substrate which occurs after a 

“low” HPHT process. According to the shape of the gradient formed, we can assume that the time at liquid state during “low” 

HPHT process is longer than “high” HPHT process in order to ensure a good sintering of the diamond table. In this case carbon 

dissolution from the diamond grains into binder phase would be more important and a carbon gradient takes place into the 

liquid. Then, a Co migration occurs from the interface towards the lower part of the substrate in the direction of carbon diffusion, 

as for the DP carbides [3], [4], [5]. 



Conclusion 
Reactive imbibition allows obtaining in one-step a dome-shaped gradient of about 300HV on 6mm without WC grain growth.  

After HPHT process, the magnitude of the gradient is preserved and sometimes improved. But the mean hardness of the 

substrate increases due to the migration of Co phase from the substrate into the diamond compact during the HPHT treatment. 

The first mechanical tests show that the service life in abrasion of a graded PDC cutter is improved by 50% in comparison 

with a standard PDC cutter, tested in the same conditions. Its shock resistance exhibits an increase in performance by 50%. 
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