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Comm. Algebra 38 (1), 119-130, 2010

Parametrizing over Z integral values of polynomials over Q

G. Peruginelli U. Zannier

Abstract

Given a polynomial f ∈ Q[X] such that f(Z) ⊂ Z, we investigate whether the set
f(Z) can be parametrized by a multivariate polynomial with integer coefficients,
that is, the existence of g ∈ Z[X1, . . . , Xm] such that f(Z) = g(Zm). We offer a
necessary and sufficient condition on f for this to be possible. In particular it turns
out that some power of 2 is a common denominator of the coefficients of f and there
exists a rational β with odd numerator and odd prime-power denominator such that
f(X) = f(β − X). Moreover if f(Z) is likewise parametrizable, then this can be
done by a polynomial in one or two variables.

1 Introduction

In this paper we shall consider integral-valued polynomials, by which we mean those
taking integral values on Z; they make up a ring, sometimes denoted Int(Z) (as in

[CC]). It contains the binomial polynomials
(
X
n

)
+ X(X−1)...(X−(n−1))

n! , showing that it
is strictly larger than Z[X]. (Actually, the binomial polynomials are free abelian-group
generators for it, a well-known fact easy to prove by taking finite differences.)

For a given integral-valued f , we explore here if and how the subset f(Z) of Z can
be parametrized by values of polynomials with integer coefficients, even if f has merely
rational coefficients. In this direction, note that if Nf(X) ∈ Z[X], N ∈ N \ {0}, the
polynomials gr(X) := f(r + NX) clearly have integer coefficients for any r ∈ Z and
satisfy ∪N−1r=0 gr(Z) = f(Z); hence a parametrization over Z is immediately written down
if we are allowed to use several polynomials for a given f .

However, it seems reasonable to seek a single polynomial g = gf , in any number m
of variables, but with integer coefficients, with the property that g(Zm) = f(Z).

In other words, roughly speaking our question is:

Question: For which integral-valued polynomials f(X) does there exist a polynomial
g ∈ Z[X1, . . . , Xm] such that g(Zm) = f(Z)? For instance: does such a g always exist?

And also: How can we describe such a possible g in terms of f , and in particular
how small can we take the number m of variables, provided some such g exists at all?

To our knowledge these questions do not appear explicitly in the literature, but they
are somewhat near to issues studied in [F] and [FV]. For instance, it follows from [FV]
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that the set of Pythagorean Triples of Z3, although parametrizable by a single triple of
integer-valued polynomials in four variables, cannot be parametrized by a single triple of
integer-coefficient polynomials in any number of variables. However, neither the results
nor the methods of these papers provide answers in the basic case considered here, that
is for a single polynomial f depending on a single variable. Here we shall obtain a simple
classification which may be considered in a sense complete and shall be stated very soon.

Three examples. Let us first see some simple examples illustrating what happens.

1. Consider the polynomial f(X) = X(1 − X)/2, which is integral-valued but has
not integer coefficients. Defining as above gr(X) = f(r + 2X) ∈ Z[X], we see that
f(Z) = g0(Z) ∪ g1(Z). This leaves us with two polynomials; however now the identity
f(X) = f(1−X) yields g1(X) = f(−2X) = g0(−X). So g0 and g1 take the same values
on Z and the conclusion is that f(Z) can be parametrized by the single polynomial
g0(X) ∈ Z[X]. Also, the same remains true for F (f(X)) in place of f(X), for any
F ∈ Z[X], so any power of 2 may appear as a denominator in a similar example.

The same phenomenon does not occur with binomial polynomials of higher degree; in
fact, we shall see that no odd prime number can divide the denominator of a polynomial
such that f(Z) is likewise parametrizable.

2. If we slightly change the data by setting f∗(X) = 3X(1 − 3X)/2 = f(3X)
where f is as at n. 1, we can easily realize that the same trick does not work (although
g0(Z) = f(Z), we do not have g0(3Z) = f(3Z)). Actually, a special case of our results says
that the present f∗(Z) cannot be parametrized by using a single variable. Nevertheless,
by using two variables we can succeed. More precisely, set L(Y1, Y2) := 3Y1 + Y 2

2 − 1;
one may verify (or see the arguments for Theorem 1.2 below) that f∗(Z) = g0(L(Z2)).

3. Let us change further the first example by setting f∗(X) = 15X(1−15X)/2. Now
neither the first nor the second trick work. Actually, it will follow that f∗(Z) is not of
the shape g(Zm), no matter the integer m and the polynomial g ∈ Z[Y1, . . . , Ym].

These examples give the complete picture, as in the following results:

Theorem 1.1 Let f(X) ∈ Q[X] \ Z[X] and suppose that there exists g ∈ Z[Y1, . . . , Ym]
such that f(Z) = g(Zm).

Then there exist odd coprime integers r, s, with s a prime power or 1, and a polyno-

mial F ∈ Z[X] such that f(X) = F ( sX(r−sX)
2 ). In particular 2

deg f
2 f(X/s) ∈ Z[X].

If we can take m = 1, i.e. g ∈ Z[Y ], then s is necessarily 1.
Finally, such r, s, F are uniquely determined by f .

Note that in particular deg f is even, f(2Xs ) is in Z[X] and f(X) = f( rs − X), an
invariance which determines r/s. This theorem admits the following strong converse.

Theorem 1.2 Let f(X) = F ( sX(r−sX)
2 ) for a polynomial F ∈ Z[X] and coprime odd

integers r, s, with s a prime power or 1. Then there exists a polynomial g ∈ Z[Y1, Y2]
such that f(Z) = g(Z2).

If either f ∈ Z[X] or s = 1, there exists g ∈ Z[Y ] with f(Z) = g(Z).
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In particular, these theorems show that if f(Z) = g(Zm) for some g ∈ Z[Y ] then one
can take m = 1 or 2. To test with little effort whether a given polynomial f(X) is of
the relevant shape, we have the following complementary result:

Criterion The polynomial f(X) ∈ Q[X] is of the shape F ( sX(r−sX)
2 ) for an F ∈ Z[X]

and coprime odd integers r, s if and only if f( rs −X) = f(X) and f(2X/s) ∈ Z[X].

These results will be proved in several steps, treated in separate sections. The proofs
give further informations on the shape of all the possible parametrizations, not stated
in the theorems for simplicity (see the final remarks).

Analogous results may hold over rings other than Z, and the case of rings of S-
integers in number fields will be the object of a future paper by the first author. Here
we shall not consider any such generalization.

Remark. It follows from Theorem 1.1 and the proof-arguments for Theorem 1.2 that if
f(Z) = g(Zm) for some g ∈ Z[Y1, . . . , Ym], then the strong local conditions hold that for
every prime p there exists gp ∈ Z(p)[Y1, Y2] with f(Z(p)) = gp(Z2

(p)). (Can this be proved

more directly?) However there is no local-global principle (i.e. a converse) in this sense:
a counterexample comes e.g. from the polynomial f∗(X) of Example 3 above.

Notation. We shall use throughout the following terminology.
- For a subset A of Z we say that A is Z-parametrizable if there exist m ∈ N and

a polynomial g ∈ Z[X] = Z[X1, . . . , Xm] such that A = g(Zm).
- For a prime p, as usual we shall denote the localization of Z at p by Z(p) = {r/s :

r, s ∈ Z, p - s}.
- Capital letters shall usually denote variables and lower-case letters specializations

of them to integers. Also, we shall use e.g. Y to denote (Y1, . . . , Ym).

Acknowledgments

We wish to thank S. Frisch and A. Schinzel for their kind interest.

2 Equations f(X) = f(Y )

We shall need some facts on the equation f(X) = f(Y ) for a polynomial f . They are
known, but for completeness we give short elementary proofs for them.

Proposition 2.1 Let f ∈ Q[X] be not constant. If for infinitely many integers n ∈ N
there exists q = qn ∈ Q such that f(q) = f(n) and q 6= n, then there exists β ∈ Q such
that f(X) = f(β −X). Moreover qn = −n+ β for all but finitely many such n.

Proof : Hilbert Irreducibility Theorem would be a comfortable tool; however for this
special case of the rational field a simple self-contained (Runge’s) argument is possible.

For n in our infinite set of integers, we have f(qn) = f(n) and qn 6= n. Let d = deg f
and let a be its leading coefficient. Since f(x) = axd + O(xd−1) for large x, we obtain

3



that qn = O(n) and qdn = nd + O(nd−1) = nd(1 + O(n−1)). Hence qn = εn + O(1),
where ε = ±1 may depend on n. Also, the equation f(qn) − f(n) = 0 implies that the
rational numbers qn have bounded denominators: if Df(X) ∈ Z[X] for D ∈ Z, we have
Daqn ∈ Z.

Then the rational numbers qn− εn are bounded in absolute value and have bounded
denominators, hence the function n 7→ qn − εn takes values in a finite set. If β is any
value taken infinitely many times for a fixed value of ε, we have f(εn+ β) = f(n) for an
infinity of n, which implies f(εX + β) = f(X) identically. If ε = 1, this forces β = 0,
hence qn = n, which is excluded. Therefore for all but finitely many n in our set we
must have ε = −1 and f(−X + β) = f(X) for each value β of qn + n taken infinitely
often. If this also holds for β′ in place of β, f is invariant for translation by β′ − β, and
so β′ = β, showing that β is uniquely determined and concluding the proof. �

Proposition 2.2 Let f ∈ Q[X] be nonconstant and let R,S ∈ Q[Y ] be also nonconstant
and such that f(R) = f(S). Then either R = S or R = −S + β for some β ∈ Q such
that f(X) = f(β −X) identically, and in this case β is uniquely determined by f .

Proof : This can be easily derived from the previous proposition, but here is a direct
short proof (a function field version of the previous one), which also leads to analogues
over fields other than Q. Write f(X) = aXd+ lower degree terms, where a 6= 0 and
d ≥ 1. If D = max(degR,degS) > 0 we see from f(R) = f(S) that the degree of
a(Rd − Sd) is ≤ (d− 1)D. Now, Rd − Sd is the product of factors R − ζS over all d-th
roots of unity ζ. Then, exactly one factor, say R − δS, vanishes or has degree < D. If
this factor vanishes, then δ = ±1 because R,S are over Q. If the factor does not vanish,
let D1 be its degree. Then deg a(Rd − Sd) = D1 + (d − 1)D, forcing D1 = 0. Hence
R = δS + β for a constant β. Again, we must have δ = ±1 and β ∈ Q. If δ = 1 then
f(S + β) = f(S), hence f(X) = f(X + β) and β = 0, because f is nonconstant and S
is transcendental. If δ = −1 then f(X) = f(−X + β) for the same reason. If β′ has the
same property, then f(X) = f(X + β′ − β), hence β = β′. �

3 Gauss norms

In the sequel we shall denote by v a valuation on a field K and we shall denote by Ov
the valuation ring; also, we shall denote by | |v the associated norm, normalized in some
way. As usual, | |p shall denote the p-adic norm on Q.

We recall the definition of the Gauss norm of a polynomial g ∈ K[X1, . . . , Xm],
simply as the sup-norm of the coefficients with respect to | |v; we shall denote it by
‖g‖v. Recall that if v is ultrametric the Gauss norm is multiplicative on K[X] (Gauss
Lemma) and extends | |v to an ultrametric norm on K(X).

Moreover, we have
|g(x)|v ≤ ‖g‖v for all x ∈ Omv .
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Proposition 3.1 Let p be a prime number, let f ∈ Q[X], Q ∈ Q[X1, . . . , Xm] and
suppose that ‖f(Q(X))‖p < ‖f(X)‖p.

Then either
(i) Q(X) = c+ pR(X) where c ∈ Z(p), R ∈ Z(p)[X] or
(ii) Q(X) = c(1 + pR(X)) where c ∈ Q \ Z(p), R ∈ Z(p)[X].

Proof : Let K be the splitting field over Q of the polynomial f(X) of degree d, and let
v be a valuation of K above p, with valuation ring Ov ⊂ K and uniformizer π (that is,
v(π) = 1). In Ov[X] we may factor f as

f(X) = a

d∏
i=1

(αiX − βi)

where a ∈ K and where αi, βi ∈ Ov are coprime, αi 6= 0.
Now, f ◦Q(X) = a

∏
i(αiQ(X)− βi) whence by assumption∏

i

‖αiQ(X)− βi‖v <
∏
i

‖αiX − βi‖v = 1.

So there is an index j such that ‖αjQ(X)− βj‖v < 1 which implies

‖Q(X)− ξj‖v < |αj |−1v (1)

where ξj = βj/αj ∈ K is the corresponding root of f .

First we consider the case π - αj , i.e. |αj |v = 1. By (1), ‖Q(X)− ξj‖v < 1.
We deduce that all the coefficients of Q except the constant term lie in pZ(p). Also,

|αj |v = 1 implies that ξj lies in Ov, hence the constant term of Q(X) belongs to Z(p).
All of this plainly yields the representation for Q written in case (i).

Suppose now that π|αj , which implies π - βj since αj and βj are coprime. Hence
|βj |v = 1 and ξj = βj/αj 6∈ Ov which means |ξj |v > 1. From equation (1) we have

‖Q− ξj‖v < |ξj |v.

We deduce that the coefficient of the i-th term in Q has the shape ξjπ
niui for i > 0,

whereas Q(0) = ξju0 where ni > 0 and ui ∈ O∗v . So there exists a polynomial S ∈ Ov[X]
such that S(0) = 0 and

Q(X) = Q(0)(1 + πS(X))

Since Q has rational coefficients, πS has coefficients in pZ(p). Note that |Q(0)|v =
|ξj |v > 1, so c := Q(0) ∈ Q \ Z(p), proving finally the stated representation. �

Proposition 3.2 Let H ∈ Q[Y1, . . . , Ym] and suppose that for a prime p the set H(Zm(p))∩
Z(p) is not contained in a single class modulo p. Let σ ∈ Q be such that |σ|p = ‖H‖p.
Then for any F ∈ Q[X] we have the Gauss-norm inequalities

‖F (X)‖p ≤ ‖F (σX)‖p ≤ ‖F (H)‖p.
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Proof : This could be easily derived from the previous proposition, but a direct proof
is perhaps even shorter. We remark at once that |σ|p ≥ 1, for otherwise H(Zm(p)) would
be contained in pZ(p), against the assumptions. This proves the left-hand inequality.

As to the right-hand one, by factoring F over Q it suffices to prove that for any
algebraic number γ and for any valuation of Q above p, we have

‖σX − γ‖v ≤ ‖H − γ‖v.

For this, let n ∈ T := H(Zm(p)) ∩ Z(p), so n = H(y
n
) for some y

n
∈ Zm(p). Then we have

n− γ = (H − γ)(y
n
); therefore, since |y

n
|v ≤ 1, we have for all n ∈ T

|n− γ|v ≤ ‖H − γ‖v.

Now, letting again n ∈ T (T is not empty by assumption), note that:
1. If |γ|v 6= |σ|v, then trivially ‖H − γ‖v = max(‖H‖v, |γ|v) = max(|σ|v, |γ|v).
2. If |γ|v = |σ|v then ‖H−γ‖v ≥ |γ|v, for otherwise from the last displayed inequality

we derive |n − γ|v < |γ|v for every n ∈ T . But this implies that |γ|v = |σ|v = 1 and in
turn that n ∈ T is constant modulo p, contrary to the assumptions.

Hence we have ‖H − γ‖v ≥ max{|σ|v, |γ|v}, which is just what we need since the
v-adic Gauss norm of σX − γ is precisely the right-hand side. �

4 Main arguments

In this section we prove Theorem 1.1. The proof will implicitly follow from a sequence
of five lemmas.

From now on we shall suppose that f ∈ Q[X] is a nonconstant polynomial such that
f(Z) is Z-parametrizable. For a suitable g ∈ Z[Y1, . . . , Ym] we shall then have

f(Z) = g(Zm). (2)

We let a, d be respectively the leading coefficient and degree of f . We assume that
f 6∈ Z[X] and we let p be a prime number occurring in the denominator of f . (This p
shall be shown to be 2, and from that point onwards the letter p shall not be restricted
in the present way.)

Let us express f(X)− g(Y ) as a product of factors in Q[X,Y ], writing

f(X)− g(Y ) = B(X,Y )
k∏
i=1

(X − Li(Y )), (3)

where Li ∈ Q[Y ] and where B ∈ Q[X,Y ] has no factor of degree < 2 in X.
Let us define

Ωi := {y ∈ Zm : Li(y) ∈ Z}, Ci := Li(Ωi). (4)

Note that
Ci = Li(Ωi) = Z ∩ Li(Zm) (5)
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Lemma 4.1 We have
⋃k
i=1 Ωi = Zm. In particular, k ≥ 1.

Proof : Note that if q ∈ N is a common denominator for all the coefficients of all the Li,
then each Ωi is a finite union of arithmetic progressions in Zm of modulus q, by which
we mean subsets of Zm of the shape α+qZm. Suppose that the conclusion is false. Then
there exists a whole arithmetic progression Ω = ρ + qZm ⊂ Zm disjoint from

⋃k
i=1 Ωi,

i.e. such that for all i = 1, . . . , k and all ω ∈ Ω, Li(ω) 6∈ Z.
By Hilbert Irreducibility Theorem there exists y ∈ Zm such that each factor of

B(X, ρ+qy) irreducible over Q has still degree> 1 inX; then the equation B(X, ρ+qy) =
0 has no rational root. Also, since ρ+ qy ∈ Ω, no factor X −Li(y) can have an integral
root. However, this is a contradiction with equation (3), because g(ρ+ qy) is supposed
to be in the image f(Z). This contradiction completes the proof. �

Lemma 4.2 We have either k = 1 or k = 2. In this last case there exists a unique
β ∈ Q such that f(X) = f(β −X) and L1(Y ) + L2(Y ) = β.

Proof : Note that for i, j = 1, . . . , k we have f(Li(Y )) = f(Lj(Y )) = g(Y ).
Clearly no Li can be constant and we may apply Proposition 2.2 to deduce that for

each i either Li = L1 or Li = βi − L1 for a rational βi such that f(X) = f(βi −X).
Now, the first case cannot occur for i > 1 because f(X)−g(Y ) has no multiple factors

inX (as its derivative f ′(X) is nonzero). Also, for the same reason the second case cannot
occur for more than one index i, because βi, if it exists, is uniquely determined by f
(see Prop. 2.2). Hence either k = 1, or k = 2, in which case L2 = β − L1 for a β ∈ Q,
uniquely determined, such that f(X) = f(β −X). �.

Lemma 4.3 We have k = p = 2 and, for i = 1, 2, Li(Y ) = ci + 2Ri(Y ) where ci ∈ Z(2),
Ri ∈ Z(2)[Y ], and also β = L1 +L2 ∈ Z(2) \ 2Z(2). Further, Ci contains all large integers
in the class ci modulo 2 and is contained in this class. Finally, C1∪C2 contains all large
integers, and C1 ∩ C2 is empty.

Proof : Since f has not p-integer coefficients but f(Li) = g does, we may apply
Proposition 3.1 with Li in place of Q. If the first alternative (i) of that lemma occurs for
i = 1 or i = 2 (if k = 2), then clearly Li(Ωi), which equals Li(Zm)∩Z (see equation (5)), is
either empty or anyway contained in a single class modulo p. If the second alternative (ii)
holds, then Ωi is certainly empty. In both cases we deduce that Ci = Li(Ωi) = Li(Zm)∩Z
is contained in a single class modulo p, and in particular Ci has upper density ≤ 1/p.

Now, f(Z) = g(Zm), so for all n ∈ Z there exists y
n
∈ Zm such that f(n) = g(y

n
) =

f(L1(yn)). The values L1(yn) are rational so by Proposition 2.1 for all large n we have
either n = L1(yn) or n = β − L1(yn) where f(β − X) = f(X). This last alternative
holds only if k = 2, in which case β − L1 = L2 and, for the relevant integers n, we have
n = β − L1(yn) = L2(yn). Hence all large elements of Z must lie in C1, if k = 1, or in
C1 ∪ C2 if k = 2.

Since the ‘density’ of Ci is ≤ p−1, all of this proves that k = 2, that p = 2, that no Ci
can be empty and that C1 ∩C2 is empty (because C1, C2 are contained in single residue
classes mod p which must be distinct since C1 ∪ C2 contains all large integers).
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In particular, for no index i = 1, 2 the second alternative (ii) of Proposition 3.1
can occur, so (i) holds in both cases and for i = 1, 2 we have the representation Li =
ci+2Ri(Y ), for 2-integral ci, Ri. Since C1∪C2 contains all large integers and since C1, C2

are disjoint, we deduce that each of them contains all large integers in a corresponding
residue class modulo 2, i.e. the class of ci. Since β = L1 + L2 it also follows that
β ∈ Z(2) \ 2Z(2). The lemma is thus proved. �

At the light of these facts, we may renumber the indices 1, 2 and change c1, c2 in
their class modulo 2Z(2) to assume that c1 = 0 and c2 = 1, so

L1(Y ) = 2R1(Y ), L2(Y ) = β − L1(Y ) = 1 + 2R2(Y ) R1, R2 ∈ Z(2)[Y ]. (6)

Also, we write, as we may,

β =
r

s
, B(X) = Bβ(X) :=

sX(r − sX)

2
. (7)

where r, s are coprime odd integers, s > 0. Note that B(X) = B(β−X) and that B(X)
is integral-valued but does not lie in Z[X].

Lemma 4.4 There exists a polynomial F ∈ Z[X] such that f(X) = F (Bβ(X)) where β
is the unique rational such that f(X) = f(β − X). In particular, the degree d of f is

even and 2
d
2 f(X/s) ∈ Z[X].

Proof : Note that [Q(X) : Q(B)] = 2 and Q(B) is contained in the subfield of Q(X)
invariant under the automorphism X 7→ β −X. Since this automorphism has order 2,
Q(B) is the full field of invariants, hence f ∈ Q(B). But X is integral over Q[B] so also
f(X) is integral. Since Q[B] is integrally closed, we conclude that f ∈ Q[B], so

f(X) = F (B(X))

for a polynomial F ∈ Q[X] (which could of course also be shown directly). This implies
that d = deg f = 2 degF , so d is even. To go on, we prove that F has integral coefficients.

For convenience we put u(X) := f(X/s) = F (X(r −X)/2).
Let p be a possible odd prime in the denominator of F . (This has not to be confused

with the possible prime divisor of the denominator of f , which has been shown to be 2.)
We shall distinguish some cases.

Suppose first that p|s (so p is odd). Since L1 + L2 = β, there is an index i ∈ {1, 2}
such that ‖Li‖p ≥ |β|p = |s−1|p. By Lemma 4.3, Z ∩ Li(Zm) contains all large integers
in a class modulo 2, hence is not contained in a single class modulo p. Therefore we may
apply (the right-hand inequality of) Proposition 3.2 with f in place of F and Li in place
of H. We obtain, letting σ ∈ Q be such that |σ|p = ‖Li‖p ≥ |s−1|p,

‖f(σX)‖p ≤ ‖f(Li)‖p.

The right side is ≤ 1 because f(Li) = g has integer coefficients. Hence f(σX) has p-
integral coefficients and a fortiori this is true of u(X). Suppose that G := ptF , t > 0, has
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p-integral coefficients not all divisible by p in Z(p). Then G(X(r −X)/2) = ptu(X) ≡ 0
(mod p), the reduction of X(r −X)/2 being defined since p > 2. But X(r −X)/2 has
nonconstant reduction mod p, hence this implies G ≡ 0 (mod p), a contradiction.

If p > 2 and p does not divide s, then u(X) has again p-adic integer coefficients,
since this is true of f(X), and then the last argument again proves that F ∈ Z(p)[X].

Hence no prime p 6= 2 may occur in the denominator of F . Let us now deal with the
case p = 2. We have

g(Y ) = f(L1(Y )) = F (
s2L1L2

2
) = F (s2R1(1 + 2R2)).

We apply Proposition 3.2 with p = 2, with this same F and with H = s2R1(1 + 2R2).
Note that by Lemma 4.3 (and taking into account the present index-numbering) the set
L1(Zm) contains all large integers ≡ 0 (mod 2), hence R1(Zm) contains all large integers.
Since s2(1 + 2R2(Zm)) consists of odd elements in Z(2), we deduce that H(Zm(2))∩Z(2) =

H(Zm(2)) is not contained in a single class modulo 2. Hence the assumptions of the lemma
are verified and we deduce that

‖F (X)‖2 ≤ ‖F (H)‖2 = ‖g‖2.

However g has integer coefficients, hence the right side is ≤ 1 and we deduce that F has
2-integer coefficients, as required. This completes the proof that F has coefficients in Z.
The final assertion is a consequence of the fact that F has degree d/2. �

Lemma 4.5 The integer s has at most one prime factor.

Proof : Suppose by contradiction that s is divisible by pq, where p, q are distinct (odd)
primes, so in particular β = r/s is not an integer. By Lemma 4.1 we have Ω1∪Ω2 = Zm,
i.e. for every y ∈ Zm either L1(y) ∈ Z or L2(y) ∈ Z. Since L1 +L2 = β (by Lemma 4.3)
we have L1(Zm) ⊂ Z ∪ (β + Z).

Moreover L1(Zm) is neither contained in Z nor in β+Z; for otherwise, since β is not
an integer, either the set Ω2 or Ω1 would be empty, which is not possible (for instance
because by Lemma 4.3 Li(Ωi) contains all large integers in a class modulo 2).

Let now D > 0 be an integer such that Q := DsL1 has integer coefficients. Then
Q(Zm) ⊂ DsZ ∪ (Dr + DsZ) and there is no inclusion in either of the two sets on the
right. This means that for any y ∈ Zm we have either Q(y) ≡ 0 (mod Ds) or Q(y) ≡ Dr
(mod Ds), and that both cases occur. Hence there exist y

1
, y

2
∈ Zm such that

Q(y
1
) ≡ 0 (mod Ds), Q(y

2
) ≡ Dr (mod Ds).

Let now pa, qb be the exact powers of p, q dividing D. Pick with the Chinese Theorem
z ∈ Zm so that z ≡ y

1
(mod pa+1) and z ≡ y

2
(mod qb+1). Since Ds is divisible by

pa+1qb+1 we have Q(z) ≡ 0 (mod pa+1) and Q(z) ≡ Dr (mod qb+1).
Now, suppose that Q(z) ≡ 0 (mod Ds). Then Dr ≡ 0 (mod qb+1), which is false

since r is coprime with s and hence with q. Hence Q(z) ≡ Dr (mod Ds), but then we
obtain 0 ≡ Dr (mod pa+1), which is also impossible by the same reason.
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This contradiction proves the lemma. �

Now observe that, as in Proposition 2.2, a β with f(X) = f(β − X) is unique if
it exists; since β = r/s, with r, s coprime integers with s > 0, also r, s are uniquely
determined, and hence so is the polynomial F . Therefore, combining the five lemmas
in this section, we immediately obtain Theorem 1.1, except for the assertion concerning
one-variable parametrizations.

Let us then suppose that some such parametrization exists, that is with m = 1 in
the above arguments. Then the polynomials L1, L2 introduced above depend only on a
single variable Y . By Lemma 4.3, Li(Ωi) consists of all large integers in a class modulo
2, apart from finitely many exceptions. Therefore L1, L2 are linear, and as in equation
(6) we may write L1 = 2R1, L2 = 1 + 2R2 = β − L1 where R1, R2 are polynomials
over Z(2) of the shape R1(Y ) = µY + ρ1, R2 = −µY + ρ2, where µ, ρ1, ρ2 ∈ Z(2). Since
Ω1 ∪ Ω2 = Z (by Lemma 4.1) we see that µ must be in Z (for otherwise Ω1 ∪ Ω2 would
be contained in the union of two residue classes modulo an integer l ≥ 3). In turn, this
forces 2ρ1, 2ρ2 ∈ Z (and hence ρ1, ρ2 ∈ Z). Finally, β = L1 +L2 = 1 + 2ρ1 + 2ρ2 also lies
in Z, hence s = ±1 as required.

The proof of the theorem (and more) is now complete.

5 Proofs of remaining assertions

In this section we retain the notation of the previous one.
We start by proving that if f(X) is of the stated shape F ( sX(r−sX)

2 ) for a polynomial
F ∈ Z[X] and r, s coprime odd integers, with s > 0 divisible by at most one prime, then
f(Z) may be parametrized by a polynomial in two variables with integer coefficients. In
doing this, we see on composing on the left with F that it suffices to consider the case
f(X) = sX(r − sX)/2.

We may write s = pt with p an odd prime and t ∈ N. Observe that in this case there
exists a polynomial P ∈ Z[Y ] such that for all y ∈ Z we have 2P (y) ≡ 0 or r (mod s),
and such that both congruences can be attained. It suffices e.g. to set P (y) = r+s

2 yϕ(s),

where ϕ(s) is Euler’s function: if y is divisible by p, then yϕ(s) is divisible by pp
t−1(p−1),

hence by pt = s, whereas if y is coprime to p, yϕ(s) ≡ 1 (mod s).

Let us define

R(Y1, Y2) := sY1 + P (Y2), G(X) := X(r − 2X), g := G ◦R.

We contend that f(Z) = g(Z2), by proving separately two inclusions.

1. Let (y1, y2) ∈ Z2. Suppose first that R(y1, y2) ≡ 0 (mod s) and write R(y1, y2) =
sl for l ∈ Z. Then g(y1, y2) = sl(r − 2sl) = f(2l).

If instead 2R(y1, y2) ≡ r (mod s), write r − 2R(y1, y2) = sl with l ∈ Z. Now
g(y1, y2) = 2R(y1, y2)(r − 2R(y1, y2))/2 = (r − sl)sl/2 = f(l).

This proves that g(Z2) ⊂ f(Z).
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2. Let now n ∈ Z. If n = 2l is even, let us solve in integers R(y1, y2) = sl: we may do
this by choosing any y2 with P (y2) ≡ 0 (mod s) and then defining y1 := l − (P (y2)/s).
Then g(y1, y2) = sl(r − 2sl) = f(2l) = f(n), as wanted.

If instead n is odd, let us solve 2R(y1, y2) = r − sl. Again, this is possible because
r − sl is even and congruent to r (mod s): it suffices to find y2 so that 2P (y2) ≡ r
(mod s) and determine y1 accordingly, as before. We now find g(y1, y2) = f(n).

This proves that f(Z) ⊂ g(Z2), concluding the proof of the first part of Theorem 1.2.

If s = 1 we need no congruence modulo s (just modulo 2), and this allows us to
use just one variable. The argument is completely similar, and simpler: We define
R(X) = X so g(X) = X(r − 2X), and we may check as above that f(Z) = g(Z): we
have f(2l) = g(l) and f(2l+ 1) = f(r− 1− 2l) = g( r−12 − l). (See also Example 1 in the
Introduction.)

This completes the proof of Theorem 1.2. �

Let us now conclude by proving the Criterion. The ‘only if’ part is immediate.
Conversely, let us suppose that f( rs−X) = f(X) and f(2X/s) ∈ Z[X]. The first property
implies, as at the beginning of the proof of Lemma 4.4, that f(2X/s) = F (X(r − 2X))
for some polynomial F ∈ Q[X]. Suppose now by contradiction that F has not integral
coefficients, so ‖F‖p > 1 for some prime p. Then, setting Q(X) = X(r − 2X), we have
‖F (Q)‖p < ‖F‖p, hence we may apply Proposition 3.1 (with F in place of f). Since r is
odd it is however immediately checked that neither (i) nor (ii) in the conclusion of that
proposition apply to the present Q(X), which yields the required contradiction. �

Final remarks. As already observed, the proofs give more precise conclusions on the
structure of the parametrizations than what is stated in the theorems. For instance:

1. We have seen that if f(Z) = g(Zm) for an integer valued f not in Z[X], then g
is necessarily of the shape f ◦ L, where L is a polynomial satisfying suitable conditions,
e.g. of congruence type.

2. Concerning the parametrizations in two variables appearing in Theorem 1.2, the
proofs show that L may be taken linear in one variable. (The question whether one can
take it linear in all variables reduces to the case of one variable.)
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