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Abstract

We consider the problem: −div(p∇u) = uq−1 + λu, u > 0 in Ω, u = 0 on ∂Ω.
Where Ω is a bounded domain in IRn, n ≥ 3, p : Ω̄ −→ IR is a given positive weight
such that p ∈ H1(Ω) ∩ C(Ω̄), λ is a real constant and q = 2n

n−2
. We study the e�ect

of the behavior of p near its minima and the impact of the geometry of domain on
the existence of solutions for the above problem.
Key Words: Critical Sobolev exponent, variational methods.
2000 Mathematics Subject Classi�cation: 35J20, 35J25, 35J60.

1 Introduction
In this paper we study the following problem:











−div(p(x)∇u) = uq−1 + λu in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in IRn, n ≥ 3, p : Ω̄ −→ IR is a given positive weight such
that p ∈ H1(Ω) ∩ C(Ω̄), λ is a real constant and q = 2n

n−2 is the critical exponent for the
Sobolev embedding of H1

0 (Ω) into Lq(Ω).
In [BN], Brezis and Nirenberg treated the case where p is constant. They proved, in par-
ticular, the existence of a solution of (1.1) for 0 < λ < λ1 if n ≥ 4 and for λ∗ < λ < λ1 if
n = 3, where λ1 is the �rst eigenvalue of −∆ on Ω with zero Dirichlet boundary condition
and λ∗ is a positive constant.
In this paper, we extend this result to the general case of where p is not constant. The
study of problem (1.1), shows that the existence of solutions depends, apart from param-
eter λ, on the behavior of p near its minima and on the geometry of the domain Ω.
Set p0 = min{p(x), x ∈ Ω̄}, we suppose that p−1({p0})∩Ω 6= ∅ and let a ∈ p−1({p0})∩Ω.
In the �rst part of this work, we study the e�ect of the behavior of p near its minima on
the existence of solution for our problem. The method that is mostly relied upon, apart
from the identities of Pohozeav, is the adaptations to the new context of the arguments
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developed in [BN].
We assume that, in a neighborhood of a, p behaves like

(1.2) p(x) = p0 + βk|x − a|k + |x − a|kθ(x),

with k > 0, βk > 0 and θ(x) tends to 0 when x tends to a.
Note that the parameter k will play an essential role in the study of our problem. Indeed,
2 appears as a critical value for k. More precisely the case k > 2 is treated by a classical
procedure, however the case 0 < k ≤ 2 is less easily accessible. Therefore, in this case,
we restrict ourself to the case where p satis�es the additional condition

(1.3) kβk ≤
∇p(x).(x − a)

|x − a|k
a.e x ∈ Ω.

Let us notice that if p is su�ciently smooth, then condition (1.2) follows directly from
Taylor's expansion of p near a.
The fact that 2 is a critical value for k appears clearly in dimension n = 4, therefore, in
this dimension and with the aim of obtaining more explicit results, we assume moreover
that θ satis�es

∫

B(a,1)
θ(x)

|x−a|4
dx < ∞. Let us emphasize that this last condition is not

necessary to prove the existence of solutions.
Moreover, in dimension n = 3, the problem is more delicate, then we treat it in a particular
case; more precisely for p(x) = p0 + βk|x − a|k, k > 0.
The �rst result of this paper is the following

Theorem 1.1
Assume that p ∈ H1(Ω)∩C(Ω̄) satis�es (1.2). Let λdiv

1 be the �rst eigenvalue of −div(p(x)∇.)

on Ω with zero Dirichlet boundary condition, we have
1)If n ≥ 4 and k > 2, then for every λ ∈]0, λdiv

1 [ there exists a solution of (1.1).
2)If n ≥ 4 and k = 2, then there exists a constant γ̃(n) = (n−2)n(n+2)

4(n−1) β2 such that for
every λ ∈]γ̃(n), λdiv

1 [ there exists a solution of (1.1).
3)If n = 3 and k ≥ 2, then there exists a constant γ(k) > 0 such that for every
λ ∈]γ(k), λdiv

1 [ there exists a solution of (1.1).
4)If n ≥ 3, 0 < k < 2 and p satis�es the condition (1.3) then there exists λ∗ ∈ [β̃k

n2

4 , λdiv
1 [,

where β̃k = βk min[(diam Ω)k−2, 1], such that for any λ ∈]λ∗, λdiv
1 [ problem (1.1) admits

a solution.
5)If n ≥ 3 and k > 0, then for every λ ≤ 0 there is no minimizing solution of equation
(1.1).
6)If n ≥ 3 and k > 0, then there is no solution of problem (1.1) for every λ ≥ λdiv

1 .

Remark 1.1
In general, the intervals ]γ̃(n), λdiv

1 [ in 2) and [β̃k
n2

4 , λdiv
1 [ in 4), may be empty. But there

are some su�cient conditions for which the above intervals are nonempty:
1) If p0 >

n(n − 4)

(n − 1)(n − 2)2
β2 (diam Ω)2, then γ̃(n) < λdiv

1 .
Notice that this condition is always true if n is rather large.
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2) If p0 >
β̃kn

2

(n − 2)2 (diam Ω)2
, then β̃k

n2

4 < λdiv
1 .

The second part of this work is dedicated to the study of the e�ect of the geometry of
the domain on the existence of solutions of our problem. More precisely, since for λ = 0

and p ∈ H1(Ω) ∩ C(Ω̄) satisfying ∇p(x).(x − a) > 0 a.e in Ω, the problem (1.1) does not
have a solution for a starshaped domain about a, we will modify the geometry of Ω in
order to �nd a solution. Therefore, let Ω ⊂ IRn, n ≥ 3 be a starshaped domain about a

and let ε > 0, we will study the existence of solution of the problem

(Iε)











−div(p(x)∇u) = uq−1 in Ωε,
u > 0 in Ωε,
u = 0 on ∂Ωε,

where Ωε = Ω \ B̄(a, ε).
For p ≡ 1 and λ = 0, the problem (1.1) has been �rst investigated in [C] and an in-
teresting result of existence has been proved for domains with holes. In [BaC], this last
result is extended to all domains having "nontrivial" topology (in a suitable sense). This
nontrivially condition (which covers a large class of domains) is only su�cient for the
solvability but not necessary as shown by some examples of contractible domains Ω for
which (1.1) has solutions (see [D], [Di], [Pa]).
In other direction, [Le] shows that the solution of [C], on a domain with a hole of diameter
ε and center x0, concentrates at the point x0. In [H], the author generalized the result of
[C] for the case where uq is replaced by uq + µuα, where µ ∈ IR and 1 < α < q.
In this work, we consider the case where p ∈ H1(Ω)∩C(Ω̄) and satisfying∇p(x).(x−a) > 0

a.e on Ω \ {a}. The method we use in this part is an adaptation of those used in [C] and
[H]. More particularly, we use the min-max techniques and a variant of the Ambrosetti-
Rabinowitz theorem, see [AR].
The second result of this paper is the following

Theorem 1.2
There exists ε0 = ε0(Ω, p) > 0 such that for 0 < ε < ε0 the problem (Iε) has at least one
solution in H1

0 (Ωε).

The rest of this paper is divided into three sections. In Section 2 some preliminary results
will be established. Section 3 and Section 4 are devoted respectively to the proof of
Theorem 1.1 and the proof of Theorem 1.2.

2 Some preliminary results
We start by recalling some notations which will be frequently used throughout the rest
of this paper. First, we de�ne

S = inf
u∈H1

0 (Ω),‖u‖q=1
‖∇u‖2

2
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that corresponds to the best constant for the Sobolev embedding H1
0 (Ω) ⊂ Lq(Ω). Let us

denote by Ua,ε an extremal function for the Sobolev inequality

Ua,ε(x) =
1

(ε + |x − a|2)
n−2

2

, x ∈ IRn.

We set

(2.1) ua,ε(x) = ζ(x)Ua,ε(x) , x ∈ IRn,

where ζ ∈ C∞
0 (Ω̄) is a �xed function such that 0 ≤ ζ ≤ 1, and ζ ≡ 1 in some neighborhood

of a included in Ω.
We know from [BN] that

‖∇ua,ε‖
2
2 =

K1

ε
n−2

2

+ O(1),(2.2)

‖ ua,ε ‖
2
q=

K2

ε
n−2

2

+ O(ε)(2.3)

and

‖ ua,ε ‖
2
2 =







K3

ε
n−4

2
+ O(1) if n ≥ 5

ω4
2 | log ε| + O(1) if n = 4

(2.4)

where K1 and K2 are positive constants with K1
K2

= S, ω4 is the area of S3 and K3 =
∫

IRn

1

(1 + |x|2)n−2
dx.

We shall state some auxiliary results.
For p ∈ C1(Ω̄) or p ∈ H1(Ω) ∩ C(Ω̄) and ∇p(x).(x − a) ≥ 0 a.e x ∈ Ω, we consider

α(p) =
1

2
inf

u∈H1
0 (Ω),u6=0

∫

Ω ∇p(x).(x − a)|∇u|2dx
∫

Ω |u|2dx
.

We easily see that α(p) ∈ [−∞, +∞[, and we have the following result

Proposition 2.1
1) If p ∈ C1(Ω) and if there exists b ∈ Ω such that ∇p(b)(b − a) < 0, then α(p) = −∞.
2) If p ∈ H1(Ω) ∩ C(Ω̄) satisfying (1.2) and ∇p(x).(x − a) ≥ 0 a.e x ∈ Ω, we have
2.a) If k > 2 and p ∈ C1(Ω), then α(p) = 0 for all n ≥ 3.
2.b) If 0 < k ≤ 2 and p satis�es condition (1.3) then for all n ≥ 3 we have

k

2
βk

(

n + k − 2

2

)2

(diam Ω)k−2 ≤ α(p).

Proof. We start by proving 1). Set q(x) = ∇p(x).(x − a), ∀x ∈ Ω and let ϕ ∈ C∞
0 (IRn)

such that 0 ≤ ϕ ≤ 1 on IRn, ϕ ≡ 1 on the ball {x, |x| < r}, and ϕ ≡ 0 outside the ball
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{x, |x| < 2r}, where r < 1 is a positive constant .
Set ϕj(x) = ϕ(j(x − b)) for j ∈ N∗. We have

α(p) ≤
1

2

∫

Ω q(x)|∇ϕj(x)|2dx
∫

Ω |ϕj |2dx

≤
1

2

∫

B(b, 2r
j

) q(x)|∇ϕj(x)|2dx
∫

B(b, 2r
j

) |ϕj |2dx
.

Using the change of variable y = j(x − b), we get

α(p) ≤
j2

2

∫

B(0,2r) q(y
j

+ b)|∇ϕ(x)|2dx
∫

B(0,2r) |ϕ|
2dx

.

Applying the Dominated Convergence Theorem, we obtain

α(p) ≤
j2

2

[

q(b)

∫

B(0,2r) |∇ϕ(x)|2dx
∫

B(0,2r) |ϕ|
2dx

+ o(1)

]

.

Letting j → ∞, we deduce the desired result.
Now we will prove 2.a).
Using (1.2) and since p ∈ C1(Ω) in a neighborhood V of a, we write

p(x) = p0 + βk|x − a|k + θ1(x),(2.5)

where θ1 ∈ C1(V ) is such that

lim
x→a

θ1(x)

|x − a|k
= 0.(2.6)

Looking at (2.6), we deduce that there exists 0 < r < 1, such that

(2.7) θ1(x) ≤ |x − a|k ∀x ∈ B(a, 2r).

Let ϕ ∈ C∞
0 (IRn) be a function such that 0 ≤ ϕ ≤ 1 on IRn, ϕ ≡ 1 on the ball {x, |x| < r},

and ϕ ≡ 0 outside the ball {x, |x| < 2r}. Set ϕj(x) = ϕ(j(x − a)) for j ∈ N∗, we have

0 ≤ α(p) ≤
1

2

∫

Ω ∇p(x).(x − a)|∇ϕj(x)|2dx
∫

Ω |ϕj |2dx
.

Using (2.5), we see that

0 ≤ α(p) ≤
kβk

2

∫

B(a, 2r
j

)
|x − a|k|∇ϕj(x)|2dx

∫

B(a, 2r
j

)
|ϕj |2dx

+
1

2

∫

B(a, 2r
j

)
∇θ1(x).(x − a)|∇ϕj(x)|2dx

∫

B(a, 2r
j

)
|ϕj |2dx

.

Performing the change of variable y = j(x− a), and integrating by parts the second term
of the right hand side, we obtain

0 ≤ α(p) ≤
kβk

2jk−2

∫

B(0,2r)
|y|k|∇ϕ(y)|2dx

∫

B(0,2r)
|ϕ|2dx

+
j

2

∫

B(0,2r)
θ1(

y
j

+ a)∇(y|∇ϕ(y)|2)dx
∫

B(0,2r)
|ϕ|2dx

.
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Using (2.7), we write

0 ≤ α(p) ≤
kβk

2jk−2

∫

B(0,2r)
|y|k|∇ϕ(y)|2dx

∫

B(0,2r)
|ϕ|2dx

+
1

2jk−1

∫

B(0,2r)
|y|k∇(|∇ϕ(y)|2y)dx
∫

B(0,2r)
|ϕ|2dx

.

Therefore, for k > 2 we deduce that α(p) = 0, and this �nishes the proof of this case.
Now, in order to prove 2.b), we need to recall the following Hardy's inequality, see for
example [CKN] or Theorem 330 in [HLP].

Lemma 2.1
Let t ∈ IR such that t + n > 0, we have ∀u ∈ H1

0 (Ω)
∫

Ω
|x|t|u|2dx ≤ (

2

n + t
)2

∫

Ω
|x.∇u|2|x|tdx.

Moreover the constant ( 2
n+t

)2 is optimal and is not achieved.

Now we prove 2.b). Since p satis�es (1.3), we have for all u ∈ H1
0 (Ω) \ {0},

∫

Ω ∇p(x).(x − a)|∇u(x)|2dx
∫

Ω |u(x)|2dx
≥ kβk

∫

Ω |x − a|k|∇u(x)|2dx
∫

Ω |u(x)|2dx
.

By applying the last Lemma for 0 < k = 2 + t ≤ 2, we �nd
∫

Ω ∇p(x).(x − a)|∇u(x)|2dx
∫

Ω |u|2dx
≥ kβk

(

n + k − 2

2

)2

(diam Ω)k−2 .

This implies that α(p) ≥ k
2βk(

n+k−2
2 )2(diam Ω)k−2. 2

Let us give the following non-existence result

Proposition 2.2
We assume that α(p) > −∞. There is no solution for (1.1) when λ ≤ α(p) and Ω is a
starshaped domain about a.

Proof. This follows from Pohozev's identity. Suppose that u is a solution of (1.1). We
�rst multiply (1.1) by ∇u(x).(x − a), next we integrate over Ω and we obtain

(2.8)
∫

Ω
uq−1∇u(x).(x − a)dx = −

n − 2

2

∫

Ω
|u(x)|qdx,

(2.9) λ

∫

Ω
u∇u(x).(x − a)dx = −

n

2
λ

∫

Ω
|u(x)|2dx

and

(2.10)

∫

Ω
−div(p(x)∇u)∇u(x).(x − a)dx = −

n − 2

2

∫

Ω
p(x)|∇u(x)|2dx

−
1

2

∫

Ω
∇p(x).(x − a)|∇u(x)|2dx

−
1

2

∫

∂Ω
p(x)(x − a).ν|

∂u

∂ν
|2dx,
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where ν denotes the outward normal to ∂Ω.
Combining (2.8), (2.9) and (2.10), we write
(2.11)

−n−2
2

∫

Ω
p(x)|∇u(x)|2dx −

1

2

∫

Ω
∇p(x).(x − a)|∇u(x)|2dx =

−
n − 2

2

∫

Ω
|u(x)|qdx −

n

2
λ

∫

Ω
|u(x)|2dx.

On the other hand, we multiply (1.1) by n−2
2 u and we integrate by parts, we get

(2.12) n − 2

2

∫

Ω
p(x)|∇u(x)|2dx =

n − 2

2

∫

Ω
|u(x)|qdx +

n − 2

2
λ

∫

Ω
|u(x)|2dx.

Combining (2.11) and (2.12), we obtain

λ

∫

Ω
|u(x)|2dx −

1

2

∫

Ω
∇p(x).(x − a)|∇u(x)|2dx −

1

2

∫

∂Ω
p(x)|

∂u

∂ν
|2(x − a).νdx = 0.

If Ω is starshaped about a, then (x − a).ν > 0 on ∂Ω, and

λ

∫

Ω
|u(x)|2dx −

1

2

∫

Ω
∇p(x).(x − a)|∇u(x)|2dx > 0.

It follows that

λ >
1

2

∫

Ω
∇p(x).(x − a)|∇u(x)|2dx

∫

Ω
|u|2dx

and we obtain the desired result. 2

3 Existence of solutions

Let Ω ∈ IRn, n ≥ 3 be a bounded domain. In this section, we show that (1.1) possesses a
solution of lower energy less than p0S. We will use a minimization technique.
Set

Qλ(u) =

∫

Ω p(x)|∇u(x)|2dx − λ
∫

Ω |u(x)|2dx

‖ u ‖2
q

(3.1)

the functional associated to (1.1).
We de�ne

Sλ(p) = inf
u∈H1

0 (Ω),u 6=0
Qλ(u).(3.2)

Let us remark that

Sλ(p) = inf
u∈H1

0 (Ω),‖u‖q=1

∫

Ω
p(x)|∇u(x)|2dx − λ

∫

Ω
|u(x)|2dx.

The method used for the proof of Theorem 1.1 is the following : First we show that
Sλ(p) < p0S, we then prove that the in�mum Sλ(p) is achieved.
We have the following result
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Lemma 3.1
If Sλ(p) < p0S for some λ > 0, then the in�mum in (3.2) is achieved.

Proof. Let {uj} ⊂ H1
0 (Ω) be a minimizing sequence for (3.2) that is,

‖uj‖q = 1,(3.3)

∫

Ω
p(x)|∇uj(x)|2dx − λ

∫

Ω
|uj(x)|2dx = Sλ(p) + o(1) as j → ∞.(3.4)

The sequence uj is bounded in H1
0 (Ω). Indeed, from (3.4), we have

∫

Ω
p(x)|∇uj(x)|2dx = Sλ(p) + λ

∫

Ω
|uj(x)|2dx + o(1).

Using the embedding of Lq(Ω) into L2(Ω), there exists a positive constant C1 such that
∫

Ω
p(x)|∇uj(x)|2dx ≤ Sλ(p) + λC1‖uj‖

2
q + o(1).

Using the fact that
‖uj‖q = 1,

we obtain
∫

Ω
p(x)|∇uj(x)|2dx ≤ Sλ(p) + λ C1 + o(1).

Since 0 < p0 ≤ p(x) for every x ∈ Ω, we deduce
∫

Ω
|∇uj(x)|2dx ≤

Sλ(p) + λC1

p0

+ o(1).

This gives the desired result.
Since {uj} is bounded in H1

0 (Ω) we may extract a subsequence still denoted by uj , such
that

uj ⇀ u weakly in H1
0 (Ω),

uj → u strongly in L2(Ω),

uj → u a.e. on Ω,

with ‖u‖q ≤ 1. Set vj = uj − u, so that

vj ⇀ 0 weakly in H1
0 (Ω)

vj → 0 strongly in L2(Ω),

vj → 0 a.e. on Ω.

Using (3.3), the de�nition of S and the fact that min
Ω̄

p(x) = p0 > 0, we have

∫

Ω
p(x)|∇uj(x)|2dx ≥ p0S.

8



From (3.4) it follows that λ‖u‖2
2 ≥ p0S − Sλ(p) > 0 and therefore u 6= 0. Using again

(3.4) we obtain

(3.5)
∫

Ω
p(x)|∇u(x)|2dx +

∫

Ω
p(x)|∇vj(x)|2dx − λ

∫

Ω
|u(x)|2dx = Sλ(p) + o(1),

since vj ⇀ 0 weakly in H1
0 (Ω). On the other hand, it follows from a result of [BL] that

‖u + vj‖
q
q = ‖u‖q

q + ‖vj‖
q
q + o(1),

(which holds since vj is bounded in Lq and vj → 0 a.e.). Thus, by (3.3), we have

1 = ‖u‖q
q + ‖vj‖

q
q + o(1)

and therefore
1 ≤ ‖u‖2

q + ‖vj‖
2
q + o(1),

which leads to

1 ≤ ‖u‖q
q +

1

p0S

∫

Ω
p(x)|∇vj(x)|2dx + o(1).(3.6)

We distinguish two cases:
(a) Sλ(p) > 0, which corresponds to 0 < λ < λdiv

1 ,

(b) Sλ(p) ≤ 0, which corresponds to λ ≥ λdiv
1 .

In case (a) we deduce from (3.6) that

Sλ(p) ≤ Sλ(p)‖u‖2
q + (

Sλ(p)

p0S
)

∫

Ω
p(x)|∇vj(x)|2dx + o(1).(3.7)

Combining (3.5) and (3.7) we obtain
∫

Ω p(x)|∇u(x)|2 − λ|u(x)|2dx +
∫

Ω p(x)|∇vj(x)|2dx ≤ Sλ(p)‖u‖2
q

+(
Sλ(p)

p0S
)

∫

Ω
p(x)|∇vj(x)|2dx + o(1).

Thus
∫

Ω p(x)|∇u(x)|2dx − λ
∫

Ω |u(x)|2dx ≤ Sλ(p)‖u‖2
q

+

[

Sλ(p)

p0S
− 1

] ∫

Ω
p(x)|∇vj(x)|2dx + o(1).

Since Sλ(p) < p0S, we deduce
∫

Ω
p(x)|∇u(x)|2dx − λ

∫

Ω
|u(x)|2dx ≤ Sλ(p)‖u‖2

q ,(3.8)

this means that u is a minimum of Sλ(p).
In case (b), since ‖u‖2

q ≤ 1, we have Sλ(p) ≤ Sλ(p)‖u‖2
q . Again, we deduce (3.8) from

(3.5). This concludes the proof of Lemma 3.1. 2

To prove assertion 1) and 2) of Theorem 1.1 (case k ≥ 2), we need the following

9



Lemma 3.2
a) For n ≥ 4, we have

Sλ(p) < p0S for all λ > 0 and for k > 2.

b) For n = 4 and k = 2, we have

Sλ(p) < p0S for all λ > 4β2.

c) For n ≥ 5 and k = 2, we have

Sλ(p) < p0S for all λ >
(n − 2)n(n + 2)

4(n − 1)
β2.

d) For n = 3 and k ≥ 2, we have

Sλ(p) < p0S for all λ > γ(k) where γ(k) is a positive constant.

Proof. We shall estimate the ratio Qλ(u) de�ned in (3.1), with u = ua,ε.
We claim that, as ε → 0, we have
(3.9)

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx ≤































































p0K1 + O(ε
n−2

2 ) if
{

n ≥ 4 and
n − 2 < k,

p0K1 + A
k
ε

k
2 + o(ε

k
2 ) if

{

n ≥ 4 and
n − 2 > k,

p0K1 +
(n − 2)2(βn−2 + M)ωnε

n−2
2 | log ε|

2
+ o(ε

n−2
2 | log ε|) if

{

n > 4 and
k = n − 2,

p0K1 + 2β2ω4ε| log ε| + o(ε| log ε|) if
{

n = 4 and
k = 2,

with K1 = (n−2)2
∫

IRn

|y|2

(1+|y|2)n dy, s = min(k
2 , n−2

2 ), A
k

= (n−2)2βk

∫

IRn

|x|k+2

(1+|x|2)n dx and
M is a positive constant.

Veri�cation of (3.9)
1. Case n ≥ 4 and k > 0, with k 6= 2 if n = 4.
We have

∫

Ω
p(x)|∇ua,ε(x)|2dx =

∫

Ω

p(x)|∇ζ(x)|2

(ε + |x − a|2)n−2
dx + (n − 2)2

∫

Ω

p(x)|ζ(x)|2|x − a|2

(ε + |x − a|2)n
dx

− 2(n − 2)

∫

Ω

p(x)ζ(x)∇ζ(x)(x − a)

(ε + |x − a|2)n−1
dx.

10



Since ζ ≡ 1 on a neighborhood of a, we assume that ϕ ≡ 1 on B(a, l) with l is a small
positive constant. Therefore we get |∇ϕ|2 ≡ 0 on B(a, l) and ∇ϕ(x).(x − a) = 0 on
B(a, l).
Thus, we obtain

(3.10)
∫

Ω
p(x)|∇ua,ε(x)|2dx =

∫

Ω\B(a,l)

p(x)|∇ζ(x)|2

(ε + |x − a|2)n−2
dx+(n − 2)2

∫

Ω

p(x)|ζ(x)|2|x − a|2

(ε + |x − a|2)n
dx

− 2(n − 2)

∫

Ω\B(a,l)

p(x)ζ(x)∇ζ(x)(x − a)

(ε + |x − a|2)n−1
dx.

Therefore, applying the Dominated Convergence Theorem, (3.10) becomes

∫

Ω
p(x)|∇ua,ε(x)|2dx = (n − 2)2

∫

Ω

p(x)|ζ(x)|2|x − a|2

(ε + |x − a|2)n
dx + O(1).

Using (1.2), a direct computation gives

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx = (n − 2)2p0ε

n−2
2

∫

Ω

|x − a|2

(ε + |x − a|2)n
dx

+ (n − 2)2ε
n−2

2 βk

∫

Ω

|x − a|k+2

(ε + |x − a|2)n
dx

+ (n − 2)2ε
n−2

2

∫

Ω

|x − a|k+2θ(x)

(ε + |x − a|2)n
dx

+ (n − 2)2ε
n−2

2

∫

Ω

|x − a|k+2(βk + θ(x))(|ζ(x)|2 − 1)

(ε + |x − a|2)n
dx

+ O(ε
n−2

2 ).

Using again the de�nition of ζ, and applying the Dominated Convergence Theorem, we
obtain

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx = (n − 2)2p0ε

n−2
2

∫

Ω

|x − a|2

(ε+ |x − a|2)n
dx

+ (n − 2)2ε
n−2

2 βk

∫

Ω

|x − a|k+2

(ε + |x − a|2)n

+ (n − 2)2ε
n−2

2

∫

Ω

|x − a|k+2θ(x)

(ε + |x − a|2)n
dx + O(ε

n−2
2 ).
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Here we will consider the following three subcases:
1.1. If n − 2 > k,

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx

= p0(n − 2)2ε
n−2

2

[

∫

IRn

|x − a|2

(ε + |x − a|2)n
dx −

∫

IRn\Ω

|x − a|2

(ε + |x − a|2)n
dx

]

= (n − 2)2ε
n−2

2

[

∫

IRn

|x − a|k+2(βk + θ(x))

(ε + |x − a|2)n
−

∫

IRn\Ω

|x − a|k+2(βk + θ(x))

(ε + |x − a|2)n

]

= O(ε
n−2

2 ).

Using a simple change of variable and applying the Dominated Convergence Theorem,
we �nd

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx = p0

∫

IRn

|y|2

(1 + |y|2)n
+(n − 2)2ε

k
2

∫

IRn

|y|k+2(βk + θ(a + ε
1
2 y))

(1 + |y|2)n
dy

+ o(ε
k
2 ).

The fact that θ(x) tends to 0 when x tends to a gives that

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx = p0K1 + A

k
ε

k
2 + o(ε

k
2 ),

with K1 = (n − 2)2
∫

IRn

|y|2

(1+|y|2)n dy and A
k

= βk

∫

IRn

|y|k+2

(1+|y|2)n dy.

1.2. If n − 2 < k,

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx = p0K1 + (n − 2)2βkε

n−2
2

∫

Ω

|x − a|k+2

(ε + |x − a|2)n
dx

+ (n − 2)2ε
n−2

2

∫

Ω

|x − a|k+2θ(x)

(ε + |x − a|2)n
dx + O(ε

n−2
2 ).

Since Ω is a bounded domain, there exists some positive constant R such that Ω ⊂ B(a,R)

and thus

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx= p0K1 + O(ε

n−2
2 )

+(n − 2)2ε
n−2

2

[

∫

B(a,R)

|x − a|k+2(βk + θ(x))

(ε + |x − a|2)n
dx −

∫

B(a,R)\Ω

|x − a|k+2(βk + θ(x)

(ε + |x − a|2)n
dx

]

.

By a simple change of variable, we get

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx = p0K1 +(n − 2)2ε

n−2
2

∫

B(0,R)

|y|k+2(βk + θ(a + y))

(ε + |y|2)n
dy

+ O(ε
n−2

2 ).
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Using the de�nition of θ given by (1.2), there exists a positive constant M such that

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx ≤ p0K1 + (n − 2)2ε

n−2
2 (βk + M)

∫

B(0,R)

|y|k+2

(ε + |y|2)n
dy

+ O(ε
n−2

2 ).

Applying the Dominated Convergence Theorem we deduce that

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx ≤ p0K1 + O(ε

n−2
2 )

and this completes the proof of (3.9) in this case.
1.2. If k = n − 2,

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx = p0K1 + (n − 2)2βn−2ε

n−2
2

∫

Ω

|x − a|n

(ε + |x − a|2)n
dx

+ (n − 2)2ε
n−2

2

∫

Ω

|x − a|nθ(x)

(ε + |x − a|2)n
dx + O(ε

n−2
2 ).

Since Ω is a bounded domain, there exists some positive constant R such that Ω ⊂ B(a,R)

and thus

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx = p0K1 + O(ε

n−2
2 )

+(n − 2)2ε
n−2

2

[

∫

B(a,R)

|x − a|n(βn−2 + θ(x))

(ε + |x − a|2)n
dx−

∫

B(a,R)\Ω

|x − a|n(βn−2 + θ(x))

(ε + |x − a|2)n
dx

]

.

Hence

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx = p0K1 + (n − 2)2ε

n−2
2

∫

B(a,R)

|x − a|n(βn−2 + θ(x))

(ε + |x − a|2)n
dx

+ O(ε
n−2

2 ).

Using the de�nition of θ given by (1.2), there exists a positive constant M such that
(3.11)

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx ≤p0K1 +(n − 2)2(βn−2 + M)ε

n−2
2

∫

B(a,R)

|x − a|n

(ε + |x − a|2)n
dx

+O(ε
n−2

2 ).

On the other hand, an easy computation gives

ε
n−2

2

∫

B(a,R)

|x − a|n

(ε + |x − a|2)n
dx = ωnε

n−2
2

∫ R

0

r2n−1

(ε + r2)n
dr

=
ωn

2n
ε

n−2
2

∫ R

0

((ε + r2)n)′

(ε + r2)n
dr + O(ε

n−2
2 )

and

(3.12) ε
n−2

2

∫

B(a,R)

|x − a|n

(ε + |x − a|2)n
dx =

ωn

2
ε

n−2
2 | log ε| + o(ε

n−2
2 | log ε|).
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Inserting (3.12) into (3.11) we obtain

ε
n−2

2

∫

Ω
p(x)|∇ua,ε(x)|2dx ≤ p0K1 +

(n − 2)2(βn−2 + M)ωn

2
ε

n−2
2 | log ε| + o(ε

n−2
2 | log ε|).

2)Case n = 4 and k = 2.
As we have announced in the introduction, we assume in this case the following additional
condition on θ:

∫

B(a,1)
θ(x)

|x−a|4
dx < ∞. We have

∫

Ω
p(x)|∇ua,ε|

2dx =

∫

Ω

p(x)|∇ζ(x)|2

(ε + |x − a|2)2
dx + 4

∫

Ω

p(x)|ζ(x)|2|x − a|2

(ε + |x − a|2)4
dx

− 4

∫

Ω

p(x)ζ(x)∇ζ(x)(x − a)

(ε + |x − a|2)3
dx.

Using (1.2) and the fact that ζ ≡ 1 near a, it follows that
∫

Ω
p(x)|∇ua,ε|

2dx = 4p0

∫

Ω

|ζ(x)|2|x − a|2

(ε + |x − a|2)4
dx + 4β2

∫

Ω

|ζ(x)|2|x − a|4

(ε + |x − a|2)4
dx

+ 4

∫

Ω

|x − a|4θ(x)

(ε + |x − a|2)4
dx + O(1),

=
4p0

ε

∫

IRn

|y|2

(1 + |y|2)4
dy + 4

∫

Ω

|x − a|4(βk + θ(x))

(ε + |x − a|2)4
dx + O(1).

Since
∫

B(a,1)
θ(x)

|x−a|4
dx < ∞, we obtain

∫

Ω

|x − a|4θ(x)

(ε + |x − a|2)4
dx =

∫

Ω

θ(x)

|x − a|4
dx + o(1)

= O(1).

Consequently
∫

Ω
p(x)|∇ua,ε|

2dx =
4p0

ε

∫

IRn

|y|2

(1 + |y|2)4
dy + 4βk

∫

Ω

|x − a|4

(ε + |x − a|2)4
dx + O(1).

Let Ri > 0, i = 1, 2 such that
∫

|x−a|≤R1

|x − a|4

(ε + |x − a|2)4
dx ≤

∫

Ω

|x − a|4

(ε + |x − a|2)4
dx ≤

∫

|x−a|≤R2

|x − a|4

(ε + |x − a|2)4
dx.

We see that
∫

|x−a|≤R

|x − a|4

(ε + |x − a|2)4
dx = ω4

∫ R

0

r7

(ε + r2)4
dr,

=
1

8
ω4

∫ R

0

((ε + r2)4)′

(ε + r2)4
dr − ω4

∫ R

0

rε3 + 3r3ε2 + 3εr4

(ε + r2)4
dr,

=
1

2
ω4 | log ε| − ω4

∫ R

ε
1
2

0

t + 3t3 + 3t5

(1 + t2)4
dt + O(1),

=
1

2
ω4 | log ε| + O(1).
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Hence, we have
∫

Ω
p(x)|∇ua,ε|

2dx =
p0K1

ε
+ 2β2ω4 | log ε| + O(1),

where K1 =
∫

IRn

|y|2

(1+|y|2)4
dy. This completes the proof of (3.9).

Let us come back to the proof of Lemma 3.2.
It is convenient to rewrite (3.9) as
(3.13)

ε
n−2

2

∫

Ω
p(x)|∇ua,ε|

2dx ≤















































p0K1 + o(ε) if n ≥ 5, and k > 2 ,

p0K1 + A2ε + o(ε) if n ≥ 5, and k = 2 ,

p0K1 + A
k
ε

k
2 + o(ε

k
2 ) if n ≥ 4, and k < 2 ,

p0K1 + o(ε) if n = 4, and k > 2 ,

p0K1 + 2ω4β2ε| log ε| + o(ε| log ε|) if n = 4, and k = 2 .

Combining (3.13), (2.3) and (2.4), we obtain
(3.14)

Sλ(p) ≤ Qλ(ua,ε) ≤



















































p0S − λK3
K2

ε + o(ε) if n ≥ 5, and k > 2 ,

p0S − (λ − C)K3
K2

ε + o(ε) if n ≥ 5, and k = 2 ,

p0S + A
k
ε

k
2 + o(ε

k
2 ) if n ≥ 4, and k < 2 ,

p0S − λ
ω4
2K2

ε| log ε| + o(ε| log ε|) if n = 4, and k > 2 ,

p0S −
ω4
2K2

[λ − 4β2]ε| log ε| + o(ε| log ε|) if n = 4, and k = 2 ,

with C = A2
K3

= β2(n−2)n(n+2)
4(n−1) .

Assertions a), b) and c) of Lemma 3.2 follow directly for ε small enough.
Now we prove d) of Lemma 3.2 (case n = 3 and k ≥ 2). We will estimate the ratio

Qλ(u) =

∫

Ω p(x)|∇u|2dx − λ‖u‖2
2

‖u‖2
q

with
u(x) = uε,a(r) =

ζ(r)

(ε + r2)
1
2

, r = |x|, ε > 0,

where ζ is a �xed smooth function satisfying 0 ≤ ζ ≤ 1, ζ = 1 in {x, |x − a| < R
2 } and

ζ = 0 in {x, |x − a| ≥ R}, where R is a positive constant such that B(a, R) ⊂ Ω.
We claim that, as ε → 0,
(3.15)
∫

p(x)|∇ua,ε(x)|2dx =
p0K1

ε
1
2

+ ω3

∫ R

0
(p0 + βkr

k)|ζ ′(r)|2dr + ω3k

∫ R

0
|ζ|2rk−2dr + o(1).

And from [BN], we already have

‖∇ua,ε‖
2
2 =

K1

ε
1
2

+ ω3

∫ R

0
|ζ ′(r)|2dr + O(ε

1
2 ),(3.16)
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‖ua,ε‖
2
6 =

K2

ε
1
2

+ O(ε
1
2 ),(3.17)

‖ua,ε‖
2
2 = ω3

∫ R

0
ζ2(r)dr + O(ε

1
2 ),(3.18)

where K1 and K2 are positive constants such that K1
K2

= S and ω3 is the area of S2 .

Veri�cation of (3.15).
Using (1.2), (3.16) and the fact that ζ = 0 in {x, |x − a| ≥ R}, we write

∫

p(x)|∇ua,ε(x)|2dx =
p0K1

ε
1
2

+ ω3p0

∫ R

0
|ζ ′(r)|2dr

+ ω3βk

∫ R

0

[

|ζ ′(r)|2

ε + r2
−

2rζ(r)ζ ′(r)

(ε + r2)2
+

r2ζ2(r)

(ε + r2)3

]

rk+2dr

+ O(ε
1
2 ).

The fact that ζ = 1 in {x, |x − a| < R
2 }, ζ ′(0) = 0 and ζ(R) = 0 gives

−2

∫ R

0

ζ(r)ζ ′(r)rk+3

(ε + r2)2
dr = (k + 3)

∫ R

0

|ζ(r)|2rk+2

(ε + r2)2
dr − 4

∫ R

0

|ζ(r)|2rk+4

(ε + r2)3
dr.

Consequently
∫

Ω
p(x)|∇ua,ε(x)|2dx =

p0K1

ε
1
2

+ ω3p0

∫ R

0
|ζ ′(r)|2dr + ω3βk

∫ R

0

|ζ ′(r)|2rk+2

ε + r2
dr

− 3ω3βk

∫ R

0

|ζ(r)|2rk+4

(ε + r2)3
dr + (k + 3)ω3βk

∫ R

0

|ζ(r)|2rk+2

(ε + r2)2
dr

+ O(ε
1
2 ).

Applying the Dominated Convergence Theorem, we get the desired result.
Combining (3.15), (3.17) and (3.18), we obtain

Qλ(ua,ε) = p0S + ω3

[∫ R

0
(p0 + βkr

k)|ζ ′(r)|2dr+kβk

∫ R

0
|ζ(r)|2rk−2dr−λ

∫ R

0
ζ2(r)dr

]

ε
1
2

K2

+ O(ε),

thus,

(3.19)
Qλ(ua,ε) = p0S +

ω3

∫R

0 ζ2(r)dr

K2

[∫R

0 (p0+βkrk)|ζ′(r)|2dr+k
∫R

0 |ζ(r)|2rk−2dr
∫R

0 |ζ(r)|2dr
− λ

]

ε
1
2

+O(ε).

Set D(k, ζ) =

∫ R

0 (p0 + βkr
k)|ζ ′(r)|2dr + k

∫ R

0 |ζ(r)|2rk−2dr
∫ R

0 |ζ(r)|2dr
and γ(k) = inf

H
D(k, ζ)
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where H is de�ned by

H = {ζ ∈ C∞
0 (Ω̄), 0 ≤ ζ ≤ 1, ζ = 1 in {x, |x − a| < R

2 } and ζ = 0 in {x, |x − a| ≥ R}}.
This �nishes the proof of Lemma 3.2. 2

Now, we go back to proof of assertion 3) in Theorem 1.1 (case 0 < k < 2).
First of all, let us emphasize that if the domain Ω is starshaped about a, the assertion 3)
is more interesting. Indeed, it gives a better estimate of the least value of the parameter
λ over which there is a solution to problem (1.1).
In the case of a non-starshaped domain, combining the fact that S0(p) = p0S with the
properties of Sλ(p) (see the proof of lemma 3.4), we have that there exists λ∗ ∈ [0, λdiv

1 [

such that for all λ ∈]λ∗, λdiv
1 [, the problem (1.1) has a solution. Note that we have no

other information on λ∗.
Therefore, throughout the rest of this proof, we assume that the domain Ω is starshaped
about a.
We need two Lemmas. Let us start by the following

Lemma 3.3
Assume 0 < k ≤ 2. Then there exists a constant β̃k = βk min[(diam Ω)k−2, 1] such that

Sλ(p) = p0S for every λ ∈] −∞, β̃k
n2

4
](3.20)

and the in�mum of Sλ(p) is not achieved for every λ ∈] −∞, β̃k
n2

4 [.

Proof. We know from (3.14) that

Sλ(p) ≤ Qλ(ua,ε) ≤ p0S + A
k
ε

k
2 + o(ε

k
2 ) with A

k
is a positive constant,

thus
Sλ(p) ≤ p0S.

On the other hand, we know from Lemma 2.2 and Proposition 2.1, that for 0 < k ≤ 2,
for every λ ≤ k

2βk(
n+k−2

2 )2 (diam Ω)k−2, problem (1.1) has no solution. So we exclude
the case Sλ(p) < p0S, otherwise, Lemma 3.1 will yield in a contradiction.
We conclude that for 0 < k ≤ 2, we have

Sλ(p) = p0S for every λ ≤
k

2
βk(

n + k − 2

2
)2 (diam Ω)k−2 .(3.21)

Now, we consider p̃ de�ned by










p̃(x) = p(x) ∀x ∈ Ω \ B(a, r),

p̃(x) = p0 + βk|x − a|2 ∀x ∈ B(a, r
2),

p(x) ≥ p̃(x) ∀x ∈ B(a, r) \ B(a, r
2),

(3.22)

where r < 1 is a positive constant.
Since 0 < k ≤ 2, we have |x − a|k ≥ |x − a|2 for every x ∈ B(a, r) and p(x) ≥ p̃(x) in Ω.
Let u ∈ H1

0 (Ω) with ‖u‖q = 1, then
∫

Ω
p(x)|∇u(x)|2dx − λ

∫

Ω
|u(x)|2dx ≥

∫

Ω
p̃(x)|∇u(x)|2dx − λ

∫

Ω
|u(x)|2dx,
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thus,
(3.23)

∫

Ω
p(x)|∇u(x)|2dx − λ

∫

Ω
|u(x)|2dx ≥

∫

Ω
(p0 +

1

2
(p̃(x) − p0))|∇u(x)|2dx

−λ

∫

Ω
|u(x)|2dx +

1

2

∫

Ω
(p̃(x) − p0)|∇u(x)|2dx.

Set ˜̃p(x) = p0 + 1
2(p̃(x) − p0).

From (1.3) we deduce that

(3.24) p(x) − p0 ≥ βk|x − a|k a.e in Ω.

Using (3.22) and (3.24), a simple computation gives p̃(x)− p0 ≥ β̃k|x− a|2 a.e in Ω, with
β̃k = βk min[(diam Ω)k−2, 1].
Applying Lemma 2.1, we �nd

∫

Ω
(p̃(x) − p0)|∇u(x)|2dx ≥ β̃k

n2

4

∫

Ω
|u(x)|2dx.

Inequality (3.23) becomes for every u ∈ H1
0 (Ω),

∫

Ω
p(x)|∇u|2dx − λ

∫

Ω
|u|2dx ≥

∫

Ω

˜̃p(x)|∇u|2dx −

(

λ − β̃k
n2

8

)∫

Ω
|u|2dx.

Thus, we �nd

Sλ(p) ≥ inf
‖u‖2

q=1

[∫

Ω

˜̃p(x)|∇u|2dx − (λ − β̃k
n2

8
)

∫

Ω
|u|2dx

]

.

On the other hand λ − β̃k
n2

8 ≤ 1
2 β̃k

n2

4 since λ ≤ β̃k
n2

4 , so by (3.21), we conclude that

inf
‖u‖q=1

[∫

Ω

˜̃p(x)|∇u|2dx − (λ − β̃k

n2

8
)

∫

Ω
|u|2dx

]

= p0S,

hence, (3.20) follows.
Now, we are able to prove that the in�mum in (3.20) is not achieved. Suppose by con-
tradiction that it is achieved by some u0. Let δ such that β̃k

n2

4 ≥ δ > λ. Using u0 as a
test function for Sδ, we obtain

Sδ(p) ≤

∫

Ω p(x)|∇u0|
2dx − δ

∫

Ω |u0|
2dx

‖u0‖2
q

<

∫

Ω p(x)|∇u0|
2dx − λ

∫

Ω |u0|
2dx

‖u0‖2
q

and thus Sδ(p) < Sλ(p) = p0S. This is a contradiction since Sδ(p) = p0S for δ ≤ β̃k
n2

4 .
2

The second Lemma on which the proof of assertion 3) in Theorem 1.1 is based is the
following

Lemma 3.4
There exists λ∗ ∈ [β̃k

n2

4 , λdiv
1 [, such that for all λ ∈]λ∗, λdiv

1 [ we have

Sλ(p) < p0S.

18



Proof.
The proof is based on a study of some properties of the function λ 7→ Sλ(p). We have
Sλdiv

1
(p) = 0. Indeed let ϕ1 be the eigenfunction of div(p∇.) corresponding to λdiv

1 , we
have

Sλdiv
1

≤

∫

p(x)|∇ϕ1|
2dx − λdiv

1

∫

|ϕ1|
2dx

(
∫

|ϕ1|qdx)
2
q

= 0.

Moreover, λ 7→ Sλ(p) is continuous and S
β̃k

n2

4

(p) = p0S. Then according to the Mean
Value Theorem, there exists β ∈]β̃k

n2

4 , λdiv
1 [ such that 0 < Sβ(p) < p0S. But the function

λ 7→ Sλ(p) is decreasing hence ∀λ ∈ [β, λdiv
1 [ we have Sλ(p) < p0S, and the Lemma follows

at once. 2

Now we have all the necessary ingredients for the proof of Theorem 1.1.
Proof of Theorem 1.1 concluded: Concerning the proof of 1), 2), 3) and 4), let
u ∈ H1

0 (Ω) be given by Lemma 3.1, that is,

‖u‖q = 1 and
∫

Ω
p(x)|∇u(x)|2dx − λ

∫

Ω
|u(x)|2dx = Sλ(p).

We may as well assume that u ≥ 0. Since u is a minimizer for (3.2) there exists a Lagrange
multiplier µ ∈ IR such that

−div(p∇u) − λu = µuq−1 on Ω.

In fact, µ = Sλ(p), and Sλ(p) > 0 since λ < λdiv
1 . It follows that γu satis�es (1.1) for

some appropriate constant γ > 0 (γ = (Sλ(p))
1

q−2 ), note that u > 0 on Ω by the strong
maximum principle.
Now we prove the assertion 5) of Theorem 1.1. From (3.14) and since λ ≤ 0 we have

p0S ≤ Sλ(p) ≤ Qλ(ua,ε) ≤ p0S + o(1).

Hence Sλ(p) = p0S and the in�mum is not achieved, indeed we suppose that Sλ(p) is
achieved by some function u ∈ H1

0 (Ω), in that case

Sλ(p) =

∫

Ω
p(x)|∇u(x)|2dx − λ

∫

Ω
|u(x)|2dx, with ‖u‖q = 1.

Using the fact that S is not attained and since λ ≤ 0, we deduce

p0S < p0

∫

Ω
|∇u(x)|2dx ≤ Sλ(p) = p0S,

then we obtain a contradiction.
Finally we prove assertion 6) in Theorem 1.1. Let ϕ1 be the eigenfunction corresponding
to λdiv

1 with ϕ1 > 0 on Ω. Suppose that u is a solution of (1.1). We have

−

∫

Ω
div(p(x)∇u(x))ϕ1(x)dx = λdiv

1

∫

Ω
u(x)ϕ1(x)dx

=

∫

Ω
uq−1(x)ϕ1(x)dx + λ

∫

Ω
u(x)ϕ1(x)dx,

19



thus
λdiv

1

∫

Ω
u(x)ϕ1(x)dx > λ

∫

Ω
u(x)ϕ1(x)dx

and
λdiv

1 > λ.

This completes the proof of Theorem 1.1.

4 The e�ect of the geometry of the domain
Let Ω ⊂ IRn, n ≥ 3, be a bounded domain. We study the equation











−div(p(x)∇u) = uq−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(4.1)

where q = 2n
n−2 and p : Ω̄ −→ IR is a positive weight belonging to C(Ω̄) ∩ H1

0 (Ω).
We assume in this section that p is such that ∇p(x).(x − a) ≥ 0 a.e x ∈ Ω and we set
p0 = p(a).
Let us start by the following non-existence result

Lemma 4.1
There is no solution of (4.1) if Ω is a starshaped domain about a.

Proof. This follows from Pohozaev's identity.
Suppose that u is a solution of (4.1), we have (see Lemma 2.2 Section 2 for λ = 0),

∫

Ω
∇p(x).(x − a)|∇u(x)|2dx +

∫

∂Ω
p(x)[(x − a).ν]|

∂u

∂ν
|2dx = 0.(4.2)

Note that (x − a).ν > 0 a.e on ∂Ω since Ω is starshaped about a.
Since ∇p(x).(x − a) ≥ 0 a.e x ∈ Ω, we deduce from (4.2) that ∂u

∂ν
= 0 on ∂Ω, and then

by (4.1) we have
∫

Ω
uq−1(x)dx = −

∫

Ω
div(p(x)∇u(x))dx =

∫

∂Ω

∂u

∂ν
dx = 0,

thus
u ≡ 0.

2

Suppose that Ω is starshaped about a. In view of Lemma 4.1, we will modify the geometry
of Ω in order to �nd a solution of problem 4.1. For a ε > 0 small enough, we set
Ωε = Ω \ B̄(a, ε).
We investigate the problem (4.1) in the new domain Ωε, and, throughout the rest of this
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paper, we shall denote this new problem by (Iε) .
Since p is a continuous function, then ∀ θ > 0, ∃ r0 > 0 such that ∀σ ∈ Σ, where Σ

designates the unit sphere of IRn, we have |p(a + r0σ) − p0 | < θ

2S
n
2
.

Throughout the rest of this Section, θ > 0 is �xed, small enough, and r0 > 0 is given as
the previous de�nition.
We recall the main result of this section which we have already stated by theorem 1.2 in
the introduction

Theorem 4.1
There exists ε0 = ε0(Ω, p) ≤ r0 such that for every 0 < ε < ε0, the problem (Iε) has at
least one solution in H1

0 (Ωε).

In order to prove the Theorem 4.1, we need to apply the following result, see [AR],

Theorem A 1
Let E be a C1 function de�ned on a Banach space X, and let K a compact metric
space. We denote by K∗ a nonempty subset of K, closed, di�erent from K and we �x
f∗ ∈ C(K∗, X).
We de�ne P = {f ∈ C(K, X)/f = f∗on K∗} and c = inff∈P supt∈K E(f(t))

Suppose that for every f of P, we have

max
t∈K

E(f(t)) > max
t∈K∗

E(f(t)),

then there exists a sequence (uj) ⊂ X such that E(uj) −→ c and E′(uj) −→ 0 in X∗.

We consider the functional

E(u) =
1

2

∫

Ωε

p(x)|∇u(x)|2dx −
1

q

∫

Ωε

|u(x)|qdx.

In addition to Theorem A 1, the proof of Theorem 4.1 requires the following result (see
[B] and Proposition 2.1 in [S])

Theorem A 2
Suppose that for some sequence (uj) ⊂ H1

0 (Ωε) we have E(uj) → c ∈] 1
n
(p0S)

n
2 , 2

n
(p0S)

n
2 [

and dE(uj) → 0 in H−1(Ωε). Then (uj) contains a strongly convergent subsequence.

Now, we return to the proof of Theorem 4.1.
We shall need the following functions:

Γ : H1
0 (Ωε) −→ IR, Γ(u) =

∫

Ωε

p(x)|∇u(x)|2dx −

∫

Ωε

|u(x)|qdx.

F : H1
0 (Ωε) −→ IRn, F (u) = (p0S)−

n
2

∫

Ωε

xp(x)|∇u(x)|2dx.

We have the following result
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Lemma 4.2
For every neighborhood V of Ω̄ε there exists η > 0 such that if u 6= 0, Γ(u) = 0 and
E(u) ≤ 1

n
(p0S)

n
2 + 2η, then F (u) ∈ V .

Proof. We proceed by contradiction. We assume that there exists V a compact neigh-
borhood of Ω̄ε not containing a, such that ∀j ∈ N∗, we have

uj 6= 0,

Γ(uj) = 0,

E(uj) ≤
1

n
(p0S)

n
2 +

1

j
,

F (uj) 6∈ V.

Since Γ(uj) = 0, we see that
∫

Ωε

p(x)|∇uj |
2dx =

∫

Ωε

|uj |
qdx

and

∫

Ωε

p(x)|∇uj |
2dx =







∫

Ωε
p(x)|∇uj |

2dx
(

∫

Ωε
|uj |qdx

) 2
q







n
2

.

Consequently
E(uj) =

1

n

∫

Ωε

p(x)|∇uj(x)|2dx.

Using the de�nition of uj , the fact that p0 = minΩ̄ p(x) and the de�nition of S, we write

1

n
(p0S)

n
2 ≤

1

n







p0

∫

Ωε
|∇uj |

2dx
(

∫

Ωε
|uj |qdx

) 2
q







n
2

≤ E(uj) ≤
1

n
(p0S)

n
2 +

1

j

and we deduce
∫

Ωε

p(x)|∇uj(x)|2dx = (p0S)
n
2 + o(1).

Applying the Theorem 2 in [C], (see also Lemma I.1 and Lemma I.4 in [L]), for a subse-
quence of (uj)j still denoted by (uj)j , there exists x0 ∈ Ω̄ε such that

p(x)|∇uj |
2 −→ (p0S)

n
2 δx0 (j → ∞),

where the above convergence is understood for the weak topology of bounded measures
on Ω̄ε and where δx0 is the Dirac measure at x0.
As a consequence, F (uj) ∈ Ω̄ε ⊂ V , and this contradicts the hypothesis. 2

Let R0 > 0 such that B(a, 2R0) ⊂ Ω.
For k ∈ N∗, let ϕk ∈ C∞(IRn, [0, 1]) such that

{

ϕk(x) = 0 if |x − a| ≤ 1
4k2 and if |x − a| ≥ 2R0,

ϕk(x) = 1 if 1
2k2 ≤ |x − a| ≤ R0.
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We consider the family of functions

uσ
t (x) =

[

1 − t

(1 − t)2 + |x − a − tσ|2

]
n−2

2

,

where t ∈ [0, 1[, σ ∈ Σ and where Σ denotes the unit sphere of IRn.
We see easily that

∫

IRn |∇uσ
t |

2dx and
∫

IRn |uσ
t |

qdx are independent of t ∈ [0, 1[ and of
σ ∈ Σ. We also have

∫

IRn

|∇uσ
t (x)|2dx = S

(∫

IRn

|uσ
t (x)|qdx

) 2
q

.

We set

vσ
t,k(x) =

(1 − t)
n−2

2 k
n−2

2 ϕk(x)

((1 − t)2 + |k(x − a − tr0σ)|2)
n−2

2

,

we remark that vσ
t,k ∈ H1

0 (Ωε). For r > 0, let g(r) = E(rvσ
t,k), then

rg′(r) = Γ(rvσ
t,k), g(r) → −∞, when r → +∞, g(0) = 0 and g(r) > 0 for r > 0 small

enough.
We conclude, from the above, that g reaches its maximum at

r =

[
∫

Ωε
p(x)|∇vσ

t,k|
2dx

∫

Ωε
|vσ

t,k|
qdx

] 1
q−2

> 0.

We set wσ
t,k = rvσ

t,k. We have

Lemma 4.3
The following two statements are true:

a)∀δ > 0, ∃k0 ≥ 1 such that (∀ k ≥ k0) then
(∀σ ∈ Σ and ∀t ∈ [0, 1[, E(wσ

t,k) ≤
1
n
(p0S)

n
2 + δ)

b)∀α > 0, ∃µ > 0 such that (µ < t < 1) then
(∀σ ∈ Σ and ∀k ≥ 1, E(wσ

t,k)≤
1
n
(p0S)

n
2 + α)

and |F (wσ
t,k)−(a + r0σ)| ≤ α.

Proof. Before proving this Lemma, let us remark that the function vσ
t,k corresponds to

the function ua,ε de�ned in the beginning of this paper, so for more details of calculus we
refer to section 2.
We start by proving the assertion a). Let t ∈ [0, 1[, we have

E(wσ
t,k) =

1

2

∫

Ωε

p(x)|∇wσ
t,k|

2dx −
1

q

∫

Ωε

|wσ
t,k|

qdx,

=
r2

2

∫

Ωε

p(x)|∇vσ
t,k|

2dx −
rq

q

∫

Ωε

|vσ
t,k|

qdx.
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Using the de�nition of r, the de�nition of ϕk and applying the Dominated Convergence
Theorem, we obtain, as k → ∞,

E(wσ
t,k) =

1

n













kn(n − 2)2(1 − t)n−2
∫

{ 1
2k2 ≤|x−a|≤R0}

p(x) |k(x−a−tr0σ)|2

((1−t)2+|k(x−a−tr0σ)|2)n dx

[

kn(n − 2)2(1 − t)n
∫

{ 1
2k2 ≤|x−a|≤R0}

1
((1−t)2+|k(x−a−tr0σ)|2)n dx

] 2
q













n
2

+ o(1).

By the following change of variable y = k(x−a−tr0σ)
1−t

, we see that

E(wσ
t,k) =

1

n















(n − 2)2
∫

{ 1
2k(1−t)

−
tr0
1−t

≤|y|≤
kR0
1−t

+
tr0
1−t

}

p(y(1−t)
k

+ a + tr0σ) |y|2

(1+|y|2)n dy

[

∫

{ 1
2k(1−t)

−
tr0
1−t

≤|y|≤
kR0
1−t

+
tr0
1−t

}

1
(1+|y|2)n dy

] 2
q















n
2

+ o(1).

Applying again the Dominated Convergence Theorem, we deduce, as k → ∞, that

E(wσ
t,k) =

1

n







(n − 2)2p(a + tr0σ)
∫

IRn

|y|2

(1+|y|2)n dy
[

∫

IRn
1

((1−t)2+|y|2)n dy
] 2

q







n
2

+ o(1),

=
1

n
(p(a + tr0σ))

n
2 S

n
2 + o(1).

Now, using the de�nition of r0, a simple computation shows that ∀δ > 0, ∃k0 ≥ 1 such
that ∀k ≥ k0, we have

E(wσ
t,k) ≤

1

n
(p0S)

n
2 + δ,

which �nishes the proof of a).
Now we return to the proof of b), let k ∈ N∗, we have

E(wσ
t,k) =

1

2

∫

Ωε

p(x)|∇wσ
t,k|

2dx −
1

q

∫

Ωε

|wσ
t,k|

qdx

=
r2

2

∫

Ωε

p(x)|∇vσ
t,k|

2dx −
rq

q

∫

Ωε

|vσ
t,k|

qdx.

Looking at the de�nition of ϕk and r, we easily see, as t → 1, that

E(wσ
t,k) =

1

n







kn(n − 2)2(1 − t)n−2
∫

IRn p(x) |k(x−a−tr0σ)|2

((1−t)2+|k(x−a−tr0σ)|2)n dx
[

kn(1 − t)n
∫

IRn
1

((1−t)2+|k(x−a−tr0σ)|2)n dx
] 2

q







n
2

+ O((1 − t)n−2).

By the change of variable y = k(x−a−tr0σ)
1−t

, we get

E(wσ
t,k) =

1

n







(n − 2)2
∫

IRn p( (1−t)y
k

+ a + tr0σ) |y|2

(1+|y|2)n dy
[

∫

IRn
1

(1+|y|2)n dy
] 2

q







n
2

+ O((1 − t)n−2).
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Applying the Dominated Convergence Theorem, we obtain

E(wσ
t,k) =

1

n







(n − 2)2p(a + r0σ)
∫

IRn

|y|2

(1+|y|2)n dy
[

∫

IRn
1

(1+|y|2)n dy
] 2

q







n
2

+ O((1 − t)n−2),

=
1

n
(p(a + r0σ))

n
2 S

n
2 + O((1 − t)n−2).

Using the de�nition of r0, a simple computation shows that ∀α > 0, ∃µ > 0 such that
∀µ < t < 1, we have

E(wσ
t,k) ≤

1

n
(p0S)

n
2 + α.

On the other hand

F (wσ
t,k) = (p0S)−

n
2

∫

IRn

xp(x)|∇wσ
t,k(x)|2dx,

= (p0S)−
n
2 r2

∫

IRn

xp(x)|∇vσ
t,k(x)|2dx.

By the de�nition of vσ
t,k and r, we write

F (wσ
t,k) = (p0S)−

n
2





(1 − t)n−2(n − 2)2
∫

IRn p(x) |k(x−a−tr0σ)|2

((1−t)2+|k(x−a−tr0σ)|2)n dx

(1 − t)n
∫

IRn
1

((1−t)2+|k(x−a−tr0σ)|2)n dx





2
q−2

×

(1 − t)n−2kn(n − 2)2
∫

IRn

x p(x)
|k(x − a − tr0σ)|2

((1 − t)2 + |k(x − a − tr0σ)|2)n
dx + o(1 − t).

The change of variable y = k(x−a−tr0σ)
1−t

gives

F (wσ
t,k) = (p0S)−

n
2





(n − 2)2
∫

IRn p
(

(1−t)y
k

+ a + tr0σ
)

|y|2

(1+|y|2)n dx
∫

IRn
1

(1+|y|2)n dx





2
q−2

×

(n − 2)2
∫

IRn

( (1−t)y
k

+ a + tr0σ) p( (1−t)y
k

+ a + tr0σ) |y|2

(1 + |y|2)n
dx + o(1 − t).

Applying the Dominated Convergence Theorem, we deduce that

F (wσ
t,k) = (p0S)−

n
2 (p(a + r0σ))

n
2







(n − 2)2
∫

IRn

|y|2

(1+|y|2)n dy
[

∫

IRn
1

(1+|y|2)n dy
] 2

q







q

q−2

(a + r0σ) + o(1 − t),

= (p0S)−
n
2 (p(a + r0σ))

n
2 S

n
2 (a + r0σ) + o(1 − t).

Using the de�nition of r0 we get the desired result. 2

Consequences
Let V be a compact neighborhood of Ω̄ε not containing a. Let 0 < η < r0 small enough,
which corresponds to V as in Lemma 4.2, verifying r0σ+ξ 6= a for |σ| = 1 and |a−ξ| ≤ η.
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By Lemma 4.3, there exists k0 ≥ 1 such that :

E(wσ
t,k0

) ≤
2

n
(p0S)

n
2 − η, ∀σ ∈ Σ, ∀t ∈ [0, 1[.(4.3)

Remark 4.1
We choose ε0 = ε0(Ω, p) ≤ 1

4k2
0
small enough and such that ∀0 < ε < ε0 we have {x |x −

a| ≤ ε} 6⊂ V .

We �x λ > 1, large enough such that E(λwσ
t,k0

) < 0, ∀σ ∈ Σ, ∀t ∈ [0, 1[. In order to
apply Theorem A 1, we de�ne the sets K, K∗ and the function f∗ as
K = [0, 1] × B̄(a, r0),
K∗ = ∂K = [0, 1] × ∂B̄(a, r0) ∪ {0, 1} × B̄(a, r0) and
f∗ : K → H1

0 (Ωε),

f∗(s, tr0σ) = λswσ
t,k0

.
The conclusion of Theorem 4.1 follows from the next

Lemma 4.4
We have

sup
K

E(f) ≥
1

n
(p0S)

n
2 + 2η, ∀f ∈ P.

We postpone the proof of Lemma 4.4 and we complete the proof of Theorem 4.1. From
(4.3) we have

max
r≥0

E(rvσ
t,k0

) = E(wσ
t,k0

) ≤
2

n
(p0S)

n
2 − η ∀σ ∈ Σ, ∀t ∈ [0, 1[.

From assertion b) of Lemma 4.3 there exists µ > 0, we �x t0 ∈]µ, 1[ such that

max
r≥0

E(rvσ
t0,k0

) = E(wσ
t0,k0

) ≤
1

n
(p0S)

n
2 + η, ∀σ ∈ Σ.

then
max
∂K

E(f∗) ≤
1

n
(p0S)

n
2 + η and sup

K

E(f∗) <
2

n
(p0S)

n
2 .

So, by Lemma 4.4,

sup
K

E(f) ≥
1

n
(p0S)

n
2 + 2η >

1

n
(p0S)

n
2 + η ≥ sup

∂K

E(f∗)

and
c = inf

f∈P
sup
t∈K

E(f) ∈]
1

n
(p0S)

n
2 ,

2

n
(p0S)

n
2 [.

Applying Theorem A 1 and Theorem A 2, we obtain the conclusion of Theorem 4.1.

Proof of Lemma 4.4. We argue by contradiction. Suppose that there exists f ∈

C(K, H1
0 (Ωε)) with f = f∗ on ∂K, and E(f(s, ξ)) ≤ 1

n
(p0S)

n
2 + 2η, ∀(s, ξ) ∈ K.

We consider the function G : K −→ IRn+1, de�ned by

G(s, ξ) = (s, F (f(s, ξ))).
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We will prove that

deg(G,K, (λ−1, a)) = 1.(4.4)

The map H : [0, 1] × K −→ IRn+1, de�ned by
H(t, s, ξ) = tG(s, ξ) + (1 − t)(s, ξ) = (s, tF (f(s, ξ)) + (1 − t)ξ)

is a homotopy between G and IdK , where IdK is the Identity application of K.
To get (4.4), we start by checking that (λ−1, a) 6∈ H(t, ∂K).
If not, there exists (s, ξ) ∈ ∂K such that H(t, s, ξ) = (λ−1, a), as a consequence s = λ−1

and a = tF (f(λ−1, ξ)) + (1 − t)ξ = t(F (wσ
t0,k0

) − ξ) + ξ.
Since s = λ−1 ∈]0, 1[, we have ξ ∈ ∂B̄(a, r0). But, since |F (wσ

t0,k0
) − (a + r0σ)| < η

∀σ ∈ Σ (see Lemma 4.3), the fact that t(F (wσ
t0,k0

) − ξ) + ξ = a, ξ ∈ ∂B̄(a, r0) leads to
a contradiction. Then, we deduce that (λ−1, a) 6∈ H(t, ∂K) and consequently ∀t ∈ [0, 1],
deg(H(t, .),K, (λ−1, a)) is well de�ned.
We consider the following sets:
K+ = {(s, ξ) ∈ K | Γ(f(s, ξ)) > 0} ∪ (0, ξ), K− = {(s, ξ) ∈ K | Γ(f(s, ξ)) < 0} and
K0 = {(s, ξ) ∈ K | Γ(f(s, ξ)) = 0}.
If (s, ξ) ∈ ∂K then we have f(s, ξ) = f∗(s, ξ) = λswσ

t0,k0
and

Γ(f(s, ξ)) = (sλ)2
∫

Ωε

p(x)|∇wσ
t0,k0

(x)|2dx − (sλ)q

∫

Ωε

|wσ
t0,k0

(x)|qdx

Γ(f(s, ξ)) = [(sλ)2 − (sλ)q]

∫

Ωε

p(x)|∇wσ
t0,k0

(x)|2dx.

Since
∫

Ωε
p(x)|∇wσ

t0,k0
(x)|2dx > 0, we see that

If (s, ξ) ∈ ∂K and if 0 ≤ s < λ−1, then (s, ξ) ∈ K+(4.5)

If (s, ξ) ∈ ∂K and if λ−1 < s ≤ 1, then (s, ξ) ∈ K−(4.6)

(λ−1, ξ) ∈ K0, ∀ξ ∈ ∂B̄(a, r0).(4.7)

Let (s, ξ) ∈ K0, we have Γ(f(s, ξ)) = 0. Moreover, since E(f(s, ξ)) ≤ 1
n
(p0S)

n
2 + 2η,

looking at Lemma 4.2, we deduce that

F (f(s, ξ)) ∈ V.

Consequently ∀(s, ξ) ∈ K0, F (f(s, ξ)) 6= a since a 6∈ V.

Hence (λ−1, a) 6∈ G(K0) = G(K \ (K+ ∪ K−)), then

deg(G,K+, (λ−1, a)) + deg(G,K−, (λ−1, a)) = deg(G,K, (λ−1, a)).(4.8)

On the other hand, since (λ−1, a) 6∈ H(t, ∂K) ∀t ∈ [0, 1] we have

deg(H(1, .),K, (λ−1, a)) = deg(H(0, .),K, (λ−1, a)).
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Using the fact that H(0, .) = G, H(1, .) = IdK and deg(IdK ,K, (λ−1, a)) = 1, we deduce
(4.4).
Now, we will prove that

deg(G,K+, (λ−1, a)) = 0(4.9)

deg(G,K−, (λ−1, a)) = 0.(4.10)

Fix R > λ−1 and let y ∈ IRn+1 such that |y| ≥ R then y 6∈ G(K).
We de�ne the path r(t) = (tR + (1 − t)λ−1, a), for t ∈ [0, 1].
We claim that r(t) 6∈ G(∂K+) ∀ t ∈ [0, 1].
If not, there exists (s, ξ) ∈ ∂K+ with (Rt + (1 − t)λ−1, a) = (s, F (f(s, ξ))). Hence
s = tR +(1− t)λ−1 ≥ λ−1 and a = F (f(s, ξ)). But ∀(s, ξ) ∈ K0, we have F (f(s, ξ)) 6= a,
then (s, ξ) 6∈ K0. Hence (s, ξ) ∈ ∂K∩K+, (4.5) implies that s < λ−1 and this contradicts
the fact that s ≥ λ−1. Thus r(t) 6∈ G(∂K+) ∀ t ∈ [0, 1]. Hence deg(G,K+, r(t)) is well
de�ned and is independent of t.
Since (R, a) 6∈ G(K) we obtain

deg(G,K+, (R, a)) = 0.

Using the fact that

deg(G,K+, r(t)) = deg(G, K+, (R, a)) ∀ t ∈ [0, 1],

we deduce (4.9).
Similarly, we prove (4.10) by using the path q(t) = (−tR + (1 − t)λ−1, a), t ∈ [0, 1]. We
have that deg(G,K−, q(t)) is independent of t. Using the fact that (−R, a) 6∈ G(K), we
conclude that

deg(G,K−, (λ−1, a)) = deg(G,K−, (−R, a)) = 0.

From (4.4), (4.8), (4.9) and (4.10) we obtain a contradiction, and Lemma 4.4 is proved.
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