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 to the case of periodic and non periodic composites with more general transversal geometries.

Introduction

At the end of the 19th century, it was discovered [START_REF] Hall | On a new action of the magnet on electric currents[END_REF] that a constant magnetic field h modifies the symmetric conductivity matrix σ of a conductor into a non symmetric matrix σ(h). This is know as the Hall effect. In the Maclaurin series of the perturbed resistivity (σ(h)) -1 the zeroth-order term coincides with the resistivity σ -1 in the absence of a magnetic field [START_REF] Landau | Électrodynamique des Milieux Continus[END_REF]. In dimension two, h is a scalar and the first-order term is an antisymmetric matrix proportional to hJ; the coefficient of proportionality is called the Hall coefficient. In dimension three, h ∈ R 3 and the first-order term, in the Maclaurin series of (σ(h)) -1 , is of the form E (Rh) where E (ξ)j := ξ × j and R is a 3 × 3 matrix called the Hall matrix [START_REF] Briane | Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient[END_REF]. In this work, we consider the idealized situation when the induced non symmetric part is proportional to the applied magnetic field: σ(h) = αI 3 + βE (h), where α and β are two constant real numbers. For a given sequence of perturbed conductivities σ n (h), it is of great interest, in electrodynamics [START_REF] Landau | Électrodynamique des Milieux Continus[END_REF][START_REF] Omar | Elementary Solid State Physics: Principles and Applications[END_REF], to understand the influence of the magnetic field h on the effective Hall coefficient or the effective Hall matrix through the homogenization of σ n (h).

Let us first review a few of the mathematical theory of homogenization of elliptic partial differential equations of the form

-div σ n ∇u n = f in Ω, u n = 0 on ∂Ω, (1.1) 
where Ω is a bounded open subset of R 3 , σ n is a sequence of matrix-valued functions in L ∞ (Ω) 3×3 and f is an element of H -1 (Ω). This topic has been intensively studied for the last four decades providing a wide literature [START_REF] Spagnolo | Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche[END_REF][START_REF] Murat | Mimeographed notes, Séminaire d'Analyse Fonctionnelle et Numérique[END_REF][START_REF] Murat | Topics in the Mathematical Modelling of Composite Materials[END_REF][START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]. In the context of conduction, when the conductivity matrices σ n are uniformly bounded, Spagnolo [START_REF] Spagnolo | Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche[END_REF] with the G-convergence theory, Murat and Tartar [START_REF] Murat | Mimeographed notes, Séminaire d'Analyse Fonctionnelle et Numérique[END_REF][START_REF] Murat | Topics in the Mathematical Modelling of Composite Materials[END_REF] with the H-convergence theory showed that the solution u n ∈ H 1 0 (Ω) of the conductivity problem (1.1) strongly converges in L 2 (Ω), up to a subsequence of n, to the solution of a limit conductivity problem of the same nature. The case of high-contrast conductivities is very different since non classical phenomena, such as nonlocal terms, may appear in the limit problem as shown, for instance, in [START_REF] Fenchenko | Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness[END_REF][START_REF] Ya | Composite Media and Homogenization Theory[END_REF][START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure[END_REF][START_REF] Briane | Fibered microstructures for some nonlocal Dirichlet forms[END_REF][START_REF] Briane | Homogenization of high-conductivity periodic problems: Application to a general distribution of one-directional fibers[END_REF][START_REF] Ya | Homogenization of Partial Differential Equations[END_REF]. This does not happen in dimension two if the sequence σ n is uniformly bounded from below. Briane [START_REF] Briane | Nonlocal effects in two-dimensional conductivity[END_REF] and Casado-Días & Briane [START_REF] Briane | Two-dimensional div-curl results. application to the lack of nonlocal effects in homogenization[END_REF] proved that in that case the class of equations (1.1) is always compact in the sense that the limit equation of (1.1) is always of the same type. In [START_REF] Briane | Two-dimensional div-curl results. application to the lack of nonlocal effects in homogenization[END_REF] they proved some extensions of the well-known div-curl lemma of Murat-Tartar [START_REF] Murat | Topics in the Mathematical Modelling of Composite Materials[END_REF] and deduce several compactness results under the assumption of equicoerciveness coupled with the L 1 -boundedness of the sequence of conductivities.

In this paper we are interested in the homogenization of a class of three-dimensional conductivity problems of the type -div σ n (h)∇u n = f in Ω,

u n = 0 on ∂Ω, (1.2) 
where σ n (h) is an equi-coercive sequence of high-contrast two-phase conductivities perturbed by a constant magnetic field h ∈ R 3 of the form σ n (h) := (1 -1 Ωn )σ 1 (h) + 1 Ωn σ 2,n (h) where σ 2,n (h) is the unbounded perturbed conductivity of the highly conducting phase Ω n and σ 1 (h) is the perturbed conductivity of the phase surrounding Ω n .

In dimension two, for the case of low magnetic field, Bergman [START_REF] Bergman | Self-duality and the low field Hall effect in 2D and 3D metal-insulator composites. Percolation Structures and Processes[END_REF] was the first author who came up with a general formula for the effective Hall coefficient of a periodic composite material in terms of the local Hall coefficients and some local currents solving the conductivity equations in the absence of a magnetic field. We refer also to the works [START_REF] Milton | Classical Hall effect in two-dimensional composites: A characterization of the set of realizable effective conductivity tensors[END_REF][START_REF] Bergman | Macroscopic conductivity tensor of a threedimensional composite with a one-or two-dimensional microstructure[END_REF][START_REF] Briane | Homogenization of the two-dimensional Hall effect[END_REF] for other two-dimensional composites, to [START_REF] Bergman | Magnetotransport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field[END_REF][START_REF] Bergman | Duality transformation in a three dimensional conducting medium with two dimensional heterogeneity and an in-plane magnetic field[END_REF][START_REF] Bergman | Exact relations between magnetoresistivity tensor components of conducting composites with a columnar microstructure[END_REF][START_REF] Grabovsky | An application of the general theory of exact relations to fiber-reinforced conducting composites with Hall effect[END_REF][START_REF] Grabovsky | Exact relations for effective conductivity of fiber-reinforced conducting composites with the Hall effect via a general theory[END_REF] for composites with microstructure independent of one coordinate (the so-called columnar composites) and to [START_REF] Bergman | Strong-field magnetotransport of conducting composites with a columnar microstructure[END_REF][START_REF] Bergman | Recent advances in strong field magnetotransport in a composite medium[END_REF] for the case of strong magnetic field.

Recently, in dimension two, M. Briane and the second author [START_REF] Briane | Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three[END_REF] obtained the effective perturbed conductivity σ * (h) of a sequence of isotropic high-contrast two-phase conductivities σ n (h) in the case of strong magnetic field, i.e., when the symmetric part and the antisymmetric part of the conductivity are of the same order. By extending a duality principle from [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF] and using a suitable Dykhne transformation, which (following Milton [START_REF] Milton | Classical Hall effect in two-dimensional composites: A characterization of the set of realizable effective conductivity tensors[END_REF][START_REF] Milton | The Theory of Composites[END_REF]) changes non symmetric matrices into symmetric ones, they proved that the symmetric part of the effective perturbed conductivity σ * (h) is given in terms of the effective conductivity in the absence of a magnetic field. They subsequently compared their two-dimensional results to a three-dimensional periodic one and showed that the way a magnetic field perturbs the conductivity of a composite depends on the dimension. In order to compute the explicit perturbation formula in dimension three, they restricted themselves to a particular periodic fibre-reinforced structure, i.e., a structure completely described by any two-dimensional cross section transversal to the fibres (first introduced by Fenchenko, Khruslov [START_REF] Fenchenko | Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness[END_REF] to derive a non local effect in homogenization). To our knowledge, only few results are known on the homogenization of both high-contrast and non symmetric conductivities in dimension three.

The aim of this paper is to determine the effective perturbed conductivity of (1.2) for non periodic high-contrast two-phase cylindrical composites without any assumption on the geometry of the transversal microstructure.

We first investigate the periodic case, that is, when

σ n (h)(•) = Σ n (h)(•/ε n ) where Σ n (h)(•) is a Y -periodic
matrix-valued function and ε n → 0 represents the size of the heterogeneities in the composite. In order to avoid non local effects in the limit problem, following Briane [START_REF] Briane | Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects[END_REF], we assume the existence of a sequence of positive numbers c n such that ε 2 n c n tends to zero, as n goes to infinity, and satisfying the weighted Poincaré-Wirtinger inequality

∀ V ∈ H 1 (Y ), ˆY |Σ n (h)(y)| V -ˆY V dy 2 dy ≤ c n ˆY Σ n (y)∇V • ∇V dy.
For a fixed n ∈ N * , using the theory of exact relations of Grabovsky, Milton, Sage [START_REF] Grabovsky | An application of the general theory of exact relations to fiber-reinforced conducting composites with Hall effect[END_REF][START_REF] Grabosky | Exact relations for effective tensors of polycrystals: Necessary conditions and sufficient conditions[END_REF] (thanks to the independence of the microstructure of the variable x 3 ), we obtain the H-limit σ n * associated with the periodic homogenization [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF] of the oscillating sequence Σ n (•/ε) as ε → 0. Then, we show that the sequence of constant conductivities σ n * converges to some σ * (h) which, according to [START_REF] Briane | Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects[END_REF], coincides with the homogenized conductivity associated with the limit problem of (1.2). The obtained effective conductivity σ * (h) is explicitly computed in terms of the homogenized conductivity σ * (h) of the conduction problem posed in the (x 1 , x 2 )-plane transversal to the columnar composite (see Proposition 2.1).

Most of the arguments and tools used in the periodic case crucially lie on the periodic nature of the microstructure. Therefore, a fundamentally different approach is necessary for the analysis of (1.2) when σ n (h) is not periodic.

In order to study the asymptotic behavior of the problem (1.2) in the non periodic case, using a method, in the spirit of the H-convergence of Murat-Tartar, we determine the limit, in an appropriate sense, of the current σ n (h)∇u n . The key ingredient of this approach is a fundamental compactness result (see Lemma 3.1) based on a control of high conductivities in thin structures through weighted Poincaré-Wirtinger type inequalities. This compactness lemma, combined with the two-dimensional results of [START_REF] Briane | Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three[END_REF] and the cylindrical structure of the composite allows us to obtain an explicit formula of σ * (h), once again, in terms of the transversal homogenized conductivity σ * (h) and of some bounded function θ which, in some sense, takes account of the distribution of the highly conducting phase Ω n in Ω (see Theorem 3.1).

The structure of the paper is the following: In Section 1.1 we set up some general notations. Section 2 deals with the periodic case. In Section 3 we extend the periodic result of Section 2 to a non periodic framework. Section 4 is devoted to some examples illustrating both the periodic and non periodic perturbation formulas.

Here, we give some general notations and definitions.

General notations and definitions

• Ω is a bounded open subset of R 3 with a Lipschitz boundary. The unit cube (- 1 2 , 1 2 ) 3 of R 3 is denoted by Y .

• For any subset ω of Ω, we denote by ω the closure of ω in R 3 .

• ε n is a sequence of positive real numbers converging to zero as n goes infinity.

• For any matrix σ in R d×d , σ T denotes the transpose of the matrix σ while σ s denotes its symmetric part. For any invertible matrix σ in R d×d , σ -T := σ -1 T = σ T -1 .

• I d denotes the unit matrix in R d×d and J :

= 0 -1 1 0 . • For any h ∈ R 3 , E (h) denotes the 3 × 3 antisymmetric matrix defined by E (h) x := h × x, for x ∈ R 3 . • For any σ, η ∈ R d×d , σ ≤ η means that for any ξ ∈ R d , σξ • ξ ≤ ηξ • ξ.
• For any vector ξ ∈ R 3 , ξ ∈ R 2 denotes the vector of its first two components

ξ := (ξ 1 , ξ 2 ) T .
• ∇• denotes the gradient operator in R 3 with respect to the three variables (x 1 , x 2 , x 3 ) while ∇• is the gradient operator in R 2 with respect to the first two variables (x 1 , x 2 ): for any u ∈ H 1 (Ω), the function ∇u is defined on Ω by

∇u := ∂u ∂x 1 , ∂u ∂x 2 T ,
where Ω is the projection of Ω on the (x 1 , x 2 )-plane.

• For any 3 × 3 matrix σ, we denote by σ the 2 × 2 matrix defined by

σ := σ 11 σ 12 σ 21 σ 22 .
• The scalar product of two vectors u and v of R d is denoted by u • v.

• | • | denotes, the euclidean norm in R d , the subordinate norm in R d×d and the Lebesgue measure.

• For a Borel subset ω ∈ R d and a function u ∈ L 1 (ω) the average value of u over ω is denoted by

ω u dx := 1 |ω| ˆω u dx.
When ω = Y , we simply denote this average value by • .

• We denote by 1 ω the characteristic function of the set ω.

• We denote by C c (Ω) the set of continuous functions with compact support in Ω. The subspace of C c (Ω) of infinitely differentiable functions with compact support in Ω is denoted by D(Ω).

• We denote by C 0 (Ω) the space of continuous functions on Ω vanishing on the boundary ∂Ω of Ω endowed with the usual norm.

• For any locally compact subset X of R d , M(X) denotes the set of Radon measures defined on X.

• A sequence (µ n ) in M(Ω) is said to weakly- * converge to a measure µ if ˆΩ ϕµ n (dx) ---→ n→∞
ˆΩ ϕµ(dx), for any ϕ ∈ C 0 (Ω).

• The space of Y -periodic functions which belong to

L p loc (R d ) (resp. H 1 loc (R d )) is denoted by L p # (Y ) (resp. H 1 # (Y )).
• o(δ) denotes a term of the form δζ(δ) where the limit of ζ(δ) is zero, as δ goes to zero. For any sequences

(a n ) n∈N * and (b n ) n∈N * , a n ∼ n→∞ b n means that a n = b n + o(b n ).
• Throughout the paper, the letter c denotes a positive constant the value of which is not given explicitly and may vary from line to line.

In the sequel, we will use the following extension of H-convergence for two-dimensional highcontrast conductivities introduced in [START_REF] Briane | Two-dimensional div-curl results. application to the lack of nonlocal effects in homogenization[END_REF] for the symmetric case and extended in [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF] to the non symmetric case: Definition 1.1. Let Ω be a bounded domain of R 2 and let σ n ∈ L ∞ (Ω) 2×2 be a sequence of equicoercive matrix-valued functions. The sequence σ n is said to H(M( Ω) 2 )-converge to a matrix-valued function σ * if for any distribution g in H -1 ( Ω), the solution u n of the problem div σ n ∇u n = g in Ω,

u n = 0 on ∂ Ω, satisfies the convergences u n -⇀ u in H 1 0 ( Ω), σ n ∇u n -⇀ σ * ∇u weakly- * in M( Ω) 2 ,
where u is the solution of the problem

div σ * ∇u = g in Ω, u = 0 on ∂ Ω.
Let Ω be a bounded open subset of R 2 with a Lipschitz boundary and Ω n be a sequence of open subsets of Ω. Let Ω be the bounded open cylinder Ω := Ω × (0, 1) and Ω n the sequence of open cylinders Ω n := Ω n × (0, 1). Consider α 1 > 0, β 1 ∈ R and two sequences α 2,n ≥ α 1 and β 2,n ∈ R. Define, for any h ∈ R 3 , the two-phase isotropic conductivity

σ n (h) := σ 1 (h) := α 1 I 3 + β 1 E (h) in Ω \ Ω n , σ 2,n (h) := α 2,n I 3 + β 2,n E (h) in Ω n , where E (h) := 0 -h 3 h 2 h 3 0 -h 1 -h 2 h 1 0
.

In the domain Ω, the matrix-valued function σ n (h) does not depend on the variable x 3 and model the conductivity of a columnar heterogeneous medium. The phase Ω n is the one of high conductivity: α 2,n and β 2,n are unbounded. In order to ensure the L 1 (Ω) 3×3 -boundedness of the conductivity, we assume that the volume fraction of the highly conducting phase θ n := |Ω| -1 |Ω n | converges to zero and that the convergences

θ n α 2,n ---→ n→∞ α 2 > 0, θ n β 2,n ---→ n→∞ β 2 ∈ R, (1.3) 
hold. Assumption (1.3) can be rewritten

θ n σ 2,n (h) = θ n α 2,n I 3 + θ n β 2,n E (h) ---→ n→∞ σ 2 (h) := α 2 I 3 + β 2 E (h).
Our aim is to study the homogenization of the Dirichlet problem, for f ∈ H -1 (Ω),

-div σ n (h)∇u n = f in Ω, u n = 0 on ∂Ω. (1.4) 
On the one hand, we consider the case of a periodic cylindrical composite without any assumption on the geometry of its cross section. This framework extends the one of the three-dimensional result of [START_REF] Briane | Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three[END_REF] where the highly conducting zone is a set of circular fibres. On the other hand, by the means of a compactness result (see Lemma 3.1), we analyse the case of cylindrical but non periodic composites. In both cases, we impose conditions, adapting [START_REF] Briane | Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects[END_REF], that prevent from the appearance of non local terms so that the limit equation of (1.4) is a conductivity one.

In the sequel, we will omit the dependence on h of σ 1 (h), σ 2,n (h) and σ 2 (h) denoting simply σ 1 , σ 2,n and σ 2 .

The periodic case

In this section, we study the influence of a constant magnetic field h ∈ R 3 on the effective conductivity of a composite material where the highly conducting phase is periodically distributed but, contrary to [START_REF] Briane | Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three[END_REF], the cross section of which has a general geometry. Consider a sequence ω n = ω n × (0, 1) where ω n is a sequence of subsets of (0, 1) 2 with |ω n | converging to 0, as n tends to infinity. Let Ω n be the sequence of open subsets of Ω defined by

Ω n = Ω ∩ k∈Z 3 ε n ω n + k .
The conductivity of the heterogeneous medium occupying Ω is given by

σ n (h)(x) = Σ n (h) x ε n , ∀x ∈ Ω, (2.1) 
where

Σ n (h)(•) is a Y -periodic function defined by Σ n (h) = a n I 3 + b n E (h) with a n := α 1 1 Y \ωn + α 2,n 1 ωn , b n := β 1 1 Y \ωn + β 2,n 1 ωn . (2.2)
For a fixed n ∈ N * , let (σ n ) * (h) be the constant matrix defined by

∀ λ ∈ R 3 , (σ n ) * (h)λ = Σ n (h)∇W λ n , (2.3) 
where, for any

λ ∈ R 3 , W λ n is the unique solution in H 1 ♯ (Y ) of the auxiliary problem div Σ n (h)∇W λ n = 0 in D ′ (R 3 ) and W λ n -λ • y = 0, (2.4) 
which is equivalent to the variational cell problem

Σ n (h)∇W λ n • ∇Φ = 0, ∀ Φ ∈ H 1 ♯ (Y ), W λ n (y) -λ • y = 0.
(2.5)

The matrix (σ n ) * (h) is the homogenized conductivity of the oscillating sequence Σ n (•/ε) as ε → 0 (see, for instance, [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF] for more details).

The limit problem of the high-contrast three-dimensional equation (1.4) where σ n (h) is given by (2.1) may include non local effects. In order to avoid such effects, we assume, following [START_REF] Briane | Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects[END_REF], that the weighted Poincaré-Wirtinger inequality

∀V ∈ H 1 (Y ), ˆY a n V -ˆY V 2 ≤ C n ˆY a n |∇V | 2 , (2.6) 
holds true with

ε 2 n C n ---→ n→∞ 0. (2.7) 
Under the assumptions (2.6) and (2.7), it was shown in [START_REF] Briane | Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects[END_REF] that the sequence of problems (1.4) converges to a conduction one with a homogenized conductivity σ * (h).

The main contribution of Proposition 2.1 below is to provide a formula for the effective conductivity σ * (h) of a cylindrical periodic composite the cross section of which has a general geometry.

Proposition 2.1. Consider the sequence of problems (1.4) where σ n (h) is the conductivity defined by (2.1)-(2.2). Assume that (1.3), (2.6) and (2.7) are satisfied. Then, there exists a constant matrix σ * (h) such that, up to a subsequence, the solution u n of (1.4) weakly converges in

H 1 0 (Ω) to the solution u of -div σ * (h)∇u = f in Ω, u = 0 on ∂Ω. (2.8)
Moreover, the homogenized matrix σ * (h) is the limit of σ n * (h) (see (2.3)) and is given by

σ * (h) := σ * p * q T * α * , (2.9) 
where

       p * = -β 1 I 2 + β 2 σ * -σ 1 σ -1 2 J h, q * = β 1 I 2 + β 2 σ -1 2 σ * -σ 1 T J h, α * = α 1 + α 2 + β 2 2 σ -1 2 σ 1 + σ 2 -σ * σ -1 2 J h • J h, (2.10) 
and, for any i = 1, 2,

σ i := α i -β i h 3 β i h 3 α i .
Remark 2.1. For the sake of simplicity, throughout the paper, the symmetric part of σ n (h) is supposed to be isotropic. However, the results we obtain can be extended to composites the components of which have anisotropic conductivities.

Remark 2.2. It was shown in [START_REF] Briane | Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects[END_REF] that, due to the L 1 (Y ) 3×3 -boundedness of Σ n (h)(•), the sequence σ n * (h) is bounded. Thanks to (2.6) and (2.7), Theorem 2.1 of [START_REF] Briane | Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects[END_REF] ensures that the limit σ * (h) obtained in the following way

Σ n (h) x ε H -⇀ ε→0 σ n * (h) ---→ n→∞ σ * (h), satisfies the convergence σ n (h)∇u n -⇀ σ * (h)∇u in M(Ω) 3 ,
and then, coincides with the homogenized conductivity matrix in the problem (2.8).

Remark 2.3. Since Ω n has a columnar structure, the sequence σ n (h) given by

σ n (h) := σ n (h 3 ) = σ 1 (h 3 ) = α 1 I 2 + β 1 h 3 J in Ω \ Ω n , σ 2,n (h 3 ) = α 2,n I 2 + β 2,n h 3 J in Ω n .
depends only on the transversal variable (x 1 , x 2 ) and is then associated with the two-dimensional problems, for any g ∈ H -1 ( Ω),

-div σ n (h 3 ) ∇v n = g in Ω, v n = 0 on ∂ Ω.
Similarly to (2.3), we define the constant matrix σ n * (h 3 ). For any λ ⊥ e 3 , the solution W λ n of (2.4) does not depend on the variable y 3 and then

W λ n -λ • y = 0 and div Σ n (h 3 ) ∇W λ n = 0 in D ′ (R 2 ).
This equation and (2.4) imply that, for any λ, µ ⊥ e 3 ,

σ n * (h)λ • µ = Σ n (h)∇W λ n • µ = Σ n (h 3 ) ∇W λ n • µ = σ n * (h 3 ) λ • µ.
Hence, by Remark 2.2, σ n * (h 3 ) converges to the 2 × 2 matrix σ * involved in (2.9). A twodimensional perturbation formula in [START_REF] Briane | Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three[END_REF] gives the influence of the magnetic field h 3 on σ * :

σ * := σ * (h 3 ) = σ 0 * α 1 , α 2 + α -1 2 β 2 2 h 2 3 + h 3 β 1 J, (2.11) 
where σ 0 * is a locally Lipschitz function defined on (0, ∞) 2 , and for any α 1 , α 2 > 0, σ 0 * (α 1 , α 2 ) is the transversal homogenized conductivity in the absence of a magnetic field. The independence of the microstructure of the variable x 3 allows us to obtain an explicit expression of σ * (h) in terms of the transversal homogenized conductivity σ 0 * in the absence of a magnetic field.

Remark 2.4. In the case where the high conducting phase is a set of circular fibres, it was proved in [START_REF] Briane | Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three[END_REF] that σ 0 * (α 1 , α 2 ) = α 1 I 2 and the limit σ * (h) in (2.9) reduces to

σ * (h) = α 1 I 3 + α 2 + β 2 2 σ -1 2 J h • J h e 3 ⊗ e 3 + β 1 E (h).
Now, let us proceed with the proof of Proposition 2.1.

Proof of Proposition 2.1. Thanks to Remarks 2.2 and 2.3, there exists a 3 × 3 matrix σ * (h) such that, up to a subsequence, we have the convergence of constant matrices

σ n * (h) ---→ n→∞ σ * (h) := σ * p * q T * α * , (2.12) 
where σ * is given by (2.11) and where the constants q * , p * ∈ R 2 , α * ∈ R have to be determined. To this end, we divide the proof into two steps. We first apply Grabovsky and Milton's method [START_REF] Grabovsky | An application of the general theory of exact relations to fiber-reinforced conducting composites with Hall effect[END_REF][START_REF] Grabovsky | Exact relations for effective conductivity of fiber-reinforced conducting composites with the Hall effect via a general theory[END_REF][START_REF] Grabovsky | Exact relations for composites: Towards a complete solution[END_REF] to link σ n * to a more simple problem. Then, we study the asymptotic behavior of the different coefficients of this new problem.

First step: A stable transformation under homogenization. For a fixed n ∈ N * , following Grabovsky and Milton [START_REF] Grabovsky | Exact relations for composites: Towards a complete solution[END_REF][START_REF] Grabovsky | An application of the general theory of exact relations to fiber-reinforced conducting composites with Hall effect[END_REF], we consider two vectors p 0,n , q 0,n ∈ R 2 and the transformation

σ ′ n := Π n σ n (h) Π n = σ n p ′ n q ′ T n α ′ n , (2.13) 
where

Π n := I 2 0 q T 0,n 1 , Π n := I 2 p 0,n 0 1 , (2.14) 
and

p ′ n = σ 1 p 0,n -β 1 J h in Ω \ Ω n , σ 2,n p 0,n -β 2,n J h in Ω n , q ′ n = σ T 1 q 0,n + β 1 J h in Ω \ Ω n , σ T 2,n q 0,n + β 2,n J h in Ω n .
(2.15)

Let us choose the parameters p 0,n and q 0,n in such a way that p ′ n and q ′ n are constant. To that aim, p 0,n and q 0,n have to satisfy the identities

σ 1 p 0,n -β 1 J h = σ 2,n p 0,n -β 2,n J h, σ T 1 q 0,n + β 1 J h = σ T 2,n q 0,n + β 2,n J h, which implies that p 0,n = (β 2,n -β 1 ) σ 2,n -σ 1 -1 J h and q 0,n = (β 2,n -β 1 ) σ 1 -σ 2,n -T J h.
The new matrix-valued function σ ′ n defined by (2.13) is periodic and can be rewritten

∀x ∈ Ω, σ ′ n (x) = Σ ′ n x ε n where Σ ′ n := Σ n p ′ n q ′ T n a ′ n . (2.16)
Moreover, by (2.13), the coefficient a ′ n in (2.16) has the following explicit expression:

a ′ n = α ′ 1,n 1 Y \ωn +α ′ 2,n 1 ωn where    α ′ 1,n = α 1 + σ 1 p 0,n • q 0,n + β 1 (p 0,n -q 0,n ) • J h, α ′ 2,n = α 2,n + σ 2,n p 0,n • q 0,n + β 2,n (p 0,n -q 0,n ) • J h.
(2.17)

Let us now study the homogenization of σ ′ n . Define σ ′ n * as in the formula (2.3). The conductivity Σ ′ n does not depend on the variable y 3 . On the one hand, as in Remark 2.3, if λ ⊥ e 3 , the solution W λ n of the problem (2.5), with the conductivity Σ ′ n , does not depend on the variable y 3 and ∇W λ n = ( ∇W λ n , 0) T . Hence, since q ′ n is a constant, and by Remark 2.3,

σ ′ n * λ = Σ n ∇W λ n , q ′ n • ∇W λ n T = σ n * λ, q ′ n • λ T . (2.18)
On the other hand, it is clear that, for λ = e 3 , W e 3 n (y) = y 3 satisfies (2.5) with the conductivity Σ ′ n . Hence, since p ′ n is a constant, we have 

σ ′ n * e 3 = (p ′ n , a ′ n ) T = p ′ n , a ′ n T . ( 2 
σ ′ n * = σ n * p ′ n q ′ T n a ′ n , (2.20) 
where

a ′ n = α 1 + σ 1 p 0,n • q 0,n + β 1 (p 0,n -q 0,n ) • J h + θ n α 2,n + σ 2,n p 0,n • q 0,n + β 2,n (p 0,n -q 0,n ) • J h + o(1).
(2.21)

Second step: Application of the theory of exact relations and asymptotic behavior of σ ′ n * . By (1.3) and since the volume fraction θ n converges to 0, we have 

   p 0,n = θ n (β 2,n -β 1 ) θ n ( σ 2,n -σ 1 ) -1 J h ---→ n→∞ β 2 σ -1 2 J h q 0,n = θ n (β 2,n -β 1 ) θ n ( σ 1 -σ 2,n ) -T J h ---→ n→∞ -β 2 σ -T 2 J h. ( 2 
               p ′ n -→ n→∞ p ′ * := -β 1 I 2 + β 2 σ 1 σ -1 2 J h, q ′ n -→ n→∞ q ′ * := β 1 I 2 -β 2 σ T 1 σ -T 2 J h, a ′ n -→ n→∞ α ′ * := 2 i=1 α i -β 2 2 σ -1 2 σ i σ -1 2 J h • J h + 2 β 2 β i σ -1 2 J h • J h , (2.23) 
Π n ---→ n→∞ Π := I 2 0 β 2 h T J σ -1 2 1 and Π n ---→ n→∞ Π := I 2 β 2 σ -1 2 J h 0 1 . (2.24) 
Since the matrix transformation (2.13) preserves the H-limit in the periodic case (see, for instance, [START_REF] Grabovsky | An application of the general theory of exact relations to fiber-reinforced conducting composites with Hall effect[END_REF][START_REF] Grabovsky | Exact relations for effective conductivity of fiber-reinforced conducting composites with the Hall effect via a general theory[END_REF][START_REF] Milton | The Theory of Composites[END_REF]), we have 

σ ′ n * = Π n σ n * (h) Π n . ( 2 

The non periodic case

In this section, we study the homogenization of the problem (1.4) without any periodicity assumption. The conductivity σ n (h) is defined by

σ n (h) := α n I 3 + β n E (h) where α n := 1 Ω\Ωn α 1 + 1 Ωn α 2,n , β n := 1 Ω\Ωn β 1 + 1 Ωn β 2,n . (3.1)
Consider the covering of R 3 by the squares Q k n defined by

∀k ∈ Z 3 , Q k n = ε n (Y + k). (3.2) 
We assume that the conductivity coefficient α n defined by (3.1) satisfies, for any k ∈ Z 3 , n ∈ N * , the following conditions:

(i) the weighted Poincaré-Wirtinger inequality

∀ v ∈ H 1 (Q k n ), ˆQk n α n v - Q k n v 2 dx ≤ c n ˆQk n α n |∇v| 2 dx, (3.3) 
where c n is a sequence of positive constants satisfying

c n ---→ n→∞ 0; (3.4) 
(ii) there exists a positive constant c such that, for any k ∈ Z 3 and n ∈ N * ,

Q k n α n ≤ c. (3.5) 
Remark 3.1. Note that, in the periodic case, the hypothesis (2.6)-(2.7) is a rescaling of (3.3)-(3.4) which, similarly to the periodic case, prevents from the appearance of non local effects in the limit problem. Assumption (3.5) ensures that the microstructure does not concentrate on a lower dimension subset through the homogenization process since it implies that (see in the proof of Lemma 3.1)

θ -1 n 1 Ωn -⇀ θ ∈ L ∞ (Ω) weakly- * in M(Ω). (3.6) 
In the periodic case, (3.5) is clearly satisfied since

Q k n α n dx = a n L 1 (Y ) ≤ c,
where a n is defined by (2.2) and θ ≡ 1.

We have the following result: 

-div σ * (h)∇u = f in Ω, u = 0 on ∂Ω. (3.7) 
Moreover, the effective conductivity σ * (h) in (3.7) is given by

σ * (h) := σ * p * q T * α * , (3.8 
)

where σ * is the H(M( Ω) 2 )-limit of σ n (h) in the sense of Definition 1.1, θ ∈ L ∞ (Ω) is the weak- * limit of θ -1 n 1 Ωn and        p * = -β 1 I 2 + β 2 σ * -σ 1 σ -1 2 J h, q * = β 1 I 2 + β 2 σ -1 2 σ * -σ 1 T J h, α * = α 1 + θα 2 + β 2 2 σ -1 2 σ 1 + θ σ 2 -σ * σ -1 2 J h • J h, (3.9) 
and, for any i = 1, 2,

σ i := α i -β i h 3 β i h 3 α i .
Remark 3.2. The shape (3.2) of Q k n is purely technical and can be generalized into any subset the diameter of which is of order ε n . Remark 3.3. Since Ω n has a columnar structure, 1 Ωn does not depend on the variable x 3 . Therefore,

θ -1 n 1 Ωn -⇀ θ ∈ L ∞ ( Ω) weakly- * in M( Ω). (3.10)
Hence, as in Remark 2.3, it was proved in [START_REF] Briane | Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three[END_REF] that there exists a function σ 0 * defined on (0, ∞) 2 and a subsequence of n, such that, for any α 1 , α 2 > 0,

β 1 , β 2 ∈ R, σ n (h) = σ n (h 3 ) H(M( Ω) 2 ) -⇀ σ * (h) = σ 0 * α 1 , α 2 + α -1 2 β 2 2 h 2 3 + h 3 β 1 J.
We obtain, once again, an explicit expression of σ * (h) in terms of the homogenized perturbed conductivity in the (x 1 , x 2 )-plane, in the absence of a magnetic field.

A crucial ingredient of the proof of Theorem 3.1 is the following compactness result: We assume that

ˆΩ α -1 n |ξ n | 2 dx + ˆΩ α n |∇v n | 2 dx ≤ c. (3.12) 
Then, ξ ∈ L 2 (Ω) and we have the convergence, in the sense of distributions

ξ n v n -⇀ ξv in D ′ (Ω). (3.13) 
Remark 3.4. Note that Lemma 3.1 is false when the conditions (3.3) and (3.4) do not hold. This can be seen by considering the classical model example of non local effects in conduction due to Fenchenko-Khruslov [START_REF] Fenchenko | Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness[END_REF] and presented, for instance, in [START_REF] Briane | Two-dimensional div-curl results. application to the lack of nonlocal effects in homogenization[END_REF][START_REF] Briane | Nonlocal effects in two-dimensional conductivity[END_REF]. For the reader's convenience, we give the main steps of the counterexample. Let Ω := (-1 2 , 1 2 ) 3 and Ω n be the 1 n -periodic lattice of thin vertical cylinders of radius n -1 e -n 2 . Let α n be the conductivity defined by (3.1) with α 1 := 1 and α 2,n := π -1 e 2n 2 which satisfies (1.3) and (3.5). For a fixed f in L 2 (Ω), let u n be the solution, in H 1 0 (Ω), of the equation

-div(α n ∇u n ) = f in D ′ (Ω).
For R ∈ (0, 1 2 ), let V n be the Y -periodic function defined on R 3 by

V n (y) :=            ln r + n 2 ln R + n 2 if r := y 2 1 + y 2 2 ∈ (e -n 2 , R), 0 if r ≤ e -n 2 (region of high conductivity), 1 if r ≥ R.
An easy computation shows that the sequences ξ n := α n ∇u n • e 3 and v n (x) := V n (nx) satisfy the assumption (3.12) and that v n weakly converges to the constant function 1 in H 1 (Ω). Moreover, Briane and Tchou [START_REF] Briane | Fibered microstructures for some nonlocal Dirichlet forms[END_REF] proved that

ξ n = α n ∂u n ∂x 3 -⇀ ξ := ∂u ∂x 3 + ∂v ∂x 3 weakly- * in M(Ω),
where the weak limit u of u n in H 1 0 (Ω) and the weak- * limit v of 1 Ωn πe -2n 2 u n in the sense of Radon measures satisfy the coupled system

               -∆u + 2π (u -v) = f in Ω, - ∂ 2 v ∂x 2 3 + v -u = 0 in Ω, u = 0 on ∂Ω, v(x ′ , 0) = v(x ′ , 1) = 0 if x ′ ∈ (-1 2 , 1 2 ) 2 . (3.14)
Then, if f is non zero, u and v are two different functions. Therefore, the convergence (3.13) does not hold true since, by the strong convergence, up to a subsequence, of v n to 1 in L 2 (Ω) and the weak convergence of 1 Ω\Ωn ∇u n to ∇u in L 2 (Ω), we have

ξ n v n = 1 Ω\Ωn ∂u n ∂x 3 v n -⇀ ∂u ∂x 3 = ξ × 1 = ∂u ∂x 3 + ∂v ∂x 3 in D ′ (Ω).
Substituting the expression of v, in terms of u, in the first equation of (3.14) leads to a non local term in the equation satisfied by u. The Poincaré-Wirtinger control (3.3)-(3.4) is fundamental to avoid such effects. In this example, (3.4) is false since (see [START_REF] Briane | Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects[END_REF] for more details) the optimal constant c n in (3.3) satisfies c n ≥ c > 0.

Proof of Lemma 3.1. On the one hand, by (1.3), the sequence α n is bounded in L 1 (Ω) and then, up to a subsequence, weakly- * converges to some a ∈ M(Ω). Moreover, the Radon measure a belongs to L ∞ (Ω). Indeed, let ϕ ∈ C 0 (Ω) and denote again by ϕ its extension to R 3 by setting ϕ ≡ 0 on R 3 \ Ω. There exists a finite subset I n of Z 3 such that

Ω ⊂ k∈In Q k n ,
where Q k n is defined by (3. 

k∈In |ϕ(ε n k)| ˆQk n α n dx ≤ c k∈In |Q k n ||ϕ(ε n k)| = c ϕ L 1 (Ω) + o(1). (3.16) 
The weak- * convergence of α n to a, combined with (3.15) and (3.16) yields

ˆΩ ϕ a(dx) ≤ c ϕ L 1 (Ω) ,
which implies that the measure a is absolutely continuous with respect to the Lebesgue measure and a ∈ L ∞ (Ω). From (1.3) and the convergence of α n to a, we have

θ -1 n 1 Ωn = (θ n α 2,n ) -1 (α n -α 1 1 Ω\Ωn ) -⇀ θ := α -1 2 (a -α 1 ) ∈ L ∞ (Ω) weakly- * in M(Ω)
, and then a = α 1 + θα 2 .

On the other hand, by the Cauchy-Schwarz inequality combined with (3.11), (3.5) and the convergence of α n to α 1 + α 2 θ, we have, for any ϕ ∈ C 0 (Ω),

ˆΩ ϕ ξ(dx) 2 = lim n→∞ ˆΩ ξ n ϕ dx 2 ≤ lim sup n→∞ ˆΩ α -1 n ξ 2 n dx ˆΩ α n ϕ 2 dx ≤ c ˆΩ(α 1 + θα 2 )ϕ 2 dx ≤ c α 1 + θα 2 ∞ ϕ 2 L 2 (Ω) , (3.17) 
which implies that the limit measure ξ of ξ n in (3.11) is actually an element of L 2 (Ω).

We now prove the convergence (3.13). Let ϕ ∈ D(Ω) and let I n be a finite subset of Z 3 such that

supp ϕ ⊂ k∈In Q k n ⊂ Ω,
where supp ϕ is the support of ϕ. For any w ∈ H 1 (Ω), define w εn the piecewise constant function associated with the partition Q k n k∈In as follows:

w εn = k∈In Q k n w 1 Q k n .
In order to study the convergence, in the sense of distributions, of (ξ n v n -ξv) to 0, we rewrite it as

ξ n v n -ξv = ξ n v n -v n εn :=pn + ξ n v n εn -v εn :=qn + ξ n v εn -ξv :=rn (3.18)
and estimate each term of the identity (3.18) separately.

Convergence of the term p n in (3.18). Thanks to the Cauchy-Schwarz inequality, we have

ˆΩ ξ n v n -v n εn ϕ dx 2 ≤   k∈In ˆQk n ξ n v n - Q k n v n ϕ dx   2 ≤ ϕ 2 ∞    k∈In ˆQk n α -1 n |ξ n | 2 dx ˆQk n α n v n - Q k n v n 2 dx    2 ≤ ϕ 2 ∞ k∈In ˆQk n α -1 n |ξ n | 2 dx k∈In ˆQk n α n v n - Q k n v n 2 dx ≤ c n ϕ 2 ∞ ˆΩ α -1 n |ξ n | 2 dx ˆΩ α n |∇v n | 2 dx, (3.19) 
where the last inequality is a consequence of (3.3). Finally, the inequality (3.19) combined with (3.12) and the convergence (3.4) yield

ˆΩ ξ n v n -v n εn ϕ dx ≤ c √ c n ---→ n→∞ 0. (3.20)
Convergence of the term q n in (3.18). By the Cauchy-Schwarz inequality and (3.5), we have

ˆΩ ξ n v n εn -v εn ϕ dx 2 ≤   k∈In ˆQk n ξ n ϕ dx Q k n (v n -v) dx   2 ≤ ϕ 2 ∞   k∈In |Q k n | -1 ˆQk n α n dx ˆQk n α -1 n |ξ n | 2 dx ˆQk n |v n -v| dx   2 ≤ ϕ 2 ∞   k∈In Q k n α n dx ˆQk n α -1 n |ξ n | 2 dx ˆQk n (v n -v) 2 dx   2 ≤ c ϕ 2 ∞ k∈In ˆQk n α -1 n |ξ n | 2 dx k∈In ˆQk n (v n -v) 2 dx ≤ c ˆΩ α -1 n |ξ n | 2 dx ˆΩ(v n -v) 2 dx
which yields, by (3.12),

ˆΩ ξ n v n εn -v εn ϕ dx 2 ≤ c v n -v 2 L 2 (Ω) . (3.21)
Since v n converges weakly to v in H 1 0 (Ω), by Rellich's theorem, up to a subsequence, v n converges strongly to v in L 2 (Ω). Hence, (3.21) implies that

ˆΩ ξ n v n εn -v εn ϕ dx ---→ n→∞ 0. (3.22)
Convergence of the term r n in (3.18). Consider, for any δ > 0, an approximation

ψ δ ∈ C c (Ω) of v for the L 2 (Ω) norm, i.e., v -ψ δ L 2 (Ω) = o(δ). (3.23)
The term r n in (3.18) writes

ξ n v εn -ξv = ξ n v εn -ψ δ εn + ξ n ψ δ εn -ψ δ + (ξ n -ξ)ψ δ + ξ(ψ δ -v). (3.24)
On the one hand, since ψ δ εn converges uniformly, as n goes to infinity, to ψ δ ∈ C c (Ω), the convergence (3.11) of ξ n to ξ implies that the second term and the third term in the right hand side of the equality (3.24) converge to 0 in D ′ (Ω). Moreover, by the Cauchy-Schwarz inequality and the fact that ξ ∈ L 2 (Ω), we have

ˆΩ ξ(ψ δ -v)ϕ dx ≤ ϕ ∞ ξ L 2 (Ω) ψ δ -v L 2 (Ω) .
On the other hand, following (3.21), we have In the sequel we apply Lemma 3.1 to sequences ξ n of vector-valued functions in L 1 (Ω) 2 or L 1 (Ω) 3 .

ˆΩ ξ n v εn -ψ δ εn ϕ dx ≤ c ϕ ∞ v -ψ δ L 2 (Ω) . ( 3 
Proof of Theorem 3.1. Thanks to the equi-coerciveness σ n ≥ α 1 I 3 , the solution u n of the problem (1.4) satisfies the convergence, up to a subsequence,

u n -⇀ u weakly in H 1 0 (Ω), (3.27) 
for some u in H 1 0 (Ω). Moreover, putting u n as a test function in the equation (1.4), we obtain that

ˆΩ α n |∇u n | 2 dx = ˆΩ σ n ∇u n • ∇u n dx = f, u n H -1 (Ω),H 1 0 (Ω) ≤ c. (3.28) Since α -1 2,n σ 2,n = I 3 + α -1 2,n β 2,n E (h), by (1.
3) the sequence |α -1 2,n σ 2,n | is bounded. Then, as the sequence α n is bounded in L 1 (Ω), the Cauchy-Schwarz inequality and (3.28) give

ˆΩ |σ n ∇u n | dx 2 ≤ c ˆΩ α n dx ˆΩ α n |∇u n | 2 dx ≤ c.
Hence, we have the convergence of the current σ n ∇u n , up to a subsequence,

σ n ∇u n -⇀ ξ 0 weakly- * in M(Ω) 3 , (3.29) 
for some ξ 0 ∈ M(Ω) 3 . Moreover, by the boundedness of |α -1 2,n σ 2,n | and (3.28), we have

ˆΩ α -1 n |σ n ∇u n | 2 dx ≤ c ˆΩ α n |∇u n | 2 dx ≤ c.
Then, by Lemma 3.1 applied to ξ n := σ n ∇u n , the measure ξ 0 is actually an element of L 2 (Ω) 3 .

The rest of the proof, which is divided into three steps, is devoted to the determination of the form of the limit current ξ 0 . To that end, we use a method in the spirit of H-convergence of Murat-Tartar which is based on the cylindrical nature of the microstructure and the compactness result of Lemma 3.1 for sequences only bounded in L 2 (Ω; σ -1/2 n dx). In the first two steps, we compute the components ξ 0 • e 1 and ξ 0 • e 2 by combining Lemma 3.1 with a corrector function associated with the transversal conductivity σ n , the existence of which is ensured by the two-dimensional results of [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF][START_REF] Briane | Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three[END_REF]. Since the corrector function considered in the previous steps is independent of the variable x 3 , the component ξ 0 • e 3 needs a different approach. This is the object of the last step.

First step: Building a corrector. Thanks to Remark 3.3, up to a subsequence, σ n H(M( Ω) 2 )converges to some coercive matrix-valued function σ * . Then, the sequence σ T n H(M( Ω) 2 )-converges to σ T * (see Theorem 2.1 of [START_REF] Briane | Duality results in the homogenization of two-dimensional highcontrast conductivities[END_REF]). Let λ ∈ R 3 with λ ⊥ e 3 . For λ = (λ 1 , λ 2 ) T ∈ R 2 , let v λ n be the solution of

   div σ T n ∇v λ n = div σ T * λ in Ω v λ n = λ • x on ∂ Ω. (3.30)
By Definition 1.1, we have the convergences

   v λ n -⇀ λ • x = λ • x weakly in H 1 ( Ω), σ T n ∇v λ n -⇀ σ T * λ weakly- * in M( Ω) 2 . (3.31) Setting, for x ∈ Ω, v λ n (x 1 , x 2 , x 3 ) = v λ n (x 1 , x 2 ), we have the convergences v λ n -⇀ λ • x weakly in H 1 (Ω), σ T n ∇v λ n -⇀ σ T * λ weakly- * in M(Ω) 2 , (3.32) 
and the energy inequality, as in (3.28),

ˆΩ α n ∇v λ n 2 dx = ˆ Ω σ n ∇v λ n • ∇v λ n d x ≤ c. (3.33) 
Let ϕ ∈ D(Ω). By (3.29) and since v λ n converges weakly to λ • x in H 1 (Ω), putting v λ n ϕ as a test function in (1.4) yields

ˆΩ σ n ∇u n • ∇ v λ n ϕ dx ---→ n→∞ f, ϕ λ • x H -1 (Ω),H 1 0 (Ω) = ˆΩ ξ 0 • ∇(ϕλ • x) dx. (3.34) 
Since σ n and v λ n do not depend on the variable x 3 , we have the identity

σ n ∇u n • ∇v λ n = σ n ∇u n • ∇v λ n -∂ 3 β n ∇v λ n • J h u n . (3.35) 
Then, by (3.35), an integration by parts gives

ˆΩ σ n ∇u n • ∇ v λ n ϕ dx = ˆΩ σ n ∇u n • ∇ϕ v λ n dx (3.36) + ˆΩ β n ∇v λ n • J h u n ∂ϕ ∂x 3 dx (3.37) + ˆΩ σ T n ∇v λ n • ∇u n ϕ dx. (3.38)
Step 2: Estimates of the terms in (3.36)- (3.38). The convergence of these terms are consequences of Lemma 3.1 and the generalized two-dimensional div-curl lemma in a high-contrast context of [START_REF] Briane | Two-dimensional div-curl results. application to the lack of nonlocal effects in homogenization[END_REF].

Convergence of the term on the right hand side of (3.36). On the one hand, by the boundedness of α -1 n σ n and (3.28), we have the inequality

ˆΩ α -1 n |σ n ∇u n • ∇ϕ| 2 dx ≤ c ∇ϕ 2 ∞ ˆΩ α n |∇u n | 2 ≤ c.
On the other hand, the convergence (3.29), the inequality (3.33), and the convergence (3.32) of v λ n to λ • x, show that the sequences ξ n := σ n ∇u n and v n := v λ n satisfy the assumptions of Lemma 3.1. Hence, we obtain

ˆΩ σ n ∇u n • ∇ϕ v λ n dx ---→ n→∞ ˆΩ ξ 0 • ∇ϕ λ • x dx. (3.39) 
Convergence of the term in (3.37). We first compute the limit of β n ∇v λ n in the sense of Radon measures. We have the identity

β n ∇v λ n = β n ∂v λ n ∂x 1 , ∂v λ n ∂x 2 T = 1 Ω\Ωn β 1 ∇v λ n + β 2,n σ -T 2,n 1 Ωn σ T 2,n ∇v λ n = 1 Ω\Ωn β 1 ∇v λ n + β 2,n σ -T 2,n σ T n ∇v λ n -1 Ω\Ωn σ T 1 ∇v λ n , (3.40) 
where

σ 1 := α 1 -β 1 h 3 β 1 h 3 α 1 and σ 2,n := α 2,n -β 2,n h 3 β 2,n h 3 α 2,n . (3.41) 
By (1.3), we have

β 2,n σ -T 2,n ---→ n→∞ β 2 σ -T 2 , where σ 2 := α 2 -β 2 h 3 β 2 h 3 α 2 . (3.42) 
Combining this convergence with the ones in (3.31), we obtain that

β n ∇v λ n -⇀ β 1 λ + β 2 σ -T 2 σ T * -σ T 1 λ weakly- * in M(Ω) 2 . (3.43)
By the boundedness of α -1 n σ n , (1.3) and (3.33), we have

ˆΩ α -1 n |β n ∇v λ n | 2 dx ≤ c ˆΩ α n |∇v λ n | 2 ≤ c.
This inequality together with (3.28), (3.43) and the weak convergence (3.27) of u n to u in H 1 0 (Ω) show that the sequences ξ n := β n ∇v λ n and v n := u n satisfy the assumptions of Lemma 3.1. Then,

ˆΩ β n ∇v λ n • J h u n ∂ϕ ∂x 3 dx ---→ n→∞ ˆΩ β 1 I 2 + β 2 [ σ * -σ 1 ] σ -1 2 J h • λ u ∂ϕ ∂x 3 dx. (3.44)
Convergence of the term in (3.38). Integrating by parts in (3.38), we obtain that

ˆΩ σ T n ∇v λ n • ∇u n ϕ dx = - ˆΩ σ T n ∇v λ n • ∇ϕ u n dx + ˆΩ σ T n ∇v λ n • ∇ (u n ϕ) dx. (3.45)
On the one hand, the boundedness of α -1 n σ n and (3.33) yields

ˆΩ α -1 n σ T n ∇v λ n 2 ≤ c ˆΩ α n ∇v λ n 2 ≤ c.
By the second convergence of (3.32), the weak convergence (3.27) of u n to u in H 1 0 (Ω) and (3.28), the sequences ξ n := σ T n ∇v λ n and v n := u n satisfy the assumptions of Lemma 3.1. Hence,

ˆΩ σ T n ∇v λ n • ∇ϕ u n dx ---→ n→∞ ˆΩ σ T * λ • ∇ϕ u dx. (3.46)
On the other hand, since σ T n ∇v λ n does not depend on the variable x 3 , the second term on the right hand side of (3.45) can be rewritten under the form

ˆΩ σ T n ∇v λ n • ∇ (u n ϕ) dx = ˆ Ω σ T n ∇v λ n (x ′ ) • ∇ ˆ1 0 (u n ϕ) (x ′ , x 3 ) dx 3 dx ′ (3.47)
where

x ′ = (x 1 , x 2 ).
In order to study the asymptotic behavior of (3.47), we apply a two-dimensional div-curl lemma of [START_REF] Briane | Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three[END_REF] which is an extension to the non symmetric case of [START_REF] Briane | Two-dimensional div-curl results. application to the lack of nonlocal effects in homogenization[END_REF]. Set, for any x ′ ∈ Ω,

η n (x ′ ) := σ T n ∇v λ n (x ′ ) and v n (x ′ ) := ˆ1 0 (u n ϕ) (x ′ , x 3 ) dx 3 . (3.48) 
Due to the convergences (3.31) and (3.27), we have

     η n -⇀ σ T * λ weakly- * in M( Ω) 2 v n (x ′ ) -⇀ v(x ′ ) := ˆ1 0 (uϕ) (x ′ , x 3 ) dx 3 weakly in H 1 ( Ω). (3.49) 
The convergences (1.3) and (3.10), the definition (3.30) of the corrector v λ n , (3.31)-(3.33) and (3.49) imply that the sequences η n and v n defined in (3.48) satisfy the assumptions of Lemma 2.1 in [START_REF] Briane | Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three[END_REF]. Then,

σ T n ∇v λ n (x ′ ) • ∇ ˆ1 0 (u n ϕ) (x ′ , x 3 ) dx 3 -⇀ σ T * λ • ∇ ˆ1 0 (uϕ) (x ′ , x 3 ) dx 3 in D ′ ( Ω). (3.50) 
Let ψ ∈ D( Ω) such that ψ ≡ 1 on the projection of the support of ϕ on the (x 1 , x 2 )-plane. Taking ψ as a test function in (3.50), we obtain 

ˆ Ω σ T n ∇v λ n (x ′ ) • ∇ ˆ1 0 (u n ϕ) (x ′ , x 3 ) dx 3 dx ′ ---→ n→∞ ˆΩ σ T * λ • ∇ (uϕ) .
ˆΩ σ n ∇u n • ∇ v λ n ϕ dx ---→ n→∞ ˆΩ ξ 0 • ∇ϕ λ • x dx + ˆΩ σ * ∇u • λ ϕ dx + ˆΩ β 1 I 2 + β 2 [ σ * -σ 1 ] σ -1 2 J h • λ u ∂ϕ ∂x 3 dx.
Since σ * depends only on the variable (x 1 , x 2 ), this convergence, an integration by parts and (3.34) give

ˆΩ ξ 0 • λ ϕ dx = ˆΩ σ * ∇u - ∂u ∂x 3 β 1 I 2 + β 2 [ σ * -σ 1 ] σ -1 2 J h • λ ϕ dx. (3.52)
Finally, since the equation (3.52) holds for any ϕ ∈ D(Ω) and any λ ⊥ e 3 , we obtain the first two components of ξ 0

ξ 0 = σ * ∇u - ∂u ∂x 3 β 1 I 2 + β 2 [ σ * -σ 1 ] σ -1 2 J h. (3.53)
Step 3: Computation of ξ 0 • e 3 . By (3.29), we have the convergence

α n ∂u n ∂x 3 + β n ∇u n • J h = σ n ∇u n • e 3 -⇀ ξ 0 • e 3 weakly- * in M(Ω). (3.54)
We first study the asymptotic behaviour of α n ∂ 3 u n (which also gives the limit of β n ∂ 3 u n due to the fact that, by virtue of (1.3), α 2,n and β 2,n are of the same order). On the one hand, since θ n = |Ω| -1 |Ω n |, by the convergence (1.3), we have

ˆΩ α -1 n |θ -1 n 1 Ωn | 2 dx = θ -1 n |Ω n | θ n α 2,n = |Ω| θ n α 2,n ≤ c.
On the other hand, by (3.28), the weak convergence (3.27) of u n to u in H 1 0 (Ω) and (3.6), the sequences ξ n := θ -1 n 1 Ωn and v n := u n satisfy, once again, the assumptions of Lemma 3.1. Hence,

θ -1 n 1 Ωn u n -⇀ θu in D ′ (Ω).
Moreover, since 1 Ωn does not depend on the variable x 3 , we have

θ -1 n 1 Ωn ∂u n ∂x 3 -⇀ θ ∂u ∂x 3 in D ′ (Ω). (3.55) 
Finally, thanks to (3.55) and (1.3), we obtain the convergences, in the sense of Radon measures,

         α n ∂u n ∂x 3 = α 1 1 Ω\Ωn ∂u n ∂x 3 + (θ n α 2,n )θ -1 n 1 Ωn ∂u n ∂x 3 -⇀ (α 1 + θα 2 ) ∂u ∂x 3 , β n ∂u n ∂x 3 = β 1 1 Ω\Ωn ∂u n ∂x 3 + (θ n β 2,n )θ -1 n 1 Ωn ∂u n ∂x 3 -⇀ (β 1 + θβ 2 ) ∂u ∂x 3 . (3.56)
Now, in order to obtain the limit of the term β n ∇u n in (3.54), which similarly to (3.40)-(3.41), writes

β n ∇u n = β 1 1 Ω\Ωn ∇u n + β 2,n σ -1 2,n σ n ∇u n -1 Ω\Ωn σ 1 ∇u n , (3.57) 
it remains to estimate σ n ∇u n . Since ξ 0 is the limit of the current σ n ∇u n (3.29) and since

∀λ ⊥ e 3 , σ n ∇u n • λ = σ n ∇u n • λ -β n ∂u n ∂x 3 J h • λ,
the equality (3.53) gives

σ n ∇u n -β n ∂u n ∂x 3 J h -⇀ σ * ∇u - ∂u ∂x 3 β 1 I 2 + β 2 [ σ * -σ 1 ] σ -1 2 J h weakly- * in M(Ω) 2 .
Then, combining this convergence with (3.56), we have

σ n ∇u n -⇀ σ * ∇u + β 2 ∂u ∂x 3 [ σ 1 + θ σ 2 -σ * ] σ -1 2 J h weakly- * in M(Ω) 2 .
(3.58) Finally, passing to the limit in (3.57), taking into account (3.58) and (3.42), we obtain the convergence, in the sense of Radon measures, 

β n ∇u n -⇀ β 1 I 2 + β 2 σ -1 2 ( σ * -σ 1 ) ∇u + β 2 2 ∂u ∂x 3 σ -1 2 σ 1 + θ σ 2 -σ * σ -1 2 J h. ( 3 
ξ 0 • e 3 = β 1 I 2 + β 2 σ -1 2 ( σ * -σ 1 ) T J h • ∇u + (α 1 + α 2 θ) + β 2 2 σ -1 2 σ 1 + θ σ 2 -σ * σ -1 2 J h • J h ∂u ∂x 3 .
(3.60)

Finally, since the current σ n ∇u n weakly- * converges to ξ 0 in (3.29), we have the limit equation

-div(ξ 0 ) = f ,
where, by (3.53) and (3.60), ξ 0 = ( ξ 0 , ξ 0 • e 3 ) T = σ * (h)∇u which yields to the expression (3.8)-(3.9) of σ * (h). Theorem 3.1 is proved.

Two examples

In this section we present two examples where the perturbation formulas for the effective conductivities of non periodic high-contrast columnar composites are fully explicitly computed.

Circular fibres with variable radius

Let ρ be a continuous function on Ω depending only on the variable

x ′ = (x 1 , x 2 ) satisfying ∃ c 1 , c 2 > 0, c 1 ≤ ρ(x ′ ) ≤ c 2 , ∀ x = (x ′ , x 3 ) ∈ Ω, (4.1) 
and let r n be a sequence of positive numbers converging to 0, as n goes to infinity. We assume, without loss of generality, that

Ω ρ dx = 1. (4.2)
Define, for any k ∈ Z 3 , the sequence (r n,k ) n∈N * by r n,k := r n ρ(ε n k).

We consider the case where Ω n is the set of circular fibres ω n,k = {y ∈ Y | y 2 1 + y 2 2 ≤ r 2 n,k } (see Figure 4.1)

Ω n = Ω ∩ k∈Z 3 ε n (ω n,k + k). (4.3) 
Note that the fibres ω n,k do not have the same radius. where σ * (h) is given, for any x = (x ′ , x 3 ) ∈ Ω, by

×ε n 2 r n,k Ω n Ω \ Ω n
σ * (h)(x) = α 1 I 3 + ρ(x ′ ) α 3 2 + α 2 β 2 2 |h| 2 α 2 2 + β 2 2 h 2 3 e 3 ⊗ e 3 + β 1 E (h). (4.5) 
Remark 4.1. We can easily check that the homogenized conductivity σ * (h) of the two dimensional microstructure of the Figure 4.1 is given by

σ * (h) = α 1 I 2 + β 1 h 3 J = σ 1 (h).
This leads to the simple form (4.5) of σ * (h).

Proof of Proposition 4.1 In order to apply Theorem 3.1, we need to check that the conditions (3.3)-(3.5) hold true. On the one hand, the Poincaré-Wirtinger inequality combined with (1.3) imply the existence, for any k ∈ Z 3 , of a sequence of positive constants c n,k such that

∀ v ∈ H 1 (Q k n ), ˆQk n α n v - Q k n v 2 dx ≤ c n,k ˆQk n α n |∇v| 2 dx, (4.6) 
where

Q k n = ε n (Y + k).
Using estimates derived in [START_REF] Briane | Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects[END_REF], one can show that the best constant in the weighted Poincaré-Wirtinger inequality (4.6) satisfies

∀ k ∈ Z 3 , ∀ n ∈ N * , 0 < c n,k ≤ c ε 2 n ln r n ρ(ε n k) ,
for some positive constant c. Therefore, by (4.1) and (4.4), we have

0 < c n,k ≤ c ε 2 n | ln r n | + o(1) ---→ n→∞ 0,
uniformly with respect to k ∈ Z 3 . Conditions (3.3) and (3.4) of Theorem 3.1 are satisfied. On the other hand, by the definition of Ω n and (4.2), we have the following estimate for the volume fraction

θ n = |Ω n | |Ω| ∼ n→∞ 1 |Ω| εnk∈Ω ε 2 n πr 2 n ρ(ε n k) ∼ n→∞ πr 2 n Ω ρ dx = πr 2 n ,
which, by (4.1), implies that for any n ∈ N * and k ∈ Z 3 ,

Q k n α n dx = α 1 1 -πr 2 n ρ(ε n k) + α 2,n πr 2 n ρ(ε n k) ≤ c + c θ n α 2,n ≤ c.
Then, condition (3.5) of Theorem 3.1 is satisfied. Theorem 3.1 and Remark 4.1 ensure the existence of an effective conductivity σ * (h) which, after an easy computation, writes

σ * (h)(x) = α 1 I 3 + θ(x ′ ) α 3 2 + α 2 β 2 2 |h| 2 α 2 2 + β 2 2 h 2 3 e 3 ⊗ e 3 + β 1 E (h) ∀ x = (x ′ , x 3 ) ∈ Ω × (0, 1), (4.7) 
where θ is the weak limit of θ -1 n 1 Ωn . The function θ in (4.7) coincides with ρ. Indeed, since ρ is continuous, we obtain, for any ϕ ∈ C 0 (Ω) extended to R 3 by setting ϕ ≡ 0 on R

3 \ Ω, ˆΩ θ -1 n 1 Ωn ϕ dx = 1 πr 2 n k∈Z 3 ˆωn,k ϕ dx + o(1) = 1 πr 2 n εnk∈Ω ε 2 n πr 2 n ρ(ε n k)ϕ(ε n k) + o(1)
which implies that ˆΩ θ -1 n 1 Ωn ϕ dx = ˆΩ ρϕ dx + o(1).

Finally θ -1 n 1 Ωn converges weakly- * to ρ in M(Ω) and, then, θ ≡ ρ. This concludes the proof of Proposition 4.1.

Thin squared grids

In this section, we consider the case of a columnar composite the cross section of which is a highly conducting grid surrounded by another conducting medium (see Figure 4.2). Let t n be a positive sequence converging to 0 as n goes to infinity. Let ρ be a continuous function on Ω, depending only on the variable x ′ = (x 1 , x 2 ) and satisfying

∃ c 1 , c 2 > 0, c 1 ≤ ρ(x ′ ) ≤ c 2 , ∀ x = (x ′ , x 3 ) ∈ Ω. (4.8) 
We assume, without loss of generality, that

Ω ρ dx = 1.
Define, for any k in Z 3 , the sequence (t n,k ) n∈N * by

t n,k := ρ(ε n k) t n . (4.9) 
Let Ω n be the set of non periodically distributed squared fibres

Ω n = Ω ∩ k∈Z 3 ε n (ω n,k + k) where ω n,k := y ∈ Y | max(|y 1 |, |y 2 |) ≥ 1 2 -t n,k . (4.10) 
Note that the case ρ ≡ 1 leads to a periodic distribution of the squared fibres in Ω. By the definition (2.2) of a n , we have

ˆY a n V 2 dy ≤ ˆY \ 4 ∪ i=1 K i n a n V 2 dy + 4 i=1 ˆKi n a n V 2 dy ≤ α 1 ˆY \ 4 ∪ i=1 K i n V 2 dy + α 2,n 4 i=1 ˆKi n V 2 dy ≤ α 1 ˆY V 2 dy + α 2,n 4 
i=1 ˆKi n V 2 dy.
Since V = 0, this inequality and the Poincaré-Wirtinger inequality in H 1 (Y ), yield

ˆY a n V 2 dy ≤ α 1 ˆY |∇V | 2 dy + α 2,n 4 
i=1 ˆKi n V 2 dy. ( 4 

.15)

We now estimate the second term of the right hand side of this inequality. On the one hand, since K 1 n is convex, the Poincaré-Wirtinger constant in H 1 (K 1 n ) is bounded from above by the diameter of K 1 n divided by π [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF] and, therefore V (y 1 , t, y 3 ) dy 1 dy 3 . (4.17)

ˆK1 n V 2 dy ≤ 2 ˆK1 n V - K 1 n V dy 2 + 2 |K 1 n | K 1 n V dy 2 ≤ c ˆK1 n |∇V | 2 dy + |K 1 n | K 1 n V dy
Integrating the first equality in (4.17) with respect to s ∈ [ 1 2 -t n , 1 2 ] and r ∈ [-1 2 , 1 2 ], we have and formula (4.13)-(4.14) of σ * (h) is a consequence of (2.9)-(2.10) where σ * is given by (4.22). The periodic case is then proved.

K 1 n V dy - Y V dy ≤ 1 2 1 2 -tn 1 2 -1 2 ˆ1 2 -1 2 | V ′ (
The existence of σ * (h) in the non periodic case is a consequence of Theorem 3.1. Indeed, for any k ∈ Z 3 and n ∈ N * , a rescaling of (4.21) gives

∀ v ∈ H 1 (Q k n ), ˆQk n α n v - Q k n v 2 dx ≤ c ε 2 n ˆQk n α n |∇v| 2 dx,
and, by (4.9),

Q k n α n dx = α 1 1 -4 t n,k (1 -t n,k ) + 4 α 2,n t n,k (1 -t n,k ) ≤ c + c t n α 2,n ≤ c.
The assumptions of Theorem 3.1 are satisfied. Then, there exist a matrix-valued function σ * (h) and a subsequence of n, still denoted by n, such that the solution u n of the problem (1.4) converges weakly in H 1 0 (Ω) to the solution u of the conductivity problem (4.12). In view of the formulas (3.8) and (3.9), the expression of σ * (h) becomes explicit as soon as σ * and θ are identified.

On the one hand, it is easy to check, similarly to the proof of Proposition 4.1, that ρ is the weak- * limit, in the sense of Radon measures, of the sequence θ -1 n 1 Ωn . Then, the function θ in Theorem 3.1 turns out to be ρ. On the other hand, by Remark 3.3, in order to compute σ * , one has to determine σ 0 * (α 1 , α 2 ), which is the H(M( Ω) 2 )-limit, in the sense of Definition 1.1, of the conductivity σ n (0), in the absence of a magnetic field, given by, for any x ′ ∈ Ω, σ n (0) := α 1 I 2 in Ω \ Ω n , α 2,n I 2 in Ω n .

Due to the local nature [START_REF] Briane | Two-dimensional div-curl results. application to the lack of nonlocal effects in homogenization[END_REF] of the H(M( Ω) 2 )-convergence, it is sufficient to compute σ 0 * (α 1 , α 2 ) locally in Ω. To that aim, consider x ′ ∈ Ω and ε > 0 small enough such that the closed disk D(x ′ , ε) ⊂ Ω. Since ρ is continuous and by (4.8), we have Then, substituting α 2 c i,ε (x ′ ) for α 2 in (4.22) in the absence of a magnetic field (i.e., h 3 = 0), we obtain, for i = 1, 2, 

σ i,ε * = α 1 + c i,ε (x ′ )

Theorem 3 . 1 .

 31 Assume that (1.3), (3.2)-(3.5) are satisfied. Then, there exist a matrix-valued function σ * (h) and a subsequence of n, still denoted by n, such that the solution u n of the problem (1.4) converges weakly in H 1 0 (Ω) to the solution u of the conductivity problem

Lemma 3 . 1 .

 31 Let α n be the sequence defined by (3.1) such that (1.3) and (3.3)-(3.5) hold true. Consider two sequences ξ n ∈ L 1 (Ω) and v n ∈ H 1 (Ω) satisfying ξ n -⇀ ξ weakly- * in M(Ω) and v n -⇀ v weakly in H 1 (Ω).(3.11)

  2). As ϕ is a uniformly continuous function, we have ˆΩ α n ϕ dx =

. 25 )

 25 Hence, by(3.23)-(3.25), we havelim sup n→∞ ˆΩ ξ n v n εn -ξv ϕ dx ≤ c ψ δ -v L 2 (Ω) = o(δ),(3.26)for arbitrary δ > 0. Finally, putting together (3.18), (3.20), (3.22) and (3.26), we obtain that lim sup n→∞ ˆΩ(ξ n v n -ξv)ϕ dx = o(δ), which concludes the proof of Lemma 3.1.

Finally, this convergence

  combined with (3.45), (3.46) and (3.47) givesˆΩ σ T n ∇v λ n • ∇u n ϕ dx ---→ n→∞ ˆΩ σ T * λ • ∇u ϕ dx. (3.51) Putting together (3.39), (3.44) and (3.51) with the equality (3.36)-(3.38), we obtain that
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 414 Figure 4.1: The cross section of the non periodic microstructure
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2 n

 2 (b) Bound from above

Figure 4 . 4 :

 44 Figure 4.4: Bounds from below and above of σ n (0)

  ˆY |∇V | dy ≤ ∇V L 2 (Y ) 3 . (4.18) Then, combining (4.16) and (4.18) with the boundedness (4.11) of |K 1 n |α 2,n = t n α 2,n , we obtain that ˆY a n |∇V | 2 dy. (4.20) Finally, (4.15), (4.19) and (4.20) imply ˆY a n V 2 dy ≤ c ˆY a n |∇V | 2 dy. (4.21) By a density argument, (4.21) is satisfied for any V ∈ H 1 (Y ) with V = 0. Since ε n converges to 0, the hypotheses (2.6) and (2.7) of Proposition 2.1 are satisfied. Then, there exists a homogenized matrix which is given in terms of the transversal effective conductivity σ * of the microstructure of Figure 4.2a. It remains to determine σ * . Since one can choose the cross-like shape of the Figure 4.3 as the period cell of the transversal microstructure of the heterogeneous medium occupying Ω, Proposition 3.2 of [17] ensures that

			σ * = α 1 +	α 2 2 + β 2 2 h 2 3 2α 2	I 2 + β 1 h 3 J,	(4.22)
							t)| dt ≤	ˆY ∂V ∂y 2	dy,
	which, since V = 0, implies that				
			K 1				
	α 2,n	ˆK1 n	V 2 dy ≤ c α 2,n	ˆK1 n	|∇V | 2 dy + ∇V 2 L 2 (Y ) 3	≤ c ˆY a n |∇V | 2 dy.	(4.19)
	Similarly to (4.19), we have, for i = 2, 3, 4,		
			ˆKi			
			α 2,n				

n V dy ≤ n V 2 dy ≤ c

  By (4.23) and (4.31), taking the limit, as ε goes to 0, in the inequalities (4.30), we obtain, for any Lebesgue pointx ′ of σ 0 * (α 1 , α 2 ) in Ω, σ 0 * (α 1 , α 2 ) = α 1 + ρ(x ′ ) I 2 + β 1 h 3 J. (4.32) Finally, we apply the formula (3.8)-(3.9) for σ * (h) in Theorem 3.1, with σ * given by (4.32), to obtain (4.13)-(4.14). This concludes the proof of Proposition 4.2.

		α 2 2	I 2 .	(4.31)
			α 2 2	I 2 .
	Therefore, by Remark 3.3, we have		
	σ * = α 1 + ρ(x ′ )	α 2 2 + β 2 2 h 2 3 2 α 2	
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Proposition 4.2. Let Ω n be the sequence of subsets of Ω defined by (4.10) and σ n (h) be the associated conductivity in the problem (1.4). Assume that 4 t n α 2,n ---→ n→∞ α 2 > 0 and 4 t n β 2,n ---→ n→∞ β 2 ∈ R.

(4.11)

Then, there exist a matrix-valued function σ * (h) and a subsequence of n, still denoted by n, such that the solution u n of the problem (1.4) converges weakly in H 1 0 (Ω) to the solution u of the conductivity problem

where σ * (h) is given by

and, for any

In formula (4.14), ρ ≡ 1 corresponds to the periodic case.

Proof of Proposition 4.2. Let us first consider the periodic case. In order to apply Proposition 2.1, we need to check that (2.6) and (2.7) are satisfied. To this end, consider V ∈ C 1 (Y ) such that V = 0. Define, for any n ∈ N * , the subsets

For instance, the projection of K 1 n , in the (y 1 , y 2 )-plane, is the shaded zone in Figure 4.3. For i = 1, 2, let Ω i n be the subset of D(x ′ , ε) defined by (see Figure 4.4)

and let σ i n be the periodic conductivity defined on D(x ′ , ε) by

By the definitions (4.23) and (4.25), we have for any z ∈ D(x ′ , ε), the inequalities

For the rest of the proof, we need the following result which is a consequence of the two-dimensional div-curl lemma, in a high contrast context, of [START_REF] Briane | Two-dimensional div-curl results. application to the lack of nonlocal effects in homogenization[END_REF]:

Lemma 4.1. Let D be a bounded domain of R 2 and, for i = 1, 2, consider an equi-coercive sequence of symmetric matrix-valued functions

* in the sense of Definition 1.1. We assume that

Then, we have the inequality

By Definition 1.1, we have the convergences, for i = 1, 2,

On the one hand, by (4.27), we have the inequality, almost everywhere in D

On the other hand, applying, for i, j = 1, 2, the two-dimensional div-curl lemma of [START_REF] Briane | Two-dimensional div-curl results. application to the lack of nonlocal effects in homogenization[END_REF] (Theorem 2.1) to ξ n := A i n ∇v λ,i n and v n := v λ,j n , we have the convergences, in the sense of distributions,

Finally, combining (4.28) and (4.29), we obtain

which concludes the proof of Lemma 4.1.

Since, for i = 1, 2, σ i,ε n is an equi-coercive sequence of periodic matrix-valued functions bounded in L 1 (D(x ′ , ε)), σ i,ε n H(M(D) 2 )-converges to a constant matrix σ i,ε * . Then, applying Lemma 4.1 with D = D(x ′ , ε) and (4.26), we have