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Abstract

We construct an approximate Riemann solver for the isentropic Baer-Nunziato two-phase flow model, that
is able to cope with arbitrarily small values of the statistical phase fractions. The solver relies on a relaxation
approximation of the model for which the Riemann problem is exactly solved for subsonic relative speeds. In
an original manner, the Riemann solutions to the linearly degenerate relaxation system are allowed to dissipate
the total energy in the vanishing phase regimes, thereby enforcing the robustness and stability of the method
in the limits of small phase fractions. The scheme is proved to satisfy a discrete entropy inequality and to
preserve positive values of the statistical fractions and densities. The numerical simulations show a much
higher precision and a more reduced computational cost (for comparable accuracy) than standard numerical
schemes used in the nuclear industry. Finally, two test-cases assess the good behavior of the scheme when
approximating vanishing phase solutions.

Key-words : Two-phase flows, entropy-satisfying methods, relaxation techniques, Riemann problem.
AMS subject classifications : 76T05, 35L60, 35F55.

1 Introduction

The modeling and numerical simulation of two-phase flows is a relevant approach for a detailed inves-
tigation of some patterns occurring in water-vapor flows such as those encountered in nuclear power
plants. The targeted applications are the normal operating mode of pressurized water reactors as
well as incidental configurations such as the Departure from Nucleate Boiling (DNB) [41], the Loss of
Coolant Accident (LOCA) [42] or the re-flooding phase following a LOCA. In the normal operating
mode, the flow in the primary circuit is quasi-monophasic as there is a priori no vapor in the fluid. In
the incidental configurations however, the vapor statistical fraction may take values ranging from zero
to nearly one if some areas of the fluid have reached the boiling point. The modeling as well as the
numerical simulation of such phenomena remains challenging since both models that can handle phase
transitions and robust numerical schemes are needed. The derived schemes are expected to ensure
important stability properties such as the positivity of the densities and discrete entropy inequalities.
In addition, as explicit schemes are needed for the simulation of these potentially highly unsteady
phenomena, one major challenge is the control of the time step. In this context, the aim of this work
is to design a robust and entropy-satisfying scheme for the numerical approximation of two-phase flows
with vapor or liquid fractions arbitrarily close to zero.
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The model concerned by this paper is the isentropic version of the two-fluid model introduced
by Baer and Nunziato in [5], and studied in various papers [12, 23, 30] (see also [36] for a related
framework). The model consists in two sets of partial differential equations accounting for the evolution
of mass, momentum and total energy for each phase, in addition to a transport equation for the phase
fraction. The evolution equations of the two phases are coupled through first order non-conservative
terms depending on the phase fraction gradient. A major feature of the Baer-Nunziato model is to
assume two different velocities and two different pressures for the two phases. This approach is not
genuinely usual in the nuclear industry where the commonly implemented methods assume the same
pressure for the two phases at every time and everywhere in the flow. This latter assumption is
justified by the very short time-scale associated with the relaxation of the phasic pressures towards
an equilibrium. In the two-fluid two-pressure models (such as Baer-Nunziato’s), zero-th order source
terms may be added in order to account for this pressure relaxation phenomenon as well as friction
terms for the relaxation of the phasic velocities towards an equilibrium. However, this work is mainly
concerned with the convective effects and these relaxation source terms are not considered here (see
[12] for some modeling choices of these terms and [28] for their numerical treatment).

Contrary to the single pressure models, the Baer-Nunziato model provides a pleasant property
which is the weak hyperbolicity of its convective part. Indeed, unlike single pressure models, where
the characteristic eigenvalues may be complex, the Baer-Nunziato model admits seven real eigenvalues
and the associated right eigenvectors form a basis unless the relative velocity between the phases equals
the speed of sound in the liquid (see [21]). A first consequence is that the initial value problem is
not a priori ill-posed for this model as long as the system remains strictly hyperbolic, that is to say
as long as no interaction occurs between the acoustic waves and the material wave transporting the
phase fraction. Another important consequence is that the definition of the non-conservative term
in the model is not ambiguous, still as long as the system remains strictly hyperbolic. Indeed, the
non-conservative term in the Baer-Nunziato model is transported by the linearly degenerate wave
fraction wave. Hence, as long as the system is hyperbolic, this non-conservative product is naturally
defined by the Riemann invariants associated with this wave (see [32, 22]). One of these Riemann
invariants expresses the conservation of the total mixture energy across the phase fraction wave in the
domain of hyperbolicity of the model. When the strict hyperbolicity is not satisfied, one speaks of a
resonance phenomenon and the definition of the non-conservative product is no longer straightforward.
In these cases, one must define regularization models in order to prescribe the behavior of such
resonant solutions. One usual model used in a related framework [29, 24] that encompasses the Baer-
Nunziato model, assumes a monotonic evolution of the phase fraction within the resonant wave. Other
regularizations processes have been introduced in the context of non-conservative interface coupling
between hyperbolic systems [2, 9]. In [34], viscous regularization methods are used for related two-
phase flow models and in the works of Yong [43], Kawashima-Yong [31], Chen et al. [11] and Hanouzet
et al. [26], the authors investigate the stabilization effects of zero-th order source terms in the context
of strictly hyperbolic balance equations. One common consequence of all these stabilization procedures
is that they imply a dissipation of the system’s energy either globally (for viscous and zero-th order
stabilizations) or locally around the resonant wave. In this latter case, the regularization is associated
with a so-called kinetic relation which is a generalized Rankine-Hugoniot type relation on the
system’s energy expressing its dissipation through the resonant linearly degenerate wave. For a general
review on kinetic relations, we refer to [6].

In our context of interest, namely nuclear liquid-vapor flows, the resonance due to wave interaction
between acoustic fields and the phase transport equation is unlikely to arise since it would imply sonic
or supersonic values of the relative velocity between the phases. However, the aim of this work is to
capitalize on the above considerations concerning the stabilization of resonant solutions in order to
propose an original framework for the stable computation of vanishing phase solutions. The method
is the following. Among all the energy dissipative mechanisms, we seek those that might ensure stable
approximate solutions for arbitrarily small values of the phase fractions. For instance, an interesting
question would be to know if in the Riemann problem, weakening the energy conservation across the
phase fraction wave through a suitable kinetic relation, may ensure stable solutions in the regimes
of small phase fractions. Unfortunately, despite some interesting works in that sense ([37, 19, 4]),

2



calculating the exact solution of the Riemann problem for the Baer-Nunziato model with any initial
data is so far out of reach. One main obstruction is that the characteristic eigenvalues of the system
are not naturally ordered, and no method has been found yet that could determine a priori their
ordering, with respect to the initial data. In addition, the strong non-linearities of the pressure laws
make even more difficult the derivation of an exact Riemann solver. Following the pioneering work of
Harten, Lax and van Leer [27], other approaches consider approximate Riemann solvers [40, 3], and
the method described in the present paper enters this category. Let us mention some other schemes
grounded on operator splitting techniques [10, 16, 33, 35, 38, 39].

Actually, the method considered here relies on a relaxation approximation of the model, similar to
that in Ambroso, Chalons, Coquel and Galié [1]. The idea consists in introducing a larger system, in
which the pressure laws have been linearized, and which relaxes towards the actual system of Baer-
Nunziato in the regime of a small relaxation parameter (for a general framework on relaxation schemes
we refer to [13, 14, 7]). While in [1], the authors calculate an approximate solution of the relaxation
system thanks to a prediction of the non-conservative product, one major contribution of our work
is the effective resolution of the relaxation Riemann problem in the framework of subsonic wave
ordering, by calculating exact solutions. In particular, we provide explicit conditions on the

initial data that enable the a priori determination of the relative ordering of the waves. The proof
relies on a fixed-point procedure that consists in iteratively considering the evolution equations of
each phase, taken separately. An outstanding property is that this iterative procedure boils down to
a fixed-point research on a monotonic scalar function. This property is crucial for the numerical
computations using the relaxation Riemann solver since it avoids heavy computational costs as assessed
by the numerical tests. In order to enforce the stability of the solutions when the initial phase fractions
have arbitrarily small values, the solutions are allowed in these regimes to dissipate the total energy of
the system across the phase fraction wave, through the definition of a suitable kinetic relation. Hence,
despite the linear degeneracy of all the waves implied by the relaxation approximation procedure,
some extra dissipation is introduced and one may speak of dissipative relaxation. This original idea
has been introduced in order to control the time step in the vanishing phase regimes. Indeed, another
way of stabilizing the numerical solutions in these regimes is to take larger values of the relaxation
parameters, thus introducing more diffusion to the relaxation approximation. However, too large
values of the relaxation parameters may involve too small time steps because of the CFL restrictions,
since these parameters directly control the size of the wave fan in the approximate Riemann solver.

The resulting scheme is proved to preserve positive densties and to satisfy a discrete entropy-
inequality under a sub-characteristic condition (Whitham’s condition). To our knowledge, there exists
no other scheme that is proved to satisfy these two properties. In addition, for the same level of
refinement, the scheme is shown to be much more accurate than the Rusanov scheme, and for a
given level of approximation error, the relaxation scheme is shown to perform much better in terms of
computational cost than this classical scheme. Actually, comparing with Lax-Friedrichs type schemes
is quite significant since for such stiff configurations as vanishing phase cases, these schemes are
commonly used in the industrial context because of their known robustness [28]. Our relaxation
scheme is first-order accurate and an interesting further work is the extension to higher orders (see
[20, 40] for example of high order schemes). Nevertheless this work is focused on the design of stable
computations for vanishing phase configurations. In these regimes indeed, even high order methods
may develop instabilities.

The paper is organized as follows. Sections 2 and 3 are devoted to the presentation of the Baer-
Nunziato model and its relaxation approximation. Some issues concerning the resonance, kinetic
relations and vanishing phase regimes are also discussed. Section 4 is the core of the paper. It
displays an existence theorem for the relaxation Riemann problem, for a generalized class of dissipative
solutions. For the sake of understanding, the constructive proof is explained in detail. In section 5, we
use the relaxation exact Riemann solver to derive an approximate solver in the sense of Harten, Lax
and van Leer [27] and thus, a Finite Volume scheme. Finally, section 6 is devoted to the numerical
tests. In addition to a convergence and CPU cost study, two test-cases assess that the scheme provides
a robust numerical treatment of vanishing phase solutions.
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2 The isentropic model of Baer-Nunziato

The isentropic Baer-Nunziato model is a two-phase flow model formulated in Eulerian coordinates
where balance equations account for the evolution of mass and momentum of each phase. The velocities
of each phase are denoted ui, i ∈ {1, 2}, while the densities are denoted ρi, i ∈ {1, 2}. Each phase has
a statistical phase fraction αi, i ∈ {1, 2}, with the saturation constraint α1+α2 = 1. The model reads:

∂tU+ ∂xf(U) + c(U)∂xU = 0, x ∈ R, t > 0, (2.1)

with

U =









α1

α1ρ1
α1ρ1u1

α2ρ2
α2ρ2u2









, f(U) =









0
α1ρ1u1

α1ρ1u
2
1 + α1p1(ρ1)
α2ρ2u2

α2ρ2u
2
2 + α2p2(ρ2)









, c(U)∂xU =









u2

0
−p1(ρ1)

0
+p1(ρ1)









∂xα1. (2.2)

The state vector U is expected to belong to the natural physical space

Ω =
{
U ∈ R5, 0 < α1 < 1 and αiρi > 0 for i ∈ {1, 2}

}
. (2.3)

We assume barotropic pressure laws for each phase ρi 7→ pi(ρi), i ∈ {1, 2} with smooth dependence
on the density, and which satisfy the following natural assumptions for all ρi > 0:

pi(ρi) > 0, p′i(ρi) > 0, lim
ρi→0

pi(ρi) = 0, lim
ρi→+∞

pi(ρi) = +∞. (2.4)

We define the mapping τ 7→ Pi(τ) := pi(τ
−1) which is the phasic pressure seen as a function of the

specific volume τ = ρ−1. In the whole paper, this smooth function is assumed to be strictly convex:

P ′′
i (τi) > 0, for all τi > 0, i ∈ {1, 2}. (2.5)

2.1 Main mathematical properties

The following proposition characterizes the fields of this system:

Proposition 2.1. System (2.1) is weakly hyperbolic since it admits the following real eigenvalues

σ1(U) = u2, σ2(U) = u1 − c1(ρ1), σ3(U) = u1 + c1(ρ1), σ4(U) = u2 − c2(ρ2), σ5(U) = u2 + c2(ρ2),
(2.6)

where ci(ρi) =
√

p′i(ρi) is the speed of sound for phase i. The corresponding right eigenvectors are
linearly independent if, and only if,

α1 6= 0, α2 6= 0, |u1 − u2| 6= c1(ρ1). (2.7)

When (2.7) is not satisfied, the system is said to be resonant. The characteristic fields associated
with σ2, σ3, σ4 and σ5 are genuinely non-linear, while the characteristic field associated with σ1 is
linearly degenerate.

Remark 2.1. Actually, following the definition of the admissible physical space (2.3), one never has
α1 = 0 or α2 = 0. However, αi = 0 is to be understood in the sense αi → 0 since the aim of
this work is to construct a robust enough Riemann solver that could handle all the possible values of
αi, i ∈ {1, 2}, especially, arbitrarily small values.

Proof . Denoting U = (α1, ρ1, u1, ρ2, u2)
T , the smooth solutions of system (2.1) satisfy the equivalent

following system
∂tU + A(U)∂xU = 0,
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where

A(U) =










u2 0 0 0 0
ρ1

α1
(u1 − u2) u1 ρ1 0 0

0
p′

1
(ρ1)
ρ1

u1 0 0

0 0 0 u2 ρ2
p1(ρ1)−p2(ρ2)

(1−α1)ρ2
0 0

p′

2
(ρ2)
ρ2

u2










.

This matrix admits five real eigenvalues that are provided in (2.6). Denoting M = u1−u2

c1
the relative

Mach number, the corresponding right eigenvectors can be chosen as

r1(U) =

(

α1(1− α1)(M
2 − 1),−(1− α1)ρ1M

2, (1− α1)c1M,α1
p2(ρ2)− p1(ρ1)

c22
(M2 − 1), 0

)T

,

r2(U) =
−2
√

p′1(ρ1)

p′′1(ρ1)ρ1 + 2p′1(ρ1)

(

0, ρ1,−
√

p′1(ρ1), 0, 0

)T

,

r3(U) =
2
√

p′1(ρ1)

p′′1(ρ1)ρ1 + 2p′1(ρ1)

(

0, ρ1,
√

p′1(ρ1), 0, 0

)T

,

r4(U) =
−2
√

p′2(ρ2)

p′′2(ρ2)ρ2 + 2p′2(ρ2)

(

0, 0, 0, ρ2,−
√

p′2(ρ2)

)T

,

r5(U) =
2
√

p′2(ρ2)

p′′2(ρ2)ρ2 + 2p′2(ρ2)

(

0, 0, 0, ρ2,
√

p′2(ρ2)

)T

.

Hence, the system is hyperbolic, i.e. the five eigenvectors rk(U), k in {1, .., 5} span R5 if and only if
α1 6= 0, α2 6= 0 and (u1 − u2)

2 6= c21(ρ1). Moreover, one can easily verify that

∇Uσ1(U).r1(U) = 0,

∇Uσk(U).rk(U) = 1, k = 2, 3, 4, 5

which proves that the first characteristic field is linearly degenerate while the four others are genuinely
non-linear.

The following proposition states the existence of two phasic energy equations satisfied by the
smooth solutions of system (2.1).

Proposition 2.2. Defining Ei := Ei(ui, τi) =
u2

i

2 + ei(τi), i ∈ {1, 2} with τ 7→ ei(τ) an antiderivative
of τ 7→ −Pi(τ), the smooth solutions of system (2.1) satisfy the following phasic energy equations:

∂t(αiρiEi) + ∂x (αiρiEi + αipi(ρi))ui − u2p1(ρ1)∂xαi = 0, i ∈ {1, 2}. (2.8)

Summing over i = 1, 2 yields the following additional conservation law, which expresses the total
mixture energy conservation by the smooth solutions of system (2.1):

∂t (α1ρ1E1 + α2ρ2E2) + ∂x ((α1ρ1E1 + α1p1(ρ1))u1 + (α2ρ2E2 + α2p2(ρ2))u2) = 0. (2.9)

Proof . The proof is classical. It consists in multiplying the phasic momentum equations (third and
fifth components of system (2.1)) respectively by ui and re-arranging the equations using the definition
of ei(τi) and the mass conservation equations (second and fourth components of (2.1)).

As regards the non-smooth weak solutions of (2.1), one has to add a so-called entropy criterion in
order to select the relevant physical solutions. Thus, an entropy weak solution of (2.1) is a function
U(x, t) that satisfies (2.1) in the sense of distributions as well as the following entropy inequality:

∂t (α1ρ1E1 + α2ρ2E2) + ∂x ((α1ρ1E1 + α1p1(ρ1))u1 + (α2ρ2E2 + α2p2(ρ2))u2) ≤ 0. (2.10)

When the solution contains shock waves, inequality (2.10) is strict in order to account for the physical
loss of energy due to viscous phenomena that are not modeled in system (2.1).

5



2.2 Riemann weak solutions in the case of strict hyperbolicity

The definition of weak solutions to system (2.1) is not straightforward because of the non conservative
product p1∂xα1. Indeed, considering a discontinuity of the phase fraction α1 across which the pressure
p1 may be discontinuous, it is clear that the product p1∂xα1 is not a priori defined in the sense of
distributions. However, since α1 discontinuities coincide with a linearly degenerate field, there is no
ambiguity in the definition of the product as long as the system is hyperbolic, i.e. as long as the three
conditions (2.7) are met. In this case indeed, there are two equivalent ways for defining the product
p1∂xα1. Let us describe briefly these too equivalent alternatives in the context of a Riemann problem.
System (2.1) is supplied with an initial condition of the type

U(x, t = 0) =

{
UL if x < 0,
UR if x > 0.

(2.11)

In most cases (hyperbolic cases, see thereafter), if the initial data is such that α1,L 6= α1,R, the solution
of the Riemann problem is a self-similar function composed of intermediate states separated by waves
associated with the acoustic fields (rarefaction or shock waves) or by a contact discontinuity associated
with the eigenvalue u2. Actually, the phase fractions αi only jump through this contact discontinuity
from αi,L to αi,R. Away from this wave, the phase fractions are constant and the system behaves as
two independent (isentropic) Euler systems associated with both phases since the term ∂xαi vanishes.

u1 + c1

u2 + c2
u∗
2

u1 − c1

u2 − c2

u1 − c1

α1,R
α1,L

U− U+

For the actual computation of the Riemann solution, one needs jump relations across each wave in
order to link the different intermediate states. For the acoustic waves, the jump relations are the same
as for the Euler isentropic equations associated with each phase. For the u2-wave however, the two
phases are coupled and there are two equivalent ways of defining the relation between two intermediate
states U− and U+ separated by such a discontinuity.

2.2.1 Definition through Riemann invariants

When the system is hyperbolic, there are four Riemann invariants associated with the linearly de-
generate field σ1(U) = u2, that is to say four independent functions Φk(U), k = 1..4 satisfying
∇UΦk(U).r1(U) = 0, for all k = 1..4. In the hyperbolic case, two states U− and U+ are separated by
a u2-contact discontinuity if and only if Φk(U

−) = Φk(U
+) for all k = 1..4. For a proof of this result

in the context of the full Baer-Nunziato model with energies, we refer to [22]. The derivative ∂xα1

corresponds to a Dirac measure of the form (α+
1 − α−

1 )δx−u∗

2
t, where u∗

2 is the propagation speed of
the α1-discontinuity, and the non-conservative product p1∂xα1 identifies with a measure

p1∂xα1 := p∗1(α
+
1 − α−

1 )δx−u∗

2
t (2.12)

whose weight p∗1(α
+
1 − α−

1 ) is obtained by applying Rankine-Hugoniot’s jump relation equivalently to
one of the momentum equations:

p∗1(α
+
1 − α−

1 ) = −u∗
2[α1ρ1u1] x

t
=u∗

2
+ [α1ρ1u

2
1 + α1p1] x

t
=u∗

2

= −
{
−u∗

2[α2ρ2u2] x
t
=u∗

2
+ [α2ρ2u

2
2 + α2p2] x

t
=u∗

2

}
.

(2.13)

Here, [X] x
t
=u∗

2
= X+ −X− denotes the difference between the values taken by the quantity X on the

right and on the left of the u2-contact discontinuity. As the eigenvalue u2 is a Riemann invariant, the
second line of (2.13) gives

p1∂xα1 = p∗1(α
+
1 − α−

1 )δx−u∗

2
t = − [α2p2] x

t
=u∗

2

δx−u∗

2
t. (2.14)
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2.2.2 Definition through Rankine-Hugoniot jump relations

In the hyperbolic case, an equivalent way of defining the non-conservative product p1∂xα1 across a
u2-contact discontinuity is through Rankine-Hugoniot jump relations. A first relation is given by the
continuity of the eigenvalue u2 across this linearly degenerate wave, and we get two more independent
jump relations by applying Rankine-Hugoniot’s formula to the mass conservation equation of phase 1
and to the total momentum conservation:

[u2] x
t
=u∗

2

= 0, (2.15)

−u∗
2 [α1ρ1] x

t
=u∗

2

+ [α1ρ1u1] x
t
=u∗

2

= 0, (2.16)

−u∗
2 [α1ρ1u1 + α2ρ2u2] x

t
=u∗

2

+
[
α1ρ1u

2
1 + α1p1 + α2ρ2u

2
2 + α2p2

]

x
t
=u∗

2

= 0. (2.17)

Observe that the mass conservation equation for phase 2 gives no additional information since the
corresponding jump relation is naturally satisfied because u2 is constant through the discontinuity.
Hence, there is one missing information in order to fully define the discontinuity and therefore the
non-conservative product. If we assume the hyperbolicity of the system, this last jump relation is
obtained by applying Rankine-Hugoniot’s formula to the total energy conservation (2.9) which yields

− u∗
2 [α1ρ1E1 + α2ρ2E2] x

t
=u∗

2

+ [(α1ρ1E1 + α1p1)u1 + (α2ρ2E2 + α2p2)u2] x
t
=u∗

2

= 0. (2.18)

Indeed, a theoretical result (see [32]) states that for a hyperbolic system, any additional conservation
law satisfied by the smooth solutions of the system is also satisfied in the weak sense through contact
discontinuities. Actually, a sufficient condition for the proof of this result is the existence of a right
eigenvector basis. The non-conservative product is then obtained by applying Rankine-Hugoniot’s
relation to the momentum equations just as previously, which yields (2.14).

2.2.3 Local energy equations around the α1-discontinuity

In the case of hyperbolicity, the phasic energy equations (2.8) are satisfied in the weak sense in the
neighborhood of a u2-contact discontinuity. For phase 2, this is a direct consequence of the fact that
u2 is constant across this wave according to (2.15). Indeed, one may write

− u∗
2 [α2ρ2E2] x

t
=u∗

2

+ [(α2ρ2E2 + α2p2)u2] x
t
=u∗

2

− u∗
2 [α2p2] = 0, (2.19)

which by the definition (2.14) of the non-conservative product p1∂xα1, is the Rankine-Hugoniot relation
of

∂t(α2ρ2E2) + ∂x (α2ρ2E2 + α2p2(ρ2))u2 − u2p1(ρ1)∂xα2 = 0. (2.20)

As for phase 1, the local phasic energy equation is a consequence of the constancy (2.15) of u2 and

of the conservation of the total mixture energy (2.18). Thus in the hyperbolicity areas of the system,
the weak solutions satisfy

− u∗
2 [α1ρ1E1] x

t
=u∗

2

+ [(α1ρ1E1 + α1p1)u1] x
t
=u∗

2

− u∗
2 [α2p2] = 0, (2.21)

which is the weak formulation of the following PDE satisfied locally near the α1-discontinuity:

∂t(α1ρ1E1) + ∂x (α1ρ1E1 + α1p1(ρ1))u1 − u2p1(ρ1)∂xα1 = 0. (2.22)

Let us emphasize again, that this last property (2.21)-(2.22) is a consequence of the assumed hyper-
bolicity of the system since, this is the very property that allows the total energy conservation to be
used in the weak sense across a u2-contact discontinuity. If the system is not strictly hyperbolic, this
property is not guaranteed as explained in the next section.
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2.3 Riemann weak solutions in the resonant case

When (2.7) is not satisfied, for instance if at some point of the flow, the physical quantities satisfy |u1−
u2| = c1(ρ1), the hyperbolicity is lost and the system is said to be resonant. In that case, the existence
of four independent Riemann invariants is no longer guaranteed and the jump relation associated with
the total mixture energy conservation is potentially lost. Indeed, the existing theoretical results stating
that for a hyperbolic system, any additional conservation law satisfied by the smooth solutions is also
satisfied in the weak sense through contact discontinuities, assume the existence of a right eigenvector
basis. Therefore, in these resonant cases, if the total mixture energy can no more be conserved across
the u2-contact discontinuity, enforcing its dissipation appears to be necessary for stability reasons. To
this end, one has to model regularization processes along the u2-contact discontinuity by adding some
information on the expected behavior of such resonant solutions. With any regularization process, is
associated a so-called kinetic relation, which is an additional Rankine-Hugoniot type relation, that
enables the actual computation of jumps across a resonant contact discontinuity, for instance when
solving the Riemann problem. In our context, a kinetic relation takes the form

− u∗
2 [α1ρ1E1 + α2ρ2E2] x

t
=u∗

2

+ [(α1ρ1E1 + α1p1)u1 + (α2ρ2E2 + α2p2)u2] x
t
=u∗

2

= −Q(u∗
2,UL,UR),

(2.23)
where Q(u∗

2,UL,UR) is a positive number measuring the amount of dissipated energy across the u2-
wave. In practice, the definition of such a kinetic relation has to obey several natural requirements.
First of all, in the areas of the phase space Ω where the system is hyperbolic, Q(u∗

2,UL,UR) is
expected to vanish in order to restore the total mixture energy conservation. On the other hand, in
the resonance areas, Q(u∗

2,UL,UR) has to be designed so as to ensure the existence of stable solutions
of the Riemann problem. Of course, several choices could be made for the regularization process,
leading to several possible definitions of Q(u∗

2,UL,UR). Thus, the uniqueness of solutions can only be
recovered for a given choice of the kinetic relation.

To exemplify the energy dissipation across a u2-contact discontinuity in the resonant case, one
may consider the case of a {u1 − c1}-shock superimposing with the u2-contact discontinuity. If one
considers the jump relation of the total energy through such a discontinuity, it reads

− u∗
2 [α1ρ1E1 + α2ρ2E2] x

t
=u∗

2

+ [(α1ρ1E1 + α1p1)u1 + (α2ρ2E2 + α2p2)u2] x
t
=u∗

2

< 0. (2.24)

Actually, on the one hand, the energy equation for phase 2 (2.19)-(2.20) is still satisfied. On the
other hand, the energy of phase 1 is strictly dissipated in this case due to the shock lying inside the
discontinuity. The jump relation (2.24) is equivalent to

− u∗
2 [α1ρ1E1] x

t
=u∗

2

+ [(α1ρ1E1 + α1p1)u1] x
t
=u∗

2

− u∗
2 [α2p2] < 0, (2.25)

which is the weak formulation of

∂t(α1ρ1E1) + ∂x (α1ρ1E1 + α1p1(ρ1))u1 − u2p1(ρ1)∂xα1 < 0. (2.26)

Considering now the physically relevant case of nearly vanishing phases, where the phase fractions
may be arbitrarily close (but not equal) to zero, the strict hyperbolicity of the system is not actually
lost in the sense that the right eigenvector basis still exists as long as αi 6= 0, i ∈ {1, 2}. Nevertheless,
the matrix composed of the right eigenvectors becomes singular as one of the phase fractions tends to
zero. Obviously, this may cause instabilities of the model in these vanishing phase regimes. Yet, in
many application contexts where one of the phases is naturally expected to disappear, one is interested
in stable (approximate) computations of such stiff regimes. The purpose of this paper is to construct
an approximate Riemann solver, for which the solutions are controlled in the regimes αi → 0. This
Riemann solver relies on a relaxation approximation which is presented in next section.

Remark 2.2. In the physical configurations aimed at in the present work (such as two-phase flows
in nuclear reactors), resonant configurations corresponding to wave interaction between acoustic fields
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and the u2-contact discontinuity are unlikely to occur. Indeed, for these applications, the flows have
strongly subsonic relative velocities, i.e. a relative Mach number much smaller than one:

M =
|u1 − u2|

c1
<< 1. (2.27)

Having set aside the sonic (M = 1) and supersonic (M > 1) flows, the main purpose of this work is
to tackle the issue of vanishing phase instabilities.

3 A relaxation approximation

We now introduce a relaxation approximation of system (2.1). The new system possesses the same
structure as the initial model (2.1) but the differential part is linearly degenerate while the non-linear
part is postponed to the source term. The goal is to construct and analyze the linearly degenerate
differential part. In general, the Riemann problem for such systems is simple to solve but here, we
inherit the non-conservative and resonant structure from (2.1). As a consequence, we have to introduce
a decrease of the associated mixture energy in some extreme cases by the use of a so-called kinetic
relation in order to obtain admissible solutions.

Denoting W = (α1, α1ρ1, α1ρ1u1, α2ρ2, α2ρ2u2, α1ρ1T1, α2ρ2T2)
T the relaxation state vector, we

propose the following relaxation approximation for system (2.1):

∂tW
ε + ∂xg(W

ε) + d(Wε)∂xW
ε =

1

ε
R(Wε), (3.1)

where

g(W) =













0
α1ρ1u1

α1ρ1u
2
1 + α1π1(τ1, T1)
α2ρ2u2

α2ρ2u
2
2 + α2π2(τ2, T2)
α1ρ1T1u1

α2ρ2T2u2













, d(W)∂xW =













u2

0
−π1(τ1, T1)

0
+π1(τ1, T1)

0
0













∂xα1, R(W) =













0
0
0
0
0

α1ρ1(τ1 − T1)
α2ρ2(τ2 − T2)













.

(3.2)
For each phase i in {1, 2} the linearized pressure πi(τi, Ti) is a function defined as

πi(τi, Ti) = Pi(Ti) + a2i (Ti − τi). (3.3)

We can see that in the formal limit ε → 0, the additional variable Ti tends towards the specific volume
τi, and the linearized pressure πi tends towards the original non-linear pressure pi, thus recovering
system (2.1) in the first five equations of (3.1). From this point and to ease the notation, we will omit
the superscript ε. In the sequel, the original system (2.1) will be referred to as the equilibrium system
as opposed to the relaxation system. The constants ai in (3.3) are two constant positive parameters
that must be taken large enough sa as to satisfy the so-called Whitham condition:

a2i > max
Ti∈Ki

{−P ′
i(Ti)} (3.4)

where Ki is a connected compact set of R that contains all the values of τi and Ti of the solution.

3.1 Main mathematical properties

Let us now focus on the convective part of system (3.1):

∂tW+ ∂xg(W) + d(W)∂xW = 0. (3.5)

The solutions are sought in the domain of positive densities ρi and positive Ti:

Ωr =
{

W ∈ R7, 0 < α1 < 1, αiρi > 0, αiρiTi > 0, i ∈ {1, 2}
}

. (3.6)
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Proposition 3.1. System (3.5) is weakly hyperbolic since it admits the following real eigenvalues

σ1(W) = u1 − a1τ1, σ2(W) = u1, σ3(W) = u1 + a1τ1,

σ4(W) = u2 − a2τ2, σ5(W) = σ6(W) = u2, σ7(W) = u2 + a2τ2.
(3.7)

The corresponding right eigenvectors are linearly independent if, and only if

α1 6= 0, α2 6= 0, |u1 − u2| 6= a1τ1. (3.8)

All the characteristic fields associated with these eigenvalues are linearly degenerate.

Proof . The proof is similar to that of Proposition 2.1. It is left to the reader.

Remark 3.1. Here again, one never has α1 = 0 or α2 = 0. However, αi = 0 is to be understood in
the sense αi → 0.

Unlike system (2.1), one remarkable property of the relaxation system (3.5) is the linear degeneracy
of all the characteristic fields. This has the helpful consequence that jump relations can be easily
derived through each wave. The relaxation approximation is therefore a pleasant way to get around the
difficulties due to non-linearity (discrimination between shocks and rarefaction waves, jump relations
for shocks...) which arise when solving the Riemann problem for (2.1).

In a similar way to that for the equilibrium system, we have balance equations on the phasic
energies as well as a total mixture energy conservation equation satisfied by the smooth solutions of
system (3.5):

Proposition 3.2. The smooth solutions of system (3.5) satisfy the following phasic energy equations:

∂t (αiρiEi) + ∂x (αiρiEi + αiπi)ui − u2π1(τ1, T1)∂xαi = 0, i ∈ {1, 2}. (3.9)

where the phasic energies are defined by

Ei := Ei(ui, τi, Ti) =
u2
i

2
+ ei(Ti) +

π2
i (τi, Ti)− P2

i (Ti)

2a2i
, i ∈ {1, 2}. (3.10)

Summing over i = 1, 2 yields the following additional conservation law, also satisfied by the smooth
solutions of system (3.5):

∂t (α1ρ1E1 + α2ρ2E2) + ∂x ((α1ρ1E1 + α1π1)u1 + (α2ρ2E2 + α2π2)u2) = 0. (3.11)

Proof . The proof is left to the reader.

3.2 Jump relations and kinetic relation for vanishing phases

Being given a pair of initial states (WL,WR), we supply the homogeneous system (3.5) with the
following initial condition

W(x, t = 0) =

{
WL if x < 0,
WR if x > 0.

(3.12)

As for the equilibrium system, the solution of the Riemann problem is a self-similar function composed
of intermediate states separated by contact discontinuities associated with the eigenvalues of the
system. The phase fractions αi only jump through the u2-contact discontinuity from αi,L to αi,R.
Away from this wave, the phase fractions are constant and the system behaves as two independent
relaxation systems for the isentropic Euler equations of each phase

u1 + a1τ1

u2 + a2τ2
u∗
2u∗

1

u1 − a1τ1

u2 − a2τ2

u1 − a1τ1

α1,R
α1,L

W− W+

10



For all the discontinuities except the one associated with the eigenvalue u2, the system is locally
conservative (the product π1∂xαi locally vanishes) and the jump conditions are simply obtained by
the Rankine-Hugoniot relations applied to the conservative equations of the system.

On the contrary, for the u2-wave, we have ∂xαi 6= 0. In fact ∂xαi identifies with a Dirac measure
and the pressure π1 may be discontinuous across this wave. The product π1∂xαi is determined by the
Riemann invariants of this linearly degenerate field, or equivalently by the Rankine-Hugoniot jump
relations. A first relation is given by the continuity of the eigenvalue u2, and we get three more
independent jump relations by applying Rankine-Hugoniot’s formula to the conservative equations of
phase 1 and to the total momentum conservation:

[u2]ξ=u∗

2

= 0, (3.13)

−u∗
2 [α1ρ1]ξ=u∗

2

+ [α1ρ1u1]ξ=u∗

2

= 0, (3.14)

−u∗
2 [α1ρ1T1]ξ=u∗

2

+ [α1ρ1u1T1]ξ=u∗

2

= 0, (3.15)

−u∗
2 [α1ρ1u1 + α2ρ2u2]ξ=u∗

2

+
[
α1ρ1u

2
1 + α1π1 + α2ρ2u

2
2 + α2π2

]

ξ=u∗

2

= 0. (3.16)

Finally, if the system is hyperbolic, a last jump relation (recall that the eigenvalue u2 has multiplicity
2) is obtained by applying Rankine-Hugoniot’s formula to the total energy preservation (3.11) which
yields

− u∗
2 [α1ρ1E1 + α2ρ2E2]ξ=u∗

2

+ [(α1ρ1E1 + α1π1)u1 + (α2ρ2E2 + α2π2)u2]ξ=u∗

2

= 0. (3.17)

In the sequel, when solving the Riemann problem for given initial data (WL,WR) and a given pair
of parameters (a1, a2), it appears that the exact solution may have non-positive densities if the ratio
of initial phase fractions α1,L

α1,R
(or its inverse) is too large. One way to avoid this problem is to take

larger values of the parameters (a1, a2) and solve the problem again. At the numerical level, taking
larger values of these parameters introduces some more diffusion to the relaxation approximation, thus
stabilizing the simulation. However, too large values of these parameters may involve too small time
steps because of the CFL restrictions, since (a1, a2) directly control the size of the wave fan in the
approximate Riemann solver. In this work, in order to control the time step, we propose to add the
needed extra diffusion directly at the PDE level in the relaxation approximation, in the form of an
energy dissipation. This is actually an original idea in the context of relaxation approximations, since
usually, the first step of the method (treatment of the convective system (3.5)) is energy preserving
because of the linear degeneracy of all the fields. Instead, the total energy conservation is replaced in
the regimes of vanishing phases by a kinetic relation of the form

− u∗
2 [α1ρ1E1 + α2ρ2E2] x

t
=u∗

2

+ [(α1ρ1E1 + α1π1)u1 + (α2ρ2E2 + α2π2)u2] x
t
=u∗

2

= −Q(u∗
2,WL,WR),

(3.18)
where Q(u∗

2,WL,WR) is a positive scalar function measuring the amount of dissipated energy across
the u2-wave. This kinetic relation allows to completely define the jump between two states W− and
W+ separated by a u2-contact discontinuity. The non-conservative product π1∂xα1 then identifies
with a Dirac measure

π∗
1∆α1δx−u∗

2
t, ∆α1 := α1,R − α1,L, (3.19)

whose weight is obtained by applying Rankine-Hugoniot jump relation to the momentum equations:

π∗
1∆α1 = −u∗

2 [α1ρ1u1]ξ=u∗

2

+
[
α1ρ1u

2
1 + α1π1

]

ξ=u∗

2

= −
{

− u∗
2 [α2ρ2u2]ξ=u∗

2

+
[
α2ρ2u

2
2 + α2π2

]

ξ=u∗

2

}

= − [α2π2]ξ=u∗

2

.
(3.20)

4 Solving the Riemann problem for the relaxation system

The aim of this section is to solve the Riemann problem associated with the homogeneous part of the
relaxation system. Being given a pair of initial states (WL,WR), we seek solutions of the following
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Cauchy problem:
∂tW+ ∂xg(W) + d(W)∂xW = 0, (4.1)

with the initial condition

W(x, t = 0) =

{
WL if x < 0,
WR if x > 0.

(4.2)

4.1 Definition of the solutions to the Riemann problem

The solution is sought in the form of a self-similar function only depending on the variable ξ = x
t ,

that is to say W(x, t) = Wr(x/t). As all the fields are linearly degenerate, if the solution remains
in the domain of hyperbolicity, the function Wr(ξ) is a piecewise constant function, composed of (at
most) seven constant states separated by (at most) six contact discontinuities, associated with the
six eigenvalues u1 ± a1τ1, u2 ± a2τ2, u1 and u2 (see Lax’s theory for Riemann problems [25]). More
precisely, we give the following definition for the solutions of the Riemann problem (4.1)-(4.2).

Definition 4.1. Let (WL,WR) be two states in Ωr. A solution to the Riemann problem (4.1)-(4.2)
with subsonic wave ordering is a self-similar mapping W(x, t) = Wr(x/t;WL,WR) where the
function ξ 7→ Wr(ξ;WL,WR) satisfies the following properties:

(i) Wr(ξ;WL,WR) is a piecewise constant function, composed of (at most) seven intermediate states
separated by (at most) six contact discontinuities associated with the eigenvalues u1 ± a1τ1, u2 ±
a2τ2, u1, u2 and such that

ξ < min
i∈{1,2}

{ui,L − aiτi,L} =⇒ Wr(ξ;WL,WR) = WL,

ξ > max
i∈{1,2}

{ui,R + aiτi,R} =⇒ Wr(ξ;WL,WR) = WR.
(4.3)

(ii) There exists a real number u∗
2 (depending on (WL,WR)) with the following properties. Denoting

Ξ− = {ξ ∈ R such that ξ < u∗
2} and Ξ+ = {ξ ∈ R such that ξ > u∗

2}, α1(ξ) equals α1,L on Ξ−

and α1,R on Ξ+ and the function Wr(ξ;WL,WR) is a weak solution of

− ξW′
r + g(Wr)

′ = 0, ξ ∈ Ξ− ∪ Ξ+. (4.4)

(iii) There exists a real number π∗
1 (depending on (WL,WR)) such that the following jump relations

across the u∗
2-discontinuity hold

[u2]ξ=u∗

2

= 0, (4.5)

−u∗
2 [Wr]ξ=u∗

2

+ [g(Wr)]ξ=u∗

2

+D
∗(WL,WR) = 0, (4.6)

with D
∗(WL,WR) = ∆α1(u

∗
2, 0,−π∗

1 , 0, π
∗
1 , 0, 0)

T and ∆α1 = α1,R − α1,L.

(iv) The energy jump of phase 1 across the u∗
2-discontinuity satisfies

− u∗
2 [α1ρ1E1]ξ=u∗

2

+ [α1ρ1E1u1 + α1π1u1]ξ=u∗

2

− u∗
2π

∗
1∆α1 ≤ 0. (4.7)

If (4.7) is a strict inequality, the solution is said to be energy-dissipative. Otherwise the
solution is energy-preserving.

(v) The solution has a subsonic wave ordering in the following sense:

u1,L − a1τ1,L < u∗
2 < u1,R + a1τ1,R. (4.8)
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Some comments on Definition 4.1:

1. In the above definition, u∗
2 is the the propagation velocity of the phase fraction wave.

2. The non-conservative product π1∂xα1 identifies with the Dirac measure π∗
1∆α1δx−u∗

2
t.

3. Item (ii) states that, away from the u2-wave, the system behaves as two independent relaxation
systems for the isentropic Euler equations.

4. Items (iii) and (iv) define the re-coupling relations between the two phases at the void fraction
wave u2. In particular, summing the third and fifth components of (4.6) yields the conservation
of the total momentum. Note that since u2 remains constant across this wave (4.5), the fourth
(mass conservation of phase 2), and seventh (convection of α2ρ2T2) components of (4.6) are
automatically satisfied.

5. Inequality (4.7) expresses that the phase 1 energy is either conserved (when (4.7) is an equality)
or dissipated (when (4.7) is a strict inequality) through the u2-contact discontinuity. As for the
phase 2 energy, since u2 is constant through this wave (4.5), and by the fifth component of (4.6),
it is exactly conserved in the following sense:

− u∗
2 [α2ρ2E2]ξ=u∗

2

+ [α2ρ2E2u2 + α2π2u2]ξ=u∗

2

+ u∗
2π

∗
1∆α1 = 0. (4.9)

Of course, speaking of the “conservation” of the phasic energies in an abuse of the usual termi-
nology since neither of the two phasic energies has a conservative equation. Nevertheless, in the
whole paper, we use this term when the phasic energy Ei satisfies its natural equation (3.9) in the
weak sense across the u2-contact discontinuity. Summing (4.7) and (4.9), we see that the total
mixture energy is either conserved as in (3.17) or dissipated across this discontinuity. In that,
the conservation (resp. dissipation) of the phase 1 energy is equivalent to the conservation (resp.
dissipation) of the total mixture energy across the u2-field. As this field is linearly degenerate,
the total energy is actually expected to be preserved when the system is hyperbolic. In the sequel
indeed, we will see that in most cases, preserving the total energy (3.17) through the u2-contact
discontinuity is possible for constructing admissible solutions of the Riemann problem. In this
case, one may speak of energy-preserving solutions. However, it appears that when the ratio α1,L

α1,R

(or its inverse) is large, constructing solutions with positive densities while maintaining the exact
energy conservation (3.17) across the u2-contact discontinuity is impossible. It will be shown
that in these vanishing phase regimes, solutions with positive densities cannot be obtained unless
one authorizes some dissipation of the total energy through the u2-contact, and one speaks of
energy-dissipative solutions in that particular case.

6. For the applications aimed at by this work, such as nuclear flows, we are only interested in solu-
tions which have a subsonic wave ordering, i.e. solutions for which the propagation velocity u∗

2 of
the void fraction α1 lies in-between the acoustic waves of phase 1 which is what is required in item
(v). Observe that this requirement prevents the loss of hyperbolicity due to wave interactions.
In the sequel, these solutions are classified in three categories depending on the ordering between
the u1-contact discontinuity, and the u2-contact discontinuity.

x

t

u1 + a1τ1

u2 + a2τ2

u
∗

1

u
∗

2

u2 − a2τ2

u1 − a1τ1

A solution with u
∗

2 < u
∗

1.

x

t

u1 + a1τ1

u2 + a2τ2
u
∗

2 = u
∗

1

u2 − a2τ2

u1 − a1τ1

A solution with u
∗

2 = u
∗

1.

x

t

u1 + a1τ1

u2 + a2τ2

u
∗

2

u
∗

1

u1 − a1τ1

u2 − a2τ2

A solution with u
∗

2 > u
∗

1.

7. The considered solutions are allowed to have phasic supersonic speeds |ui| > aiτi. Indeed,
the subsonic property considered here is related to the relative velocity u1 − u2 with respect
to the phase 1 speed of sound a1τ1.
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4.2 The resolution strategy: a fixed-point procedure

The key challenge to solving the Riemann problem for the relaxation system consists in determining
this non-conservative product π∗

1∆α1δx−u∗

2
t in the case α1,L 6= α1,R, i.e. in determining the values

of u∗
2 and π∗

1 satisfying the constraints of Definition 4.1. Indeed, if α1,L = α1,R, the two phases are
decoupled and the resolution is straightforward as stated in the following lemma.

Lemma 4.1. Consider the Riemann problem (4.1)-(4.2) with α1,L = α1,R. Then, a self-similar
solution ξ 7→ Wr(ξ;WL,WR) is such that α1(ξ) = cst = α1,L = α1,R, so that the non-conservative
product π1(τ1, T1)∂xαi vanishes. As a consequence, the evolutions of the two phases are completely
decoupled and the intermediate states for each phase are given for i ∈ {1, 2} by

u♯
i :=

1

2
(ui,L + ui,R)−

1

2ai
(πi,R − πi,L), (4.10)

π♯
i :=

1

2
(πi,R + πi,L)−

ai
2
(ui,R − ui,L), (4.11)

τ ♯i,L := τi,L +
1

ai
(u♯

i − ui,L) = τi,L +
1

2ai
(ui,R − ui,L)−

1

2a2i
(πi,R − πi,L), (4.12)

τ ♯i,R := τi,R −
1

ai
(u♯

i − ui,R) = τi,R +
1

2ai
(ui,R − ui,L) +

1

2a2i
(πi,R − πi,L). (4.13)

x

t

u1,R + a1τ1,R

u
♯
1

u1,L − a1τ1,L

τ1,L, u1,L, π1,L

τ
♯
1,L

u
♯
1

π
♯
1

τ
♯
1,R

u
♯
1

π
♯
1

τ1,R, u1,R, π1,R
x

t

u2,R + a2τ2,R

u
♯
2

u2,L − a2τ2,L

τ2,L, u2,L, π2,L

τ
♯
2,L

u
♯
2

π
♯
2

τ
♯
2,R

u
♯
2

π
♯
2

τ2,R, u2,R, π2,R

Phase solutions in the case of constant initial phase fractions αi,L = αi,R.
In each case, T ♯

i,L = Ti,L and T
♯
i,R = Ti,R.

The value of u∗
2 is given by u♯

2 and the solution has a subsonic wave ordering if and only if, these
quantities satisfy the following constraint:

u♯
1 − a1τ

♯
1,L < u♯

2 < u♯
1 + a1τ

♯
1,R ⇐⇒ −a1τ

♯
1,R < u♯

1 − u♯
2 < a1τ

♯
1,L. (4.14)

Observe that the quantities defined in (4.10) to (4.13) are independent of the phase fractions
α1,L = α1,R. On the contrary, if αi,L 6= αi,R, the evolutions of both phases are affected by the u2-
wave (which has multiplicity 2) and the physical quantities of the two phases are coupled through
this wave.

x

t

u1,R + a1τ1,R

u
∗

1u
∗

2

u1,L − a1τ1,L

x

t

u2,R + a2τ2,R

u
∗

2

u2,L − a2τ2,L

Phase solutions in the case of non-constant initial phase fractions αi,L 6= αi,R.

Starting from the known solution in the decoupled case |α1,L−α1,R| = 0, we seek to construct a branch
of solutions with subsonic wave ordering, in the non-conservative cases |α1,L−α1,R| 6= 0. Actually the
aim is to expose a subsonic type condition, similar to (4.14) which accounts for the subsonic ordering
requirement

u♯
1 − a1τ

♯
1,L < u∗

2 < u♯
1 + a1τ

♯
1,R, (4.15)
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and ensures the existence of such a solution. Of course, the main difficulty here is that the value of
u∗
2 is not a priori known with respect to the initial data unlike in the case α1,L = α1,R. However, the

analysis carried out in this paper will expose a very simple generalization of condition (4.14) valid for
the case α1,L 6= α1,R and that can be explicitly tested with respect to the initial data just as (4.14).

For this purpose, we recall the following key remark, made for instance by Ambroso et al. [1] and
which is the cornerstone of the whole resolution strategy.

Key remark: Consider the case α1,L 6= α1,R. If one is able to make a prediction of the pressure π∗
1

that defines the non-conservative product π1∂xαi and therefore shift it to a known right hand side

of the system, then one can see that the governing equations for phase 2 are completely independent
of the phase 1 quantities, namely ρ1, u1 and T1.

In [1], the authors calculate an approximate solution of the Riemann problem (4.1)-(4.2) by actually
formulating a prediction π∗

1(WL,WR) of the non-conservative product. Our approach is different. It
consists in performing a fixed-point procedure in order to determine the “right” value of π∗

1 and thus
calculate an exact solution to the Riemann problem (4.1)-(4.2). Formally, the fixed-point procedure
consists in iterating on the pair (u∗

2, π
∗
1) by alternately considering each one of the two phases, as

described hereunder.

First step: The pressure π∗
1 defining the non-conservative product π1∂xα1 = π∗

1∂xα1 = −π∗
1∂xα2 is

first assumed to be known. Hence, the governing equations for phase 2 are completely independent
of the phase 1 quantities, and one determines u∗

2 by solving the following Riemann problem for the
phase 2 system: 





∂tα2 + u2∂xα2 = 0,
∂t(α2ρ2) + ∂x(α2ρ2u2) = 0,
∂t(α2ρ2u2) + ∂x(α2ρ2u

2
2 + α2π2(τ2, T2))− π∗

1∂xα2 = 0,
∂t(α2ρ2T2) + ∂x(α2ρ2T2u2) = 0,

(4.16)

with the initial condition

W2(x, t = 0) =

{
W2,L if x < 0,
W2,R if x > 0,

(4.17)

where W2 = (α2, α2ρ2, α2ρ2u2, α2ρ2T2)
T denotes the state vector for phase 2 and (W2,L,W2,R) are

the restriction of the complete initial data (WL,WR) to the phase 2 variables. The sought solutions
of (4.16)-(4.17) are asked to obey an additional equation on the energy which reads:

∂t (α2ρ2E2) + ∂x (α2ρ2E2 + α2π2)u2 − u2π
∗
1∂xα2 = 0. (4.18)

Solving this Riemann problem enables to calculate the value u∗
2 of the phase fraction propagation

speed with respect to the assumed value of π∗
1 , and thus to define a function

F [WL,WR; a2] :

{
R −→ R

π∗
1 7−→ u∗

2.
(4.19)

Second step: The advection velocity u∗
2 of the phase fraction α1 is then assumed to be known. As

a consequence, the evolution of the phase 1 quantities is independent of phase 2, and computing them
amounts to solving the following phase 1 Riemann problem:







∂tα1 + u∗
2∂xα1 = 0,

∂t(α1ρ1) + ∂x(α1ρ1u1) = 0,
∂t(α1ρ1u1) + ∂x(α1ρ1u

2
1 + α1π1(τ1, T1))− π1∂xα1 = 0,

∂t(α1ρ1T1) + ∂x(α1ρ1T1u1) = 0,

(4.20)

with the initial condition

W1(x, t = 0) =

{
W1,L if x < 0,
W1,R if x > 0,

(4.21)
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where W1 = (α1, α1ρ1, α1ρ1u1, α1ρ1T1)
T denotes the state vector for phase 1, and (W1,L,W1,R) are

the restriction of the complete initial data (WL,WR) to the phase 1 variables. Here, in accordance
with (4.7), the sought solutions are asked to obey the following inequality on the phase 1 energy:

∂t (α1ρ1E1) + ∂x (α1ρ1E1 + α1π1)u1 − u∗
2π1∂xα1 ≤ 0. (4.22)

Once the Riemann problem for (4.20)-(4.21) is solved, applying Rankine-Hugoniot’s jump relation to
the momentum equation for the phase fraction wave of speed u∗

2, allows to compute the weight π∗
1 of

the non-conservative product π1∂xα1. Hence, this second step enables to define a function

G [WL,WR; a1] :

{
R −→ R

u∗
2 7−→ π∗

1 .
(4.23)

Fixed-point: Performing an iterative procedure on these two steps actually boils down to the fol-
lowing fixed-point research.

Find u∗
2 in (u♯

1 − a1τ
♯
1,L, u

♯
1 + a1τ

♯
1,R)

⋂
(u♯

2 − a1τ
♯
2,L, u

♯
2 + a2τ

♯
2,R) such that

u∗
2 =

(

F [WL,WR; a2] ◦ G [WL,WR; a1]
)

(u∗
2). (4.24)

The interval where u∗
2 must be sought corresponds to the subsonic wave ordering condition (4.8) on

the one hand, and to the positivity of the intermediate states of phase 2 on the other hand (see
Proposition (4.4)).

Section 4.3 is devoted to presenting and commenting the main result of the paper, which is an
existence theorem for the Riemann problem (4.1)-(4.2). In section 4.4, the first step of the iterative
process is performed and we give the explicit formula of function F [WL,WR; a2] defined in (4.19).
In section 4.4, the second step of the iterative procedure is performed. We restrict the presentation
to the research of solutions with the wave configurations u∗

2 < u∗
1. The results for the other wave

configurations u∗
2 = u∗

1 and u∗
2 > u∗

1 can be obtained through the same process, or can be inferred
from the Galilean invariance of the equations. This second step allows us to define an explicit formula
for function G [WL,WR; a1] introduced in (4.23). Finally, in section 4.6, we prove that, under some
explicitly formulated assumptions on the initial data (WL,WR) (see Theorem 4.2), there exists a
unique energy-preserving solution to the fixed-point problem (4.24). This unique solution corresponds
to the exact conservation of the total energy across the u2-contact discontinuity. It is shown however
that in some cases where the ratio α1,L

α1,R
is large, this solution may have non-positive densities. By

defining an appropriate kinetic relation which amounts to relaxing the conservation of the total
energy, we recover the existence of positive solutions.

4.3 An existence theorem for solutions with subsonic wave ordering

We may now state the existence theorem for the Riemann problem (4.1)-(4.2). We refer to equations
(4.10) to (4.13) for the definition of the quantities ♯ used in the theorem, an we define the following
number which solely depends on the initial phase fractions:

Λα :=
α2,R − α2,L

α2,R + α2,L
. (4.25)

Theorem 4.2. Let be given a pair of admissible initial states (WL,WR) ∈ Ωr × Ωr and assume

that the parameter ai is such that τ ♯i,L > 0 and τ ♯i,R > 0 for i in {1, 2}. There exists solutions
with subsonic wave ordering to the Riemann problem (4.1)-(4.2) in the sense of Definition 4.1 if the
following condition holds:

(A) − a1τ
♯
1,R <

u♯
1 − u♯

2 −
1
a2
Λα(π♯

1 − π♯
2)

1 + a1

a2
|Λα|

< a1τ
♯
1,L.
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Moreover, condition (A) can be decomposed into the three following conditions defining the wave
configuration:

(i) Either

(A1) 0 <
u♯
1 − u♯

2 −
1
a2
Λα(π♯

1 − π♯
2)

1 + a1

a2
|Λα|

< a1τ
♯
1,L,−

and the solutions have the wave configuration u∗
2 < u∗

1.

(ii) Or

(A2) − a1τ
♯
1,R <

u♯
1 − u♯

2 −
1
a2
Λα(π♯

1 − π♯
2)

1 + a1

a2
|Λα|

< 0,

and the solutions have the wave configuration u∗
2 > u∗

1.

(iii) Or

(A3) u♯
1 − u♯

2 −
1

a2
Λα(π♯

1 − π♯
2) = 0,

and the solutions have the wave configuration u∗
2 = u∗

1.

The proof of this theorem follows from the steps described in the three following sections 4.4, 4.5
and 4.6. Before giving the details of these steps, let us first make some comments on this result.

Some comments on Theorem 4.2:

1. Assumption (A) (actually (A1), (A2) or (A3)) can be explicitly tested in terms of the initial
data and the parameters ai, i ∈ {1, 2}. Of course, there is no similar result concerning the
Riemann problem for the isentropic equilibrium Baer-Nunziato system (2.1).

2. Assumption (A) reduces to (4.14) when α1,L = α1,R since in this case Λα = 0. In this sense,
assumption (A) is a generalization of (4.14) for the non-conservative case α1,L 6= α1,R.

3. The quantities a1τ
♯
1,L and a1τ

♯
1,R can be seen as two sound propagation speeds, while the quantity

u♯
1
−u♯

2
− 1

a2
Λα(π♯

1
−π♯

2
)

1+
a1

a2
|Λα|

, which has the dimension of a velocity, measures the difference between the

pressures and kinematic velocities of the two phases, in the initial data. Observe that if the initial
data is close to the pressure and velocity equilibrium between the two phases, this quantity is
expected to be small compared to a1τ

♯
1,L and a1τ

♯
1,R.

4. One may formulate a more geometrical interpretation of Theorem 4.2. Assuming that there
exists a solution with subsonic relative speeds when |α1,R − α1,L| = 0 (i.e. assuming (4.14)),
the theorem shows that if |α1,R − α1,L| 6= 0 is sufficiently small, then the Riemann problem still
admits energy-preserving subsonic solutions. Provided that one allows some energy-dissipation
across the u2-wave, this branch of solutions can be followed for Riemann problems in which
|α1,R − α1,L| increases (holding the other quantities in the initial left and right data fixed) until
assumption (A) is violated, or until |α1,R − α1,L| = 1.

5. Positivity of phase 1 densities. If the ratio α1,L

α1,R
is in a neighborhood of 1, condition (A)

is a necessary and sufficient condition for the existence of a unique energy-preserving solution.
If α1,L

α1,R
is too large (under (A1)), or too small (under (A2)), depending on the wave ordering,

ensuring positive densities for phase 1 may require a strict dissipation of the phase 1 energy:

∂t (α1ρ1E1) + ∂x (α1ρ1E1 + α1π1)u1 − u∗
2π

∗
1∂xα1 < 0. (4.26)

This, combined with the energy conservation in phase 2 (4.18) (see Proposition 4.4), implies that
the total mixture energy is dissipated. In sections 4.5.2 and 4.6.2, we propose a kinetic relation

for the determination of one solution, among all the admissible dissipative solutions given by the
theorem.
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6. Positivity of phase 2 densities. Assumption (A) allows to compute the value of the wave
propagation velocity u∗

2 (see section 4.6). With this value, one has to verify that the following
property, which is equivalent to the positivity of the phase 2 densities, is satisfied:

(B) u♯
2 − a2τ

♯
2,L < u∗

2 < u♯
2 + a2τ

♯
2,R. (4.27)

In the numerical applications using this Riemann solver (see sections 5 and 6), it will always be
possible to ensure property (B) by taking a large enough value of the relaxation parameter a2.

4.4 First step of the fixed-point procedure

In this first step, the pressure π∗
1 defining the non-conservative product π1∂xα1 = π∗

1∂xα1 = −π∗
1∂xα2

is assumed to be known, and one solves the Riemann problem (4.16)-(4.17) in order to compute u∗
2,

the propagation speed of the phase fraction α2. Observe that the non-conservative product π∗
1∂xα2

is not ambiguous here since π∗
1 is a known constant. The following proposition characterizes the

convective behavior of system (4.16).

Proposition 4.3. System (4.16) is a hyperbolic system with linearly degenerate fields associated with
the eigenvalues u2 − a2τ2, u2 and u2 + a2τ2. The eigenvalue u2 has multiplicity 2.

Proof . The proof is left to the reader.

We have the following well-posedness result for the governing equations of phase 2:

Proposition 4.4. Assume that the parameter a2 is such that τ ♯2,L > 0 and τ ♯2,R > 0. Then the
Riemann problem (4.16)-(4.17) admits a unique solution whose intermediate states are defined by:

x

t

u2 + a2τ2

u
∗

2

u2 − a2τ2

W2,L

τ2,L∗,T2,L∗

u2,L∗

τ2,R∗,T2,R∗

u2,R∗

W2,R

τ2,L∗ = τ ♯2,L +
∆α1

a22

π♯
2 − π∗

1

α2,L + α2,R
, u2,L∗ = u∗

2 = u♯
2 +

∆α1

a2

π♯
2 − π∗

1

α2,L + α2,R
, T2,L∗ = T2,L, (4.28)

τ2,R∗ = τ ♯2,R −
∆α1

a22

π♯
2 − π∗

1

α2,L + α2,R
, u2,R∗ = u∗

2, T2,R∗ = T2,R. (4.29)

The intermediate densities ρ2,L∗ and ρ2,R∗ are positive if and only if

u♯
2 − a2τ

♯
2,L < u∗

2 < u♯
2 + a2τ

♯
2,R. (4.30)

Moreover, this unique solution satisfies the following energy equation in the usual weak sense:

∂t (α2ρ2E2) + ∂x (α2ρ2E2 + α2π2)u2 − u2π
∗
1∂xα2 = 0. (4.31)

Proof . We only sketch the proof. The expressions of the intermediate states directly follow from
classical manipulations of Rankine-Hugoniot’s jump relations. The only non classical relation is the
jump relation across the u2-wave for the momentum equation, where the non-conservative product is
taken into account:

−u∗
2 [α2ρ2u2] +

[
α2ρ2u

2
2

]

︸ ︷︷ ︸

=0

+ [α2π2] = π∗
1∆α2 = −π∗

1∆α1.

⇐⇒ [α2π2] = π∗
1∆α2 = −π∗

1∆α1.

(4.32)
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The densities ρ2,L∗ and ρ2,R∗ are positive if and only if u∗
2 − a2τ2,L∗ < u∗

2 < u∗
2 + a2τ2,R∗. As

the fields are linearly degenerate, the corresponding eigenvalues are Riemann invariants and we have
u∗
2−a2τ2,L∗ = u2,L−a2τ2,L = u♯

2−a2τ
♯
2,L. In the same way, u∗

2+a2τ2,R∗ = u2,R+a2τ2,R = u♯
2+a2τ

♯
2,R.

For the energy equation (4.31), the proof consists in verifying that the associated Rankine-Hugoniot
jump relation is satisfied for all of the three waves u2−a2τ2, u2 and u2+a2τ2. Across the two extreme
waves where ∂xα2 vanishes, the result directly follows from the decoupling of the two phases into two
(relaxed) Euler systems for which the result is well-known (see for instance [13]). As for the u2-wave,
thanks to (4.32), the energy jump relation reads

−u∗
2 [α2ρ2E2]ξ=u∗

2

+ [α2ρ2E2u2]ξ=u∗

2
︸ ︷︷ ︸

=0

+ [α2π2u2]ξ=u∗

2

= u∗
2 [α2π2] = u∗

2π
∗
1∆α2 = −u∗

2π
∗
1∆α1.

Remark 4.1. The expression of u∗
2 given in equation (4.28) defines the function F [WL,WR; a2]

introduced in (4.19), since u∗
2 is expressed as a function of π∗

1 . It clearly appears that if α1,L = α1,R,

the non-conservative product vanishes and the resolution of the Riemann problem yields u∗
2 = u♯

2 as
seen in Lemma 4.1.

4.5 Second step of the fixed-point procedure

In this step, the velocity u∗
2 of the wave supporting the α1 discontinuity is assumed to be known, while

the pressure π∗
1 defining the non-conservative product π1∂xα1 = π∗

1∆α1δx−u∗

2
t is an unknown that

must be calculated by solving the Riemann problem (4.20)-(4.21) and applying Rankine-Hugoniot’s
jump relation to the momentum equation.

4.5.1 A convenient change of variables

In order to solve the Riemann problem (4.20)-(4.21), it is judicious to rewrite the equations in the
frame moving at the known constant speed u∗

2. For this purpose, we perform the following change of
variables: (x, t) 7→ (y, t) = (x − u∗

2t, t). Any function W of the variables (x, t), is associated with a
function W of the variables (y, t) such that W(y, t) = W(x, t) i.e. W(x, t) = W(x− u∗

2t, t). Denoting
w1 = u1 − u∗

2 the fluid velocity of phase 1 in the frame of the u∗
2-wave, system (4.20) rewrites







∂tα1 = 0,
∂t(α1ρ1) + ∂y(α1ρ1w1) = 0,
∂t(α1ρ1w1) + ∂y(α1ρ1w

2
1 + α1π1(τ1, T1))− π1∂yα1 = 0,

∂t(α1ρ1T1) + ∂y(α1ρ1T1w1) = 0,

(4.33)

while the initial conditions (4.21) become, in the non-conservative variables:

W1(x, t = 0) =

{

W1,L = (α1,L, ρ1,L, w1,L = u1,L − u∗
2, T1,L), y < 0,

W1,R = (α1,R, ρ1,R, w1,R = u1,R − u∗
2, T1,R), y > 0.

(4.34)

The solutions of (4.33)-(4.34) are asked to obey the following conservative energy inequality obtained
by applying the same change of variables to the energy inequality (4.22):

∂t
(
α1ρ1E1

)
+ ∂y

(
α1ρ1E1w1 + α1π1w1

)
≤ 0, (4.35)

where E1 =
w2

1

2 + e1(T1) +
1

2a2
1

(π2
1(τ1, T1) − P2

1 (T1)). A solution which satisfies (4.35) with a strict
inequality is an energy-dissipative solution. In the equality case, the solution is said to be energy-
preserving. System (4.33) is nothing but the relaxation system introduced in [18] for the approximation
of nozzle flows, and for which the associated Riemann problem has been fully resolved. Hence, we
actually calculate a solution W(y, t) of the Riemann problem associated with system (4.33), and the
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solution for the original Riemann problem (4.20)-(4.21) is obtained by W(x, t) = W(x − u∗
2t, t), and

by adding u∗
2 to the velocities w1. The following proposition characterizes the convective behavior of

system (4.33).

Proposition 4.5. System (4.33) admits four real eigenvalues that are w1 − a1τ1, w1, w1 + a1τ1 and
0. All the fields are linearly degenerate and the system is hyperbolic if, and only if |w1| 6= a1τ1.

Proof . The proof can be easily recovered following closely related steps developed in [7] for the Suliciu
relaxation system. The details are left to the reader.

The u∗
2-wave in (4.20) corresponds to the standing wave in (4.33) and the subsonic condition on

the relative speed (4.8) now reads

w1,L − a1,Lτ1,L < 0 < w1,R + a1,Rτ1,R. (4.36)

For the resolution, we only consider solutions with the subsonic wave ordering u∗
2 < u∗

1 since the other
possible wave orderings can be obtained by the Galilean invariance of the equations. This ordering
for (4.20) corresponds to the wave ordering w1 − a1τ1 < 0 < w1 < w1 + a1τ1 for (4.33), which in [18]
is referred to as the < 1, 2 > wave configuration:

x

t

u1 − a1τ1

u
∗

2
u1

u1 + a1τ1

W1,L

W−

1

W+

1

W1,R∗

W1,R
y

t

w1 − a1τ1
0

w1

w1 + a1τ1

W1,L

W−

1

W+

1

W1,R∗

W1,R

⇐⇒

Following [18], we introduce the following notations, which are used for the definition of the solu-
tions to the Riemann problem (4.33)-(4.34).

ν =
α1,L

α1,R
, w♯ = u♯

1 − u∗
2, M∗

L =
w♯

a1τ
♯
1,L

, ω =
1−M∗

L

1 +M∗
L

. (4.37)

where the ♯quantites are defined in (4.10)-(4.11)-(4.12)-(4.13). We may now recall the main result (see
Proposition (3.4) of [18]) which states that one can build a one-parameter family of solutions with
the subsonic wave ordering w1 − a1τ1 < 0 < w1 < w1 + a1τ1 for the Riemann problem (4.33)-(4.34)
(i.e. the wave ordering u1 − a1τ1 < u∗

2 < u∗
1 < u1 + a1τ1 for the Riemann problem (4.20)-(4.21)), and

the dissipation of energy across the standing wave is directly driven by the underlying parameter.

Proposition 4.6. Assume that a1 is such that τ ♯1,L > 0 and τ ♯1,R > 0. Then the Riemann problem
(4.33)-(4.34) admits solutions with the subsonic wave ordering w1 − a1τ1 < 0 < w1 < w1 + a1τ1, if
and only if

0 < M∗
L < 1. (4.38)

These solutions can be parametrized by M := M− =
w−

1

a1τ
−

1

, the Mach number of the state on the left

of the standing wave, and the intermediate states are given by:

τ−1 = τ ♯1,L
1−M∗

L

1−M
, w−

1 = a1Mτ−1 , T −
1 = T1,L, (4.39)

τ+1 = τ ♯1,L
1 +M∗

L

1 + νM
, w+

1 = νa1Mτ+1 , T +
1 = T1,L, (4.40)

τ1,R∗ = τ ♯1,R + τ ♯1,L
M∗

L − νM

1 + νM
, w1,R∗ = νa1Mτ+1 , T1,R∗ = T1,R. (4.41)

Besides, there exists a critical value ν♯ in (1,+∞] independent of (α1,L, α1,R) and possibly infinite
such that the following alternative holds.
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• If ν < ν♯, M belongs to the interval (0,M0(ν, ω)] ( (0,min(1, 1/ν)) with

M0(ν, ω) =
1

2




1 + ω2

1− ω2

(

1 +
1

ν

)

−

√
(
1 + ω2

1− ω2

)2(

1 +
1

ν

)2

−
4

ν



 . (4.42)

The value M = M0(ν, ω) gives the unique energy-preserving solution and for 0 < M < M0(ν, ω),
the solution is energy-dissipative.

• If ν ≥ ν♯, no energy-preserving solution has positive densities. The initial data is such that

0 <
M∗

L

ν < M0(ν, ω) < min(1, 1/ν) where M0(ν, ω) is given by (4.42). M must be strictly less

than M0(ν, ω), and by taking M close enough to
M∗

L

ν it is always possible to ensure that all the
densities remain positive.

In both cases, the choice of the value of M determines the mass, momentum and energy jumps across
the standing wave through

[α1ρ1w1] y
t
=0 = 0, (4.43)

[
α1ρ1w

2
1 + α1π1

]

y
t
=0

= π♯
1∆α1 − a21 ((α1,R + α1,L)M

∗
L − 2α1,LM) τ ♯1,L, (4.44)

[

α1ρ1E1w1 + α1π1w1

]

y
t
=0

=
1

2
(w♯ + a1τ

♯
1,L)

2 Q0(M)

(1 + νM)(1−M)
ϕ (M; ν, ω) , (4.45)

where Q0(M) = α1,Lρ
−
1 w

−
1 = α1,Rρ

+
1 w

+
1 > 0 is the constant mass flux across the standing wave and

ϕ(M; ν, ω) = ω2(νM+ 1)(M+ 1)− (νM− 1)(M− 1). (4.46)

Remark 4.2. As M lies in the interval (0,min(1, 1/ν)), one has (1 + νM)(1−M) > 0. Hence, the
sign of the energy-jump across the standing wave is determined by the sign of ϕ (M; ν, ω). If M is such
that ϕ (M; ν, ω) = 0, then the solution is energy-preserving. If M is such that ϕ (M; ν, ω) < 0, the
solution is energy-dissipative. The value M0(ν, ω) given in (4.42) is the solution of ϕ (M; ν, ω) = 0.

Proof . The proof is mainly given in [18] with slightly different notations. Indeed, it is easy to see
that condition (3.20) in [18] is equivalent to "0 < M♯

L < 1" which here corresponds to 0 < M∗
L < 1.

The proof consists in proving that 0 < M∗
L < 1 is a necessary and sufficient condition for the

existence of solutions M in the interval (0,min(1, 1/ν)) to the second order polynomial in-equation
ϕ (M; ν, ω) ≤ 0, thus enforcing a non-positive energy jump across the standing wave according to
(4.45). The value M0(ν, ω) given in (4.42) is the unique solution of ϕ (M; ν, ω) = 0 that lies in the
interval (0,min(1, 1/ν)). As explained in [18], the existence of ν♯ is related to the expression of τ1,R∗

in (4.41) which is the only intermediate specific volume that may be non-positive. It is possible to
show that the function

ν 7→ τ1,R∗(ν) = τ ♯1,R − τ ♯1,L
νM0(ν, ω)−M∗

L

1 + νM0(ν, ω)
, (4.47)

is a non-increasing function that may become negative for large values of ν. Observe that for ν = 1,
we have νM0(ν, ω) = M∗

L which implies that the pathological values of ν are larger than one (i.e.
ν♯ > 1). In such pathological cases, in order to impose the positivity of τ1,R∗ we must no longer exactly
conserve the energy at the standing wave (by taking M = M0(ν, ω)) but dissipate it by taking M
smaller than M0(ν, ω). Indeed, ϕ (M; ν, ω) ≤ 0 for all M ∈ (0,M0(ν, ω)]. The expression of τ1,R∗

clearly shows that if M is taken close enough to M∗

L

ν (remember that ν > 1), we have τ1,R∗ close to

τ ♯1,R which is positive by hypothesis.

Let us however prove (4.44) which is not proved in [18]. As T1 is constant across the standing wave
and is equal to T1,L for both states W−

1 and W+
1 , one may write

[
α1ρ1w

2
1 + α1π1

]

y
t
=0

= (α+
1 ρ

+
1 w

+
1

2
− α−

1 ρ
−
1 w

−
1

2
)− a21(α

+
1 τ

+
1 − α−

1 τ
−
1 ) + (P1(T1,L) + a21T1,L)∆α1,
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Moreover, α−
1 = α1,L and α+

1 = α1,R. Thus

[
α1ρ1w

2
1 + α1π1

]

y
t
=0

= a21

(

α1,R
w+

1

2

a21τ
+
1

2 τ
+
1 − α1,L

w−
1

2

a21τ
−
1

2 τ
−
1

)

−a21(α1,Rτ
+
1 − α1,Lτ

−
1 )

+(P1(T1,L) + a21T1,L)∆α1

= a21

(

α1,R((νM)
2
− 1)τ+1 − α1,L(M

2 − 1)τ−1

)

+ (P1(T1,L) + a21T1,L)∆α1.

With the expressions of ν (4.37), τ−1 (4.39), and τ+1 (4.40) we get

[
α1ρ1w

2
1 + α1π1

]

y
t
=0

=− a21

(

(1− (νM)2)
τ+1

τ ♯1,L
− ν(1−M2)

τ−1

τ ♯1,L

)

α1,Rτ
♯
1,L

+ (P1(T1,L) + a21T1,L)∆α1

=− a21 ((1− νM)(1 +M∗
L)− ν(1 +M)(1−M∗

L))α1,Rτ
♯
1,L

+ (P1(T1,L) + a21T1,L)∆α1

=(P1(T1,L) + a21T1,L)∆α1 − a21 (1− ν + (1 + ν)M∗
L − 2νM)α1,Rτ

♯
1,L

=(P1(T1,L) + a21(T1,L − τ ♯1,L))∆α1 − a21 ((1 + ν)M∗
L − 2νM)α1,Rτ

♯
1,L,

with P1(T1,L) + a21(T1,L − τ ♯1,L) = π♯
1 which yields (4.44).

4.5.2 Kinetic relation

As seen in Proposition 4.6, the admissible solutions are parametrized by a real number M lying in the
interval (0,M0(ν, ω)]. The aim of this section is to propose an “instruction manual“ for the practical
choice of the parameter M in this interval, with respect to the data of the problem (W1,L,W1,R, u

∗
2).

The rule consists in enforcing a lower bound on τ1,R∗, the only specific volume that may be non-
positive:

τ1,R∗ ≥ µτ ♯1,R, (4.48)

where µ is a fixed real number in (0, 1). If the energy-preserving value M = M0(ν, ω) is such that
(4.48) is satisfied, then one chooses this value. Otherwise, one chooses the value of M which verifies

τ1,R∗ = µτ ♯1,R. As the function M 7→ τ1,R∗(M) = τ ♯1,R − τ ♯1,L
νM−M∗

L

1+νM , is a non-increasing function,
this amounts to take M = M(ν,M∗

L) where

M(ν,M∗
L) := min (M0 (ν, ω) ,Mµ(ν,M

∗
L)) , ω =

1−M∗
L

1 +M∗
L

, (4.49)

with

Mµ(ν,M
∗
L) :=

1

ν

M∗
L + (1− µ)

τ♯
1,R

τ♯
1,L

1− (1− µ)
τ♯
1,R

τ♯
1,L

. (4.50)

Note that if ν ≤ 1, then M0 (ν, ω) < Mµ(ν,M
∗
L), which means that no dissipative correction is added

since the lower-bound on τ1,R∗ is already satisfied by the energy-preserving choice M0 (ν, ω). If ν > 1,

for µ close enough to one, one has Mµ(ν,M
∗
L) close to M∗

L

ν and then M(ν,M∗
L) ∈ (0,M0(ν, ω)] which

implies that the energy is now dissipated since ϕ (M; ν, ω) ≤ 0 for all M ∈ (0,M0(ν, ω)]. Formula
(4.49) is referred to as the kinetic relation since the choice of M prescribes an energy-dissipation rate
through (4.45) and determines a unique solution to the Riemann-problem (4.33)-(4.34) (or equivalently
to the Riemann problem (4.20)-(4.21)).
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4.5.3 Jump relations in the original frame

Defining

π∗
1∆α1 := π♯

1∆α1 − a21 ((α1,R + α1,L)M
∗
L − 2α1,LM) τ ♯1,L, (4.51)

Q(u∗
2,WL,WR) := −

1

2
(w♯ + a1τ

♯
1,L)

2 Q0(M)

(1 + νM)(1−M)
ϕ (M; ν, ω) , (4.52)

easy manipulations using the relation w1 = u1 − u∗
2 show that the jump relations (4.43)-(4.44)-(4.45)

are equivalent to the following jump relations in the original frame:

− u∗
2 [α1ρ1] x

t
=u∗

2

+ [α1ρ1] x
t
=u∗

2

= 0, (4.53)

− u∗
2 [α1ρ1u1] x

t
=u∗

2

+
[
α1ρ1u

2
1 + α1π1

]

x
t
=u∗

2

− π∗
1∆α1 = 0, (4.54)

− u∗
2 [α1ρ1E1] x

t
=u∗

2

+ [α1ρ1E1u1 + α1π1u1] x
t
=u∗

2

− u∗
2π

∗
1∆α1 = −Q(u∗

2,WL,WR) ≤ 0. (4.55)

Finally, observe that expression (4.51) defines the function G [WL,WR; a1] introduced in (4.23) since
it expresses π∗

1 as a function of u∗
2 (through the relative Mach number M∗

L).

4.6 Solution to the fixed-point problem and proof of Theorem 4.2

In this section, we prove that condition (A1) is a necessary and sufficient condition for the existence
of solutions to the following fixed-point problem :

Find u∗
2 in (u♯

1 − a1τ
♯
1,L, u

♯
1 + a1τ

♯
1,R)

⋂
(u♯

2 − a1τ
♯
2,L, u

♯
2 + a2τ

♯
2,R) such that

u∗
2 =

(

F [WL,WR; a2] ◦ G [WL,WR; a1]
)

(u∗
2), with u∗

2 < u∗
1, (4.56)

and therefore, for the existence of solutions to the Riemann problem (4.1)-(4.2) with the subsonic
wave ordering u1,L − a1τ1,L < u∗

2 < u∗
1 < u1,R + a1τ1,R. Let us first introduce some non-dimensional

numbers built on the quantities defined in (4.10)-(4.11)-(4.12)-(4.13) :

M♯
L :=

u♯
1 − u♯

2

a1τ
♯
1,L

, P♯
L :=

π♯
1 − π♯

2

a21τ
♯
1,L

. (4.57)

Solving the fixed-point (4.56) amounts to re-coupling the two phases that have been decoupled for a
separate resolution. We start by rewriting the expression of π∗

1∆α1 obtained for phase 2 in (4.28):

π∗
1∆α1 = ∆α1π

♯
2 + a2(α2,L + α2,R)

(

u♯
2 − u∗

2

)

= ∆α1π
♯
2 + a2(α2,L + α2,R)

(

u♯
1 − u∗

2 + u♯
2 − u♯

1

)

. (4.58)

Hence, solving the fixed-point problem (4.56) amounts to seeking u∗
2 such that the two expressions of

π∗
1∆α1 given in (4.51) and (4.58) are equal, i.e. such that

π♯
1∆α1 − a21 ((α1,R + α1,L)M

∗
L − 2α1,LM) τ ♯1,L = π♯

2∆α1 + a2(α2,L + α2,R)a1τ
♯
1,LM

∗
L

− a2(α2,L + α2,R)(u
♯
1 − u♯

2).
(4.59)

4.6.1 The energy-preserving case

We first look for solutions that exactly preserve the energy equality across the u∗
2-wave. Therefore, we

take M := M0

(
α1,L

α1,R
,
1−M∗

L

1+M∗

L

)

, where M0(ν, ω) is defined in (4.42). Introducing the non-dimensional

quantities M♯
L, P♯

L and Λα, equation (4.59) re-writes as

M♯
L −

a1
a2

ΛαP♯
L = M∗

L +
a1
a2

1

α2,L + α2,R

(

(α1,R + α1,L)M
∗
L − 2α1,LM0

(
α1,L

α1,R
,
1−M∗

L

1 +M∗
L

))

. (4.60)
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Now, considering the change of variables u∗
2 7−→ M∗

L =
u♯
1
−u∗

2

a1τ
♯
1,L

, solving the fixed-point problem (4.56)

is equivalent to finding M∗
L such that equation (4.60) holds. Observe that by Proposition 4.6, the

solution has the subsonic wave ordering u1 − a1τ1 < u2 < u1 if and only if M∗
L belongs to (0, 1).

Defining the function

Ψ0 :







(0, 1) −→ R

m 7−→ m+
a1
a2

1

α2,L + α2,R

(

(α1,R + α1,L)m− 2α1,LM0

(
α1,L

α1,R
, 1−m
1+m

))

,
(4.61)

the following proposition proves that condition (A1) is equivalent to the existence of a unique solution
M∗

L in (0, 1) to our fixed-point problem:

Proposition 4.7. Function m 7→ Ψ0(m) is a differentiable increasing function on the interval (0, 1),
whose limit values are

lim
m→0

Ψ0(m) = 0, lim
m→1

Ψ0(m) = 1 +
a1
a2

|Λα|. (4.62)

Hence, if the following condition, which is equivalent to (A1) holds,

0 < M♯
L −

a1
a2

ΛαP♯
L < 1 +

a1
a2

|Λα|, (4.63)

then there exists a unique M∗
L in (0, 1) such that

Ψ0(M
∗
L) = M♯

L −
a1
a2

ΛαP♯
L. (4.64)

Proof . The function Ψ0 is clearly differentiable on the interval (0, 1). Differentiating w.r.t m, one
gets

Ψ′
0(m) = 1 +

a1
a2

α1,R + α1,L

α2,L + α2,R
−

a1
a2

2α1,L

α2,L + α2,R

d

dm

{

M0

(
α1,L

α1,R
,
1−m

1 +m

)}

= 1 +
a1
a2

α1,R + α1,L

α2,L + α2,R
−

a1
a2

2α1,L

α2,L + α2,R

∂M0

∂ω

(
α1,L

α1,R
,
1−m

1 +m

)

·
dω

dm
,

where ω = 1−m
1+m . We have dω

dm = − 2
(1+m)2 , hence

Ψ′
0(m) = 1 +

a1
a2

1

α2,L + α2,R

{

α1,R + α1,L + 2α1,L
∂M0

∂ω

(
α1,L

α1,R
,
1−m

1 +m

)

·
2

(1 +m)2

}

.

Therefore, again denoting ν =
α1,L

α1,R
and ω = 1−m

1+m , it is sufficient for the derivative Ψ′
0(m) to be

positive, that

1 + ν + ν(1 + ω)2
∂M0

∂ω
(ν, ω) ≥ 0, for all ω in (0, 1),

⇐⇒ 1 + (1 + ω)2
∂

∂ω

{
ν

1 + ν
M0 (ν, ω)

}

≥ 0, for all ω in (0, 1). (4.65)

With the expression of M0(ν, ω) in (4.42), one gets

ν

1 + ν
M0 (ν, ω) =

1

2




1 + ω2

1− ω2
−

√
(
1 + ω2

1− ω2

)2

−
4ν

(1 + ν)2



 .

Differentiating this with respect to ω yields

∂

∂ω

{
ν

1 + ν
M0 (ν, ω)

}

=
1

2




4ω

(1− ω2)2
−

4ω

(1− ω2)2
1 + ω2

1− ω2

((
1 + ω2

1− ω2

)2

−
4ν

(1 + ν)2

)−1/2




=
2ω

(1− ω2)2



1−

(

1−
4ν

(1 + ν)2

(
1− ω2

1 + ω2

)2
)−1/2



 . (4.66)
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Casting this in (4.65), the sufficient condition for the function Ψ0 to be increasing becomes

1 + 2ω
(1 + ω)2

(1− ω2)2



1−

(

1−
4ν

(1 + ν)2

(
1− ω2

1 + ω2

)2
)−1/2



 ≥ 0, for all ω in (0, 1). (4.67)

Now, isolating the terms in ν and those in ω, (4.67) is equivalent to

4ν

(1 + ν)2
≤

(
1 + ω2

1− ω2

)2




1−

1
(

1 + (1−ω2)2

2ω(1+ω)2

)2




 , for all ω in (0, 1). (4.68)

A calculation shows that the right-hand side term of (4.68) is independent of ω and equals 1. Hence,
a sufficient condition for the function Ψ0 to be strictly increasing is

4ν

(1 + ν)2
≤ 1, (4.69)

which is true for any ν in R+. As for the limit values of Ψ0, observe that the function M0(ν, ω) is
such that lim

ω→0
M0(ν, ω) = min

(
1, 1

ν

)
and lim

ω→1
M0(ν, ω) = 0, hence the limits (4.62) as m tends to 0

and 1. Finally, Proposition 4.7 follows from the intermediate value theorem.

Thus, provided positive values of the densities, Proposition 4.7 proves that (A1) is a necessary

and sufficient condition for the existence and uniqueness of an energy-preserving solution. If the
phase 1 densities are not positive, one must authorize some energy dissipation as detailed hereunder.

4.6.2 The energy-dissipating case

According to the proof of Proposition 4.6, it may occur when the ratio ν =
α1,L

α1,R
is large, that the

solution M∗
L of the fixed-point problem (4.64) is such that the specific volume τ1,R∗ (see (4.41) with

M = M0

(
α1,L

α1,R
,
1−M∗

L

1−M∗

L

)

) is non-positive. In such pathological case, the unique energy-preserving so-

lution of the previous section is not admissible and one has to authorize energy dissipation introducing
some kinetic relation. As explained in section 4.5.2, this kinetic relation is obtained by prescribing a
lower-bound on τ1,R∗, namely τ1,R∗ ≥ µτ ♯1,R where µ ∈ (0, 1), through the definition of a new value of
the Mach number M = M(ν,M∗

L) given by (4.49). The fixed-point research must now be performed
with the new function

Ψ :







(0, 1) −→ R

m 7−→ m+
a1
a2

1

α2,L + α2,R

(

(α1,R + α1,L)m− 2α1,LM
(

α1,L

α1,R
,m
))

.
(4.70)

Observe that if m is such that M0

(

ν, 1−m
1+m

)

≤ Mµ(ν,m) then Ψ(m) = Ψ0(m). In particular, if

α1,L ≤ α1,R, then Ψ identifies with Ψ0 on the whole interval (0, 1). We have the following proposition
which shows that, provided an appropriate choice of the parameter µ ∈ (0, 1), there still exists a
unique solution M∗

L ∈ (0, 1) under condition (A1).

Proposition 4.8. If the parameter µ ∈ (0, 1) is close enough to one, the function m 7→ Ψ(m) is a
Lipschitz-continuous increasing function on the interval (0, 1), whose limit values are

lim
m→0

Ψ(m) = 0, lim
m→1

Ψ(m) = 1 +
a1
a2

|Λα|. (4.71)

Hence, if condition (A1) holds, then there exists a unique M∗
L in (0, 1) such that

Ψ(M∗
L) = M♯

L −
a1
a2

ΛαP♯
L. (4.72)
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Proof . If α1,L ≤ α1,R then Ψ ≡ Ψ0 and the result follows from the energy-preserving case. Let us
turn to the case α1,L > α1,R. As the minimum of two differentiable functions, M(ν,m) is Lipschitz-
continuous and so is Ψ. Actually, Ψ is almost everywhere differentiable on (0, 1). For the limit values

of Ψ, we know from the energy-preserving case that lim
m→0

M0

(

ν, 1−m
1+m

)

= 0, lim
m→1

M0

(

ν, 1−m
1+m

)

=

min(1, 1/ν), and if µ is close enough to one, we have

Mµ(ν, 0) =
1

ν

(1− µ)
τ♯
1,R

τ♯
1,L

1− (1− µ)
τ♯
1,R

τ♯
1,L

> 0, Mµ(ν, 1) =
1

ν

1 + (1− µ)
τ♯
1,R

τ♯
1,L

1− (1− µ)
τ♯
1,R

τ♯
1,L

> min

(

1,
1

ν

)

. (4.73)

Hence, Ψ and Ψ0 share the same limit values at 0 and 1. As for the monotony of function Ψ, we may
write that for almost every m in (0, 1):

Ψ′(m) ≥ min




Ψ′

0(m), 1 +
a1
a2

1

α2,L + α2,R




α1,R + α1,L − 2

α1,R

1− (1− µ)
τ♯
1,R

τ♯
1,L









 . (4.74)

For µ = 1, this expression gives Ψ′(m) ≥ min

(

Ψ′
0(m), 1 +

a1
a2

|α1,R − α1,L|

α2,L + α2,R

)

since α1,L > α1,R . As

Ψ′
0(m) > 0 by the study of the energy-preserving case, this proves that Ψ is strictly increasing if µ is

close enough to one, which concludes the proof.

4.6.3 Proof of Theorem 4.2 :

We may now complete the proof of Theorem 4.2. If the ratio α1,L

α1,R
is close to one, Proposition 4.6

concerning phase 1, asserts that no energy dissipation is needed for ensuring the positivity of the
densities. Hence, for α1,L

α1,R
in a neighborhood of 1, by Proposition 4.7, condition (A1) is a necessary

and sufficient condition for the existence of a unique solution to the fixed-point problem (4.60), i.e.
for the existence and uniqueness of an energy-preserving solution to the Riemann problem (4.1)-(4.2)
with the subsonic wave ordering u∗

2 < u∗
1. For large values of the ratio α1,L

α1,R
, Proposition 4.6 shows

that ensuring positive densities for phase 1 may require strict energy dissipation across the u2-wave.
In this case, still assuming condition (A1), Proposition 4.8 proves that using the kinetic relation

(4.49) defining M with respect to the pair
(

α1,L

α1,R
,M∗

L

)

, it is always possible to ensure the existence

of a unique solution with positive densities for phase 1 by dissipating the total energy. Note that
uniqueness is achieved once the kinetic relation is prescribed. If another choice had been made for the
kinetic relation (4.49), another dissipative solution could be found.

Finally, thanks to the Galilean invariance of system (4.1), one can prove that the symmetric wave-
configuration u∗

2 > u∗
1 is implied by (A2) by exchanging the subscripts L and R and changing the

velocities to their opposite values. As for condition (A3), it can be obtained by passing to the limit
in (A1). The corresponding M∗

L is equal to zero, and we obtain the u∗
2 = u∗

1 configuration. This
observation concludes the proof of Theorem 4.2.

4.7 Expression of the Riemann solution

In this section, we construct the solution W(x, t;WL,WR) = Wr(x/t;WL,WR) for a given pair of
initial conditions (WL,WR) in Ωr and two parameters a1 and a2 meeting the conditions of Theorem
4.2. We distinguish the three different cases corresponding respectively to (A1), (A2) and (A3).

• If (A1) holds, the phasic solutions have the following form:
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x

t

u1,L − a1τ1,L

u
∗

2
u
∗

1

u1,R + a1τ1,R

W1,L

W−

1

W+

1

W1,R∗

W1,R

x

t

u2,R + a2τ2,R

u
∗

2

u2,L − a2τ2,L

W2,L

W2,L∗

W2,R∗

W2,R

The values u∗
2 and π∗

1 are calculated as follows. First use an iterative method (Newton’s method
or a dichotomy algorithm for instance) to compute M∗

L such that

Ψ(M∗
L) = M♯

L −
a1
a2

ΛαP♯
L. (4.75)

According to section 4.6, M∗
L always exists under (A1) and is unique if µ is close enough to

one. We then obtain u∗
2 by u∗

2 = u♯
1 − a1τ

♯
1,LM

∗
L, while π∗

1 is obtained through (4.58). Then the
intermediate states for phase 2 are given by equations (4.28) and (4.29) in Proposition 4.4. Once
prescribed the value M := M(ν,M∗

L) according to (4.49), the intermediate states for phase 1
are given in equations (4.39) to (4.41) of Proposition 4.6, except for the velocities to which one
must add u∗

2: u−
1 = w−

1 + u∗
2, u

+
1 = w+

1 + u∗
2, u1,R∗ = w1,R∗ + u∗

2.

• If (A2) holds, we exploit the Galilean invariance of the equations. The solution is obtained by
the transformation

Wr(ξ;WL,WR) := VWr(−ξ;VWR,VWL), (4.76)

where the operator V changes the velocities into their opposite values:

V : (x1, x2, x3, x4, x5, x6, x7) 7→ (x1, x2,−x3, x4,−x5, x6, x7). (4.77)

Of course, the function Wr(−ξ;VWR,VWL) is computed through the first case, since for these
new initial data (VWR,VWL), it is condition (A1) that holds.

• If (A3) holds, u∗
2 is equal to u♯

1 (i.e. M∗
L = 0). The intermediate states for phase 2 are obtained

through equations (4.28) and (4.29) in Proposition 4.4, and the intermediate states for phase 1 are
computed by passing to the limit as M∗

L goes to zero (i.e. ω → 1). We obtain the intermediate
states in equations (4.39) to (4.41), for M = 0.

5 A positive and entropy-satisfying Finite Volume scheme

In this section, the exact Riemann solver Wr(ξ;WL,WR) build in section 4 for the relaxation system
is used to derive an approximate Riemann solver of Harten, Lax and van Leer [27] for the simulation
of system (2.1). This approximate Riemann solver is proved to satisfy important stability properties
such as the preservation of the densities positivity, and a discrete entropy inequality which is a discrete
counterpart of the energy inequality (2.10) satisfied by the exact weak solutions of the model.

5.1 The HLL approximate Riemann solver

In order to define the approximate Riemann solver, let us introduce the mappings

M :

{
R5 −→ R7

(xk)k=1,..,5 7−→ (x1, x2, x3, x4, x5, x1, 1− x1).
(5.1)

P :

{
R7 −→ R5

(xk)k=1,..,7 7−→ (x1, x2, x3, x4, x5).
(5.2)

An approximate solution of the Riemann problem (2.1)-(2.11) is obtained by

Uapp(ξ;UL,UR) := PWr(ξ;M (UL),M (UR)). (5.3)
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Or course, Wr(ξ;M (UL),M (UR)) depends on the parameters (a1, a2) which must be chosen so as to
satisfy some stability properties (see section 5.5 below). With this approximate Riemann solver, are
associated the following two interface numerical fluxes:

F
−(UL,UR) := f(UL)−

∫ 0

−∞

{Uapp(ξ;UL,UR)− UL} dξ, (5.4)

F
+(UL,UR) := f(UR) +

∫ +∞

0

{Uapp(ξ;UL,UR)− UR} dξ. (5.5)

The integrals in (5.4) and (5.5) are well-defined thanks to (4.3) and to the property P ◦ M = IdR5 .
Observe that F

−(UL,UR) 6= F
+(UL,UR) unless α1,L = α1,R because of the non-conservative part of

system (4.1). In the sequel F±
k denotes the kth component of vector F

±.

5.2 The Finite Volume relaxation scheme

We now derive a Finite Volume scheme for the approximation of the entropy weak solutions of a
Cauchy problem associated with system (2.1):

{
∂tU+ ∂xf(U) + c(U)∂xU = 0, x ∈ R, t > 0,
U(x, 0) = U0(x), x ∈ R.

(5.6)

For simplicity in the notations, we assume constant positive time and space steps ∆t and ∆x, and
we define λ = ∆t

∆x . The space is partitioned into cells R =
⋃

j∈Z
Cj where Cj = [xj− 1

2

, xj+ 1

2

[ with

xj+ 1

2

= (j + 1
2 )∆x for all j in Z. The centers of the cells are denoted xj = j∆x for all j in Z. We

also introduce the discrete intermediate times tn = n∆t, n ∈ N. The approximate solution at time
tn, x ∈ R 7→ Uλ(x, t

n) ∈ Ω is a piecewise constant function whose value on each cell Cj is a constant
value denoted by Un

j . We assume that ∆t and ∆x satisfy the CFL condition

∆t

∆x
max

i∈{1,2},j∈Z

max
{
|(ui − aiτi)

n
j |, |(ui + aiτi)

n
j+1|

}
<

1

2
. (5.7)

The Finite Volume relaxation scheme reads

Un+1
j = Un

j −
∆t

∆x

(
F

−(Un
j ,U

n
j+1)− F

+(Un
j−1,U

n
j )
)
. (5.8)

We do not precise at this point the computation of the constant ai. This discussion is postponed to
section 5.5.

Remark 5.1. The numerical fluxes formula that are used in practice in the implementation are

F
−(UL,UR) = Pg (Wr (0;M (UL),M (UR))) + PD

∗ (M (UL),M (UR))1{u∗

2
<0},

F
+(UL,UR) = Pg (Wr (0;M (UL),M (UR)))− PD

∗ (M (UL),M (UR))1{u∗

2
>0},

where D
∗(WL,WR) := (α1,R − α1,L)(u

∗
2(WL,WR), 0,−π∗

1(WL,WR), 0, π
∗
1(WL,WR), 0, 0)

T .

5.3 Basic properties of the scheme

The following theorem states some important properties of the relaxation scheme.

Theorem 5.1. The approximate Riemann solver (5.3) has the following properties:

• Consistency. The numerical fluxes satisfy F
−(U,U) = F

+(U,U) = f(U).

• Positivity. Under the CFL condition (5.7), if the initial condition x 7→ U0(x) is in Ω, then the
values (Un

j )j∈Z,n∈N computed by the scheme are such that,

0 < αn
i,j < 1, and (αiρi)

n
j > 0, for all i in {1, 2}, j in Z and n in N. (5.9)
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• Mass conservation. The fluxes (5.4) and (5.5) satisfy F
−
k (UL,UR) = F

+
k for k in {2, 4}.

• Total momentum conservation. The fluxes (5.4) and (5.5) satisfy
F

−
3 (UL,UR) + F

−
5 (UL,UR) = F

+
3 (UL,UR) + F

+
5 (UL,UR).

Proof . Following [27] or [7], the approximate Riemann solver is a Godunov type scheme where Un+1
j

is the cell-average over Cj of the function 1x<xj
Uapp(x/∆t;Un

j−1,U
n
j ) + 1x≥xj

Uapp(x/∆t;Un
j ,U

n
j+1).

Hence, the positivity property is a direct consequence of Theorem 4.2 which ensures the positivity
of the phase fractions (which are simply transported) and of the densities in the relaxation Riemann
solver. For this purpose, entropy dissipation across the u2-contact discontinuity may be necessary
for enforcing this property when the ratio α1,L

α1,R
(or its inverse) is large. The proof of the other

properties involves no particular difficulties. It consists in simple verifications using the expressions
of the intermediate states.

5.4 Non-linear stability

Let us now turn to the discrete entropy inequality property. In order to ease the notations, we denote
by η and Fη the energy-energy flux pair of the Baer-Nunziato model: η(U) :=

∑2
i=1 αiρiEi and

Fη(U) :=
∑2

i=1 αi(ρiEi + pi(ρi))ui. The entropy weak solutions of (2.1) satisfy the following energy
inequality in the weak sense:

∂tη(U) + ∂xFη(U) ≤ 0. (5.10)

We also recall the following property which is proved in [17, 35]:

Proposition 5.2. The mapping η :

{
Ω −→ R

U 7−→ η(U)
is non-strictly convex.

In the same way, we introduce the energy-energy flux pair for the relaxation system: ηr(W) :=
∑2

i=1 αiρiEi and Fr
η (W) :=

∑2
i=1 αi(ρiEi+πi(τi, Ti))ui. The weak solutions of (4.1)-(4.2) in the sense

of Definition 4.1 satisfy the inequality

∂tη
r(W) + ∂xF

r
η (W) = −Q(u∗

2,WL,WR)δx−u∗

2
t, (5.11)

where Q(u∗
2,WL,WR) is a non-negative number defined in (4.52). In the sequel, we prove that if a

so-called sub-characteristic condition (also known as Whitham’s condition, see [7]) is verified by the
parameters a1 and a2, then the relaxation Riemann solver satisfies a discrete entropy inequality, as
defined in Theorem 5.4.

Definition 5.1. Consider (UL,UR) ∈ Ω × Ω and let (WL,WR) = (M (UL),M (UR)) ∈ Ωr × Ωr be
the corresponding relaxation initial data. Let ∆x and ∆t be two space and time steps satisfying the
CFL condition (5.7). Denoting τi(ξ) = ρ−1

i (ξ) the specific volumes in the solution Wr(ξ;WL,WR) of
the Riemann problem (4.1)-(4.2), the parameters (a1, a2) are said to satisfy Whitham’s condition

for (UL,UR) if

for i in {1, 2}, a2i > −P ′
i(τi(ξ)), for almost every ξ in

[

−
∆x

2∆t
,
∆x

2∆t

]

. (5.12)

Lemma 5.3. Take the same notations as in Definition 5.1 and denote Uapp(ξ) and Wr(ξ) so as to ease
the notation. If (a1, a2) satisfy Whitham’s condition for (UL,UR), then the relaxation approximate
Riemann solver satisfies an interface entropy inequality (see [27, 7]) in the sense that

η(〈U〉
L
)− η(UL) +

2∆t

∆x

(
Fr

η

(
Wr(0

+)
)
−Fη(UL)

)
≤ 0, (5.13)

η(〈U〉
R
)− η(UR) +

2∆t

∆x

(
Fη(UR)−Fr

η

(
Wr(0

+
))

≤ 0, (5.14)
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where

〈U〉
L
=

2

∆x

∫ 0

−∆x
2

Uapp(x/∆t)dx =
2∆t

∆x

∫ 0

− ∆x
2∆t

Uapp(ξ)dξ, (5.15)

〈U〉
R
=

2

∆x

∫ ∆x
2

0

Uapp(x/∆t)dx =
2∆t

∆x

∫ ∆x
2∆t

0

Uapp(ξ)dξ. (5.16)

Proof . We only prove inequality (5.13) (the proof of (5.14) is similar). By Jensen’s inequality, the
convexity of the map U 7→ η(U) (see Proposition 5.2) implies that it is sufficient to prove

2∆t

∆x

∫ 0

− ∆x
2∆t

η (Uapp(ξ)) dξ − η(UL) +
2∆t

∆x

(
Fr

η

(
Wr(0

+)
)
−Fη(UL)

)
≤ 0, (5.17)

under Whitham’s condition (5.12). The solution of the Riemann problem (4.1)-(4.2) satisfies (5.11)
in the weak sense, where Q(u∗

2,WL,WR)δx−u∗

2
t is a positive measure. Integrating this equation over

]− ∆x
2 , 0[×]0,∆t[, and dividing by ∆x

2 , we get

2∆t

∆x

∫ 0

− ∆x
2∆t

ηr(Wr(ξ))dξ − ηr(WL) +
2∆t

∆x

(
Fr

η (Wr(0
−))−Fr

η (WL)
)
≤ 0. (5.18)

Now, as (WL,WR) = (M (UL),M (UR)) are at equilibrium, we have ηr(WL) = η(UL) and Fr
η (WL) =

Fη(UL). Moreover, the Riemann solution is constructed such that Fr
η (Wr(0

+)) − Fr
η (Wr(0

−)) ≤
0 (indeed, we have Fr

η (Wr(0
+)) − Fr

η (Wr(0
−)) = 0 unless u∗

2 = 0 in which case Fr
η (Wr(0

+)) −
Fr

η (Wr(0
−)) = −Q(u∗

2,WL,WR) ≤ 0). Replacing in (5.18) this yields

− η(UL) +
2∆t

∆x

(
Fr

η

(
Wr(0

+)
)
−Fη(UL)

)
≤ −

2∆t

∆x

∫ 0

− ∆x
2∆t

ηr (Wr(ξ)) dξ. (5.19)

Hence, a sufficient condition for (5.17) (and thus for (5.13)) to hold true is

2∆t

∆x

∫ 0

− ∆x
2∆t

{η (Uapp(ξ))− ηr (Wr(ξ))} dξ ≤ 0. (5.20)

Now, for almost every ξ in
[
− ∆x

2∆t , 0
]
, we have

η (Uapp(ξ))− ηr (Wr(ξ)) =

2∑

i=1

(αiρi)(ξ)

(

e(τi(ξ))− ei(Ti(ξ))−
1

2a2i

(
π2
i (τi(ξ), Ti(ξ))− P2

i (Ti(ξ))
)
)

.

(5.21)
Omitting the dependence on ξ, we have for i = 1, 2:

π2
i (τi, Ti)− P2

i (Ti) = (πi(τi, Ti)− Pi(Ti)) (πi(τi, Ti) + Pi(Ti))

= a2i (Ti − τi)
(
2Pi(Ti) + a2i (Ti − τi)

)

= −2a2i e
′
i(Ti)(Ti − τi) + a4i (Ti − τi)

2,

since e′i = −Pi. Hence,

ei(τi)− ei(Ti)−
1

2a2i

(
π2
i (τi, Ti)− P2

i (Ti)
)
= ei(τi)− ei(Ti)− e′i(Ti)(τi − Ti)−

a2i
2
(Ti − τi)

2. (5.22)

A Taylor expansion with integral remainder gives

ei(τi)− ei(Ti)− e′i(Ti)(τi − Ti) = (Ti − τi)
2

∫ 1

0

e′′i (sτi + (1− s)Ti)(1− s)ds. (5.23)
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Then, replacing in (5.22) and observing that e′′i = −P ′
i we get a sufficient condition for (5.17) (and

thus for (5.13)):

2

∫ 1

0

−P ′
i(sτi(ξ) + (1− s)Ti(ξ))(1− s)ds− a2i ≤ 0 for a.e. ξ in

[

−
∆x

2∆t
, 0

]

. (5.24)

Noticing that in the solution Ti(ξ) = τi,L or τi,R and using the strict convexity of τ 7→ Pi(τ), we get
for a.e. ξ in

[
− ∆x

2∆t , 0
]
:

2

∫ 1

0

−P ′
i(sτi(ξ) + (1− s)Ti(ξ))(1− s)ds ≤ max

s∈[0,1]
{−P ′

i(sτi(ξ) + (1− s)Ti(ξ))} 2

∫ 1

0

(1− s)ds

≤ ess sup
ξ∈[− ∆x

2∆t
, ∆x
2∆t

]

{ −P ′
i(τi(ξ))}

< a2i (5.25)

by Whitham’s condition. This concludes the proof of inequality (5.13) under Whitham’s condition.

We may now prove the following theorem which states that under the CFL condition (5.7),
Whitham’s condition (5.12) guarantees a discrete entropy inequality for the relaxation finite volume
scheme. This is a classical corollary of Lemma 5.3. We refer to [7] for the proof.

Theorem 5.4. Assume the CFL condition (5.7) and suppose that for all n ∈ N and j ∈ Z, the pair
(a1, a2)j+ 1

2

satisfies Whitham’s condition for (Un
j ,U

n
j+1). Then the relaxation scheme satisfies the

following discrete entropy inequality:

η(Un+1
j )− η(Un

j ) +
∆t

∆x
(H(Un

j ,U
n
j+1)−H(Un

j−1,U
n
j )) ≤ 0, (5.26)

where the numerical entropy flux is given by H(UL,UR) = Fr
η (Wr (0

+;M (UL),M (UR))).

This can be seen as a stability condition because if one considers the discrete L1-norm of the total
mixture energy at time tn:

∑

j∈Z
η(Un

j )∆x , then summing inequality (5.26) over the cells yields

∑

j∈Z

η(Un+1
j )∆x ≤

∑

j∈Z

η(Un
j )∆x, for all n in N, (5.27)

which means that the total mixture energy is decreasing in time.

5.5 Practical choice of the pair (a1, a2)

The pair of parameters (a1, a2), which is computed at each interface xj+ 1

2

must be chosen large enough
so as to satisfy several requirements:

• In order to ensure the stability of the relaxation approximation, ai must satisfy Whitham’s
condition (5.12). For simplicity however, we do not impose Whitham’s condition everywhere in
the solution of the Riemann problem (2.1)-(2.11), but only for the left and right initial data at
each interface:

for i in {1, 2}, a2i > max(−P ′
i(τi,L),−P ′

i(τi,R)). (5.28)

In practice, no instabilities were observed during the numerical simulations due to this simpler
Whitham-like condition.

• The specific volumes τ ♯i,L and τ ♯i,R must be positive. As the initial conditions of the local Riemann
problems are such that (WL,WR) = (M (UL),M (UR)), we have Ti,L = τi,L and Ti,R = τi,R.
Thus

τ ♯i,L = τi,L +
1

2ai
(ui,R − ui,L)−

1

2a2i
(Pi(τi,R)− Pi(τi,L)) , (5.29)

τ ♯i,R = τi,R +
1

2ai
(ui,R − ui,L) +

1

2a2i
(Pi(τi,R)− Pi(τi,L)) . (5.30)
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Equations (5.29) and (5.30) are two second order polynomials in a−1
i , and by taking ai large

enough, one can guarantee that τ ♯i,L > 0 and τ ♯i,R > 0, since the initial specific volumes τi,L and
τi,R are positive.

• Finally, (a1, a2) must be chosen so as to meet the condition (A) of Theorem 4.2 as well as the
positivity condition of the phase 2 densities (B).

Thereafter, we propose an iterative algorithm for the computation of the parameters (a1, a2) at each
interface. Fixedpoint(a1, a2) is a subroutine that computes a numerical approximation of the solution
u∗
2 of the fixed-point problem (4.24), using some numerical method such as Newton’s method or a

dichotomy algorithm. The notation not(P) is the negation of the logical statement P.

Algorithm for the choice of (a1, a2):

Choose κ a (small) parameter in the interval (0, 1).

For all interface xj+ 1

2

, j ∈ Z, calculate a1,j+ 1

2

and a2,j+ 1

2

as follows

• For i in {1, 2} initialize ai,j+ 1

2

:

a2
i,j+ 1

2

:= (1 + κ)max
(
−P ′

i(τ
n
i,j),−P ′

i(τ
n
i,j+1)

)
.

• For i in {1, 2}, do { ai,j+ 1

2

:= (1 + κ)ai,j+ 1

2

compute u♯
i, π♯

i, τ ♯i,L and τ ♯i,R
For i in {1, 2}, do } while

(
τ ♯i,L ≤ 0 or τ ♯i,R ≤ 0

)

• do { a2,j+ 1

2

:= (1 + κ)a2,j+ 1

2

compute u♯
2, π♯

2, τ ♯2,L and τ ♯2,R
do { a1,j+ 1

2

:= (1 + κ)a1,j+ 1

2

compute u♯
1, π♯

1, τ ♯1,L and τ ♯1,R
do } while

(
not(A)

)

compute ν, M♯
L and P♯

L,

compute u∗
2 = Fixedpoint(a1,j+ 1

2

, a2,j+ 1

2

)

do } while
(
not(B)

)

It is possible to prove that this algorithm always converges in the sense that there is non infinite
looping due to the while-conditions. Moreover, this algorithm provides reasonable values of a1 and
a2, since in all the numerical simulations, the time step obtained through the CFL condition (5.7)
remains reasonably large and does not go to zero. In fact, the obtained values of a1 and a2 are quite
satisfying since the relaxation scheme compares very favorably with Rusanov’s scheme, in terms of
CPU-time performances (see section 6).

6 Numerical tests

In this section, we present Riemann-type test-cases on which the performances of the relaxation scheme
are tested. The phasic equations of state are given by the following ideal gas pressure laws:

p1(ρ1) = κ1ρ
γ1

1 , with κ1 = 1 and γ1 = 3,

p2(ρ2) = κ2ρ
γ2

2 , with κ2 = 1 and γ2 = 1.5.
(6.1)

In the sequel, U = (α1, ρ1, u1, ρ2, u2)
T denotes the state vector in non-conservative variables.
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6.1 Test-case 1: a complete Riemann problem

We consider the following initial data,

UL = (0.1, 0.85, 0.4609513139, 0.96, 0.0839315299) if x < 0,

UR = (0.6, 1.2520240113, 0.7170741165, 0.2505659851,−0.3764790609) if x > 0,

for which the exact solution is composed of a {u1 − c1}-shock wave, followed by a {u2 − c2}-rarefaction
wave, followed by a u2-contact discontinuity, followed by a {u2 + c2}-shock and finally followed by a
{u1 + c1}-rarefaction wave (see Figure 6.1). The intermediate states are given by:

U1 = (0.1, 1., 0.2, 0.96, 0.0839315299),

U2 = (0.1, 1., 0.2, 0.8, 0.3),

U3 = (0.6, 1.0016192090, 0.2833602765, 0.5011319701, 0.3),

U4 = (0.6, 1.0016192090, 0.2833602765, 0.2505659851,−0.3764790609).

At each interface xj+ 1

2

, Newton’s method is used in order to compute the solution M∗
L of (4.75).

The iterative procedure is stopped when the error is less than 10−12.
In Figure 6.1, the approximate solution computed with the relaxation scheme is compared with both

the exact solution and the approximate solution obtained with Rusanov’s scheme (a Lax-Friedrichs
type scheme see [22]). The results show that unlike Rusanov’s scheme, the relaxation method correctly
captures the intermediate states even for this rather coarse mesh of 100 cells. This coarse mesh is
a typical example of an industrial mesh, reduced to one direction, since 100 cells in 1D correspond
to a 106-cell mesh in 3D. It appears that the contact discontinuity is captured more sharply by the
relaxation method than by Rusanov’s scheme for which the numerical diffusion is larger. We can
also see that for the phase 1 variables, there are no oscillations as one can see for Rusanov’s scheme:
the curves are monotone between the intermediate states. As for phase 2, the intermediate states
are captured by the relaxation method while with Rusanov’s scheme, this weak level of refinement is
clearly not enough to capture any intermediate state. These observations assess that, for the same
level of refinement, the relaxation method is more accurate than Rusanov’s scheme.

A mesh refinement process has also been implemented in order to check numerically the conver-
gence of the method, as well as it’s performances in terms of CPU-time cost. For this purpose, we
compute the discrete L1-error between the approximate solution and the exact one at the final time
T , normalized by the discrete L1-norm of the exact solution:

E(∆x) =

∑

cellsj |ϕ
n
j − ϕex(xj , T )|∆x

∑

cellsj |ϕex(xj , T )|∆x
, (6.2)

where ϕ is any of the conservative variables (α1, α1ρ1, α1ρ1u1, α2ρ2, α2ρ2u2). The calculations have
been implemented on several meshes composed of 100× 2n cells with n = 0, 1, .., 10 (knowing that the
domain size is L = 1). In Figure 6.1, the error E(∆x) at the final time T = 0.14, is plotted against ∆x
in a log− log scale. Only the error on the phase fraction α1 converges towards zero with the expected
order of ∆x1/2, while the other variables seem to converge with a higher rate. However, ∆x1/2 is only
an asymptotic order of convergence, and in this particular case, one would have to implement the
calculation on much more refined meshes in order to reach the expected order of ∆x1/2.

Figure 6.1 also displays the error on the conservative variables with respect to the CPU-time of
the calculation expressed in seconds. Each point of the plot corresponds to one single calculation for
a given mesh size (going from 400 to 102400 cells for the relaxation scheme and from 800 to 102400
cells for Rusanov’s scheme). One can see that, for all the variables except α1ρ1u1, if one prescribes
a given level of the error, the computational cost of Rusanov’s scheme is significantly higher than
that of the relaxation method. For instance, for the same error on the phase fraction α1, the gain in
computational cost is more than 13 when using the relaxation method rather than Rusanov’s scheme.
For the variable α1ρ1u1, even if the two methods seem to provide similar results, the relaxation method
seems to give slightly better results for mesh sizes beyond 10000 cells.
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Figure 1: Test-case 1: Structure of the solution and space variations of the physical
variables at the final time T = 0.14. Mesh size: 100 cells.

6.2 Test-case 2: a vanishing phase case

We now consider a Riemann problem in which one of the two phases vanishes in one of the initial
states, which means that the corresponding phase fraction α1 or α2 is equal to zero. For this kind
of Riemann problem, the u2-contact separates a mixture region where the two phases coexist from a

34



10
-3

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

E
(∆

x
)

∆x

Error in L
1
-norm

α1
α1ρ1

α1ρ1u1
α2ρ2

α2ρ2u2
sqrt(∆x) 10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

L
1
-E

rr
o
r

CPU-time (s)

α1

Relaxation
Rusanov

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

L
1
-E

rr
o
r

CPU-time (s)

α1ρ1

Relaxation
Rusanov

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

L
1
-E

rr
o
r

CPU-time (s)

α1ρ1u1

Relaxation
Rusanov

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

L
1
-E

rr
o
r

CPU-time (s)

α2ρ2

Relaxation
Rusanov

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

L
1
-E

rr
o
r

CPU-time (s)

α2ρ2u2

Relaxation
Rusanov

Figure 2: Test-case 1: L1-Error with respect to ∆x and L1-Error with respect to
computational cost (in seconds), for the conservative variables.

single phase region with the remaining phase. Assuming for instance that α1,L = 1 and 0 < α1,R < 1,
the right state is a mixture of both phases while the left initial state is composed solely of phase 1.
This type of vanishing-phase Riemann solution is introduced in [37] in the more general context of the
complete Baer-Nunziato system with energy equations. The construction of an exact solution with
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vanishing phase fraction is not classical and we choose to follow the natural approach given in [37].
For more details, see appendix A.1. Consider the intermediate states

UL = (1.0, 1.8, 0.747051068928543, 3.979765198025580, 0.6),

U1 = (1.0, 2.0, 0.4, 3.979765198025580, 0.6),

U2 = (0.4, 1.982040094756841, 0.095469338564172, 3.979765198025580, 0.6),

U3 = (0.4, 1.9820400948, 0.0954693386, 5.1736947574, 1.0690676047),

UR = (0.4, 2.081142099494683, 0.267119045902047, 5.173694757433254, 1.069067604724276).

The solution is composed of a {u1 − c1}-shock wave from UL to U1 in the left-hand side (LHS) region
where only phase 1 is present. This region is separated by a u2-contact discontinuity from the right-
hand side (RHS) region where the two phases are mixed. In this RHS region, the solution is composed
of a {u2 + c2}-rarefaction wave connecting U2 to U3 followed by a {u1 + c1}-rarefaction wave from U3

to UR (see Figure 6.1).
In practice, the numerical method requires values of α1,L and α1,R that lie strictly in the interval

(0, 1). Therefore, in the numerical implementation, we take α1,L = 1−10−9. The aim here is to give a
qualitative comparison between the numerical approximation and the exact solution. Moreover, there
is theoretically no need to specify left initial values for the phase 2 quantities since this phase is not
present in the LHS region. For the sake of the numerical simulations however, one must provide such
values. We choose to set ρ2,L and u2,L to the values on the right of the u2-contact discontinuity.
For the relaxation scheme, this choice enables to avoid oscillations of phase 2 quantities in the region
where phase 2 in not present. However, some tests have been conducted that assess that taking other
values of (ρ2,L, u2,L) has little impact on the phase 1 quantities as well as on the phase 2 quantities
where this phase is present.

At each interface xj+ 1

2

, a dichotomy algorithm is used in order to compute the solution M∗
L of

(4.75). Indeed for such a vanishing phase test-case, Newton’s method fails to converge. The dichotomy
algorithm is stopped when the error is less than 10−12. As for the first test-case, we can see that for
the same level of refinement, the relaxation method is more accurate than Rusanov’s scheme, which
can be seen especially for phase 1. As regards the region where phase 2 does not exist, we can see that
the relaxation method is much more stable than Rusanov’s scheme. Indeed, the relaxation scheme
behaves better than Rusanov’s scheme when it comes to divisions by small values of α2, since the
solution approximated by Rusanov’s scheme develops important oscillations.

6.3 Test-case 3: Coupling between two pure phases

The last test-case considers the coupling between two pure phases. A left region, where only phase 1
exists (α1,L = 1), is separated by a u2-contact discontinuity from a right region, where only phase 2
is present (α1,R = 0). The intermediate states are given by

UL = (1.0, 0.861773876012754, 3.552800564555003, 4.641588833612778, 1.0),

U1 = (1.0, 2.154434690031884, 1., 4.641588833612778, 1.),

U2 = (0., 2.154434690031884, 1., 4.641588833612778, 1.),

UR = (0., 2.154434690031884, 1.0, 6.962383250419167, 1.767119653712349).

(6.3)

The exact solution is composed of a {u1 − c1}-shock wave from UL to U1 in the LHS region where only
phase 1 is present. U1 is connected to U2 by a u2-contact discontinuity separating the two pure phase
regions. In the RHS region, where only phase 2 exists, U2 is connected to UR by a {u2 + c2}-rarefaction
wave. For more details on how the exact solution is constructed see appendix A.2.

In the numerical implementation, we set α1,L = 1−10−9 and α1,R = 10−9. A dichotomy procedure
is used in order to compute the solution M∗

L of (4.75) at each interface xj+ 1

2

. The dichotomy algorithm

is stopped when the error is less than 10−12.
One can see that, in the LHS region, the quantities of the only present phase 1 are correctly

approximated while the quantities of the vanishing phase 2 remain stable despite the division by small
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Figure 3: Test-case 2: Structure of the solution and space variations of the physical
variables at the final time T = 0.1. Mesh size: 100 cells.

values of α2. The same observation can be made for the RHS region. On the contrary, with Rusanov’s
scheme, strong oscillations pop up in the regions where a phase vanishes. Observe also that unlike
Rusanov’s scheme, the relaxation scheme does not fail to correctly approximate the evolution of the
phase fraction α1.
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Figure 4: Test-case 3: Structure of the solution and space variations of the physical
variables at the final time T = 0.07. Mesh size: 1000 cells.

7 Conclusion and further works

The work performed in this paper provides some interesting teachings. First of all, the relaxation
approximation introduced in (3.1) seems to be a reasonable choice of continuous approximation for
the isentropic Baer-Nunziato model. Indeed, thanks to the linear degeneracy of all the fields, one has
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been able to exactly solve the associated relaxation Riemann problem in the framework of solutions
with subsonic wave ordering. More surprising is the fact that we have been able to provide explicit
necessary and sufficient conditions on the initial left and right data for the existence of such solutions
with subsonic wave ordering.

One natural question is the possibility of extending this result to all the wave-orderings that may
be considered for the solution, namely, supersonic and sonic wave orderings. The eventual aim would
be to construct a partition of the whole space of initial conditions Ωr × Ωr, where each element of
the partition would be characterized by explicit conditions similar to (A) that indicate the wave-
ordering of the solution for a given pair (WL,WR). Unfortunately, performing the study of all the
wave-orderings is not a trivial task because it may involve δ-shock type solutions due to the linear
resonance phenomena (see [8]) when a (linearized) acoustic field interacts with the transport wave u2.
As a matter of fact, Dirac solutions have already been observed for the relaxation system (4.33) in the
context of Euler’s equations in nozzle (see [18]). For this simpler system, which is a major building
block in the resolution of the relaxation Riemann problem (4.1)-(4.2) for the Baer-Nunziato model,
the Riemann problem has been completely solved for any initial data, and δ-shock solutions have been
introduced for sonic flows.

As for Euler’s equations in a nozzle, the relaxation approximation introduced here provides a
simple Riemann solver of Harten, Lax and van Leer, which enables a stable treatment of vanishing
phase cases. Indeed, thanks to the introduction of a generalized class of solutions for which energy
dissipation through the linearly degenerate void fraction wave has been allowed, Riemann problems
with arbitrarily small initial phase fractions may be computed by the solver. Introducing energy
dissipation in the first step of the relaxation approximation is an original idea since all the fields of
the relaxation system are linearly degenerate. Another more natural choice would be to increase the
relaxation parameters (a1, a2) thus introducing some dissipation in the method but this, contrary
to our approach, would restrict the time-step to potentially small values in the regimes of vanishing
phases. In addition, the relaxation Riemann solver is proved to preserve positive densities and to
satisfy a discrete entropy inequality which guarantees the stability of the derived scheme. To our
knowledge, there exists no other scheme that is proved to satisfy these two properties. The numerical
tests prove the good behavior of the scheme in vanishing phase cases. Moreover, for a given error on
the solution, it is shown that the relaxation scheme compares much favorably with Rusanov’s scheme
in terms of computational cost.

An important sequel of this work is the extension of the method to the full Baer-Nunziato model
with energies thanks to the energy/entropy duality. Indeed, thanks to the second principle of ther-
modynamics which connects the phasic energies and the transported phasic entropies, one is able to
extend this Riemann solver to the full model with energies through minor adaptations (see [13, 7]
for a related framework). This is explained in [35] and is the purpose of the forthcoming article [15],
together with the multi-dimension extension of the method.

A Appendices

A.1 Vanishing-phase solution of test-case 2

The vanishing phase solution of test-case 2 is constructed as follows. First of all, two states U− and
U+ are constructed so as to be connected by a u2-contact discontinuity with α−

1 = α1,L = 1 and
α+
1 = α1,R = 0.4 (U− resp. U+ is denoted U1 resp. U2 in (6.2)). For this purpose, the jump relations

(2.15)-(2.16)-(2.17)-(2.18) associated with the contact discontinuity reduce to

u−
2 = u+

2 ,

ρ−1 (u
−
1 − u−

2 ) = α+
1 ρ

+
1 (u

+
1 − u+

2 ),

ρ−1 (u
−
1 − u−

2 )u
−
1 + p1(ρ

−
1 ) = α+

1 ρ
+
1 (u

+
1 − u+

2 )u
+
1 + α+

1 p1(ρ
+
1 ) + α+

2 p2(ρ
+
2 ),

ρ−1 (u
−
1 − u−

2 )E
−
1 + p1(ρ

−
1 )u

−
1 = α+

1 ρ
+
1 (u

+
1 − u+

2 )E
+
1 + α+

1 p1(ρ
+
1 )u

+
1 + α+

2 p2(ρ
+
2 )u

+
2 ,
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since α−
1 = 1 and α−

2 = 0. Thanks to these jump relations, given the values ρ−1 = 2.0, u−
1 = 0.4 and

u−
2 = 0.6 (no value of ρ−2 is needed), we compute the values of ρ+1 , u+

1 , ρ+2 and u+
2 which are given

in the intermediate state U2 in (6.2). The value of ρ−2 is then imposed to be equal to ρ+2 . Then the
state U− = U1 is connected on its left with the state UL through a {u1 − c1}-shock. The state U2 is
connected to U3 through a {u2 + c2}-rarefaction wave, and finally U3 is connected to UR through a
{u1 + c1}-rarefaction wave.

A.2 Coupling solution of test-case 3

The same procedure is implemented for the construction of the exact solution of test-case 3, which
corresponds to a coupling between a pure phase 1 (α−

1 = α1,L = 1) on the right and a pure phase 2
(α+

1 = α1,R = 0) on the left. This time, the jump relations of the u2-contact discontinuity reduce to

u−
2 = u+

2 ,

ρ−1 (u
−
1 − u−

2 ) = 0,

p1(ρ
−
1 ) = p2(ρ

+
2 ),

p1(ρ
−
1 )u

−
1 = p2(ρ

+
2 )u

+
2 .

A solution is given by u−
2 = u+

2 = u−
1 = 1.0 and ρ−1 = p−1

1 (p), ρ+2 = p−1
2 (p) where p = p−1 = p+2 = 10

is the common pressure. The values of ρ+1 and u+
1 , which are of no importance since phase 1 in not

present on the right of the contact discontinuity, are taken equal to ρ−1 and u−
1 . Similarly, we set

ρ−2 := ρ+2 . This concludes the construction of the intermediate states U− = U1 and U+ = U2. Then
the state U1 is connected on its left with the state UL through a {u1 − c1}-shock and the state U2 is
connected to UR through a {u2 + c2}-rarefaction wave.
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