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Minimization of a Ginzburg-Landau type energy with a particular potential

The energy of the Ginzburg-Landau is given by E ε

We study the case where the potential J has a zero of infinite order. A significant example is J(t) = exp(-1/t k ) for t > 0 and J(t) = 0 for t ≤ 0. We show that the energy cost of a degree-one vortex may be much less than the cost of 2π log( 1 ε ) for the classical Ginzburg-Landau functional. In fact, we shall show that this cost is 2π(log

1 ε -I( 1 ε ))
where I(R) is a positive function satisfying I(R) = o(log R) as R → ∞.
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Introduction

Let G be a bounded and smooth, simply connected domain in R 2 and let g : ∂G → S 1 be a boundary condition of degree deg(g, ∂G) = d ≥ 0 (as we may assume without loss of generality). Consider a C 2 functional J : R → [0, ∞) satisfying the following conditions:

(H 1 ) J(0) = 0 and J(t) > 0 on (0, ∞), (H 2 ) J ′ (t) > 0 on (0, 1], (H 3 ) There exists η 0 > 0 such that J ′′ (t) > 0 on (0, η 0 ). For ε > 0 consider the energy functional

E ε (u) = G |∇u| 2 dx + 1 ε 2 G J(1 -|u| 2 ) dx (1.1) over H 1 g (G, C) := {u ∈ H 1 (G, C) s.t. u = g on ∂G} . (1.2) 
It is easy to see that min u∈H 1 g (G,C) E ε (u) is achieved by some smooth u ε which satisfies:

   -∆u ε = 1 ε 2 j(1 -|u ε | 2 )u ε in G, u ε = g on ∂G, (1.3)
where j(t) := J ′ (t). The case J(u) = (1 -|u| 2 ) 2 , corresponding to the Ginzburg-Landau (GL) energy, was studied by Bethuel, Brezis and Hélein [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF][START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF] (see also Struwe [6]), where it was shown that:

(i) For a subsequence ε n → 0 we have, u εn → u * = e iφ d j=1 z-a j |z-a j | in C 1,α ( Ḡ \ {a 1 , ..., a d })
, where a 1 , ..., a d are distinct points in G and φ is a smooth harmonic function determined by the requirement u * = g on ∂G.

(ii) E ε (u ε ) = 2πd| log ε| + O(1) as ε → 0.
The method of [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF][START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF][START_REF] Struwe | On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions[END_REF] can be adapted without difficulty to the case of J satisfying (H 1 ) -(H 3 ) with a zero of finite order at t = 0. This applies for example to J(t) = |t| k , ∀k ≥ 2. The main objective of the current paper is to treat the case of J with zero of infinite order at t = 0, having in mind the examples

J k (t) =    exp(-1/t k ) for t > 0 , 0 for t ≤ 0 , (1.4) 
for any k > 0. It turns out that a convergence result, as in (i) above, holds for such J's as well. The main difference with respect to the usual GL-energy is in the energy asymptotics. For J with a zero of infinite order the "energy cost" of a degree-one vortex may be much less than the cost of 2π log 1 ε for the GL-functional (see (ii) above). In fact, we shall see that this cost equals 2π(log

1 ε -Ī( 1 ε )) , where Ī(R) is a positive function satisfying Ī(R) = o(log R) as R → ∞,if j(0) = 0 and I(R) = O(log R) as R → ∞
which is determined by the particular functional J. More precisely, the function Ī(R) satisfies

Ī(R) = 1 2 j(η 0 ) 1/R 2 j -1 (t) dt t + O(1) , as R → ∞ (see Lemma 2.2) . (1.5) 
So for example, for J 1 in (1.4) we find Ī(R) = 1 2 log log R + O(1) (see Proposition 4.1 in the Appendix), and the asymptotics for the energies in this case reads:

E ε (u ε ) = 2πd log 1 ε - 1 2 log log 1 ε + O(1).
Somewhat surprisingly, it turns out that we may have Ī(R) = O(1) also for J with a zero of infinite order, as is the case for k ∈ (0, 1) in (1.4), see Proposition 4.1.

Our first main theorem describes the asymptotic behavior of the minimizers and their energies.

Theorem 1. For each ε > 0, let u ε be a minimizer for the energy E ε over H 1 g (G, C) with G, g (of degree d ≥ 0) as above and J satisfying (H 1 ) -(H 3 ). Then: (i) For a subsequence ε n → 0 we have

u εn → u * = e iφ d j=1 z -a j |z -a j | in C 1,α ( Ḡ \ {a 1 , ..., a d }),
where a 1 , ..., a d are distinct points in G and φ is a smooth harmonic function determined by the requirement u * = g on ∂G.

(ii) Setting, for R > 1 √ j(η 0 ) , I 0 (R) = 1 2 j(η 0 ) 1/R 2 j -1 (t) dt t ,
we have

E ε (u ε ) = 2πd log 1 ε -I 0 1 ε + O(1). (1.6)
We show in Lemma 2.2 below that if j -1 (0) = 0 then the function I 0 satisfies

I 0 (R) = o(log R) otherwise I 0 (R) = O(log R).
A significant example in the first case is given in (1.4), while in the second case we can take J(t) = t exp(t). This implies that the leading term in the energy is always of the order | log ε|. It is easy to see that I 0 (R) is a positive, monotone increasing, concave function of log R (for large R). It is natural to ask whether every function with these properties can appear in the second order term of the energy expansion, for some potential J. The answer to this "inverse problem" turns out to positive, as shown by our second theorem.

Theorem 2. Let h ∈ C 2 [0, ∞) satisfy, for some T > 0, h ′ (t) > 0 , h ′′ (t) < 0 , for t ≥ T > 0 , (1.7 
)

and lim t→∞ h ′ (t) = 0 . (1.8)
Then, there exists a functional J satisfying (H 1 ) -(H 3 ), such that the minimizers

{u ε } over H 1 g (G, C)
, for E ε defined by (1.1) and g of degree d as above, satisfy

E ε (u ε ) = 2πd log 1 ε -h log 1 ε + O(1) .

A study of an auxiliary optimization problem

Let us begin by explaining the main idea of the proof of Theorem 1 and by showing how it leads to a certain optimization problem which is the object of the current section. It is natural to estimate first the energy cost of a degree-one "vortex" in a disc, say the unit disc B 1 = B 1 (0). In the case of the Ginzburg-Landau energy, it is easy to guess the energy cost, by taking v ε (r iθ ) = f ε (r)e iθ with f ε given by:

f ε (r) =    r ε for 0 ≤ r < ε, 1 for ε ≤ r ≤ 1.
A simple computation gives

B 1 |∇v ε | 2 + 1 ε 2 (1 -|v ε | 2 ) 2 = 2π log 1 ε + O(1),
which turns out to be the optimal estimate, up to an additive constant, although the proof of this fact is far from trivial (see [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF]). When looking for the right upper bound for the energy in the general case, we keep the ansatz v ε (r) = f ε (r)e iθ , and try to optimize over the function f ε (since we do not know a priori what form should it take, for our particular J). What we can assume a priori on that function is that it satisfies

E ε (v ε , B ε ) = O(1), (2.1) 
and 1 ε 2 

B 1 J(1 -|v ε | 2 ) = O(1) . ( 2 
E ε (v ε ) = 2π 1 0 (f ′ ε ) 2 + f 2 ε r 2 + 1 ε 2 J(1 -f 2 ε ) rdr = 2π log 1 ε -2π 1 ε 1 -f 2 ε r dr + 1 ε (f ′ ε ) 2 rdr + O(1). (2.3) 
In order to get minimal energy (up to an O(1)-term), we shall look for f ε which maximizes the term

1 ε 1-f 2 ε
r dr (representing the gain of energy w.r.t. the "usual" cost of 2π log 1 ε ) under the constraint

1 ε J(1 -f 2 ε ) rdr ≤ C 0 .
Here we did not take into account the contribution of the term

1 ε (f ′ ε ) 2
rdr, but as we shall see below, this term is bounded for the solution of our optimization problem.

Rescaling by a factor of ε, we are led naturally to define the following quantity:

I(R, c) = sup R 1 1 -f 2 r dr : R 1 J(1 -f 2 )r dr ≤ c , (2.4) 
for any R > 1 and c > 0.

Lemma 2.1. For every R > 1 and c > 0, there exists a maximizer

f 0 = f (R) 0 in (2.4) satisfying 0 ≤ f 0 (r) ≤ 1, ∀r, such that f 0 (r) is nondecreasing. Moreover, if r 0 = r 0 (c) is defined by the equation c = J(1) r 2 0 -1 2 , (2.5 
)

then there exists r0 = r0 (c, R) ∈ [1, r 0 ] such that f 0 (r)    = 0 if r ∈ [1, R] and r < r0 , > 0 if r > r0 . (2.6) Furthermore, R 1 J(1 -f 2 0 )r dr = c , for R > r 0 , (2.7) j(1 -f 2 0 (r)) = 1 λr 2 , r > r0 , (2.8) 
for some λ = λ(R, c) > 0. and There exist two constants 0 < a(c) < b(c) such that

a(c) ≤ λ ≤ b(c), R ≥ r 0 + 1.
The proof of this Lemma is contained in [START_REF] Hadiji | Minimization of a Ginzburg-Landau type energy decreasing with potential having a zero of infinite order[END_REF], so we omit it.

Remark 2.1. The proof of the last Lemma actually shows that the bounds for λ are uniform for c lying in a bounded interval.

Using [START_REF] Hadiji | Minimization of a Ginzburg-Landau type energy decreasing with potential having a zero of infinite order[END_REF], Lemma 2.3., we have for every c > 0 there exists a constant C = C(c) such that for every 0 < c 1 , c 2 ≤ c we have

|I(R, c 1 ) -I(R, c 2 )| ≤ C, ∀R ≥ 1 .

It is then natural to set:

I(R) := I(R, 1) .

(2.9)

For any fixed c 0 > 0 we have then:

|I(R, c) -I(R)| ≤ C(c 0 ) , ∀c ≤ c 0 , ∀R ≥ 1 .
(2.10)

Next we prove, by the method of proof of Lemma 2;3. an explicit estimate for I(R).

In the sequel we shall denote by f 0 be a maximizer for I(R) = I(R, 1) as given by Lemma 2.1.

Lemma 2.2. We have

I(R) = 1 2 j(η 0 ) 1 R 2 j -1 (t) dt t + O(1), ∀R > 1 j(η 0 ) . ( 2 

.11)

In particular,

lim R→∞ I(R) -j -1 (0) log R = 0 .
(2.12)

Proof. By Lemma 2.1 we have j(1 -f 2 0 (r)) = 1 λr 2 for r > r 0 (1) and by Lemma 2.2. we have

λ = λ(R) ∈ [a, b], for R ≥ r 0 (1) + 1 , (2.13) 
for some two positive constants a and b. Using hypothesis (H 3 ) we conclude that

1 -f 2 0 (r) = j -1 1 λr 2 , for R ≥ r ≥ µ 0 := max r 0 (1), 1 aj(η 0 ) . ( 2 

.14)

It follows that

I(R) = R µ 0 j -1 1 λr 2 dr r + O(1) = 1 2 j(η 0 ) 1 λR 2 j -1 (t) dt t + O(1) .
In order to get (2.11) it suffices to notice that j(η 0 )

1 λR 2 j -1 (t) dt t - j(η 0 ) 1 R 2 j -1 (t) dt t ≤ 1 λR 2 1 R 2 j -1 (t) dt t ≤ C| log λ| ≤ C max(| log b|, | log a|) = O(1) .
Finally we note that (2.12) follows easily from (2.11).

As announced in the introduction, the next lemma provides an estimate that we shall use in the proof of the upper-bound for the energy.

Lemma 2.3. We have R µ 0 (f ′ 0 ) 2 rdr ≤ C, ∀R > µ 0 , (2.15)
for a as in (2.13) and µ 0 as defined in (2.14).

Proof. Differentiating the equality (2.14) yields for r ≥ µ 0 ,

-2f 0 f ′ 0 = (j -1 ) ′ 1 λr 2 • - 2 λr 3 , which implies f ′ 0 (r) ≤ C(j -1 ) ′ 1 br 2 • 1 r 3
, with b given by (2.13). Therefore, denoting by C different positive constants, we get

R µ 0 (f ′ 0 ) 2 rdr ≤ C R µ 0 (j -1 ) ′ 1 br 2 2 dr r 5 = C 1 bµ 2 0 1 bR 2 (j -1 ) ′ (α) 2 α dα = C 1 bµ 2 0 1 bR 2 αdα j ′ (j -1 (α)) 2 = C j -1 ( 1 bµ 2 0 ) j -1 ( 1 bR 2 ) j(β) j ′ (β) dβ .
(2.16)

It is elementary to verify that lim

β→0 + j(β) j ′ (β) = 0 . (2.17) Indeed, if J ′′ (0) = j ′ (0) > 0 then lim β→0 + j(β) j ′ (β) = lim β→0 + J ′ (β) J ′′ (β) = 0 , since J ′ (0) = 0 by (H 1 ), while if J ′′ (0) = 0 then by L'hôpital rule lim β→0 + j(β) j ′ (β) = lim β→0 + J ′ (β) J ′′ (β) = lim β→0 + J(β) J ′ (β) = 0 , since by convexity J(β) = β 0 J ′ (s) ds ≤ βJ ′ (β) for β ≤ η 0 .
Therefore, (2.15) follows from (2.16) and (2.17).

We next study a similar functional to that of (2.4). It will serve in the proof of the lower-bound of the energy. For any R > 1 and c > 0 set

I(R, c) = sup R 1 1 -f 2 r + 4 (1 -f 2 ) 2 r dr : R 1 J(1 -f 2 )r dr = c . (2.18) 
By using the above arguments we also obtain the following result.

Lemma 2.4. For every c 0 , α > 0 there exists a constant C 1 (c 0 , α) such that

|I(αR, c) -I(R)| ≤ C 1 (c, α) | I(αR, c) -I(R)| ≤ C 1 (c, α) for R > max(1, 1 α ) and c ∈ (0, c 0 ] . (2.19) 
2.1 Some basic estimates for u ε

The next lemma provides L ∞ -estimates for u ε and its gradient.

Lemma 2.5. Any solution u ε of satisfies:

u ε L ∞ (G) ≤ 1 and ∇u ε L ∞ (G) ≤ C ε . (2.20) 
Proof. The first estimate follows easily form the observation that replacing u ε (x) by u ε (x)/|u ε (x)| on the set {x ∈ G : |u ε (x)| > 1} strictly decreases the energy if the latter set has a positive measure. The second estimate in follows from a simple rescaling argument and standard elliptic estimates as in [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF][START_REF] Struwe | On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions[END_REF].

In the case of a starshaped G the following Pohozaev identity holds for u ε (actually it is valid for any solution of problem. The proof is identical to the one for the GL-energy in [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF], so we omit it. Lemma 2.6. If G is starshaped then

1 ε 2 G J(1 -|u ε | 2 ) ≤ C 0 , ∀ε > 0 .
(2.21)

We shall show later that the assumption of starshapeness of the domain can be dropped, by applying an argument of del Pino and Felmer [START_REF] Del Pino | Local minimizers for the Ginzburg-Landau energy[END_REF].

Proof of the main results

For the proof of Theorem 1 we need a sharp upper bound and a adequate lower bound for the energy. Recall that u ε is a minimizer for E ε over H 1 g (G, C). We assume without loss of generality that d ≥ 0. Proposition 3.1. We have B δ (x j ) and let u be a C 1 -map from Ω into C, which is continuous on ∂Ω, satisfying

E ε (u ε ) ≤ 2πd log 1 ε -I 1 ε + O(1), ∀ε > 0 . ( 3 
1 2 ≤ |u| ≤ 1 in Ω and deg(u, ∂B σ (x j )) = d j , ∀j, and 
1 δ 2 Ω J(1 -|u| 2 ) ≤ K .
Then, denoting d = m j=1 d j , we have

Ω |∇u| 2 ≥ 2π|d| log σ δ -I σ δ -C, (3.2) 
with C = C(K, m, m j=1 |d j |).

The proof of Theorem 1 uses an argument of del Pino and Felmer [START_REF] Del Pino | Local minimizers for the Ginzburg-Landau energy[END_REF] can now be used to show that (2.21) holds without the assumption on the starshapeness of G. Having the estimate (2.21) on our hands see [START_REF] Hadiji | Minimization of a Ginzburg-Landau type energy decreasing with potential having a zero of infinite order[END_REF], we can now follow the bad-discs construction of [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF] and complete the convergence assertion of Theorem 1. Since the arguments are identical to those of [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF], we omit the details.

Appendix

In this Appendix we compute the energy cost of a degree one vortex for the functionals J k , k > 0, that were defined in (1.4) or for the case where J 1,k (t) = exp(-exp( 1 t k )) for t > 0 and 0 where t ≤ 0 with k > 0. In view of Theorem 1 it suffices to compute for each k > 0:

I 0,k (R) := 1 2 j k (η k ) 1/R 2 j -1 k (t) dt t , (4.1) 
with j k = J ′ k , a simple computation shows that J ′′ k > 0 on (0, η k ).

Proposition 4.1. As R goes to the infinity, we have 1. In the case where J k is defined by (1.4), we have

I 0,k (R) =          O(1), 0 < k < 1 , 1 2 log log R + O(1), k = 1 , 2 -1 k k k-1 log(R) k-1 k + O(1), k > 1 . (4.2)
2. For J 1,k , we have

I 0,k (R) = 1 2k (ln ln(R 2 )) -(k+1) k ln(R 2 ) + O(1).
Proof. The change of variable s = j -1 k (t) gives

I 0,k (R) = 1 2 η k j -1 k (1/R 2 ) s j ′ k (s) j k (s) ds = 1 2 η k j -1 k (1/R 2 ) k s k -(k + 1) ds . (4.3) 
If k < 1 then it follows immediately from (4.3) that I 0,k (R) = O(1).

For k > 1 we obtain from (4.3) that

I 0,k (R) = k 2(k -1) (j k ) -1 1 R 2 1-k + O(1) . (4.4) Set α = α(R) = j -1 k 1 R 2 . Since j k (α) = k α k+1 exp(-1/α k ), we have 1 R 2 = k α k+1 exp(-1/α k ) .
Taking the logarithm of both sides gives Finally, if k = 1 then by (4.3) we have For the proof of 2. We have j k (t) = k t k+1 e 

-2 log R = log k -(k + 1) log α - 1 α k , for k > 0 . ( 4 
I 0,1 (R) = 1 2 η 1 j -1 1 (1/R 2 ) 1 s -2 ds = - 1 2 log j -1 1 1 R 2 + O(1) = -

. 1 ) 3 . 2 .

 132 Proposition Let x 1 , . . . , x m be m points in B σ (0) satisfying|x i -x j | ≥ 4δ, ∀i = j and |x i | < σ 4 , ∀i , with δ ≤ σ/32. Set Ω = B σ (0) \ m j=1

. 5 )

 5 By (4.5) we have lim R→∞ 2α k log R = 1, which we plug in (4.4) to obtain the case k > 1 in (4.2).

1 R 2 ,

 12 as above. In our case (4.5) gives lim R→∞ 2α log R = 1, which implies that log α = log 1 2 log R + o(1). Plugging it in (4.6) gives the result (4.2) for k = 1.

1 t k J 1 1 R 2 t k+1 e 1 t k )dt + O( 1 )Hence, since t → t k+1 e 1 tk α k+1 e 1 α k [ 1 +α k -e 1 α

 1112111111 ,k (t). Set α = j -1 1,k ( 1 R 2 ), integrate by part (4.1) we obtain 2I 0,k (R) = α ln( Integrate by part two times we obtain, k is decreasing, we haveI 0,k (R) = 1 O(α k )].On the other hand we have, ln(k) -(k + 1) ln(α) -1