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This paper is composed of two parts. In the first part, via a reduction dimension method, we derive a one-dimensional minimization problem involving S 2 valued maps for a thin T-shaped multidomain. In the second one, we analyze this limit model.

Introduction

This paper, composed of two parts, carries on the research we started in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF]. In the first part, via a reduction dimension method, we derive a one-dimensional minimization problem involving S 2 valued maps for a thin T-shaped multidomain. In the second one, we analyze this limit model.

Let Ω n ⊂ R 3 , n ∈ N, be a thin multidomain union of two joined orthogonal cylinders: r n Θ × [0, 1[ and - 1 2 , 1 2 × r n -1 2 , 1 2 ×] -1, 0[ , where (0, 0) ∈ Θ ⊆] -1 2 , 1 2 [×] -1 2 , 1 2 [ and r n is a vanishing positive parameter (see Figure 1). We point out that the first cylinder has constant height along the direction x 3 , the second one has constant height along the direction x 1 , while both of them have a small cross section and are joined by the surface {0} × r n Θ.

For every n ∈ N and λ ∈ [0, +∞[, we consider the following minimization problem:

E n,λ := min Ωn |DV (x 1 , x 2 , x 3 )| 2 d(x 1 , x 2 , x 3 )+ +λ Ωn |V (x 1 , x 2 , x 3 ) -G n (x 1 , x 2 , x 3 )| 2 d(x 1 , x 2 , x 3 ) : V ∈ H 1 (Ω n , S 2 ) , (1.1) 
Figure 1:

where F n ∈ L 2 (Ω n , S 2 ), and S 2 denotes the unit sphere of R 3 . Problem (1.1) comes from the classical 3D system for the static isotropic Heisenberg model (see [START_REF] Stanley | Introduction to Phase Transitions and Critical Phenomena[END_REF]), where V is the spin-density with finite spin magnitude (i.e., |V | = V 2 1 + V 2 2 + V 2 3 = 1) and G n is an external magnetic field. We recall that the Euler system associated to Problem (1.1) is

∆V + |DV | 2 V + λG n -< V, λG n > V = 0. (1.2)
System (1.2) is equivalent to the time independent spin equation of motion (see [START_REF] Hong | The Landau-Lifshitz Equation with the External Field -a New Extension or Harmonic Maps with Values in S 2[END_REF]). The time dependent spin equation of motion was first derived by Landau and Lifshitz (see [START_REF] Landau | On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[END_REF]). We refer the reader to [START_REF] Guo | The Landau-Lifshitz Equation of the Ferromagnetic Spin Chain and Harmonic Maps[END_REF] and [START_REF] Hong | The Landau-Lifshitz Equation with the External Field -a New Extension or Harmonic Maps with Values in S 2[END_REF] about links between harmonic maps and the Landau-Lifshitz equation of the spin chain.

For n fixed, in [START_REF] Hadiji | Regularity of Ω |∇u| 2 +λ Ω |u-f | 2 and Some Gap Phenomenon[END_REF] it was proved that, for λ large enough and for every function G n ∈ H 1 (Ω n , S 2 ) which can not be approximated by smooth maps, every minimizer V λ of (1.1) is not regular, and energy E n,λ is bounded. In this case, near each singularity x 0 , a minimizer of (1.1) is of the type: R x-x 0 |x-x 0 | , where R is a rotation. This description was first given in [START_REF] Brezis | Harmonic Map with Defects[END_REF] for minimizing harmonic maps. In [START_REF] Courilleau | Regularity of Minimizing Maps with Values in S 2 and Some Numerical Simulations[END_REF], it was proved that, for λ small enough and for every function G n ∈ L 2 (Ω n , S 2 ), every minimizer V λ of (1.1) is regular. Problems of this type were also studied in [START_REF] Bethuel | Minimisation de |∇(u -x |x| )| 2 et divers phénomène de gap[END_REF].

The aim of our paper is twofold. Firstly, passing to the limit in (1.1), as n diverges, we derive a one-dimensional static isotropic Heisenberg model for a thin T-shaped domain. Secondly, we study the dependence on λ of the limit model. Precisely, in the first part of this paper, we prove that

lim n E n,λ r 2 n = E Lim λ := min |Θ| 1 0 |w ′ (x 3 )| 2 dx 3 -2λ 1 0 w(x 3 ) Θ f a (x 1 , x 2 , x 3 )d(x 1 , x 2 ) dx 3 + 1 2 -1 2 |ζ ′ (x 1 )| 2 dx 1 -2λ 1 2 -1 2 ζ(x 1 ) ]-1 2 , 1 2 [×]-1,0[ f b (x 1 , x 2 , x 3 )d(x 2 , x 3 ) dx 1 + +2 (|Θ| + λ) : w ∈ H 1 (]0, 1[, S 2 ), ζ ∈ H 1 -1 2 , 1 2 , S 2 , w(0) = ζ(0) , (1.3) 
where w ′ and ζ ′ stand for the derivative of w and ζ, respectively, and (f a , f b ) is the L 2weak limit of the rescaled exterior field (see (2.5) and (2.9)). Moreover, we derive strong H 1 -convergences for the rescaled minimizers (see Theorem 2.1 and Corollary 2.2). The proof of this result is developed in several steps. After having rescaled the problem on two fixed domains in the wake of [START_REF] Ciarlet | A Justification of the Two-Dimensional Linear Plate Model[END_REF], appropriate convergence assumptions on the rescaled exterior fields enable us to obtain a priori estimates on rescaled minimizers. The first difficulty arises in deriving w(0) = ζ(0) for the limit of rescaled minimizers. This limit junction condition lies essentially on the compact embedding of

H 1 -1 2 , 1 2 into C 0 -1 2 , 1 2
, and on the fact that the small cross sections of the two cylinders scale down with same rate r n . Then, next steps of the proof are based on the main ideas of Γ-convergence method introduced in [START_REF] De Giorgi | Su un tipo di convergenza variazionale[END_REF]. Precisely, as in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF] (see also [START_REF] Alicandro | Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere[END_REF] and [START_REF] Bethuel | Density of Smooth Functions between Two Manifolds in Sobolev Spaces[END_REF]), working with a particular projection from R 3 into S 2 and using the Sard's Lemma, we construct a recovery sequence for smooth functions with values in S 2 . Finally, developing a suitable density result approximating functions of our limit space with more regular functions, and using l.s.c arguments, we achieve the proof. Other scalings are discussed in Remark 2.4.

We recall that in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF] we treated the same minimization problem in a thin multidomain composed of two cylinders attached together that shrink respectively to a one-dimensional segment and to a bidimensional disc, but in this situation the limit problem is uncoupled, i.e., without junction conditions.

If

f a is independent of (x 1 , x 2 ), f b is independent of (x 2 , x 3 ), |f a | = 1 a.e. in ]0, 1[ and |f b | = 1 a.e. in ] -1 2 , 1 2
[, then the limit energy in (1.3) may be rewritten in the following way:

E Lim λ := min |Θ| 1 0 |w ′ (x 3 )| 2 + λ |w(x 3 ) -f a (x 3 )| 2 dx 3 + + 1 2 -1 2 |ζ ′ (x 1 )| 2 + λ ζ(x 1 ) -f b (x 1 ) 2 dx 1 : w ∈ H 1 (]0, 1[, S 2 ), ζ ∈ H 1 -1 2 , 1 2 , S 2 , w(0) = ζ(0) .
(1.4)

In the second part of this paper, we study the dependence on λ of the limit problem E Lim λ given in (1.4). We recall that in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF] we have studied the asymptotic behavior both of 2dimensional and of 1-dimensional problem of the kind (1.3), but without junction conditions.

If λ = 0, E Lim 0 = 0. Moreover it is easy to see that the function λ ∈ [0, +∞[→ E Lim λ is increasing and d E Lim λ dλ = |Θ| 1 0 |w λ -f a | 2 dx 3 + 1 2 -1 2 ζ λ -f b 2 dx 1 , for λ a.e. in ]0, +∞[, where (w λ , ζ λ
) is a minimizer of (1.4). Then, it remains to study the asymptotic behavior, as λ diverges, of

E Lim λ . If f a ∈ H 1 (]0, 1[, S 2 ), f b ∈ H 1 -1 2 , 1 2 , S 2 and f a (0) = f b (0), it is easy to see that lim λ→+∞ E Lim λ = |Θ| (f a ) ′ 2 (L 2 (]0,1[)) 3 + (f b ) ′ 2 (L 2 (-1 2 , 1 2 [))
3 , and every sequence of minimizers converges to (f a , f b ) weakly in

H 1 (]0, 1[, S 2 ) × H 1 -1 2 , 1 2 , S 2
. In all remaining cases, the energies diverge, as λ diverges. Then, we examine some particular, but significant situations. For instance, we consider the case where f a = (1, 0, 0) and f b = (0, 1, 0), or f a = x 3 -γ |x 3 -γ| , 0, 0 and f b = x 1 -δ |x 1 -δ| , 0, 0 , and we prove that energy E Lim λ is of order of √ λ, for λ large enough. Consequently, in these cases every sequence of minimizers converges to (f a , f b ) strongly-L 2 (but not weakly-H 1 × H 1 ), as λ diverges. To prove this result, we find sharp lower and upper estimates. For obtaining the lower bound we introduce a suitable scalar problem. For obtaining the upper bound we use particular test functions which take into account the junction condition w(0) = ζ(0). In the case δ ≤ 0, the building of test functions satisfying the junction condition is more complicated and, to do that, we introduce more sophisticated arguments (see Proposition 3.3) which make use of the same projection from R 3 into S 2 utilized in the recovery sequence.

For the study of rod structures and multi-structures we refer the reader to [START_REF] Kozlov | Asymptotic analysis of Fields in a Multi-Structure[END_REF], [START_REF] Landau | Problèmes variationnels dans le multi-domaines: modélisation des jonctions et applications[END_REF], [START_REF] Panasenko | Asymptotic Analysis of Rod Structures[END_REF], [START_REF] Trabucho | Mathematical Modelling of Rods, Hand-book of Numerical Analysis[END_REF] and the references quoted therein. Results on T-shaped domain may be also found in [START_REF] Gaudiello | Asymptotic Analysis of a Class of Minimization Problems in a Thin Multidomain[END_REF], [START_REF] Gaudiello | Asymptotic Analysis of the Eigenvalues of a Laplacian Problem in a Thin Multidomain[END_REF] and [START_REF] Gaudiello | Junction in a Thin Multidomain for a Fourth Order Problem[END_REF]. Precisely, a quasilinear Neumann second order scalar problem was considered in [START_REF] Gaudiello | Asymptotic Analysis of a Class of Minimization Problems in a Thin Multidomain[END_REF]. A fourth order problem was examined in [START_REF] Gaudiello | Junction in a Thin Multidomain for a Fourth Order Problem[END_REF]. The spectrum of a Laplace operator was considered in [START_REF] Gaudiello | Asymptotic Analysis of the Eigenvalues of a Laplacian Problem in a Thin Multidomain[END_REF].

2 First part: derivation of the limit model In the sequel, x = (x 1 , x 2 , x 3 ) denotes the generic point of R 3 . If a, b, c ∈ R 3 , then (a|b|c) denotes the 3 × 3 real matrix having a T as first column, b T as second column, and c T as third column. In according to this notation, if v ∈ H 1 (A, R 3 ) with A open subset of R 3 , then Dv := (D x 1 v|D x 2 v|D x 3 v), where D x i v, i=1,2,3, stands for the derivative of v with respect to

x i . Let Θ ⊆] -1 2 , 1 2 [×] -1 2 , 1 2
[ be an open connected set with smooth boundary such that the origin in R 2 belongs to Θ, and let {r n } n∈N ⊂]0, 1[ be a sequence such that lim n r n = 0.

(2.1) 1). For every n ∈ N, let F n ∈ L 2 (Ω n , R 3 ) and

For every n ∈ N, let Ω a n := r n Θ × [0, 1[, Ω b n := -1 2 , 1 2 × r n -1 2 , 1 2 ×] -1, 0[ and Ω n := Ω a n ∪ Ω b n (see Figure
J n : U ∈ H 1 (Ω n , S 2 ) -→ Ωn |DU (x)| 2 dx -2 Ωn U (x)F n (x)dx, (2.2) 
where S 2 = {x ∈ R 3 : |x| = 1}. By applying the Direct Method of Calculus of Variations, for every n ∈ N there exists a solution U n ∈ H 1 (Ω n , S 2 ) of the following problem:

J n (U n ) = min {J n (U ) : U ∈ H 1 (Ω n , S 2 )} . (2.3)
Remark that energy (2.2) is more general of that considered in the Introduction. In particular, if

F n = λG n , with G n ∈ L 2 (Ω n , S 2 ), problem (2.3) is equal to problem (1.1), up the additive constant 2λ|Ω n |.
As it is usual (see [START_REF] Ciarlet | A Justification of the Two-Dimensional Linear Plate Model[END_REF]), problem (2.3) can be reformulated on a fixed domain through appropriate rescalings mapping the interior of Ω a n into Ω a := Θ×]0, 1[ and

Ω b n into Ω b := -1 2 , 1 2 × -1 2 , 1 2 ×] -1, 0[. Namely, for every n ∈ N by setting u n (x) :=    u a n (x) = U n (r n x 1 , r n x 2 , x 3 ), x a.e. in Ω a , u b n (x) = U n (x 1 , r n x 2 , r n x 3 ), x a.e. in Ω b , (2.4 
)

f n (x) :=    f a n (x) = F n (r n x 1 , r n x 2 , x 3 ), x a.e. in Ω a , f b n (x) = F n (x 1 , r n x 2 , r n x 3 ), x a.e. in Ω b , (2.5) 
V n := (v a , v b ) ∈ H 1 (Ω a , S 2 ) × H 1 (Ω b , S 2 ) : v a (x 1 , x 2 , 0) = v b (r n x 1 , x 2 , 0), for (x 1 , x 2 ) a.e. in Θ , (2.6) 
j n : v = (v a , v b ) ∈ V n -→ Ω a 1 r n D x 1 v a | 1 r n D x 2 v a |D x 3 v a 2 -2v a f a n dx+ + Ω b D x 1 v b | 1 r n D x 2 v b | 1 r n D x 3 v b 2 -2v b f b n dx, (2.7) 
it results that u n ∈ V n solves the following problem:

j n (u n ) = min {j n (v) : v ∈ V n } . (2.8)
Remark that we have also multiplied the rescaled functional by 1 r 2 n .

For studying the asymptotic behavior of problem (2.8), as n → +∞, assume that

f a n ⇀ f a weakly in L 2 (Ω a , R 3 ), f b n ⇀ f b weakly in L 2 (Ω b , R 3 ). (2.9)
Moreover, set

V := {(w, ζ) ∈ H 1 (Ω a , S 2 ) × H 1 (Ω b , S 2 ) : w is independent of (x 1 , x 2 ), ζ is independent of (x 2 , x 3 ), w(0) = ζ(0)} ≃ (w, ζ) ∈ H 1 (]0, 1[, S 2 ) × H 1 -1 2 , 1 2 , S 2 : w(0) = ζ(0) , (2.10) 
j a : w ∈ H 1 (]0, 1[, S 2 ) -→ |Θ| 1 0 |w ′ (x 3 )| 2 dx 3 -2 1 0 w(x 3 ) Θ f a (x 1 , x 2 , x 3 )d(x 1 , x 2 ) dx 3 (2.11)
and

j b : ζ ∈ H 1 - 1 2 , 1 2 , S 2 -→ 1 2 -1 2 |ζ ′ (x 1 )| 2 dx 1 -2 1 2 -1 2 ζ(x 1 ) ]-1 2 , 1 2 [×]-1,0[ f b (x 1 , x 2 , x 3 )d(x 2 , x 3 ) dx 1 , (2.12) 
where w ′ and ζ ′ stand for the derivative of w and ζ, respectively.

Convergence results when n → +∞

The following result describes the asymptotic behavior of problem (2.8) when n → +∞.

Theorem 2.1. For every n ∈ N, let u n = (u a n , u b n ) be a solution of problem (2.6)-(2.7)-(2.8), under assumptions (2.1) and (2.9).

Then, there exist an increasing sequence of positive integer numbers {n i } i∈N and (u a , u b ) ∈ V (depending on the selected subsequence) such that

u a n i → u a strongly in H 1 (Ω a , S 2 ), u b n i → u b strongly in H 1 (Ω b , S 2 ), (2.13) 
as i → +∞, and (u a , u b ) solves the following problem:

j a (u a ) + j b (u b ) = min j a (w) + j b (ζ) : (w, ζ) ∈ V , (2.14) 
where V , j a and j b are defined in (2.10), (2.11) and (2.12), respectively. Moreover,

         1 r n D x 1 u a n → 0, 1 r n D x 2 u a n → 0 strongly in L 2 (Ω a , R 3 ), 1 r n D x 2 u b n → 0, 1 r n D x 3 u b n → 0 strongly in L 2 (Ω b , R 3 ), (2.15) 
as n → +∞. Furthermore, the energies converge in the sense that

lim n j n (u n ) = j a (u a ) + j b (u b ). (2.16)
As regard as the asymptotic behavior of original problem (2.3), as n → +∞, from the rescaling (2.4)-(2.5) and Theorem 2.1, the result below follows immediately.

Corollary 2.2. For every n ∈ N, let U n be a solution of problem (2.2)-(2.3), under assumptions (2.1) and (2.9) with {f n } n∈N defined by (2.5).

Then, there exist an increasing sequence of positive integer numbers {n i } i∈N and (u a , u b ) ∈ V (depending on the selected subsequence) such that

lim i 1 r 2 n i rn i Θ×]0,1[ |U n i -u a | 2 + |D x 1 U n i | 2 + |D x 2 U n i | 2 + |D x 3 U n i -D x 3 u a | 2 dx = 0, lim i 1 r 2 n i ]-1 2 , 1 2 [×]- rn i 2 , rn i 2 [×]-rn i ,0[ U n i -u b 2 + D x 1 U n i -D x 1 u b 2 + |D x 2 U n i | 2 + |D x 3 U n i | 2 dx = 0, lim n J n (U n ) r 2 n = j a (u a ) + j b (u b ),
and (u a , u b ) solves problem (2.14).

Remark 2.3. If problem (2.14) admits a unique solution, then all previous convergences hold true for the whole sequence.

Remark 2.4. We have assumed that the small cross sections of the two cylinders scale down with same rate r n . Well, if one scales down the cross section of the second cylinder with a different parameter h n , i.e.

Ω b n := -1 2 , 1 2 × h n -1 2 , 1 2 
×] -1, 0[ , then it is not difficult to show that (compare Theorem 2.2 and Theorem 2.3 in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF])

           lim n J n (U n ) h 2 n = min j b (ζ) : ζ ∈ H 1 - 1 2 , 1 2 , S 2 , if lim n h n r n = +∞, lim n J n (U n ) r 2 n = min j a (w) : w ∈ H 1 (]0, 1[, S 2 ) , if lim n h n r n = 0.
Proof of Theorem 2.1. The proof of Theorem 2.1 will be performed in several steps. 1) A priori estimates. Being ((0, 0, 1), (0, 0, 1)) ∈ V n for every n ∈ N, by virtue of (2.9), there exists a constant c, independent of n, such that

j n (u n ) ≤ -2 Ω a (0, 0, 1)f a n dx -2 Ω b (0, 0, 1)f b n dx ≤ c, ∀n ∈ N.
(2.17)

Consequently, by taking into account that |u n | = 1 a.e. in Ω a Ω b for every n ∈ N and (2.9), there exist an increasing sequence of positive integer numbers

{n i } i∈N , u a ∈ H 1 (Ω a , S 2 ) independent of (x 1 , x 2 ), u b ∈ H 1 (Ω b , S 2 ) independent of (x 2 , x 3 ), ξ a = (ξ a 1 , ξ a 2 ) ∈ (L 2 (Ω a , R 3 )) 2 and ξ b = (ξ b 2 , ξ b 3 ) ∈ (L 2 (Ω b , R 3 )) 2 such that u a n i ⇀ u a weakly in H 1 (Ω a , S 2 ), u b n i ⇀ u b weakly in H 1 (Ω b , S 2 ), (2.18)          1 r n i D x 1 u a n i ⇀ ξ a 1 , 1 r n i D x 2 u a n i ⇀ ξ a 2 weakly in L 2 (Ω a , R 3 ), 1 r n i D x 2 u b n i ⇀ ξ b 2 , 1 r n i D x 3 u b n i ⇀ ξ b 3 weakly in L 2 (Ω b , R 3 ), (2.19) as i → +∞. Remark that u a ∈ H 1 (]0, 1[, S 2 ) and u b ∈ H 1 (] -1 2 , 1 2 [, S 2 ). 2) Limit junction condition. For asserting that (u a , u b ) ∈ V , it remains to prove that u a (0) = u b (0).
(2.20)

The proof of (2.20) will be performed in three steps. The first step is devoted to prove the existence of three constants c ∈]0, +∞[,

x 3 ∈] -1, 0[ and x 2 ∈] -1 2 , 1 2 [,

and of an increasing sequence of positive integer numbers {i

k } k∈N such that ]-1 2 , 1 2 [ 2 1 r n i k D x 2 u b n i k (x 1 , x 2 , x 3 ) 2 d(x 1 , x 2 ) ≤ c, ∀k ∈ N, (2.21) 
and

u b n i k (•, x 2 , x 3 ) → u b strongly in C 0 - 1 2 , 1 2 , S 2 , (2.22) 
as k → +∞. To this aim, for every i ∈ N, set

ρ i : x 3 ∈] -1, 0[-→ ]-1 2 , 1 2 [ 2 D x 1 u b n i (x 1 , x 2 , x 3 ) 2 + 1 r n i D x 2 u b n i (x 1 , x 2 , x 3 ) 2 + u b n i (x 1 , x 2 , x 3 ) 2 d(x 1 , x 2 ).
From Fatou Lemma and (2.18)-(2.19), it follows that

0 -1 lim inf i ρ i (x 3 )dx 3 ≤ lim inf i 0 -1 ρ i (x 3 )dx 3 < +∞.
Consequently, there exist two constants c ∈]0, +∞[ and x 3 ∈] -1, 0[, and an increasing sequence of positive integer numbers {i k } k∈N such that

ρ i k (x 3 ) < c ∀k ∈ N,
i,e., estimate (2.21) holds true and, by virtue of the second convergence in (2.18), it results that

u b n i k (•, •, x 3 ) ⇀ u b weakly in H 1 - 1 2 , 1 2 
2 , S 2 , (2.23) as k → +∞. Now, for every k ∈ N, let σ k : x 2 ∈ - 1 2 , 1 2 → 1 2 -1 2 D x 1 u b n i k (x 1 , x 2 , x 3 ) 2 + u b n i k (x 1 , x 2 , x 3 ) 2 dx 1 .
From Fatou Lemma and (2.23), it follows that

1 2 -1 2 lim inf k σ k (x 2 )dx 2 ≤ lim inf k 1 2 -1 2 σ k (x 2 )dx 2 < +∞.
Consequently, there exist two constants c ∈]0, +∞[ and

x 2 ∈] -1 2 , 1 2 [
, and a subsequence of {i k } k∈N (not relabelled) such that

σ i k (x 2 ) < c ∀k ∈ N.
Hence, taking into account (2.23), one derives that

u b n i k (•, x 2 , x 3 ) ⇀ u b weakly in H 1 - 1 2 , 1 2 , S 2 , as k → +∞, which provides (2.22).
The second step is devoted to prove that

lim k Θ u b n i k (r n i k x 1 , x 2 , 0)d(x 1 , x 2 ) = |Θ|u b (0). (2.24) 
To this aim, the integral in (2.24) will be split in the following way:

Θ u b n i k (r n i k x 1 , x 2 , 0)d(x 1 , x 2 ) = Θ u b n i k (r n i k x 1 , x 2 , 0) -u b n i k (r n i k x 1 , x 2 , x 3 ) d(x 1 , x 2 )+ Θ u b n i k (r n i k x 1 , x 2 , x 3 ) -u b n i k (r n i k x 1 , x 2 , x 3 ) d(x 1 , x 2 )+ Θ u b n i k (r n i k x 1 , x 2 , x 3 ) -u b (r n i k x 1 ) d(x 1 , x 2 )+ Θ u b (r n i k x 1 )d(x 1 , x 2 ), ∀k ∈ N, (2.25) 
and one will pass to the limit, as k diverges, in each term of this decomposition.

By virtue of the last convergence in (2. [START_REF] Stanley | Introduction to Phase Transitions and Critical Phenomena[END_REF]), there exists a constant c ∈]0, +∞[ such that lim sup

k Θ u b n i k (r n i k x 1 , x 2 , 0) -u b n i k (r n i k x 1 , x 2 , x 3 ) d(x 1 , x 2 ) = lim sup k Θ 0 x 3 D x 3 u b n i k (r n i k x 1 , x 2 , x 3 )dx 3 d(x 1 , x 2 ) ≤ |Ω b | 1 2 lim sup k Ω b |D x 3 u b n i k (r n i k x 1 , x 2 , x 3 )| 2 dx 1 2 ≤ |Ω b | 1 2 lim sup k 1 r n i k Ω b |D x 3 u b n i k (x 1 , x 2 , x 3 )| 2 dx 1 2 ≤ |Ω b | 1 2 c lim k r 1 2 n i k = 0.
(2.26) By virtue of (2.21), there exists a constant c ∈]0, +∞[ such that lim sup

k Θ u b n i k (r n i k x 1 , x 2 , x 3 ) -u b n i k (r n i k x 1 , x 2 , x 3 ) d(x 1 , x 2 ) = lim sup k Θ t x 2 D x 2 u b n i k (r n i k x 1 , x 2 , x 3 )dx 2 d(x 1 , t) ≤ lim sup k ]-1 2 , 1 2 [ 2 D x 2 u b n i k (r n i k x 1 , x 2 , x 3 ) 2 d(x 1 , x 2 ) 1 2 ≤ lim sup k 1 r n i k ]-1 2 , 1 2 [ 2 D x 2 u b n i k (x 1 , x 2 , x 3 ) 2 d(x 1 , x 2 ) 1 2 ≤ clim k r 1 2 n i k = 0.
(2.27)

By virtue of (2.22), it results that lim sup

k Θ u b n i k (r n i k x 1 , x 2 , x 3 ) -u b (r n i k x 1 ) d(x 1 , x 2 ) ≤ lim sup k ]-1 2 , 1 2 [ 2 u b n i k (r n i k x 1 , x 2 , x 3 ) -u b (r n i k x 1 ) d(x 1 , x 2 ) = lim sup k 1 r n i k ]- rn i k 2 , rn i k 2 [×]-1 2 , 1 2 [ u b n i k (x 1 , x 2 , x 3 ) -u b (x 1 ) d(x 1 , x 2 ) ≤ lim k u b n i k (•, x 2 , x 3 ) -u b (•) L ∞ (]-1 2 , 1 2 [ 2 ) = 0.
(2.28) Finally, junction condition (2.20) is obtained by passing to the limit, as k diverges, in

Since u b ∈ C 0 -1 2 , 1 2 , S 2 , it results that lim k Θ u b (r n i k x 1 )d(x 1 , x 2 ) = |Θ|u b (0). ( 2 
Θ u a (x 1 , x 2 , 0)d(x 1 , x 2 ) = Θ u b (r n x 1 , x 2 , 0)d(x 1 , x 2 ),
and using the first convergence in (2.18) and (2.24).

3) Recovery sequence.

Let (w, ζ) ∈ C 1 ([0, 1], S 2 ) × C 1 ([-1 2 , 1 2 ], S 2
) such that w(0) = ζ(0). This step is devoted to prove the existence of a sequence {v n } n∈N with v n ∈ V n such that lim

n j n (v n ) = j a (w) + j b (ζ).
(2.30)

Since the proof of (2.30) is very similar to the proof of (2.31) in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF], we recall its framework for the sake of clarity, and we refer the reader to [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF] for the details. For every n ∈ N, let

g n (x) =      w(x 3 ), if x ∈ Θ×]r n , 1[, w(r n ) x 3 r n + ζ(r n x 1 ) r n -x 3 r n , if x ∈ Θ × [0, r n ], ζ(x 1 ), if x ∈ Ω b . (2.31) Of course, g a n ∈ H 1 (Ω a ), g b n ∈ H 1 (Ω b
), and g a n (x 1 , x 2 , 0) = g b n (r n x 1 , x 2 , 0) a.e. in Θ; but |g n (x)| < 1 in Θ×]0, r n [. Then, g n is not an admissible test function for problem (2.6)-(2.8). To overcome this difficulty, for y ∈ B1 

(0) = {x ∈ R 3 : |x| ≤ 1 2 }, introduce the function π y : x ∈ B 1 (0) \ {y} → y + y(y -x) + (y(x -y)) 2 + |x -y| 2 (1 -|y| 2 ) |x -y| 2 (x -y) ∈ S 2 (2.32) projecting x ∈ B 1 (0) \ {y} = {x ∈ R 3 : |x| ≤ 1} \ {y} on S 2
along the direction x -y (see [START_REF] Bethuel | Density of Smooth Functions between Two Manifolds in Sobolev Spaces[END_REF] and [START_REF] Alicandro | Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere[END_REF]). The idea is to choose y ∈ B1 2 (0) opportunely, and to define v n = π y • g n . To do that, one has to be careful that the set {x : g n (x) = y} is "sufficiently small". By setting G = n∈N y ∈ B 1 2 (0) : ∃x ∈ Θ×]0, r n [ with g n (x) = y and rank((Dg n )(x)) < 3 , Sard's Lemma assures that meas(G) = 0. Moreover, for every n ∈ N and for every y ∈ B 1 2 (0) \ G, the set G n,y = {x ∈ Θ×]0, r n [: g n (x) = y} has dimension 0. Consequently, for every n ∈ N and for every y ∈ B1 2 (0) \ G, the function π y • (g n | Ω\Gn,y ) is well defined. By arguing as in the proof of (2.36) in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF], one can prove the existence of a sequence

{y n } n∈N ⊂ B 1 2 (0) \ G such that (crucial point!) lim n (Θ×]0,rn[)\Gn,y n 1 r n D x 1 (π yn (g n (x))) |0|D x 3 (π yn (g n (x))) 2 dx = 0. (2.33) Now, for every n ∈ N set v n = π yn • (g n | Ω\Gn,y n ).
Then, by virtue of (2.31) and of the fact that π y (x) = x, ∀x ∈ S 2 , it results that

v n (x) =        w(x 3 ), if x ∈ Θ×]r n , 1[, π yn w(r n ) x 3 r n + ζ(r n x 1 ) r n -x 3 r n if x ∈ (Θ × [0, r n ]) \ G n,yn ζ(x 1 ), if x ∈ Ω b .
(2.34)

It is easy to see that v n ∈ V n . Moreover, j n (v n ) can be split in the following way:

j n (v n ) = Ω a |D x 3 w| 2 -2wf a n dx - Θ×]0,rn[ |D x 3 w| 2 -2wf a n dx+ (Θ×]0,rn[)\Gn,y n 1 r n D x 1 (π yn • g n ) |0|D x 3 (π yn • g n ) 2 -2(π yn • g n )f a n dx+ Ω b |D x 1 ζ| 2 -2ζf b n dx, ∀n ∈ N.
(2.35) Finally, passing to the limit, as n diverges, in (2.35) and using (2.9) and (2.33), one obtains (2.30).

4) Density result. Let (w, ζ) ∈ V . This step is devoted to prove the existence of a sequence

{(w k , ζ k )} k∈N ⊂ C 1 ([0, 1], S 2 ) × C 1 ([-1 2 , 1 2 ], S 2 ), with w k (0) = ζ k (0) for every k ∈ N, such that (w k , ζ k ) → (w, ζ) strongly in H 1 (]0, 1[, S 2 ) × H 1 - 1 2 , 1 2 , S 2 . (2.36) Let {( wk , ζk )} k∈N ⊂ C 1 ([0, 1], R 3 ) × C 1 ([-1 2 , 1 2 ], R 3 ) be a sequence such that ( wk , ζk ) → (w, ζ) strongly in H 1 (]0, 1[, R 3 ) × H 1 - 1 2 , 1 2 , R 3 , (2.37) 
and, for every k ∈ N, set w k = wk -wk (0) + w(0

) ∈ C 1 ([0, 1], R 3 ) and ζ k = ζk -ζk (0) + ζ(0) ∈ C 1 ([-1 2 , 1 2 ], R 3 ). Then, convergence (2.37) provides that (w k , ζ k ) → (w, ζ) strongly in H 1 (]0, 1[, R 3 ) × H 1 - 1 2 , 1 2 , R 3 , (2.38)
and consequently, since |w(x 3 )| = 1 for every x 3 ∈ [0, 1] and |ζ(x 1 )| = 1 for every

x 1 ∈ [-1 2 , 1 2 ], it follows that lim k w k L ∞ [0,1] = 1 lim k ζ k L ∞ [-1 2 , 1 2 ] = 1. (2.39)
Then, by setting π :

x ∈ R 3 -{0} → x |x| ∈ R 3 -{0}, it is evident that, for k ∈ N sufficiently large, the functions w k = π • w k and ζ k = π • ζ k are well defined, (w k , ζ k ) ∈ C 1 ([0, 1], S 2 ) × C 1 ([-1 2 , 1 2 ], S 2 ) and w k (0) = ζ k (0). Moreover, it is obvious that (w k , ζ k ) → (w, ζ) strongly in L 2 (]0, 1[, S 2 ) × L 2 - 1 2 , 1 2 , S 2 .
For obtaining (2.36), it remains to prove that

(w ′ k , ζ ′ k ) → (w ′ , ζ ′ ) strongly in L 2 (]0, 1[, R 3 ) × L 2 - 1 2 , 1 2 , R 3 . (2.40)
By virtue of (2.38) and (2.39), there exist c ∈]0, +∞[, 

g 1 ∈ L 1 ]0, 1[ and g 2 ∈ L 1 ] -1 2 , 1 2 [ such that, passing eventually to a subsequence, it results that                                      lim k w ′ k (x 3 ) = lim k (Dπ(w k ) • w ′ k ) (x 3 ) = (Dπ(w) • w ′ )(x 3 ) = w ′ (x 3 ), a.e. in ]0, 1[, |w ′ k (x 3 )| 2 = |(Dπ(w k ) • w ′ k )(x 3 )| 2 ≤ c|w ′ k (x 3 )| 2 ≤ cg 1 (x 3 ), a.e. in ]0, 1[ and for k ∈ N sufficiently large, lim k ζ ′ k (x 1 ) = lim k Dπ(ζ k ) • ζ ′ k (x 1 ) = (Dπ(ζ) • ζ ′ )(x 1 ) = ζ ′ (x 1 ) a.e. in - 1 2 , 1 2 , |ζ ′ k (x 1 )| 2 = (Dπ(ζ k ) • ζ ′ k )(x 1 ) 2 ≤ c|ζ ′ k (x 1 )| 2 ≤ cg 2 (x 1 ), a.e. in - 1 
Ω a |ξ a 1 | 2 + |ξ a 2 | 2 dx + j a (u a ) + j b (u b ) + Ω b |ξ b 2 | 2 + |ξ b 3 | 2 dx ≤ lim inf i j n i (u n i ). ( 2 

.41)

On the other hand, by virtue of step 3, for every (w,

ζ) ∈ C 1 ([0, 1], S 2 ) × C 1 ([-1 2 , 1 2 ], S 2 ) with w(0) = ζ(0), there exists a sequence {v n } n∈N with v n ∈ V n such that lim sup i j n i (u n i ) ≤ lim sup i j n i (v n i ) = lim n j n (v n ) = j a (w) + j b (ζ).
(2.42)

Then, by combining (2.41) with (2.42), one obtains that

Ω a |ξ a 1 | 2 + |ξ a 2 | 2 dx + j a (u a ) + j b (u b ) + Ω b |ξ b 2 | 2 + |ξ b 3 | 2 dx ≤ lim inf i j n i (u n i ) ≤ lim sup i j n i (u n i ) ≤ j a (w) + qj b (ζ), (2.43) for every (w, ζ) ∈ C 1 ([0, 1], S 2 ) × C 1 ([-1 2 , 1 2 ], S 2 )) such that w(0) = ζ(0).
Step 4 provides that inequality (2.43) holds true for every (w, ζ) ∈ V . Consequently, it results that ξ a = 0, ξ b = 0, (2.44) (u a , u b ) solves problem (2.14) and 

lim i j n i (u n i ) = j a (u a ) + j b (u b ). ( 2 

Second part: analysis of the limit model

For every n ∈ N and λ ∈ [0, +∞[, consider the following problem:

J n,λ : U ∈ H 1 (Ω n , S 2 ) -→ Ωn |DU (x)| 2 dx + λ Ωn |U (x) -F n (x)| 2 dx, (3.1) 
where F n : Ω n → S 2 is a measurable function. Remark that J n,λ has the same minimum points of the functional:

J n,λ : U ∈ H 1 (Ω n , S 2 ) -→ Ωn |DU (x)| 2 dx -2λ Ωn U (x)F n (x)dx, since J n,λ (U ) = J n,λ (U ) + 2λ|Ω n |, for every U ∈ H 1 (Ω n , S 2 
). Consequently, after a rescaling as in Section 2, by passing to the limit as n → +∞, one obtains all the results of Subsection 2.1 with

j a λ (w) = |Θ| 1 0 |w ′ (x 3 )| 2 dx 3 -2λ 1 0 w(x 3 ) Θ f a (x 1 x 2 , x 3 )d(x 1 , x 2 ) dx 3 + +2λ|Θ|, ∀w ∈ H 1 (]0, 1[, S 2 ), (3.2) 
j b λ (ζ) = 1 2 -1 2 |ζ ′ (x 1 )| 2 dx 1 -2λ 1 2 -1 2 ζ(x 1 ) ]-1 2 , 1 2 [×]-1,0[ f b (x 1 , x 2 , x 3 )d(x 2 , x 3 ) dx 1 + +2λ, ∀ζ ∈ H 1 - 1 2 , 1 2 , S 2 , (3.3 
) where f a and f b are given by (2.5) and (2.9). Remark that, since |f a n (x)| = 1 a.e. in Ω a and |f b n (x)| = 1 a.e. in Ω b for every n ∈ N, weak convergences in (2.9) are always satisfied by a subsequence.

If

|f a (x)| = 1 a.e. in Ω a , f a is independent of (x 1 , x 2 ), |f b (x)| = 1 a.e.
in Ω b and f b is independent of (x 2 , x 3 ), then functionals (3.2) an (3.3) can be rewritten as follows:

j a λ (w) = |Θ| 1 0 |w ′ (x 3 )| 2 + λ |w(x 3 ) -f a (x 3 )| 2 dx 3 , ∀w ∈ H 1 (]0, 1[, S 2 ), (3.4) 
j b λ (ζ) = 1 2 -1 2 |ζ ′ (x 1 )| 2 + λ ζ(x 1 ) -f b (x 1 ) 2 dx 1 , ∀ζ ∈ H 1 - 1 2 , 1 2 , S 2 . (3.5) 
In the sequel, (w λ , ζ λ ) ∈ V denotes a solution of the following problem:

j a λ (w λ ) + j b λ (ζ λ ) = min |Θ| 1 0 |w ′ (x 3 )| 2 + λ |w(x 3 ) -f a (x 3 )| 2 dx 3 + + 1 2 -1 2 |ζ ′ (x 1 )| 2 + λ ζ(x 1 ) -f b (x 1 ) 2 dx 1 : (w, ζ) ∈ V , (3.6) 
where V is the space defined in (2.10).

Remark that, if λ = 0, the solutions of problem (3.6) are the constants (c, c) ∈ R 3 × R 3 such that |c| = 1 and j a 0 (w 0 ) + j b 0 (ζ 0 ) = 0. Moreover (compare the proof of (3.16) in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF]) the

function λ ∈ [0, +∞[→ j a λ (w λ ) + j b λ (ζ λ ) is increasing and d (j a λ (w λ ) + j b λ (ζ λ )) dλ = |Θ| 1 0 |w λ (x 3 ) -f a (x 3 )| 2 dx 3 + 1 2 -1 2 ζ λ (x 1 ) -f b (x 1 ) 2 dx 1 ,
for λ a.e. in ]0, +∞[. Then, it remains to study the asymptotic behavior, as λ → +∞, of problem (3.6).

Convergence results when

λ → +∞ If (f a , f b ) ∈ V , choosing (w, ζ) = (f a , f b ) as test function in (3.6), it is easy to see that (w λι , ζ λι ) ⇀ (f a , f b ) weakly in H 1 (]0, 1[, S 2 ) × H 1 - 1 2 , 1 2 , S 2 ,
for any diverging sequence of positive numbers {λ ι } ι∈N . Consequently, using a l.s.c. argument, it follows that (compare Subsection 3.1 in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF])

lim λ→+∞ j a λ (w λ ) + j b λ (ζ λ ) = |Θ| (f a ) ′ 2 (L 2 (]0,1[)) 3 + (f b ) ′ 2 (L 2 (-1 2 , 1 2 [))
3 .

Interesting situations occur when (f a , f b ) / ∈ V , since in this case it results that

lim λ→+∞ j a λ (w λ ) + j b λ (ζ λ ) = +∞. (3.7) 
In fact, by arguing by contradiction, if (3.7) does not hold true, then there exists c ∈]0, +∞[ and a diverging sequence of positive numbers {λ k } k∈N such that

j a λ k (w λ k ) + j b λ k (ζ λ k ) ≤ c, ∀k.
Consequently, it follows that

(w λ k , ζ λ k ) ⇀ (f a , f b ) weakly in H 1 (]0, 1[, S 2 ) × H 1 - 1 2 , 1 2 , S 2 ,
as λ diverges, and, in particular, one obtains that

(f a , f b ) ∈ H 1 (]0, 1[, S 2 ) × H 1 -1 2 , 1 2
, S 2 and, by virtue of the Rellich Theorem, f a (0) = f b (0). But this statement is false, since (f a , f b ) / ∈ V . Now, we examine some particular, but significant cases. At first, consider the case f a = (1, 0, 0) and

f b = (0, 1, 0). Remark that (f a , f b ) ∈ H 1 (]0, 1[, S 2 ) × H 1 -1 2 , 1 2 , S 2 , but (f a , f b ) / ∈ V since f a (0) = f b (0)
. In this case, the following a priori estimates hold true: Proof. We adapt, to our coupled problem, a technique we introduced in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF]. For every t ∈]0, +∞[, let (w t , ζ t ) be the couple of functions defined by

w t : x 3 ∈]0, 1[→ 1 x 2 3 + t 2 (x 3 , t, 0) ∈ S 2 , ζ t : x 1 ∈ - 1 2 , 1 2 → (0, 1, 0) ∈ S 2 .
Since (w t , ζ t ) ∈ V , it results that

j a λ (w λ ) + j b λ (ζ λ ) ≤ j a λ (w t ) + j b λ (ζ t ) = j a λ (w t ) ∀t ∈]0, +∞[, ∀λ ∈]0, +∞[. (3.9) 
Consequently, being 

j a λ (w t ) = |Θ| 1 
j a λ (w λ ) + j b λ (ζ λ ) ≥ min |Θ| 1 0 (v ′ (x 3 )) 2 + λ (v(x 3 ) -1) 2 dx 3 + + 1 2 -1 2 (z ′ (x 1 )) 2 + λ (z(x 1 )) 2 dx 1 : (v, z) ∈ H 1 (]0, 1[, R) × H 1 - 1 2 , 1 2 , R , v(0) = z(0) . (3.10) 
For every λ ∈]0, +∞[, the last minimum is attained in the solution

(v λ , ζ λ ) ∈ H 1 (]0, 1[, R) × H 1 -1 2 , 1 2 , R of the following problem:                                                v ′′ λ -λv λ = -λ, in ]0, 1[, z ′′ λ -λz λ = 0, in - 1 2 , 0 , z ′′ λ -λz λ = 0, in 0, 1 2 , v ′ λ (1) = z ′ λ - 1 2 = z ′ λ 1 2 = 0, v λ (0) = z λ (0) , |Θ|v ′ λ (0) = z ′ λ (0 -) -z ′ λ (0 + ), (3.11) 
i.e., in (v λ , ζ λ ) given by

v λ (x 3 ) = - 2 |Θ| 1 + e √ λ 2 + 2(1 + e 2 √ λ ) (e 2 √ λ e -x 3 √ λ + e x 3 √ λ ) + 1, in ]0, 1[, (3.12 
)

z λ (x 1 ) =                      |Θ| 1 + e √ λ |Θ| 1 + e √ λ 2 + 2(1 + e 2 √ λ ) (e -x 1 √ λ + e √ λ e x 1 √ λ ), in - 1 2 , 0 , |Θ| 1 + e √ λ |Θ| 1 + e √ λ 2 + 2(1 + e 2 √ λ ) (e √ λ e -x 1 √ λ + e x 1 √ λ ), in 0, 1 2 .
Then, combining (3.10) with (3.11) and (3.12), it follows that

j a λ (w λ ) + j b λ (ζ λ ) ≥ min |Θ| 1 0 (v ′ (x 3 )) 2 + λ (v(x 3 ) -1) 2 dx 3 + + 1 2 -1 2 (z ′ (x 1 )) 2 + λ (z(x 1 )) 2 dx 1 : (v, z) ∈ H 1 (]0, 1[, R) × H 1 - 1 2 , 1 2 , R , v(0) = z(0) = -|Θ|λ 1 0 v λ dx 3 + |Θ|λ = 2|Θ|(e 2 √ λ -1) |Θ| 1 + e √ λ 2 + 2(1 + e 2 √ λ ) √ λ.
Consequently, taking into account that Remark 3.2. The proof of Proposition 3.1 gives also an estimate of c 1 and c 2 . Proposition 3.1 holds again true if one assumes that f a and f b have the unit on the same component. For instance, if one assumes f a = (1, 0, 0) and f b = (-1, 0, 0), one obtains the upper bound by performing previous proof with

w t : x 3 ∈]0, 1[→ 1 x 2 3 + t 2 (x 3 , t, 0) ∈ S 2 , ζ t : x 1 ∈ - 1 2 , 1 2 → 1 x 2 1 + t 2 (-|x 1 |, t, 0) ∈ S 2 .
While the estimate of the lower bound is obtained by performing previous computations with λ(z 1 (x 1 )) 2 replaced by λ(z 1 (x 1 ) + 1) 2 in (3.10), and the second line and third line of (3.11) replaced by z ′′ λ -λz λ = λ.

Consider, now, the case: 

f a = x 3 -γ |x 3 -γ| , 0, 0 and f b = x 1 -δ |x 1 -δ| , 0, 0 , where γ ∈]0, 1[ and δ ∈] -
f a = x 3 -γ |x 3 -γ| , 0, 0 and f b = x 1 -δ |x 1 -δ| , 0, 0 , where γ ∈]0, 1[ and δ ∈] -1 2 , 1 2 [. Then, there exist two constants c 1 , c 2 ∈]0, +∞[ such that c 1 √ λ ≤ j a λ (w λ ) + j b λ (ζ λ ) ≤ c 2 √ λ, for λ sufficiently large. (3.13) 
Proof. To prove the lower bound in (3.13), it is enough to remark that .14) and to use the estimate of the lower bound of the right hand side of (3.29) given in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF].

j a λ (w λ ) + j b λ (ζ λ ) ≥ |Θ| min 1 0 |v ′ (x 3 )| 2 dx 3 + λ 1 0 v(x 3 ) - x 3 -γ |x 3 -γ| 2 dx 3 : v ∈ H 1 (]0, 1[, R) , ∀λ ∈]0, +∞[. ( 3 
To prove the upper bound in (3.13), first we consider the case δ > 0 and then the general case.

If δ > 0, for every t ∈]0, +∞[, let (w t , ζ t ) be the couple of functions defined by

             w t : x 3 ∈]0, 1[→ 1 (x 3 -γ) 2 + t 2 (x 3 -γ, 0, t) ∈ S 2 , ζ t : x 1 ∈ - 1 2 , 1 2 → 1 γ 2 (x 1 -δ) 2 + (tδ) 2 (γ(x 1 -δ), 0, tδ) ∈ S 2 . (3.15) 
Since (w t , ζ t ) ∈ V , it results that .16) Then, arguing as in the proof of (3.13) in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF], one obtains an upper bound of j a λ (w t ) and j b λ (ζ t ) which provide the upper bound in (3.13).

j a λ (w λ ) + j b λ (ζ λ ) ≤ j a λ (w t ) + j b λ (ζ t ) ∀t ∈]0, +∞[, ∀λ ∈]0, +∞[. ( 3 
If δ ∈] -1 2 , 0], it is not possible to use test function (3.15), since it does not satisfy the junction condition. Then we have to use a more sophisticated argument whic works also for δ positive.

Let λ ∈]0, +∞[ be sufficiently large (it is enough to choose λ > 1 γ 2 ), and set

v λ (x 3 ) =                      1 (x 3 -γ) 2 + λ -1 x 3 -γ, 0, λ -1 2 , if x 3 ∈ λ -1 2 , 1 , x 3 λ -1 2 1 (λ -1 2 -γ) 2 + λ -1 λ -1 2 -γ, 0, λ -1 2 + + 1 - x 3 λ -1 2 1 √ δ 2 + λ -1 (-δ, λ -1 2 , 0), if x 3 ∈ 0, λ -1 2 , z λ (x 1 ) = 1 (x 1 -δ) 2 + λ -1 (x 1 -δ, λ -1 2 , 0), if x 1 ∈ - 1 2 , 1 2 . 
At first, remark that

λ -1 2 0 |v ′ λ (x 3 )| 2 dx 3 ≤ 4λ 1 2 . (3.17) Of course, v λ ∈ H 1 (]0, 1[, R 3 ), z λ ∈ H 1 (] -1 2 , 1 2 [, S 2 
), and v λ (0) = z λ (0); but |v λ (x 3 )| < 1 for every x 3 ∈]0, λ -1 2 [. Then, (v λ , z λ ) is not an admissible test function for problem (3.6). To overcome this difficulty, for y ∈ B1 

2 (0) = {x ∈ R 3 : |x| ≤ 1 2 }, let π y be the function introduced in (2.32) projecting x ∈ B 1 (0) \ {y} = {x ∈ R 3 : |x| ≤ 1} \ {y} on S 2 along the direction x -y. Since ∃c ∈]0, +∞[ : |Dπ y (x)| 2 ≤ c |x -y| 2 , ∀y ∈ B 1 2 (0), ∀x ∈ B 1 (0) \ {y}, from (3.
u λ (x 3 ) =                          1 (x 3 -γ) 2 + λ -1 x 3 -γ, 0, λ -1 2 , if x 3 ∈ λ -1 2 , 1 , π y λ x 3 λ -1 2 1 (λ -1 2 -γ) 2 + λ -1 λ -1 2 -γ, 0, λ -1 2 + + 1 - x 3 λ -1 2 1 √ δ 2 + λ -1 (-δ, λ -1 2 , 0) , if x 3 ∈ 0, λ -1 2 .
Since, now, (u λ , z λ ) ∈ V it results that (3.20)

Moreover, in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF] we proved the existence of a positive constant c, independent of λ, such that x 3 -γ, 0, λ -1 2 , if x 3 ∈ λ -1 2 , 1 ,

x 3 λ -1 2 1 (λ -1 2 -γ) 2 + λ -1 λ -1 2 -γ, 0, λ -1 2 + + 1 - x 3 λ -1 2 1 √ δ 2 + λ -1 (λ -1 2 , -δ, 0), if x 3 ∈ 0, λ -1 2 , z λ (x 1 ) = 1 (x 1 -δ) 2 + λ -1 (λ -1 2 , x 1 -δ, 0), if x 1 ∈ - 1 2 , 1 2 . 
The last results immediately provide the following convergence result: Then, it results that

1 0 |w λ (x 3 ) -f a (x 3 )| 2 dx 3 ≤ c 2 |Θ| √ λ , 1 2 -1 2 ζ(x 1 ) -f b (x 1 ) 2 dx 1 ≤ c 2 √ λ ,
for λ sufficiently large.

Obviously, if {λ ι } ι∈N is a diverging sequence of positive numbers, {w λι , ζ λι } ι∈N does not converge weakly in H 1 (]0, 1[, S 2 ) × H 1 ((-1 2 , 1 2 ), S 2 ), since (f a , f b ) / ∈ V .

2

 2 

Proposition 3 . 1 .

 31 For every λ ∈ [0, +∞[, let (w λ , ζ λ ) be a solution of problem (3.6) with f a = (1, 0, 0) and f b = (0, 1, 0).Then, there exist two constants c 1 , c 2 ∈]0, +∞[ such thatc 1 √ λ ≤ j a λ (w λ ) + j b λ (ζ λ ) ≤ c 2 √ λ,for λ sufficiently large.(3.8)

2 ,

 2 one derives the lower bound in(3.8).

17

 17 

2 ( 18 )

 218 y (v λ (x 3 ))) ′ 2 dx 3 dy ≤ c |z| -2 dz < +∞. Consequently, there exist a constant C > 0 andy λ ∈ B 1 Point out that C is independent of λ! For instance, since |v λ (]0, λ -1 2 [)| = 0, one can choose C = 1+c4 B 3\2 (0) 1 |z| 2 dz |B 1\2 (0)| . Finally, set u λ = π y λ • v λ . That is, being π y λ (x) = x for every x ∈ S 2 ,

2 |u λ (x 3 )

 23 j a λ (w λ ) + j b λ (ζ λ ) ≤ j a λ (u λ ) + j b λ (z λ ) = |Θ| -f a (x 3 )| 2 dx 3 + j b λ (z λ ). (3.19)By virtue of (3.18) and of the fact that |u λ (x 3 )| = 1, one has that

1 2 2 . 1 (x 3 -

 1213 |u λ (x 3 ) -f a (x 3 )| 2 dx 3 + j b λ (z λ ) ≤ cλ 1 (3.21) By combining (3.19) with (3.20) and (3.21), one obtains the upper bound in (3.13). Remark 3.4. The proof of Proposition 3.3 gives also an estimate of c 1 and c 2 . Proposition 3.3 holds again true if one assumes that f a and f b have the singularity on different components. For instance, if one assumesf a = x 3 -γ |x 3 -γ| , 0, 0 and f b = 0, x 1 -δ |x 1 -δ| , 0 ,one obtains the lower bound as before. While the estimate of the upper bound is obtained by performing previous computations withv λ (x 3 ) =                      γ) 2 + λ -1

Corollary 3 . 5 .

 35 For every λ ∈ [0, +∞[, let (w λ , ζ λ ) be a solution of problem (3.6) with f a and f b satisfying the assumptions in Proposition 3.1 (see also Remark 3.2) or Proposition 3.3 (see also Remark 3.4).

  .29) By passing to the limit in (2.25), as k diverges, and taking into account (2.26)-(2.29), one obtains (2.24).

  .45) Really, convergence (2.45) holds true for the whole sequence (so (2.16) is proved), since j a (u a ) + j b (u b ) is independent of the selected subsequence, being the minimum of problem (2.14). Finally, by combining (2.9), (2.18), (2.19) and (2.44) with (2.45), and by using the Rellich-Kondrachov compact embedding Theorem and the uniform convexity of the space L 2 , it is easy to see that convergences (2.18) and (2.19) occur in the strong sense, i.e., (2.13) and (2.15) hold true.

  Proposition 3.3. For every λ ∈]0, +∞[, let (w λ , ζ λ ) be a solution of problem (3.6) with

	1 2 , 1 2 [.
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