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); u = g on ∂G where g is a given boundary data with degree d ≥ 0. In this paper we will study the behaviour of minimizers u ε of E ε and we will estimate the energy E ε (u ε ).

Introduction

Let G be a bounded smooth domain of R 2 , g : ∂G → S 1 a smooth boundary data of degree d ≥ 0. For ε > 0, p 0 > 0, t > 0, k ≥ 2 and l ≥ 2 define the following functional of Ginzburg -Landau type

E ε (u) = 1 2 G p 0 + t |x| k |u| l |∇u| 2 + 1 4ε 2 G 1 -|u| 2 2 (1.1) on the set H 1 g (G, C) = u ∈ H 1 (G, C); u = g on ∂G . (1.2) We shall understand that if G | u | l | ∇u | 2 = ∞ then E ε (u) = ∞.
In this paper we are interested in the study of the asymptotic behaviour of min

u∈H 1 g (G,C) E ε (u) .
(1.3) When t = 0, k = 0 and d = 0, Bethuel, Brezis and Hélein [START_REF] Bethuel | Asymptotic for the minimization of a Ginzburg-Landau functional[END_REF] showed that as ε tends to 0, u ε tends to a harmonic u 0 which is equal to g on ∂G in C 1,α (G). It is easy to adapt the same method as in [START_REF] Bethuel | Asymptotic for the minimization of a Ginzburg-Landau functional[END_REF] to obtain the same result when k = 0.

The case when t = 0 and d > 0, corresponding to the Ginzburg-Landau energy, was studied by Bethuel, Brezis and Hélein in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] (see also Struwe [S]), where it was shown that :

(i) for a subsequence ε n → 0 we have, u εn → u * = e iφ d j=1 z-a j |z-a j | in C 1,α ( Ḡ \ {a 1 , ..., a d }), where a 1 , ..., a d are distinct points in G and φ is a smooth harmonic function determined by the requirement u * = g on ∂G.

(ii) E ε (u ε ) = 2πd| log ε| + O(1) as ε → 0.

In the case where t > 0 and l = 0, is studied the problem for more general weight depending only on x, see [START_REF] Beaulieu | Asymptotic for minimizers of a class of Ginzburg-Landau equation with weight, en collaboration avec A.Beaulieu[END_REF]2,3] and [START_REF] Andre | Minimization of the Ginzburg-Landau functional with weight[END_REF]2]. They showed that the presence of the weight forces the location of the vortices near the minima of the weight and when the degree is greater than the number of the minima of p the interaction between vortices led to a term of order ln ln 1 ε . It is also showed in the above references that the zeroes of u ε are located , for small ε, near the minima of the weight.

In this paper, we study the effect of the presence of |u| in the weight p 0 +t | x | k s l . Our weight is a particular one and gives a significant situation. For instance, if we consider the case where k = 0, we show that we obtain a similar results of convergence as in [START_REF] Bethuel | Asymptotic for the minimization of a Ginzburg-Landau functional[END_REF] but the energy is greater than their energy. More precisely, in Theorem 1 we examine the case deg(g, ∂G) = 0, k ≥ 0 and l ≥ 0. In Theorem 2 we examine the case deg(g, ∂G) > 0, k = 0 and l ≥ 0. In Theorem 3 we examine the most general case deg(g, ∂G) > 0, k = 0 and l = 0. In both the last two cases we obtain a convergence result for a sequence of minimizers of our problem and we show that under a small perturbation of the weight p 0 + t | x | k s l the singularities of the limit problem are minima of p 0 + t | x | k . As regards the energy, in Theorem 2, as ε n → 0 we get

E εn (u εn ) = πd (p 0 + t) ln 1 ε n + O (1) (1.4)
while in Theorem 3, where without loss of generality we can suppose that 0 ∈ G, as ε n → 0 we obtain

E εn (u εn ) = πp 0 d ln 1 ε n + d 2 -d k ln ln 1 ε n + O (1) . (1.5)
The motivation of our study for the functional (1.1) comes from type II superconductors in the presence of vortices see [START_REF] Andre | Minimization of the Ginzburg-Landau functional with weight[END_REF]2], [START_REF] Beaulieu | Asymptotic for minimizers of a class of Ginzburg-Landau equation with weight, en collaboration avec A.Beaulieu[END_REF]2,3], [DeG] and [R].

The presence of the weight function is motivated by the problem of pinning of vortices. It forces the location of the vortices to some favorite sites. In the case where l = 0 the regions where the weight is relatively small are called weak links see [DG]. So, we expect that the minima of the weight p 0 + t | x | k s l will play an important role. As we shall show below, the zeroes of a minimizer of our problem are located, for small ε, near the minima of

p 0 + t | x | k .

Setting of the problem and some preliminary results

At first, let us recall a definition and a lemma contained in [B].

Definition 1.
Let Ω an open set of R p , 1 ≤ p ≤ ∞, (Ω, I, µ) denote a measure space with µ non-negative and finite and

I is µ-complete. Set B n the borel σ-field of R n . A function f : Ω × R m × R n → ]-∞, +∞] is said to be a normal-convex integrand if f is I ⊗ B m ⊗ B n -measurable function and there exists a µ -negligible set N ⊂ Ω such that f (x, •, •) is l.s.c. on R m × R n for every x ∈ Ω -N f (x, s, •) is convex on R n for every x ∈ Ω -N , s ∈ R m . Lemma 2.1. Let Ω a bounded open set of R n with Lipschitz boundary and let f : Ω × R m × R mn → [0,
+∞] be a normal-convex integrand in the sense of Definition 1. Then the functional

F (u) = Ω f (x, u, ∇u) (2.1) is sequentially weakly W 1,1 (Ω, R m ) -l.s.c..
As a consequence of Lemma 2.1 we have Lemma 2.2. Let G be a bounded regular open set of R 2 . Then, the functionals

F 2 (u) = G p 0 + t |x| k |u| l |∇u| 2 (2.2) and F 1 (u) = G |x| k |u| l |∇u| 2 (2.3) are sequentially weakly W 1,1 G, R 2 -l.s.c..

Proof.

For the first functional it is enough to apply Lemma 2.1 with Ω = G, m = n = 2 and f (x, s, w) = p 0 + t |x| k |s| l |w| 2 . About the latter one, it is enough to observe that it is the sum of two functionals sequentially weakly

W 1,1 G, R 2 -l.s.c.. Set p (x, s) = p 0 + t |x| k |s| l .
(2.4)

We have

Proposition 2.1. The infimum

inf u∈H 1 g (G,C) E ε (u) . (2.5)
is achieved by some u ε which is smooth and satisfies

u ε L ∞ ≤ 1 (2.6)
Moreover, u ε satisfies the Euler equation

   -div (p∇u ε ) + lt 2 |x| k |u ε | l-2 |∇u ε | 2 u ε = 1 ε 2 1 -|u ε | 2 u ε in G u ε = g on ∂G (2.7)
and that there exists

t 0 = t 0 (G, g, p 0, l, k) > 0, ε 0 = ε 0 (G, g, p 0, l, k) > 0 such that ∇u ε ∞ ≤ C ε for t ≤ t 0 and ε ≤ ε 0 (2.8)
where C is a constant independent of ε.

Proof. Using Lemma 2.2 we obtain that the infimum of (2.5) is achieved by a function u ε Moreover, using Theorem 1.7 in [KM ] we obtain the regularity of any minimizer u ε . Now, let us prove (2.6). Set

B = {x ∈ G s.t. |u ε (x)| > 1} . Suppose that |B| > 0. Let us define v ε ∈ H 1 G, R 2 by v ε (x) =    u ε (x) in G\B u ε (x) |u ε (x)| in B.
We have

1 4ε 2 G 1 -|v ε | 2 2 ≤ 1 4ε 2 G 1 -|u ε | 2 2 .
(2.9)

As |v ε | = 1 on B p 0 + t |x| 2 |v ε | l = p 0 + t |x| k < p 0 + t |x| k |u ε | l on B.
(2.10)

It is easy to see that

|∇u ε | 2 = |u ε | 2 |∇v ε | 2 + |∇ |u ε || 2 .
Therefore we have

|∇v ε | 2 ≤ |∇u ε | 2 .
(2.11) By (2.9) , (2.10) and (2.11) we get

E ε (v ε ) < E ε (u ε )
but this is impossible since u ε is a minimizer. Then |B| = 0 and consequently we obtain

|u ε | ≤ 1 in G.
It is easy to see that u ε satisfies the Euler equation (2.7).

Finally, in order to prove (2.8), we need the following result

∇ |u| 2 2 = 4 |u∇u| 2 .
(2.12) Indeed, we observe that

∇ |u| 2 = (2u 1 ∂ x u 1 + 2u 2 ∂ x u 2 ; 2u 1 ∂ y u 1 + 2u 2 ∂ y u 2 ) then ∇ |u| 2 2 = (2u 1 ∂ x u 1 + 2u 2 ∂ x u 2 ) 2 + (2u 1 ∂ y u 1 + 2u 2 ∂ y u 2 ) 2 = 4u 2 1 (∂ x u 1 ) 2 + 4u 2 2 (∂ x u 2 ) 2 + +8u 1 u 2 ∂ x u 1 ∂ x u 2 +4u 2 1 (∂ y u 1 ) 2 + 4u 2 2 (∂ y u 2 ) 2 + 8u 1 u 2 ∂ x u 1 ∂ x u 2 = 4 u 2 1 |∇u 1 | 2 + 2u 1 u 2 ∇u 1 • ∇u 2 + u 2 2 |∇u 2 | 2 = 4 |u∇u| 2 .
Now let us consider the equation (2.7) and have

-∆u ε =kt |x| k-2 x |u ε | l p 0 + t |x| k |u ε | l ∇u ε + l 2 t |x| k |u ε | l-2 ∇ |u ε | 2 ∇u ε p 0 + t |x| k |u ε | l + 1 ε 2 1 -|u ε | 2 p 0 + t |x| k |u ε | l u ε - lt 2 |x| k |u ε | l-2 |∇u ε | 2 u ε p 0 + t |x| k |u ε | l (2.13)
and by (2.12) we obtain

|∆u ε | ≤ kt |x| k-1 |u ε | l p 0 + t |x| k |u ε | l |∇u ε | + 3 2 lt |x| k |u ε | l-1 p 0 + t |x| k |u ε | l |∇u ε | 2 + C ε 2 . Let A be the diameter of G. Since | u ε |≤ 1, we get |∆u ε | ≤ kt A k-1 p 0 |∇u ε | + 3 2 lt A k p 0 |∇u ε | 2 + C ε 2 . (2.14)
Now, let v be an harmonic function such that v = g on ∂G. Then, by applying the interpolation lemma we have

|∇ (u ε -v)| 2 ≤ C |u ε -v| |∆u ε |
and by (2.14)

1 -C 1 3 2 lt A k p 0 |∇u ε | 2 -kt A k-1 p 0 + 2 |∇v| |∇u ε | + |∇v| 2 - C ε 2 ≤ 0.
Direct computations show that if we choose t such that 1

-C 1 3 2 lt A k p 0 ≥ 1 2 we get |∇u ε | ≤ C 2 + C 3 + C 4 ε 2 for t ≤ t 0 = 2p 0 3lC 1 A k and ε ≤ ε 0 .
This completes the proof of (2.8).

3 Asymptotic behaviour when deg(g,

∂G) = 0 Let us observe that if deg(g, ∂G) = 0, H 1 g (G, S 1 ) = ∅ so that the following minimum problem min u∈H 1 g (G,S 1 ) E ε (u) = min u∈H 1 g (G,S 1 ) 1 2 G p 0 + t |x| k |u| l |∇u| 2 (3.1)
makes sense. Our main result in this section is Theorem 1. Let u ε be a minimizer of (1.1) and u * the unique solution of Problem (3.1).

Then there exists t = t (G, g, p 0, l, k) > 0 such that we have ∀t ≤ t, as ε tends to 0

u ε → u * in H 1 g (G, C) , (3.2) u ε → u * in C 1,α (G) (3.3) and |u ε | -→ 1 uniformly . (3.4)

Proof of Theorem 1

In what follows, with C we will denote a constant independent of ε. The proof of (3.2) develops into two steps.

Step 1. Proof of

u ε u * weakly in H 1 g (G, C) . (3.5) By definition of u ε we have E ε (u ε ) ≤ E ε (u * ) (3.6) thus 1 2 G p 0 + t |x| k |u ε | l |∇u ε | 2 + 1 4ε 2 G 1 -|u ε | 2 2 ≤ 1 2 G p 0 + t |x| k |∇u * | 2 ≤ C.
So we obtain two estimates

1 2 G p 0 + t |x| k |u ε | l |∇u ε | 2 ≤ C (3.7) and 1 4ε 2 G 1 -|u ε | 2 2 ≤ C. (3.8) Estimate (3.7) gives us G |∇u ε | 2 ≤ C and G |x| k |u ε | l |∇u ε | 2 ≤ C
which led, up to a subsequence still denoted by (u ε ), to the following convergence

u ε u weakly in H 1 (G, C) . As H 1 (G, C) ⊂ L 4 (G, C) with compact embedding, by (3.8) we obtain G 1 -|u ε | 2 2 → G 1 -|u| 2 2 = 0 (3.9)
so |u| = 1. Moreover, as the trace operator on ∂G is continuous, we have

u ∂G = g so u ∈ H 1 g G, S 1 . Let us show that u = u * . By Lemma 2.2 we get G p 0 + t |x| k |u| l |∇u| 2 ≤ lim G p 0 + t |x| k |u ε | l |∇u ε | 2 ≤ G p 0 + t |x| k |∇u * | 2 , (3.10)
therefore u is solution of Problem (3.1) and by unicity u = u * i.e. (3.5).

Step 2. Proof of

∇u ε L 2 (G) → ∇u * L 2 (G) . (3.11) By (3.10) we have G p 0 + t |x| k |∇u * | 2 ≤ lim G p 0 + t |x| k |u ε | l |∇u ε | 2 ≤ lim G p 0 + t |x| k |u ε | l |∇u ε | 2 ≤ G p 0 + t |x| k |∇u * | 2
and then

G p 0 + t |x| k |u ε | l |∇u ε | 2 → G p 0 + t |x| k |∇u * | 2 . (3.12) Now we get G p 0 |∇u ε | 2 - G p 0 |∇u * | 2 = G p 0 + t |x| k |u ε | l |∇u ε | 2 - G p 0 + t |x| k |∇u * | 2 + t G |x| k |∇u * | 2 -|u ε | l |∇u ε | 2 and then G p 0 |∇u ε | 2 = G p 0 + t |x| k |u ε | l |∇u ε | 2 - G p 0 + t |x| k |∇u * | 2 + G p 0 |∇u * | 2 + t G |x| k |∇u * | 2 -t G |x| k |u ε | l |∇u ε | 2 .
If we pass to the limsup we have lim

G p 0 |∇u ε | 2 ≤ G p 0 |∇u * | 2 + +lim G p 0 + t |x| k |u ε | l |∇u ε | 2 - G p 0 + t |x| k |∇u * | 2 + +t G |x| k |∇u * | 2 -lim G |x| k |u ε | l |∇u ε | 2 . Now, we observe that by Lemma 2.2 G |x| k |∇u * | 2 -lim G |x| k |u ε | l |∇u ε | 2 ≤ 0. (3.13)
Then, by (3.12) and (3.13) we obtain lim

G p 0 |∇u ε | 2 ≤ G p 0 |∇u * | 2
which is enough to set (3.11) .

Finally, (3.5), (3.11) and unicity of the limit led to (3.2) for the whole sequence. By (2.6) and (2.8) of Proposition 2.1 we can follow [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] to obtain (3.3) and (3.4) .

4 Asymptotic behaviour when deg(g, ∂G) > 0

At first let us consider some preliminary lemmas Lemma 4.1. Assume that G is starshaped about the origin and then we have x • ν ≥ λ > 0 for every x ∈ ∂G. Then there is a constant C depending only on g and G such that any solution u ε of Problem (2.7) satisfies

1 ε 2 G 1 -|u| 2 2 + kt 2 G |x| k |u| l |∇u| 2 ≤ C (4.1) ∂G |∂ ν u| 2 dσ ≤ C (4.2) 1 ε 2 G 1 -|u| 2 s ≤ C ∀s ≥ 2. (4.3) Proof.
As in the proof of Pohozaev identity one multiplies the equation solved by u ε by

x • ∇u ε = x 1 ∂ x 1 u ε + x 2 ∂ x 2 u ε .
For clearness sake let's drop ε so we obtain

G -div (p∇u) (x • ∇u) + lt 2 G |x| k |u| l-2 |∇u| 2 u (x • ∇u) - 1 ε 2 G 1 -|u| 2 u (x • ∇u) = I 1 + I 2 + I 3 = 0. (4.4)
Let us treat each term in a different way

I 1 = G -div (p∇u) (x • ∇u) = G p∇u∇ (x • ∇u) - ∂G p (x • ∇u) ∂ ν udσ (4.5) We have ∇u∇ (x • ∇u) = Σ 2 i,j=1 ∂ x j u δ i,j ∂ x i u + x i ∂ x i x j u then G p∇u∇ (x • ∇u) = D pΣ 2 i,j=1 ∂ x j u δ i,j ∂ x i u + x i ∂ x i x j u = 1 2 G pΣ 2 i=1 x i ∂ x i |∇u| 2 + G p |∇u| 2 - 1 2 G ∇p |∇u| 2 • x + 1 2 ∂G p (x • ν) |∇u| 2 . (4.6)
Finally we have

I 1 = -1 2 G ∇p |∇u| 2 • x + 1 2 ∂G p (x • ν) |∂ τ g| 2 -∂G p (x • ν) (∂ ν u) 2 dσ -∂G p (x • τ ) ∂ τ u∂ ν udσ.
(4.7)

Let us consider the second term. By considering that

u (x • ∇u) = 1 2 ∇ |u| 2 • x (4.8)
we get

I 2 = lt 2 G |x| k |u| l-2 |∇u| 2 u (x • ∇u) = lt 4 G |x| k |u| l-2 ∇ |u| 2 |∇u| 2 • x. (4.9)
It easy to see that

I 3 = - 1 4ε 2 G 1 -|u| 2 2 . (4.10)
By collecting together (4.7), (4.9) and (4.10) we get

- 1 2 G ∇p |∇u| 2 •x+ 1 2 ∂G p (x • ν) |∂ τ g| 2 - ∂G p (x • ν) (∂ ν u) 2 dσ- ∂G p (x • τ ) ∂ τ u∂ ν udσ+ lt 4 G |x| k |u| l-2 ∇ |u| 2 |∇u| 2 • x = 1 4ε 2 G 1 -|u| 2 2 . But - 1 2 G ∇p |∇u| 2 • x = - t 2 G ∇ |x| k |u| l |∇u| 2 • x = - t 2 G ∇ |x| k |u| l |∇u| 2 • x - 1 2 G ∇ |u| l |x| k |∇u| 2 • x = - kt 2 G |x| k |u| l |∇u| 2 - lt 4 G |x| k |u| l-2 ∇ |u| 2 |∇u| 2 • x.
Finally we have

- kt 2 G |x| k |u| l |∇u| 2 - lt 4 G |x| k |u| l-2 ∇ |u| 2 |∇u| 2 • x + 1 2 ∂G p (x • ν) |∂ τ g| 2 - ∂G p (x • ν) (∂ ν u) 2 dσ - ∂G p (x • τ ) ∂ τ u∂ ν udσ+ lt 4 G |x| k |u| l-2 ∇ |u| 2 |∇u| 2 • x = 1 4ε 2 G 1 -|u| 2 2 and then - kt 2 G |x| k |u| l |∇u| 2 + 1 2 ∂G p (x • ν) |∂ τ g| 2 - ∂G p (x • ν) (∂ ν u) 2 dσ - ∂G p (x • τ ) ∂ τ u∂ ν udσ = 1 4ε 2 G 1 -|u| 2 2 .
This directly implies (4.1) and (4.2). Now let us consider the following function

h : y ∈ [0, 1] → (1-y s ) (1-y 2 ) if y = 1 s 2 if y = 1.
It admits a maximum say M , so that by (4.1)

1 ε 2 G (1 -|u ε | s ) 2 dx = 1 ε 2 G (h (|u ε |)) 2 1 -|u ε | 2 2 dx ≤ ≤ M 2 1 ε 2 G 1 -|u ε | 2 2 dx ≤ M 2 C.
This yields (4.3).

Lemma 4.2. Let u ε be the solution of equation (2.7) . Then there exists

t 1 = t 1 (G, g, p 0, l, k) > 0, ε 0 = ε 0 (G, g, p 0, l, k) > 0 such that ∀t ≤ t 1 ∇u ε 2 4 ≤ C ε (4.11)
Proof. Using (2.7) and combining (2.13) with the fact that | u ε |≤ 1 we obtain

|∆u ε | ≤ tk A k-1 p 0 |∇u ε | + 3 2 lt A k p 0 |∇u ε | 2 + 1 ε 2 | 1-| u ε | 2 | . Then ∆u ε 2 ≤ tk A k-1 p 0 ∇u ε 2 + 3 2 lt |∇u ε | 2 2 + 1 ε 2 || 1-| u ε | 2 || 2 .
By (4.1) of Lemma 4.1 and by Hölder inequality

∆u ε 2 ≤ tk A k-1 p 0 ∇u ε 2 + 3 2 lt ∇u ε 2 4 + C ε .
Let us take t ≤ t 0 , then by (2.8) we get

∆u ε 2 ≤ 3 2 lt ∇u ε 2 4 + C ε .
Now, let v be an harmonic function with the property v = g on ∂G. Then, by applying the Gagliardo-Nirenberg inequality we get

∇ (u ε -v) 4 ≤ C G u ε -v 1 2 ∞ ∆u ε 1 2 2 and then ∇u ε -v 4 ≤ C G (1 + v ∞ ) 1 2 C 1 3 2 lt 1 2 ∇u ε 4 + C2 √ ε .
Finally

∇u ε 4 ≤ v 4 + C G (1 + v ∞ ) 1 2 C 1 3 2 lt 1 2 ∇u ε 4 + C 2 √ ε and then 1 -C 3 3 2 lt 1 2 ∇u ε 4 ≤ C 4 √ ε + v 4 .
We choose t such that 1

-C 3 3 2 lt 1 2 > 1 2
and this implies that

∇u ε 4 ≤ C 5 √ ε for t < t 1 = min t 0 , 1 6lC 5 and ε ≤ ε 0 (v, C)
which gives us (4.11) .

Case k=0

Let us recall our energy in this case

E ε (u) = 1 2 G p 0 + t |u| l |∇u| 2 + 1 4ε 2 G 1 -|u| 2 2 .
(4.12)

By Proposition 2.1 we know that, in this case, the solution u ε of the minimization problem min

u∈H 1 g (G,C) E ε (u) (4.13)
satisfies the boundary value problem

   -div (p∇u ε ) + lt 2 |u ε | l-2 |∇u ε | 2 u ε = 1 ε 2 1 -|u ε | 2 u ε in G u ε = g on ∂G (4.14)
Our main result here is the following one Theorem 2. Let ε n a sequence going to zero and u εn the sequence of solutions of (4.13).

Then there exist exactly

d points b 1 , b 2 , ..., b d ∈ G and t = t (G, g, p 0, l) > 0 such that for every t ≤ t u εn → u * in H 1 loc G\ ∪ d i=1 {b i } (4.15) and E εn (u εn ) = πd (p 0 + t) log 1 ε n + O (1) . (4.16)
The proof of this theorem needs some preliminary results. Given ε > 0 and R > 0 we set

I (ε, R) = min u∈H 1 g 1 1 2 B R p 0 + t |u| l |∇u| 2 + 1 4ε 2 B R 1 -|u| 2 2 (4.17)
where g 1 (x) = x |x| on B R and for s > 0

I (s) = I (s, 1) .
By scaling it, it is easy to see that

I (ε, R) = I 1, R ε = I R ε . (4.18)
Lemma 4.3. The function s -→ I (s) -2π log 1 s is nondecreasing, so we have

I (s 1 ) ≤ π (p 0 + t) log s 2 s 1 + I (s 2 ) ∀s 1 ≤ s 2 . (4.19)
In particular

I (s) ≤ π (p 0 + t) log 1 s + I (1) ∀s ∈ (0, 1] . (4.20)
Proof. Let u 2 be a minimizer for

I (s 2 ) = I 1, 1 s 2 . Set u 1 (x) =      u 2 (x) if |x| < 1 2 x |x| if 1 s 2 < |x| < 1 s 1 .
We have

I (s 1 ) = I 1, 1 s 1 ≤ 1 2 B 1 s 1 p 0 + t |u 1 | 2 |∇u 1 | 2 + 1 4 B 1 s 1 1 -|u 1 | 2 2 = 1 2 B 1 s 2 p 0 + t |u 2 | 2 |∇u 2 | 2 + 1 4 B 1 s 2 1 -|u 2 | 2 2 + 1 2 B 1 s 2 \B 1 s 1 (p 0 + t) ∇ x |x| 2 = I (s 2 ) + 1 2 B 1 s 2 \B 1 s 1 (p 0 + t) 1 |x| 2 = I (s 2 ) + π (p 0 + t) log s 2 s 1
.

By (4.18) we get

I (ε, R) = I ε R ≤ π (p 0 + t) log R ε + I (1) .
Proposition 4.1. There exists ε 0 = ε 0 (G, g, p 0, l, k) > 0 such that for ε < ε 0 and for every t ≥ 0 we have

E ε (u ε ) ≤ π (p 0 + t) d log 1 ε + C (4.21)
where ε 0 and C depend only on g and G.

Proof. Fix d distinct points a 1 , a 2 , .., a d in G and fix R > 0 so small that R) and consider the map g : ∂Ω → S 1 defined by R) .

B (a i , R) ⊂ G ∀i and B (a i , R) ∩ B (a j , R) = ∅ ∀i = j. Let Ω = G\ d i=1 B (a i ,
g (x) = g (x) if x ∈ ∂G e iθ if x = a j + R e iθ ∈ ∂B (a j ,
Since deg (g, ∂Ω) = 0, there is a smooth map v : Ω → S 1 such that v = g on ∂Ω. Then, Lemma 4.3 applied for ε < R gives us

E ε (u ε ) ≤ (p 0 + t) 2 Ω |∇v| 2 + Σ d i=1 I (ε, R) ≤ π (p 0 + t) d log 1 ε + C
which is the desired estimates.

Since for t ≤ t 0 we have ∇u ε ∞ ≤ C ε we can act as in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] , Theorem III.3. Then we have the existence of λ > 0 and a collection of balls B (x ε i , λε), i = 1, ..., N 1 such that

x ∈ G : |u ε (x)| ≤ 1 2 ⊂ N 1 i=1 B (x ε i , λε) .
Given any subsequence ε n tending to 0 we may assume that x εn i tend to b i ∈ G for every i = 1, ..., N 1 . Let us denote by {b 1 , ..., b N } the set of distinct b i .

For every j = 1, 2, .., N we set

Λ j = {i ∈ {1, 2, , .., N 1 } ; x εn i → b j } and d j = deg (u εn , ∂B (b j , λε n )) . Fixed η > 0 such that η < 1 2 |b i -b j | ∀i = j we consider Ω j = B (b j , η) \ i∈Λ j B (x εn i , λε n ) .
Now, we are able to prove a lower bound for the functional (4.12).

Proposition 4.2. There exists a constant C independent of n, η and t = t (G, g, p 0, l) > 0 such that, for every j, for every n ≥ N (η) and for every t ≤ t we have

Ω j p 0 + t |u εn | l |∇u εn | 2 ≥ 2π (p 0 + t) |d j | log η ε n -C. (4.22)
Proof. We write on Ω j

u εn = |u εn | v εn where v ε = u εn |u εn | . Since v εn is S 1 -valued and deg (v εn , ∂B (x εn i , λε n )) = d i with Σ i∈Λ j d i = d j we know that Ω j |∇v εn | 2 ≥ 2π |d j | log η ε n -C (4.23) (see Corollary II.1 in [BBH2]
). On the other hand, we have

|u εn | l |∇u εn | 2 = |u εn | l+2 |∇v εn | 2 + |u εn | l |∇ |u εn || 2
and therefore

Ω j p 0 + t |u εn | l |∇u εn | 2 = p 0 Ω j |∇u εn | 2 + t Ω j |u εn | l |∇u εn | 2 ≥ (p 0 + t) Ω j |∇u εn | 2 -t Ω j |∇u εn | 2 + t Ω j |u εn | l |∇u εn | 2 ≥ (p 0 + t) Ω j |u εn | 2 |∇v εn | 2 -t Ω j 1 -|u εn | l |∇u εn | 2 ≥ (p 0 + t) Ω j |∇v εn | 2 -(p 0 + t) Ω j 1 -|u εn | 2 |∇v εn | 2 - t Ω j 1 -|u εn | l |∇u εn | 2 .

Now we claim

Ω j 1 -|u εn | 2 |∇v εn | 2 ≤ C (4.24)
and

Ω j 1 -|u εn | l |∇v εn | 2 ≤ C. (4.25)
Using the fact that |u εn | ≥ 1 2 on Ω j we see that

|∇v εn | ≤ C |∇u εn | on Ω j
and therefore, by Cauchy-Schwarz,

Ω j 1 -|u εn | 2 |∇v εn | 2 ≤ C 1 -|u εn | 2 2 ∇u εn 2 4 .
Let us choose t = t 1 where t 1 is defined in Lemma 4.2. Then by (4.11) , and (4.3) we have (4.24) and (4.25). Finally, we conclude using (4.23), (4.24) and (4.25).

An argument of del Pino and Felmer see [dP F ] can now be used to show that (4.3) holds without the assumption on the starshapeness of G. In fact, applying (4.22) for 2ε n instead of ε n yields

1 2 G (p 0 + t |u εn | l )|∇u εn | 2 + 1 16ε 2 n G (1 -|u εn | 2 ) 2 ≥ 1 2 G (p 0 + t |u 2εn | l )|∇u 2εn | 2 + 1 16ε 2 n G (1 -|u 2εn | 2 ) 2 ≥ 2πd(p 0 + t) log 1 2ε n -C . (4.26)
On the other hand, by the upper bound (4.21) we have 

1 2 Ω p 0 + t |u εn | l |∇u εn | 2 + 1 4ε n 2 Ω (1 -|u εn | 2 ) 2 ≤ 2πd(p 0 + t) log 1 ε n + C. ( 4 

Case k > 0

Let us recall our energy in this case

E ε (u) = 1 2 G p 0 + t |x| k |u| l |∇u| 2 + 1 4ε 2 G 1 -|u| 2 2 (4.28)
Our main result in this section is Theorem 3. Let ε n a sequence going to zero and u εn the sequence of solutions of Problem

min u∈H 1 g (G,C) E ε (u) . (4.29)
Then there exists t = t(G, g, p 0 , l, k) > 0 such that for every t ≤ t At first, let us prove some preliminary results

u εn → u * in H 1 loc (G\ {0}) (4.30) E εn (u εn ) = πp 0 d ln 1 ε n + d 2 -d k ln ln 1 ε n + O (1) (4.
Proposition 4.3. There exists a subsequence ε n tending to 0 and a constant C depending only on g such that

E εn (u εn ) ≤ πp 0 d ln 1 ε n + d 2 -d k ln ln 1 ε n + C (4.33)
Proof. Let v ε be a minimizer of

E ε (u) = 1 2 G p 0 + |x| k |∇u| 2 + 1 4ε 2 G 1 -|u| 2 2 . Since | u ε |≤ 1, we have E ε (u εn ) ≤ E ε (v ε ).
In the above problem, the weight function has only one point of minimum, so the thesis follows taking into account the results proved in [START_REF] Beaulieu | A Ginzburg-Landau problem having minima on the boundary[END_REF], Theorem 1.4. Since for t ≤ t 0 , we have || ∇u ε || ∞ ≤ C ε , we can act as in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], Theorem III.3. Then there exists λ > 0, and a collection of balls B (x ε i , λε), i = 1, .., N 1 with N 1 independent of ε such that

x ∈ G : |u ε (x)| ≤ 1 2 ⊂ J j=1 B x ε j , λε . (4.34) 
Given any subsequence ε n tending to 0, we may assume that x εn i tend to b i ∈ G for every i = 1, ..., N 1 . Let us denote by {b 1 , ..., b N } the set of distinct b i with degree d i .

For every j = 1, 2, .., N we set

Λ j = {i ∈ {1, 2, , .., N 1 } ; x εn i → b j } and d j = deg (u εn , ∂B (b j , λε n )) . Fixed η > 0 such that η < 1 2 |b i -b j | ∀i = j we consider Ω j = B (b j , η) \ i∈Λ j B (x ε i , λε n ) .
Lemma 4.4. For every j, and η < η 0 we have d j > 0 and b j = 0 or u εn (b j ) = 0 for n ≥ n (η) and t ≤ t 0 .

Proof. For every j we have

1 2 B(b j ,η) p 0 + |x| k |u εn | l |∇u εn | 2 ≥ 1 2 min B(bj,η) p 0 + |x| k |u εn | l B(b j ,η) |∇u εn | 2 . (4.35)
By [BM R], Theorem 3, we have for every n ≥ n (η) and η < η 0 we have

B(b j ,η) |∇u εn | 2 ≥ Ω j |∇u εn | 2 ≥ 2πd 2 j ln η ε n -C (4.36)
where C is a constant independent of n and η. By (4.35) and (4.36) we have

1 2 B(b j ,η) p 0 + |x| k |u εn | l |∇u εn | 2 ≥ min B(bj,η) p 0 + |x| k |u εn | l πd 2 j ln η ε n -C. (4.37) Fix η < η 0 by (4.37) we get 1 2 G p 0 + |x| k |u εn | l |∇u εn | 2 ≥ π ln η ε n Σ j d 2 j min B(bj,η) p 0 + |x| k |u εn | l -C. (4.38)
Moreover by (4.33) we get

π ln η ε n Σ j d 2 j min B(bj,η) p 0 + |x| k |u εn | l -C ≤ πp 0 d ln 1 ε n + d 2 -d k ln ln 1 ε n +C. (4.39)
As d = Σ j d j , in (4.39) and dividing by ln 1 ε n , for n large enough we obtain The following result gives us a lower bound for the energy Proposition 4.4. Let u εn be the solution of Problem (2.7). Then there exists t = t(G, g, p 0 , l, k) > 0 such that for every t ≤ t it holds the following estimate for the functional (4.28)

Σ j |d j | ≤ Σ j d 2 j min B(b j ,η) p 0 + |x| k |u εn | l ≤ p 0 Σ j d j ≤ p 0 Σ j |d j | ( 
E εn (u εn ) ≥ πp 0 d ln 1 ε n + d 2 -d k ln ln 1 ε n -C. (4.43)
The proof of the previous proposition needs some preliminary lemmas.

For clearness sake let us denote by d the degree of u ε around the origin.

Lemma 4.5. Let u εn be the solution of Problem (2.7). Then for every t ≤ t 1 it holds

E εn (u εn |B (0, η) ) ≥ πp 0 d ln 1 ε n + d 2 -d k ln ln 1 ε n -C (4.44)
where t 1 = t 1 (G, g, p 0 , l, k) is defined in Lemma 4.2.

Proof. We know that for n large B (0, η) contains exactly

d bad discs B (x i , λε n ) i ∈ Λ j with |x i -x j | >> ε α n ∀i = j, ∀α ∈ (0, 1). Let i 0 ∈ Λ 0 be such that R n = max i∈Λ j |x i | = |x i 0 | .
Fixing any α ∈ (0, 1) we have for n large enough 

E εn (u εn |B (0, η) ) ≥ E εn (u εn |B (0, η) B (0, 2R n ) ) + E εn u εn B (0, 2R n ) i∈Λ 0 B (0, ε α n ) + Σ i∈Λ j E εn u εn B (x i , ε α n ) i∈Λ 0 B (x i , λε n ) = E 1 + E 2 + E 3 . (4.45) ¿From [BM R] we get E 1 ≥ πp 0 d 2 log η 2R n -C. ( 4 
f (s) = πp 0 d 2 -d log 1 s + π 4 (1 -α) 1 2 l s k log 1 ε n + πp 0 d ln 1 ε n -C.
We have

f (s) = -πp 0 d 2 -d 1 s + π 4 1 2 l (1 -α) ks k-1 log 1 ε n .
If we impose that f (s) = 0 we get 

s =    4p 0 d 2 -d k 1 2 l (1 -α) log 1 ε n    1 k . ( 4 

  4.40) then Σ j |d j | = Σ j d j i.e. d j ≥ 0 for every j. (4.41) If we use (4.41) in (4.40) we get min B(b j ,η) |x| k |u εn | l ≤ 0 (4.42) and since η is arbitrary (4.42) gives us |b j | k |u εn (b j )| l = 0 for every j and for n large enough.

  i ,ε α n ) B(x i ,λεn) p 0 + |x| k |u εn | l |∇u εn | 2 + 1 2 B(x i 0 ,ε α n ) B(x i0 ,λεn) p 0 + |x| k |u εn | l |∇u εn | 2 . (4.48)Let us consider the last term in (4.48)1 2 B(x i 0 ,ε α n ) B(x i0 ,λεn) p 0 + |x| k |u εn | l |∇u εn | 2 = 1 2 p 0 B(x i 0 ,ε α n ) B(x i 0 ,λεn) |∇u εn | 2 + 1 2 B(x i 0 ,ε α n ) B(x i0 ,λεn) |x| k |u εn | l |∇u εn | 2 . By [BM R], as |x| ≥ |x i 0 | = R n we can say that |x| k ≥ x i 0 ,ε α n ) B(x i0 ,λεn) p 0 + |x| k |u εn | l |∇u εn | 2 ≥ πp 0

  [BM R] and (4.49) we have E 3 ≥ πp 0 d -46), (4.47) and (4.50) into (4.45) yieldsE εn (u εn |B (0, η) ) ≥ πp 0 d 2 -

  .52) By (4.51) and (4.52) we haveE εn (u εn |B (0, η) ) ≥ f (R n ) ≥ fFor each j such that u εn (b j ) = 0 and for every t ≤ t 0 we have, asε n → 0 E εn (u εn |B (b j , η) ) ≥ π p 0 + t 2 l (|b j | -η) As the discs are disjoint we have |u εn (x)| ≥ 1 2 l and |x| ≥ |b j |-η on B (b j , η) B (b j , λε n ) Then we get E εn (u εn |B (b j , η) ) ≥ 1 2 B(b j ,η) B(b j ,λεn) p 0 |∇u εn | 2 + t 2 B(b j ,η) B(b j ,λεn) |x| k |u εn | l |∇u εn | 2 ≥ π p 0 + t 2 l (|b j | -η) k d 2 j log η λε n -C.

By Lemma 4.5 and Lemma 4.6, for every t ≤ t 1 we get

Therefore as ε n → 0, for every t ≤ t 1 it holds the following estimate for the functional (4.28)

Now we want to prove that the zeros of the function u εn are not singularities Lemma 4.7. For n large enough and for every t ≤ t 1 , we have d j = 0 ∀j such that b j = 0 where t 1 = t 1 (G, g, p 0 , l, k) is defined in Lemma 4.2.

Proof. By (4.53) and (4.33) we have

As in (4.33) d = d we get

-C ≤ 0 for every j and for n large thats to say d j = 0 ∀j such that b j = 0. Now we can complete the proof of Proposition 4.4: By Lemma 4.7 we deduce that d = d and if we use it in Lemma 4.5 we get the claimed lower bound (4.43). The proof of Theorem 3 is a consequence of the above results. Indeed, Proposition 4.3 and Proposition 4.4 led to (4.31) and (4.32). Finally, acting in the same way as in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] we get (4.30) with t = t 1 . Finally, the same argument of del Pino and Felmer as in (4.26) and (4.27) shows that Theorem 3 holds without the assumption of the starshapedness of G.