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Minimization of a Quasi-linear Ginzburg-Landau type energy

Rejeb Hadiji* and Carmen Perugia'

Abstract

Let G be a smooth bounded domain in R?. Consider the functional
1 1 2
Be(w) =5 [ (oo tlallal) [9uf + 5 [ (1 1ul?)
2 Ja 4e* Jq

on the set H;(G7 C) = {u € HY(G,C); u=gon BG} where g is a given boundary
data with degree d > 0. In this paper we will study the behaviour of minimizers u. of

E. and we will estimate the energy F.(u.).
Keywords: Ginzburg-Landau equation, Quasi-linear problem, S* valued map.

Mathemathics Subject Classification (2000) : 35B25, 35J55, 35B40.

1 Introduction

Let G be a bounded smooth domain of R?, g : 0G — S! a smooth boundary data of
degree d > 0. For ¢ > 0, pg > 0,t > 0, £k > 2 and | > 2 define the following functional of

Ginzburg -Landau type
1 1 2
E. (u) = 2/G<po+t]m\k]u\l> Vul + o5 [ (1) (1.1)

on the set
Hgl(G,C): {ue H(G,C); u=gon dG}. (1.2)

We shall understand that if [, | u || Vu [*= oo then E. (u) = oco. In this paper we are

interested in the study of the asymptotic behaviour of

in  E.(u). 1.3
uelgﬁgm = (u) (1.3)
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When ¢t = 0, k = 0 and d = 0, Bethuel, Brezis and Hélein [BBH1] showed that as e
tends to 0, u. tends to a harmonic ug which is equal to g on G in C1%(G). It is easy to
adapt the same method as in [BBH1] to obtain the same result when & # 0.

The case when t = 0 and d > 0, corresponding to the Ginzburg-Landau energy, was
studied by Bethuel, Brezis and Hélein in [BBH2]| (see also Struwe [S]), where it was shown
that :

. d . —
(i) for a subsequence &, — 0 we have, u., — u, = '@ [] E_Z;' in CY(G\ {a1, ..., aa}),
s
where a1, ..., aq are distinct points in G and ¢ is a smooth harmonic function determined
by the requirement u, = g on 9G.

(ii) Ee(ue) = 2md|loge| + O(1) as € — 0.

In the case where ¢t > 0 and [ = 0, is studied the problem for more general weight
depending only on x, see [BH1,2,3] and [AS1,2]. They showed that the presence of the
weight forces the location of the vortices near the minima of the weight and when the
degree is greater than the number of the minima of p the interaction between vortices led
to a term of order Inln 1 It is also showed in the above references that the zeroes of u.
are located , for small 5;5 near the minima of the weight.

In this paper, we study the effect of the presence of |u| in the weight po+t | « |* s'. Our
weight is a particular one and gives a significant situation. For instance, if we consider the
case where k = 0, we show that we obtain a similar results of convergence as in [BBH1]
but the energy is greater than their energy. More precisely, in Theorem 1 we examine the
case deg(g,0G) =0, k > 0 and [ > 0. In Theorem 2 we examine the case deg(g,0G) > 0,
k=0 and [ > 0. In Theorem 3 we examine the most general case deg(g,0G) > 0, k # 0
and [ # 0. In both the last two cases we obtain a convergence result for a sequence of
minimizers of our problem and we show that under a small perturbation of the weight
po+t |z |F s the singularities of the limit problem are minima of pg 4+t | 2 |¥. As regards

the energy, in Theorem 2, as ¢, — 0 we get

E. () = md (po + ) mé_i +0() (1.4)

n

while in Theorem 3, where without loss of generality we can suppose that 0 € G, as e, — 0

we obtain )
1 — 1
E. (ue, ) =7po <dln€+ d dlnln) +0(1). (1.5)

n ETL

The motivation of our study for the functional (1.1) comes from type II superconductors
in the presence of vortices see [AS1,2], [BH1,2,3], [DeG] and [R].



The presence of the weight function is motivated by the problem of pinning of vortices.
It forces the location of the vortices to some favorite sites. In the case where | = 0 the
regions where the weight is relatively small are called weak links see [DG]. So, we expect
that the minima of the weight pg+¢ | x |* s' will play an important role. As we shall show
below, the zeroes of a minimizer of our problem are located, for small £, near the minima
of po +t | = |F.

2 Setting of the problem and some preliminary results

At first, let us recall a definition and a lemma contained in [B].

Definition 1. Let Q an open set of RP ;1 < p < oo, (2,T,u) denote a measure space
with p non-negative and finite and J is p-complete. Set B, the borel o-field of R™. A
function f: Q x R™ x R" — |—00,+00] is said to be a normal-convex integrand if f is

J ® B, ® By -measurable function and there exists a p -negligible set N C Q) such that

f(z,-,-) is Ls.c. on R™ x R™ for every x € Q — N
f(z,s,) is convex on R™ for every z € Q — N, s € R™.

Lemma 2.1. Let Q2 a bounded open set of R™ with Lipschitz boundary and let f : Q x
R™ x R™ — [0,4+00] be a normal-convex integrand in the sense of Definition 1. Then

the functional

F(u) = /Qf(x,u, Vu) (2.1)

is sequentially weakly W' (Q, R™) — L.s.c..

As a consequence of Lemma 2.1 we have

Lemma 2.2. Let G be a bounded regular open set of R?. Then, the functionals

Fa(w) = [ (oot tlaf*ful) [Vaf (22)
G
and
By ()= [ Jal*ful [V (2.3)
G
are sequentially weakly W11 (G, R2) —l.s.c..

Proof. For the first functional it is enough to apply Lemma 2.1 with Q = G, m =n = 2
and f (z,s,w) = (po +t]z|” |s|l> lw|?. About the latter one, it is enough to observe that
it is the sum of two functionals sequentially weakly W11 (G, R2) —l.s.c.. O



Set
p(z,s) =po+t|z*[s. (2.4)

We have

Proposition 2.1. The infimum

inf E . 2.5
uengln(G,C) e (w) (2:5)

is achieved by some u. which is smooth and satisfies
|lue|lpe <1 (2.6)
Moreover, u. satisfies the Fuler equation

) It _ 1 .
—div (pVue) + 3 |x\k |u5|l 2 \Vu€|2u5 =3 (1 — |u5|2> u. in G (2.7)

Ue = ¢ on 0G

and that there exists to = to (G, g,po,l, k) >0, €0 = €0 (G, g,p0,l, k) > 0 such that
C
Vel < - fort <ty and e <¢p (2.8)

where C' is a constant independent of €.

Proof. Using Lemma 2.2 we obtain that the infimum of (2.5) is achieved by a function u.
Moreover, using Theorem 1.7 in [K M] we obtain the regularity of any minimizer u.. Now,
let us prove (2.6). Set B = {x € G s.t. |us ()| > 1}. Suppose that |B| > 0. Let us define
v. € H! (G,RQ) by

ue () in G\B

ve () =9 ue (7) B
|ue ()]
We have ) ) ) )
— | (1= 2) < (1 _ 2) . 2.9
=l (1-1el) < (1=l (2.9)
As |v.|=1o0n B
2 l k k l
po +t|z|” Jve|" = po +t|x|" <po+t|z|”|us|" on B. (2.10)

It is easy to see that
|VUE|2 = |u€|2 |vvs|2 + Vv |U€H2-

Therefore we have
Vol < |Vaue|*. (2.11)



By (2.9),(2.10) and (2.11) we get
E. (ve) < E: (ue)

but this is impossible since u. is a minimizer. Then |B| = 0 and consequently we obtain
lue| <1in G. It is easy to see that u. satisfies the Euler equation (2.7).

Finally, in order to prove (2.8), we need the following result
22 2
‘V |ul ’ =4|uVul”. (2.12)
Indeed, we observe that
A\ \u|2 = (2u10,u1 + 2u20,u2; 2u1 Oyu + 2u20yu2)

then
‘V \u|2’2 = (2u10;u1 + 2uz8qu)2 + (2u10yu1 + 2uQ0yu2)2
= 4u? (8$u1)2 + 4u? (azug)Q + +8uqugdpul Opun
—i—4u% (8yu1)2 + 4u% (8yuz)2 + uqug Oz Optin
=4 (u% (Vur|? + 2uiusVuy - Vg + u? \VuQIQ) =4 |uVul*.

Now let us consider the equation (2.7) and have

k—2 l k -2 2
l Vw2V
—Au, :ktm—xllue‘lvus + L |2]" e k‘ua‘ l Uge
po +t]x]" Jue| 20 potaff |ul 019
2 .
U (o eP) e 2 v

&€
po+tlel lul 2 pottlaffuel

and by (2.12) we obtain
|Auc| < kt

Let A be the diameter of G. Since | u. |< 1, we get
k—1 C

g2’

|Auc| < ktA

3. AF
\Vue| + Sit— |Vu|* +
Po 2 po

(2.14)

Now, let v be an harmonic function such that v = g on dG. Then, by applying the

interpolation lemma we have

IV (ue — U>’2 < Clue — [ [Aug|



and by (2.14)

Ak; Ak—l
(1 - 01317:) Vu|? - [kt +2 \w@ Vue| + Vol - 92 <0.
2 po Do £

3 AP 1
Direct computations show that if we choose t such that (1 — Cl2lt> > 3 we get
Po
C 2
|Vu| SC’2+\/C’3+E—; fortStO:WZZOAk and € < gg.
This completes the proof of (2.8). O

3 Asymptotic behaviour when deg(g,0G) =0

Let us observe that if deg(g,dG) = 0, Hy(G,S') # 0 so that the following minimum

problem

: . 1 kool 2
uefgl(l(r;l,sl) = (u) uEI}?(IaSI)Q /G Po =t} (Ve )

makes sense. Our main result in this section is

Theorem 1. Let u. be a minimizer of (1.1) and u, the unique solution of Problem (3.1).
Then there exists t =1 (G, g,po,l, k) > 0 such that we have Vt <t, as e tends to 0

Us — Uy N H; (G,0), (3.2)
ue — us in CH(G) (3.3)

and
lue| — 1 uniformly . (3.4)

3.1 Proof of Theorem 1

In what follows, with C' we will denote a constant independent of . The proof of (3.2)
develops into two steps.
Step 1. Proof of

ue — uy weakly in Hg1 (G,C). (3.5)
By definition of u. we have
Ee (ue) < E: (ux) (3.6)
thus
1
5 | (oo tlet el ) Vel + 5 [ (1= 1) <5 [ (o tlal) 9w < .



So we obtain two estimates

1
[ (oo tlal* uel') (9 < © (3.7)
G

2
1 2\ 2

and

Estimate (3.7) gives us
/ [Vue|? < C and / z|" [u|' [Vue* < C
G G
which led, up to a subsequence still denoted by (u.), to the following convergence
u. — u weakly in H' (G, C).

As H' (G,C) c L* (G, C) with compact embedding, by (3.8) we obtain

/G (1 - Iugl2)2 — /G (1 . |u\2)2 —0 (3.9)

so |u| = 1. Moreover, as the trace operator on dG is continuous, we have uys = g so
u € Hg1 (G, Sl) . Let us show that u = u,.
By Lemma 2.2 we get

[ (oot ) 190 <t [ (po+ ol ucl') 9]
G G

(3.10)
< [ (m+thal) [vuf?,
G
therefore u is solution of Problem (3.1) and by unicity u = u, i.e. (3.5).
Step 2. Proof of
Vel g2y = Vsl 2y - (3.11)

By (3.10) we have

/ (po —|—t|x]k> W“*’Q < lim/ (po +t|x”f |u€|l) ‘VUE‘Q
G G
<tim [ (ot el ) [Vucf < [ (po+ tlal") [Vu
G G

and then

/(p0+t\x|ku5]l> |vu€|2ﬁ/ (o -+ tlaf*) [V (3.12)
G G

Now we get

Jmivu = [ polvult = [ (oot tlaf ') [Vaf?
G G G



— [ (ot tlal) Va2t [ fal* (190 = fucl [V
G G

[ mivul = [ (oot tha ucl) (96 = [ (+tlal") |9
G G G
+/porw*|2+t/ |x|’“|w*2—t/ 2l e [Vere 2
G G G

If we pass to the limsup we have

and then

m/pmw?s/pom*\%
G G

1 ([ (o et lucl) (9 = [ (o4 21al) 190 +
G G
st ([ 1ol 19 = tim [ ol el (9l
G G

Now, we observe that by Lemma 2.2
[ el (9t [ ol |9 < 0 (3.13)
G G

Then, by (3.12) and (3.13) we obtain

lim/p0|Vu6|2§/po|Vu*|2
G G

which is enough to set (3.11).
Finally, (3.5), (3.11) and unicity of the limit led to (3.2) for the whole sequence.
By (2.6) and (2.8) of Proposition 2.1 we can follow [BBH2] to obtain (3.3) and (3.4).

4 Asymptotic behaviour when deg(g,0G) > 0

At first let us consider some preliminary lemmas

Lemma 4.1. Assume that G is starshaped about the origin and then we have x-v > A >0
for every x € OG. Then there is a constant C depending only on g and G such that any
solution us of Problem (2.7) satisfies

1 2\2 | Kt kol 2
_ _ — < .
5 G(1 uf?)” + 3 /G|ac| lul'[Vul? < © (4.1)
/ 0, ul*do < C (4.2)
oG
1 N
R — < > 9. .
= G(1 \u|) <O Vs> 2 (4.3)



Proof. As in the proof of Pohozaev identity one multiplies the equation solved by wu. by

2 - Vue = 2105, ue + x205,u-. For clearness sake let’s drop € so we obtain

It
/—dw (pVu) (g;-vu)+2/ )" |ul 2 | Vul u (2 - Vi)
G G

1
3 (1—|u]2)u(x-Vu):h—|—12+.73:0.
G

Let us treat each term in a different way

I = /G —div (pVu) (z - Vu) = /G pPVuV (z - V) — /a (e V) d,udo

We have
VuV (z - Vu) = 2?73-:18%.11 (85,502, u + 2i0p,2;u)

then
/GquV (x-Vu) = /Dpzzz,jﬁxju (01,j0z,u + 2303, )

1
= /pZ?letii\VuF—i—/p]VuF
2 Ja G

1 1
—/Vp|Vu|2-x+/ p(z-v)|Vul?.
2Ja 2 Joc

Finally we have

Li==3JaVpIVul -2+ 3 fyop (@ v)|omg”
- facp (z-v) (auU)Q do — faGp (z - 7) Orudyudo.

Let us consider the second term. By considering that
1 2
u(:r'Vu):§V\u| -
we get
It _ It _
I = 2/ ol [l |Vl u (- Vi) = 4/ 2 * [l 2V uf? [Vl - .
G G

It easy to see that

1 2\ 2
L= [ (1-1P)".
3 4e? G ‘U|

By collecting together (4.7), (4.9) and (4.10) we get

(4.4)

(4.5)

(4.6)

—1/ Vp]Vu|2':c+1/ p(x-v) ]('?Tg|2—/ p(z-v)(0u)? da—/ p(x - 7) 0rud,udo+
2 Ja 2 Joc oa oG

It ko, (=2 2o, (2
1 el eV Va2
G

9



1 2\ 2
=52, <1 — |ul )
But
1 t
—/ Vp |Vul® -z = —/ \% <’$‘k ’u‘l) Vul® -z
G 2 Je
ot ) uf! |z~ L ) ol |Vul?
=5 [V (al) 19w =5 [0 () fal 9?0
Lt It
G G

Finally we have

kt It _
5 [t (v = 5 [ el a2 vl Va0
G G

+1/ p(z-v) ‘avg|2 - / p(z-v) ((9,,u)2 do — / p(z - 71)0rud,udo+
oG oG oG

2
It _ 1 2
[l =2 (v o= 5 [ (1 ul?)
4 G 4e G
and then It .
—/m%mhwﬂ+/'Mwwnaw
2 Ja 2 Joc

—/ p(x-v) (0 u)2da—/ p(z - 7T)0rud, udazl/ (1—]u\2>2
oG oG ! 4e? Jgo

This directly implies (4.1) and (4.2). Now let us consider the following function

v g £ 1

h:yel0,1] — { gl_?ﬂ)
2

P~

ify=1.

It admits a maximum say M, so that by (4.1)

9 2
S ls0 \m\(M—gak (lue))? (1= Jue?) " do <
< M? 2fG< e | ) dz < M?C.

This yields (4.3).
O

Lemma 4.2. Let u. be the solution of equation (2.7) . Then there exists t1 = t1 (G, g,po,l, k) >
0, 0 =0 (G, g,p0,l, k) > 0 such that Vt < t,

IVue|lf < = (4.11)

10



Proof. Using (2.7) and combining (2.13) with the fact that | u. |[< 1 we obtain

Ak-1 3 AF 1
|Aug| < tk Vue| + Slt— |V " + = [ 1 | ue |?] .
Po 2 po €
Then -
AR~ 3 1
[ ully < th = |[Vuelly + G || Vel + 5 11 1= e Pl

By (4.1) of Lemma 4.1 and by Holder inequality

k—1

A
[Auc|[, <tk
Po

Let us take t < tp, then by (2.8) we get

3 C
[Vuelly + 1t [ Vue|f + =
2 e

3 C
|Auclly < Sit [ Vuelly + =

Now, let v be an harmonic function with the property v = g on dG. Then, by applying
the Gagliardo-Nirenberg inequality we get

1 1
IV (ue = v)lly < Ca |lue —vl|& [| Aue|3

and then )
1 3 \2 C2
Ve = vl < Co 1+ ol |1 (Gie) " 19l + 52
Finally
1
1 3.\2 C
Vel < llolly + G (14 ol.0)? [cl CONIE
and then

1
3.\? c
<1 - (1) ) Vsl < 2+ ol

1 1
We choose t such that (1 — (s (%lt) 2) > 3 and this implies that

1
[Vuel, < \C/Z for ¢ < ¢t; = min (to, 6lC’5> and ¢ < g¢ (v, C)

which gives us (4.11).

11



4.1 Case k=0

Let us recall our energy in this case

Botw) = [ (potelal!) Ivul+ o [ (1= 1)’ (112)
u) = = U u — —|u . .
15 2 G pO 452 G
By Proposition 2.1 we know that, in this case, the solution u. of the minimization
problem
i E, 4.13
we i, o B (u) (4.13)

satisfies the boundary value problem

. It _ 1 .
—div (pVue) + 5 ue| 2 Ve ue = = <1 — ]u6]2) us in G

Us =g on 0G

(4.14)

Our main result here is the following one

Theorem 2. Let €, a sequence going to zero and u., the sequence of solutions of (4.13).
Then there exist exactly d points by, ba,....bg € G and t = t (G, g,po,l) > 0 such that for
every t <t

ue, — u* in H, (G\ ud, {bz}> (4.15)
and

E., (ue,) = md(po + t)log (1> +0(1). (4.16)

En

The proof of this theorem needs some preliminary results.
Given € > 0 and R > 0 we set

I(e,R) = min {;/ (po +t|u|l) [Vl + 1 <1 - |u|2)2} (4.17)

Br 4e* Jpy
where g () = ’% on Br and for s > 0
I(s)=1I(s,1).

By scaling it, it is easy to see that

I(e,R) :1(1,?) :I<]:). (4.18)

12



1
Lemma 4.3. The function s — <I (s) — 2w log ) s nondecreasing, so we have
s

I(s1) <7 (po+t)log <:) +1(s2) Vs < so. (4.19)

In particular

1(s) grr(po+t)1og<1> +1(1) Vs e (0,1]. (4.20)

S

1
Proof. Let ua be a minimizer for I (sg) =1 <1, ) . Set
52

We have

1 1 2 2 1 2 2
— . < — — =
I(s1) —I(l, 81) < 2/ (p0+t|u1| )|Vu1\ +4/ (1 |u1] >

1 1
s1 e

]./ ( 2 2 1 2 2 1 X
- Do + t |u )wz + - (1—u21) + - (Do +t) |V
2 J)B fual”) Ve 4 /B | 2/, \B1 |z

1 1

2

S2 52 2 S1

1 1 S
I(32)+/ (po—i—t)2—[(52)+7r(p0+t)10g<2).
2 B1\B1 |z| 51
52 S1

By (4.18) we get

I(E,R):I(%) < (po +t) log <f> +I(1).
0

Proposition 4.1. There exists g = €0 (G, g,po,l,k) > 0 such that for e < g9 and for

every t > 0 we have

1
E; (ue) < m(po +1t)dlog <€) +C (4.21)
where €9 and C' depend only on g and G.

Proof. Fix d distinct points a1, as,..,aq in G and fix R > 0 so small that

B(a;,R) C G Vi and B (a;, R)N B (a;,R) =0 Vi # j.

13



Let Q = G\ (UL, B (a;, R)) and consider the map g : 9Q — S! defined by
=1
(2) = g(x) ifzedG
et if r=a;+Re%ecdB(aj,R).

Since deg (g,09) = 0, there is a smooth map v :  — S! such that ¥ = g on 9Q. Then,
Lemma 4.3 applied for € < R gives us

t 1
Ee (ue) < (p();)/ Vol* + 211 (e, R) < 7 (po +t) dlog (8> +C
Q

which is the desired estimates. O

C
Since for t <ty we have ||Vuc| . < — we can act as in [BBH?2], Theorem III.3. Then
€
we have the existence of A > 0 and a collection of balls B (25, Ae), i =1, ..., N7 such that

{xGG lue (x } UB:): Ae) .

Given any subsequence &, tending to 0 we may assume that 2" tend to b; € G for every
i =1,...,N71. Let us denote by {b1,...,bn} the set of distinct b;.
For every 5 =1,2,.., N we set

A] = {’L & {1,2, , "7N1} 7'%5" N bj}

and
d;j = deg (ue,, 0B (bj, Aey,)) .
Fixed n > 0 such that

1 o
*|bi—bj| VZ#]

<
=3

we consider

bim\ | B (25", Aen) .

i€EA;

Now, we are able to prove a lower bound for the functional (4.12).

Proposition 4.2. There ezists a constant C' independent of n, n andt =t (G, g,po,l) > 0
such that, for every j, for every n > N (n) and for every t <t we have

/ <po +t \ugn]l> \Vue, > > 27 (po + t) |d;] log <€71> - C. (4.22)

J

14



Proof. We write on €;

Ue,,
|u5n|

Since v, is Sl-valued and deg (v, ,dB (25", \ey,)) = d; with Yien;di = dj we know that

Ue, = |ue, | ve, where v, =

/ Vo, 2 > 27 |d;| log <”> —C (4.23)
Qj €n
(see Corollary II.1 in [BBH?2]). On the other hand, we have

‘uan‘l ’VU’&‘TJQ = ’u5n|l+2 ‘vvan‘Q + ‘uan’l ’v |u5n|’2

and therefore

/ (po +t|uan‘l) ’VU&L’Q :p()/ ‘VU&LP +t/ |u5n‘l ’VUen|2
Q; Q; Q;

J
> (po+ 1) / Ve, |2 — ¢ / Ve, 2 + ¢ / fte, | [V,
Q; Q; Q;
>+ ) [ e, P0e =t (1= e ) [V
j Q;

> o+ 1) [ (Vo= ot t) [ (1 Jue ) 190,
Q; Q

J
[ (1= b ) (9,
Q;

| (1= tue )19t <0 (4.24)

J

Now we claim

and
/ (1 - \u5n|l> Vo, |2 < C. (4.25)
Q;
. 1
Using the fact that |uc, | > 5 on Q; we see that
Ve, | < C|Vue,| on

and therefore, by Cauchy-Schwarz,
| (= e P 1900 < € = e P 19, .
Q; 2
Let us choose t = t; where t; is defined in Lemma 4.2. Then by (4.11), and (4.3) we have

(4.24) and (4.25). Finally, we conclude using (4.23), (4.24) and (4.25).
O
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An argument of del Pino and Felmer see [dPF] can now be used to show that (4.3)
holds without the assumption on the starshapeness of G. In fact, applying (4.22) for 2¢,

instead of g, yields

1 l 2 1 2\2 1/ l 2
= t \Y% — 1-—- > = t \Y%
5 ot el Ve, Pt gz [ (0=l 2 5 [ (0t e, 1)V P
1
oz L= e P (1.26)

1

n

On the other hand, by the upper bound (4.21) we have

1 l 2 1 2\2 1
= — — < — +C. .
5 | (o ) 190+ g [ (= e P < 2md+ 1o — + €. (420)

Subtracting (4.27) from (4.26) yields the result. Having the estimate (4.3) on our hands,
we can now follow the construction of bad-discs and complete the convergence assertion
(4.15) as in [BBH2|. On the other hand, Proposition 4.1 and Proposition 4.2 give us
(4.16).

4.2 Case k>0

Let us recall our energy in this case

1 1 2
E. (u):2/G<p0—|—t’$|k|u‘l) Val* + G(l—|u|2> (4.28)

Our main result in this section is

Theorem 3. Let ¢, a sequence going to zero and u., the sequence of solutions of Problem

in B (u). 4.29
w5 o = (u) (4.29)

Then there exists t = t(G, g, po,l, k) > 0 such that for every t <t

ue, — u* in Hy,, (G\ {0}) (4.30)
1 d>—d 1
E., (ue,) =7po | dln = + Inln = +0(1) (4.31)
and
deg(u*,0) = d. (4.32)

At first, let us prove some preliminary results

16



Proposition 4.3. There exists a subsequence e, tending to 0 and a constant C depending

only on g such that

1 d>—d 1
E., (ue,) < 7po <d In = + ’ Inln > +C (4.33)

Proof. Let v. be a minimizer of

B =5 [ (oot lat?) Va5 [ (1= 1ul?)’

Since | us |< 1, we have E. (ue,) < E-(v.).
In the above problem, the weight function has only one point of minimum, so the thesis

follows taking into account the results proved in [BH?2|, Theorem 1.4. O

Since for ¢t < tg, we have || Vg ||oo< %, we can act as in [BBH2], Theorem III.3. Then
there exists A > 0, and a collection of balls B (5, Xe), i = 1,.., N; with N; independent
of € such that

{xeG |ue (x } UB 2t Ae) (4.34)

Given any subsequence ¢, tending to 0, we may assume that z" tend to b; € G for every
i =1,...,N1. Let us denote by {b1,...,bn} the set of distinct b; with degree d;.
For every 5 =1,2,.., N we set

and
d;j = deg (ue,, 0B (bj, Aey,)) .
Fixed n > 0 such that
1 . .
<§|bi—bj| Vi # j

we consider

Q=B (bj,n\ | B, Aen).
i€EA;

Lemma 4.4. For every j, and n < ny we have dj > 0 and b; = 0 or uc, (bj) = 0 for
n>n(n) andt <tp.
Proof. For every j we have
1 .
5[ (oo bl e, ) (V0 22 5 in {pot fol e, ) [ (R (09
B(bj,n) B(bjm)

17



By [BM R], Theorem 3, we have for every n > n (n) and n < 19 we have

/ Ve, | > / Ve, |” > 2rd2 In <’7> -C (4.36)
B(bj,n) Q; En

where C'is a constant independent of n and 1. By (4.35) and (4.36) we have

1/ ki, ol 2 : ETA n
- po + |x|" |ue, | ) |[Vue,|” > min {po + |z]" |ue, | ¢ 7d5 In —C. (4.37
5 B(bjm( |z| ‘a‘)’ enl B(b,n){ || ’e|} j - (4.37)

) n

Fix n < no by (4.37) we get

1 k z) 2 7 2 . k !
— V >aln| — | 2,d5 m { } - C. 4.38
9 /; <p0+ ‘x’ ‘u??n’ ‘ uen‘ Z Tin En J ]B(b‘l7,I7l7) p0+ ‘x’ ‘uan‘ ( )

Moreover by (4.33) we get

n 2 . kil 1 d*-d 1
wln | — Ejijral'n) {po + || Jue,,| }—C’ < 7o dlng— + Inln — ) +C. (4.39)
5.1

‘E’I’L n E’I’L

1
As d = ¥;d;, in (4.39) and dividing by In ~ for n large enough we obtain

n

i |dj| < (25d3) Bf(lgi_ Y {po + |z \uanll} < po¥jd; < poX; |d;l (4.40)
55

then
Ej ’d]| = Ejdj ie. d]' >0 for every j (441)

If we use (4.41) in (4.40) we get

min |z|* |u, |' <0 (4.42)
and since 7 is arbitrary (4.42) gives us |bj\k |ue,, (bj)|l = 0 for every j and for n large
enough. O

The following result gives us a lower bound for the energy

Proposition 4.4. Let u., be the solution of Problem (2.7). Then there exists t =
t(G, g,p0,1, k) > 0 such that for every t <t it holds the following estimate for the func-
tional (4.28)

1 d*—d 1
E., (ue,) > 7o {dln — 4+ ’ Inln } - C. (4.43)

En En
The proof of the previous proposition needs some preliminary lemmas.

For clearness sake let us denote by d the degree of u. around the origin.

18



Lemma 4.5. Let u., be the solution of Problem (2.7). Then for every t < ti it holds

n En

~ 1 d-d_ 1
E., (ue, |B(0,n)) > mpo dlne——i— ’ Inln—» - C (4.44)

where t1 = t1(G, g, po, l, k) is defined in Lemma 4.2.

Proof. We know that for n large B (0,7) contains exactly d bad discs B (x5, Aey) i € Aj
with |z; — x| >> e Vi # j, Yo € (0,1). Let ig € Ag be such that R, = max |zi| = |24 -
1EN
Fixing any « € (0,1) we have for n large enough
Ee, (ue, [B(0,n)) 2 Ee, (ue, |B(0,7)\B(0,2Ry)) +

E, (uc, |B(0,2Rn) \ Usen, B(0,9)) + (4.45)
Sien; Bz, (ue, | B (zi,e0) \Usen, B (#i; Aen)) = E1 + Ex + Es.

;From [BM R] we get

By > mpod? log (2]2 > —C. (4.46)

By [BBH?2] and (4.11) in Lemma 4.2 we get

E, > mpodlog <2£n> -C (4.47)

n

for every t < t; where t; is defined in Lemma 4.2. Moreover

k l 2
b3 = %Z@e/}o fB(:ci,eg)\B(a:i,)\gn) (po + |z]" |ue, | ) Ve, |* +
L kool ) (4.48)
2 fB(mio"s%)\B(IioJ\&n) (po + |3}‘ |u€n| ) IVuEn| .

Let us consider the last term in (4.48)

1 k l 2
2 fB(xiOaE%)\B(ﬂcim)\an) (pO + |z|" |ue,, | ) |Vue, |” =
2

1 2 k !
290 S5 (a1 )\ B(migren) Ve T 5 SB (o )\ Bloioren) 121 el [Vite, ™
Rk
By [BMR), as |z| > |24 | = R, we can say that |z|" > T” and by (4.34) we get
k ! 2
% fB(xiOf%)\B(xio,)\sn) <p0 + ’:L‘| |u5n| ) |vu5n‘ Z

& 7TRk N eQ Rk N e (449)
n n (1 1 n_o_ — n (1 1 no_ .
7o In v 1 (3) In v C=m <po + S (3) ) In v C

Finally using again [BM R] and (4.49) we have

~ o Rk 1 l «
Egzwpo(d—l)lng+7r<po+4”(>>ln5”—C’. (4.50)
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Putting (4.46), (4.47) and (4.50) into (4.45) yields

E., (e, |B (0.n)) > mpo (& _Ez)log( ! > 1(1—Q)Rk< )llog< 1)+7Tp0d1n81—0.

(4.51)
Now let us consider the function
1\  « 1\ 1 ~ 1
_ 2 - e - k -+ .
f(s) =mpo (d c?) log <s> + 1 (1—a) <2> s" log (€n) + mpod In - C.
We have ,
~ 1 /1 1
/ _ 2 - M _ k—1 -
f(s)=—mpo (d (2) . + 1 <2> (1 —a)ks" “log <€n> .
If we impose that f'(s) = 0 we get
1
4p0 (JZ _ Ei) k
s = l = - (4.52)
k (%) (1—-a) logg—
By (4.51) and (4.52) we have
1
4p0 (32 _ CAZ> k
k (%) (1—a) logg—
~ 1 &-d 1
:Wpo{dln—I—d dlnln}—C’.
En k En
[

Lemma 4.6. For each j such that u., (bj) =0 and for every t <ty we have, as e, — 0
e e 1B03) = 7 (o + 3 (] = )" ) 1og 5 - .
n

Proof. As the discs are disjoint we have |u.,, (z)| > 21 and |z| > |bj|—non B (bj,n) \B (bj, Aen)
Then we get

t
po Ve, |+ 5 ol Jue, | [V, |

1
e, 1B (b)) > 5/
B(bj,m\B(bjAen)

2 JB(b;m\B(b; Aen)

2 Ui
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By Lemma 4.5 and Lemma 4.6, for every ¢t < ¢ we get

) ) ~ 1 &2-d 1
E., (ue,) > p|Vu|” + p|Vu|” > 7py ¢ dln — + Inln — 3 +
B(Oﬂ) j:b 7£0B ijn) En k

1
szb7go(p0+ (165 =) >d2log)\—C

Therefore as €, — 0, for every t < t; it holds the following estimate for the functional
(4.28)

& —d

n

1 1
lnln}—l—ﬂZ]b £0 <p0 + 7 (165 = n) >d2 log )\——C

~ 1
E., (ue,) > mpo {dhﬂ8 +
(4.53)

where t1 = t1(G, g, po, [, k) is defined in Lemma 4.2.

Now we want to prove that the zeros of the function u., are not singularities

Lemma 4.7. Forn large enough and for everyt < t1, we have d; = 0 Vj such that b; # 0
where t1 = t1(G, g,po,l, k) is defined in Lemma 4.2.

Proof. By (4.53) and (4.33) we have

1 d*—d 1 ~ 1 d2—d 1
7Tp0<dln8+ ? lnln>+C27Tpo{dln5+ A lnln}

1

As in (4.33) d = d we get

1
T jub; 0 (po + o7 (1551 =m) > d? log)\— — C <0 for every j and for n large

thats to say d; = 0 Vj such that b; # 0. O

Now we can complete the proof of Proposition 4.4: By Lemma 4.7 we deduce that
d = d and if we use it in Lemma 4.5 we get the claimed lower bound (4.43). The proof of
Theorem 3 is a consequence of the above results. Indeed, Proposition 4.3 and Proposition
4.4 led to (4.31) and (4.32). Finally, acting in the same way as in [BBH2] we get (4.30)
with ¢ = ¢;. Finally, the same argument of del Pino and Felmer as in (4.26) and (4.27)
shows that Theorem 3 holds without the assumption of the starshapedness of G.
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