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Stochastic Sensitivity Study for Optimal Credit

Allocation

Laurence Carassus∗ and Simone Scotti†

February 28, 2013

Abstract: In this paper we present the detail computations involved in [2]. First we propose
a quick presentation of the methodology developed by Bouleau (see [5]). Then, we apply
this method to the problem of optimal credit allocation problem.

1 Introduction

This introduction is devoted to the presentation of error calculus in the sense of sensitivity
with respect to a stochastic perturbation.

We shortly recall Gauss idea for error propagation. All the implied functions are assumed
to be smooth enough. Let (Ω,F ,P) be a probability space. Let V = F (U1, . . . , Un) be a real
valued function of the U1, . . . , Un which are supposed to be erroneously measured. The Ui

are seen as random variables with values very closed to their mean value E[Ui]. The error
of measure is given by σi,j = E [(Ui − E[Ui]) (Uj − E[Uj ])]. Here the error is assumed to be
small thus using a first order approximation, we obtain:

F (U1, . . . , Un)− F (E[U1], . . . ,E[Un)]) =

n∑

i=1

(Ui − E[Ui])
∂F

∂Ui
(E[U1], . . . ,E[Un)]).

If we denote by σ2
V = E [F (U1, . . . , Un)− F (E[U1], . . . ,E[Un])]

2
,

σ2
V =

n∑

i,j=1

σi,j
∂F

∂Ui
(E[U1], . . . ,E[Un)])

∂F

∂Uj
(E[U1], . . . ,E[Un)]) (1)
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We see that the mean square error transmits with a first order differential calculus. Now
we try to generalize Gauss equation (1) by considering that the measure of Ui is no more
the constant value E[Ui] but a random variable. This random variable is defined on an

(independant) copy of (Ω,F ,P) denoted by (Ω̃, F̃ , P̃). We called it Ûi : in statistical language
it is the estimator of Ui. Consider another real valued function G. We introduce the following

random variables defined on the space (Ω̃, F̃ , P̃):

Bias(Ui) = E

(
Ui − Ûi

)
= E (Ui)− Ûi (2)

Bias(F (U1, . . . , Un)) = E

[
F (U1, . . . , Un)− F (Û1, . . . , Ûn)

]
(3)

= E [F (U1, . . . , Un)]− F (Û1, . . . , Ûn)

MSE(Ui, Uj) = E

[(
Ui − Ûi

)(
Uj − Ûj

)]
(4)

MSE(F (U1, . . . , Un), G(U1, . . . , Un)) = E

[(
F (U1, . . . , Un)− F (Û1, . . . , Ûn)

)(
G(U1, . . . , Un) −G(Û1, . . . , Ûn)

)]
.

Let H ∈ {F,G}, using a first order approximation we obtain:

H(U1, . . . , Un)−H(Û1, . . . , Ûn) =

n∑

i=1

(Ui − Ûi)
∂H

∂Ui
(Û1, . . . , Ûn).

MSE(F (U1, . . . , Un), G(U1, . . . , Un)) =

n∑

i,j=1

MSE(Ui, Uj)
∂F

∂Ui
(Û1, . . . , Ûn)

∂G

∂Ui
(Û1, . . . , Ûn). (5)

For the bias we use a second order approximation and we get that:

F (U1, . . . , Un)− F (Û1, . . . , Ûn) =

n∑

i=1

(Ui − Ûi)
∂F

∂Ui
(Û1, . . . , Ûn) +

1

2

n∑

i,j=1

(Ui − Ûi)(Uj − Ûj)
∂2F

∂UiUj
(Û1, . . . , Ûn)

Thus, one has:

Bias(F (U1, . . . , Un)) =

n∑

i=1

Bias(Ui)
∂F

∂Ui
(Û1, . . . , Ûn) +

1

2

n∑

i,j=1

MSE(Ui, Uj)
∂2F

∂UiUj
(Û1, . . . , Ûn). (6)

The bias follows a second order differential calculus involving the mean square error.

The idea developed by Bouleau is to allow the errors to be random variables. The quadratic
error on each Ui is given by Γ(Ui, Ui) (shortly denoted by Γ(Ui)) where Γ is a bilinear
operator associated to the MSE and the bias by A(Ui), where A is a linear operator. This
representation would have the nice following property that if the sequence of pairs (Yn,Γ(Yn))
converges (in a certain sense) it should tends to (Y,Γ(Y )).

The rest of the paper is organized as follows. In Section 2, we present the mathematical
setup for error calculus. Then in Section 3, we present the model for credit spreads, the
expression of the P&L, the optimisation program and it solution. Finally, in section 4, we
apply the machinery of error calculus to determine the variance and bias of the allocation.
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2 Error Calculus

We now formalize the intuition exposed in the introduction. The axiomatization of random
uncertainty propagation was introduced by Bouleau [4] as follows:

Definition 1 (Error structure)

An error structure is a term
(
Ω̃, F̃ , P̃, D, Γ

)
, where

•
(
Ω̃, F̃ , P̃

)
is a probability space;

• D is a dense sub-vector space of L2
(
Ω̃, F̃ , P̃

)
such that for any function F of class

C1 and globally Lipschitz (afterward denoted C1∩Lip) and U ∈ D, one has F (U) ∈ D.

• Γ is a positive symmetric bilinear function from D × D into L1
(
Ω̃, F̃ , P̃

)
satisfying

the following functional calculus inspired by (5): for any functions F and G of class
C1 ∩ Lip and U, V ∈ Dn

Γ [F (U), G(V )] =

n∑

i,j=1

∂F

∂Ui
(U)

∂G

∂Uj
(V ) Γ[U, V ] P̃ a.s.; (7)

• the bilinear form E [U, V ] = 1
2 Ẽ [Γ[U, V ]] is closed, i.e. D equipped with the norm

|U |D =
(
Ẽ
[
U2
]
+ 1

2E [U, U ]
)1/2

is complete;

• the constant 1 belongs to D and E [1, 1] = 0

An error structure is a probability space equipped with a carré du champ operator Γ. We
generally write Γ[U ] for Γ[U, U ]. The Hille-Yosida theorem guarantees that there exists a
semigroup and a generator A that are coherent with the Dirichlet form E , see for instance

Albeverio [1] and Fukushima et al. [7]. This generator A : DA → L2
(
Ω̃, F̃ , P̃

)
is a self-

adjoint operator, its domain DA is included into D. It is such that for all U ∈ DA and

V ∈ L2
(
Ω̃, F̃ , P̃

)

E [U, V ] = −Ẽ [A[U ]V ] . (8)

Moreover this operator satisfies, for F ∈ C2 ∩ Lip, U ∈ DA, F (U) ∈ DA and Γ[U ] ∈
L2
(
Ω̃, F̃ , P̃

)
:

A [F (U)] =
n∑

i=1

∂F

∂Ui
(U)A[U ] +

1

2

n∑

i,j=1

∂2F

∂UiUj
(U) Γ[U ] P̃ a.s. . (9)

This equation is similar to (6). From (8), A is a closed operator with respect to the norm
| |D, in the sense that DA equipped with the norm | |D is complete.
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We introduce a basic example to show that the set of error structures is not empty and to
give some further intuitions about the different operator introduced above.

Example 1 (Ornstein-Uhlenbeck error structure)

The Ornstein-Uhlenbeck structure is (R, B(R), µ, D, Γ), where µ is unidimensional centered
Gaussian law and D := H1,2(µ), i.e. the first Sobolev space associated to L2(R, B(R), µ).
Here we choose a particular semi-group and we compute the associated generator and Dirich-
let form. To this end we introduce an auxiliary Ornstein-Hulenbeck process in a probability
space (ΩB,FB,PB) equipped with a Brownian motion B:

dXǫ = −1

2
Xǫdǫ+ dBǫ.

We denote by Xx
ǫ the solution of the preceding equation starting at some x. We then define

the semigroup as follows for all ω ∈ R:

Pǫ[U ](ω) = E
BU [Xx

ǫ |x = ω],

where EB is the expectation with respect to PB. Using Ito lemma, we have for U ∈ H2,2(µ):

Xx
ǫ = xe−

1

2
ǫ +

∫ ǫ

0

e−
1

2
(ǫ−s)dBs

U(Xx
ǫ ) = U(x)− 1

2

∫ ǫ

0

U ′(Xx
s )X

x
s ds+

1

2

∫ ǫ

0

U ′′(Xx
s )ds+

∫ ǫ

0

U ′(Xx
s )dBs (10)

< U(Xx) >ǫ =

∫ ǫ

0

(U ′(Xx
s ))

2
ds (11)

where <>ǫ denotes the quadratic variation operator. The generator A and the Dirichlet
form E associated to the semi-group Pǫ are given by (see [5] chapter II):

A[U ](ω) = lim
ǫ→0

Pǫ[U ](ω)− U(ω)

ǫ
=

1

2
U ′′(ω)− 1

2
ωU ′(ω) (12)

E [U ] = 〈−A[U ], U〉L2(µ) =
1

2

∫
(ωU ′(ω)− U ′′(ω))U(ω)dµ(ω)

=
1

2

∫
(U ′(ω))2dµ(ω) (13)

where (13) comes from integration by part formula (recall that µ is a centered gaussian law).

As E [U ] = 1
2 Ẽ [Γ[U, U ]], we deduce from (13) that Γ(U) = (U ′)2 for all U ∈ D. From (12),

the related generator is A[U ] = 1
2U

′′− 1
2Id ·U ′, where Id denotes the identity operator. Here

the domain DA := H2,2(µ), i.e. the second Sobolev space.

In this particular case, (7) and (9) are easy to obtain:

Γ [F (U), G(V )] (ω) = F ′(U)(ω)U ′(ω)G′(V )(ω)V ′(ω) = F ′(U)(ω)G′(V )(ω)Γ[U, V ](ω)

A [F (U)] (ω) =
1

2

(
F ′′(U)(ω) (U ′(ω))

2
+ F ′(U)(ω)U ′(ω)

)
− 1

2
(ωF ′(U)(ω)U ′(ω)) =

= F ′(U)(ω)A[U ](ω) +
1

2
F ′′(U)(ω)Γ[U ](ω)
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We finish this example with the following remark. In the introduction, we have associated
to the statistical notion of bias and mean squared error the operators A and Γ (see (3), (4)
and (5)). In this example we can do the other way around: it is easy to show that the A is
associated to a bias and Γ is associated to a mean square error in the following sense:

ǫA[U ](ω) = E
BU [Xx

ǫ − U(x)|x = ω]

ǫΓ[U ](ω) = E
BU [(Xx

ǫ − U(x))
2 |x = ω]

Afterwards, we will omit the explicit dependency on ω.

Remark 1 (Statistical interpretation)

It is possible to push further the analogy between statists and theory of Dirichlet forms used
to compute errors. In [6] it is shown that one can constructed confidence interval for some
random variable U using A[U ] and Γ[U ]. This is achieve by choosing an error structure
linked to Fisher’s information matrix.

The main drawback of the carré du champ operator Γ is its bi-linearity, which makes com-
putations awkward to perform. An easy way to overcome this drawback is to introduce a
new operator, called the gradient, see Bouleau and Hirsch [3], section II.6. We recall the
definition of gradient operator associated to Γ.

Proposition 1 (Gradient operator)

From now we assume that the space D is separable. Let
(
Ω̃, F̃ , P̃, D, Γ

)
be an error struc-

ture. Let
(
Ω, F , P

)
be an (independent) copy of

(
Ω̃, F̃ , P̃

)
and H = L2

(
Ω, F , P

)
be

an auxiliary Hilbert space equipped with scalar product < X, Y >H= E(XY ), where E is

the expectation computed under P. Let L2
((

Ω, F , P
)
, P̃
)
or shortly L2(P̃,H) the space of

L2
(
Ω, F , P

)
valued random variables equipped with the scalar product < A,B >L2(P̃,H)=

Ẽ[< A,B >H] = ẼE(AB). Then there exists a linear operator, called gradient and denoted

by ( )# : D → L2(P̃,H), with the following two properties:

∀U V ∈ D, Γ[U, V ] = < U#, V # >H= E
(
U#V #

)
(14)

∀U ∈ D
n, F ∈ C1 ∩ Lip, (F (U1, ... , Un))

# =
n∑

i=1

(
∂F

∂xi
◦ U
)
U

#
i (15)

The gradient operator is a useful tool when computing Γ because it is linear, whereas the
carré du champ operator is bilinear.

Let U ∈ D, by (14) and Definition 1 (item 4) ẼE[U#] = ẼΓ[U ] = 2E(U,U) and the gradient
operator is closed in the sense that D equipped with the norm | |D is complete.

In this paper, we will use frequently the two following straightforward lemmas:
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Lemma 1 (Chain rules for a product of random variables)

Let U and V ∈ D then

(UV )# = UV # + V U# (16)

Γ[UV ] = U2Γ[V ] + V 2Γ[U ] + 2UV Γ[U, V ] (17)

Moreover, if U and V ∈ DA, then

A[UV ] = UA[V ] + VA[U ] + Γ[U, V ] (18)

Proof: (16) follows from (15), (17) follows from (7) and (18) follows from (9). �

Lemma 2 (Expectation)

Let (Ω,F ,P) be a probability space, we will denote E the conditional expectation w.r.t. P.

Let U ∈ D ⊂ L2
(
Ω̃, F̃ , P̃

)
and V ∈ DA then one has

E[U#] = U#

E[A[V ]] = A[V ].

Let U, V ∈ D then one has

E[Γ[U, V ]] = Γ[U, V ].

Let V ∈ L2
(
Ω× Ω̃, F ⊗ F̃ , P⊗ P̃

)
such that V ∈ D and E[V ] ∈ D, one has:

(E[V ])# = E[V #].

Let V ∈ L2
(
Ω× Ω̃, F ⊗ F̃ , P⊗ P̃

)
such that V ∈ DA and E[V ] ∈ DA, one has:

A[E[V ]] = E[A[V ]].

Proof: Let U ∈ L1
(
Ω̃, F̃ , P̃

)
then E[U ] = U . So the first three equalities follow from

the fact that U# ∈ L2(P̃,H), A[V ] ∈ L2
(
Ω̃, F̃ , P̃

)
and Γ[U, V ] ∈ L1

(
Ω̃, F̃ , P̃

)
. For the

forth equation we use the fact that the gradient operator is closed and we can exchange the
gradient operator and the integral sign. The proof of this fact proceeds by an approximation
of the integral by a sum, then we apply the gradient operator and finally we take the limit
using the closeness of the gradient operator, see for instance Bouleau [4] section VI.2. Lemma
VI.8. The proof of the last equation is similar. �

We observe that the error theory based on Dirichlet forms restricts its analysis to the study of
the first two orders of error propagation, i.e. the bias and the variance. This fact is justified
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by the lack of information on the parameter uncertainties, generally given by the Fischer
information matrix, that is often quite limited. The study of higher orders is a very difficult
problem for both mathematical and practical reasons. From the mathematical point of view,
it would be necessary to study chain rules of higher orders, involving skewness and kurtosis,
and to prove that the related operators are closed in a suitable space. However, the crucial
problem remains to have sufficiently accurate estimates for the higher order uncertainties.
This statistical obstacle cannot be overcome easily. Therefore, it seems reasonable to restrict
the study to the two first orders.

3 Financial setup

We consider a continuous time financial model with K credit issuers and one synthetic
asset referred to as the benchmark. It represents the global evolution of the credit market.
Each credit issuer is characterized by its spread over the risk free rate. The uncertainty
is represented by a filtered probability space (Ω,F ,F := {Ft}t≥0,P) satisfying the usual
conditions. First, we define on this space a F-adapted, continuous-time, two-state valued
Markov chain, Y = (Yt)t≥0. The state space of the Markov chain is equal to {g, b}.
Let (W (t))t≥0 = (W0(t), . . . ,WK(t))t≥0 be a standard (F,P)-Brownian motion of dimension
K + 1. Let us define the K + 1-dimensional stochastic process (X(t))t≥0, with X(t) :=
(Xk(t))0≤k≤K . The process X0 represents the spread of the benchmark, the drift of which
µ0 is assumed to be a measurable function of the Markov chain Y :

dX0(t)

X0(t)
= µ0(Yt)dt+ σ0dW0(t),

X0(0) = x0

For all k ∈ {1, . . . ,K}, Θk = (Θk(t))t≥0 are F-adapted processes (thus influenced by Y ),
representing the unknown drift of Xk and:

dXk(t)

Xk(t)
= Θk(t)dt+ σk


ρkdW0(t) +

√
1− ρ2k

K∑

j=1

Lk,jdWj(t)




Xk(0) = xk

where L := [Li,j ] is a K × K lower triangular matrix, such that C := L · L′ is a (non-
degenerated) correlation matrix. It means that C := (Ci,j)1≤i,j≤K is a symmetric, semi-

definite positive matrix with unit diagonal coefficients. We also denote Z⊥
k (t) =

∑K
j=1 Lk,jWj(t).

It is a standard (F,P)-Brownian motion of dimension 1.

We introduce G := {Gt}t≥0 and G0 := {G0
t }t≥0, the right continuous, complete filtrations

generated respectively by the following processes:

Gt =σ{X0(s), X1(s), . . . , XK(s)|s ≤ t}
G0
t =σ{X0(s)|s ≤ t}
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Now we state the following assumptions which will prevail throughout the paper.

Assumption 1 We assume that W0 and Y are independent. We assume that the processes
µ0(Y ) and Θk are uniformly bounded and measurable. Finally σk > 0 for k = 0, . . . ,K and
−1 < ρk < 1 for k = 1, . . . ,K.

Assumption 2 Let pt := P
[
{Yt = b} | G0

t

]
, for any t ≥ 0. We assume that

pt = P [{Yt = b} |Gt] .

In [2], we have proved the following proposition.

Proposition 2 Under Assumptions 1 and 2,

dX0(t)

X0(t)
= E

{
µ0(Yt) | G0

t

}
dt+ σ0dŴ0(t)

dXk(t)

Xk(t)
=

(
E
{
µ0(Yt) | G0

t

}
+ ek(t)

)
dt+ σk

(
ρkdŴ0(t) +

√
1− ρ2kdẐ

⊥
k (t)

)
, (19)

where

ek(t) = E {Θk(t)|Gt} − E{µ0(Yt)|G0
t }

Ŵ0(t) = W0(t) +
1

σ0

∫ t

0

(
µ0(Ys)− E

{
µ0(Ys) | G0

s

})
ds

Ẑ⊥
k (t) = Z⊥

k (t) +
1

σk
√
1− ρ2k

∫ t

0

(
Θk(s)− E

{
µ0(Ys) | G0

s

}
− ek(t)

)
ds

− ρk√
1− ρ2k

∫ t

0

µ0(Ys)− E{µ0(Ys)|G0
s}

σ0
ds.

Ŵ0 is a (G0,P)-Brownian motion and for k = 1, . . . ,K, Ẑ⊥
k is a (G,P)-Brownian motion.

Moreover E
{
µ0(Yt) | G0

t

}
= (µ0(b)− µ0(g))pt + µ0(g), where (pt)t≥0 is solution of

dpt = [− (λb + λg) pt + λb] dt+
µ0(b)− µ0(g)

σ0
pt(1− pt)dŴ0(t).

The ek(t) are interpreted as the Gt-adapted views of the economic agent. Let

ǫk =
1

T

∫ T

0

ek(t)dt. (20)

Then from (19) and (20), we obtain that

Xk(T ) = xke
∫

T

0
(E{µ0(Yt) | G0

t })dt+Tǫk−
σ
k

2
T+σk

∫
T

0

(
ρkdŴ0(t)+

√
1−ρ2

k
dẐ⊥

k
(t)

)

, (21)
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In [2] the ǫk have been in a first time assumed to be constant. Now they are estimated with
some uncertainty and we will perform error calculus on them.

We assume that it is possible to invest in the benchmark and on each credit issuer through a
debt product - a bond or a CDS - the price of which at time t ≥ 0 is given by P (k)(t,Xk(t)),
k ∈ {0, . . . ,K}. Moreover, let us denote by Cap(t) the deterministic capitalisation factor at
time t for the risk free rate.

Assumption 3 The mappings P (k)(·, ·) from R+ × R+ to (0,∞) are, at least, twice con-
tinuously differentiable.

We will denote by Ṗ
(k)
1 (·, ·) its first order derivative with respect to the first variable, by

Ṗ
(k)
2 (·, ·) its first order derivative with respect to the second variable, and by P̈

(k)
2 (·, ·) its

second order derivative with respect to the second variable.

The P&L, at time t ≤ T , of a buy and hold position on the asset k ∈ {0, . . . ,K} is given by

P&Lk(t,Xk(t)) = P (k) (t,Xk(t))− P (k) (0, xk)× Cap(t). (22)

In [2], we have considered two alternative portfolio representations. The first one uses
the allocation on the assets to outperform the benchmark (benchmarked allocation): this
corresponds to the case ζ = 1. The second one is a simple allocation on the K assets with
no benchmark reference (total return allocation) and correspond to the case ζ = 0. For any
π ∈ R

K :

G(π, t,X(t)) :=

K∑

k=1

P&Lk(t,Xk(t))× πk − ζP&L0(t,X0(t)) (23)

Define for any (k, j) ∈ {0, . . . ,K}2,

Cov[k, j] := E {P&Lk(t)P&Lj(t)} −MkMj,

where for any k ∈ {0, . . . ,K}, Mk := E {P&Lk(t)}. Note that for ease of notation we drop
the time indexation. We also set

M := (Mk)1≤k≤K , Cov := (Cov[i, j])(i,j)∈{1,...,K}2 and Cov[0] := (Cov[0, k])k∈{1,...,K} .

Then V{G(π, T )} = π′ ·Cov ·π− 2ζπ′ ·Cov[0]+ ζ2Cov[0, 0] and E{G(π, T )} = π′ ·M − ζM0.
So the mean-variance program (P) solved by the investor can be written

(P) :





min
π∈RK

1

2
(π′ · Cov · π − ζπ′ · Cov[0]}

s.t. π′ ·M ≥ r + ζM0

and π′ · I = 1

where I is the element of RK with all its components equal to 1 and r > 0 is the return
budget constraint.
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Before solving the optimization program, we define the following quantities:

z1 := I′ · Cov−1 · I z2 :=M ′ · Cov−1 ·M z3 :=M ′ · Cov−1 · I
z4 := I′ · Cov−1 · Cov[0] z5 :=M ′ · Cov−1 · Cov[0] z6 := 1− ζz4
z7 = r + ζM0 − ζz5 z10 := (z1z2 − z23)

−1
(24)

Proposition 3 Assume that the following condition holds

z1z7 > z3z6, (25)

and that M is not co-linear to I. Then, the solution of (P) is given by

π∗ = Cov−1 · (ζCov[0] + µM − νI) . (26)

where

µ =
z7z1 − z6z3

z1z2 − z23
and ν =

z7z3 − z6z2

z1z2 − z23
,

Remark 2 In [2] we express (26) as a separation in two funds expressions (see (18) in
Proposition 2). Here π∗ is express with the Lagrange multipliers for ease of computation.

4 Error Calculus on the Optimal Allocation

We define the following quantities, for 1 ≤ k ≤ K and 0 ≤ j ≤ K:

φk := TEP

{
Xk(T )Ṗ

(k)
2 (T,Xk(T ))

}

ψk := T 2
E
P

{
X2

k(T )P̈
(k)
2 (T,Xk(T ))

}

Φk,j := TEP

{
Xk(T )Ṗ

(k)
2 (T,Xk(T ))P&Lj(T,Xj(T ))

}

Ψk,j := T 2
E
P

{
X2

k(T )P̈
(k)
2 (T,Xk(T ))P&Lj(T,Xj(T ))

}

Υkj := T 2
E
P

{
Xk(T )Xj(T )Ṗ

(k)
2 (T,Xk(T ))Ṗ

(j)
2 (T,Xj(T ))

}

The first result provides the sensitivity analysis for the expected returns M .

Proposition 4 (Sensitivity of the expected value of P&L) For any 1 ≤ k, j ≤ K,
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we have

P&L#
k (T,Xk) = Ṗ

(k)
2 (T,Xk(T ))TXk(T )ǫ

#
k (27a)

M
#
k = φkǫ

#
k (27b)

Γ[Mk,Mj] = φkφjΓ[ǫk, ǫj ] (27c)

Γ[P&Lk(T,Xk), P&Lj(T,Xj)] = Ṗ
(k)
2 (T,Xk(T ))Ṗ

(j)
2 (T,Xj(T )) (27d)

×T 2Xk(T )Xj(T )Γ[ǫk, ǫj ]

A[P&Lk(T,Xk)] = Ṗ
(k)
2 (T,Xk(T ))TXk(T )A[ǫk] (27e)

+
1

2
Ṗ

(k)
2 (T,Xk(T ))T

2Xk(T )Γ[ǫk]

+
1

2
P̈

(k)
2 (T,Xk(T ))T

2X2
k(T )Γ[ǫk]

A[Mk] = φkA[ǫk] +

(
1

2
Tφk +

1

2
ψk

)
Γ[ǫk] (27f)

Proof: From (21) and (15), we have X#
k (T ) = TXk(T )ǫ

#
k . Then (15) again gives (27a).

Equation (27b) comes from Lemma 2. For (27c) we use (27b) and (14). Moreover, (27d)
follows from (14) and (27a). Finally a direct application of bias chain rule (9) gives (27e)
and applying Lemma 2 we find Equation (27f). �

We state the following Proposition about the sensitivity of the variance covariance matrix.

Proposition 5 (Sensitivity of the variance covariance matrix) For any 1 ≤ k, j ≤
K, we have

Cov
#
kj = δCk,jǫ

#
k + δCj,kǫ

#
j (28)

Cov[0]#j = δCj,0ǫ
#
j (29)

Γ[Covkj , Covil] = δCk,jδ
C
i,lΓ[ǫk, ǫi] + δCj,kδ

C
i,lΓ[ǫj, ǫi] (30)

+δCk,jδ
C
l,iΓ[ǫk, ǫl] + δCj,kδ

C
l,iΓ[ǫj , ǫl]

A[Covkj ] = δCk,jA[ǫk] + δCj,kA[ǫj ] (31)

+αC
k,jΓ[ǫk] + αC

j,kΓ[ǫj ] + βC
kjΓ[ǫk, ǫj]

A[Cov[0]k] = δCk,0A[ǫk] + αC
k,0Γ[ǫk] (32)

where we set:

δCk,j := Φk,j − φkMj

αC
k,j :=

1

2
[TΦk,j +Ψk,j − (Tφk + ψk)Mj]

βC
kj := Υkj − φkφj

with 1 ≤ k ≤ K and 0 ≤ j ≤ K.
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Proof: This result is a direct consequence of Lemmas 1, 2 and Proposition 4. We recall
that as X0 does not depend on {ǫk}k=1,...K it is unaffected by drift estimation uncertainty.
�

Our optimal allocation depends on the inverse of the variance covariance matrix, see (26).

Proposition 6 (Sensitivity of the variance covariance matrix) For any 1 ≤ i, l,m, n ≤
K, we have

(
Cov−1

il

)#
=

∑

k

δCov−1

k,il ǫ
#
k (33a)

Γ[Cov−1
il , Cov

−1
mn] =

∑

kj

δCov−1

k,il δCov−1

j,mn Γ[ǫk, ǫj] (33b)

A[Cov−1
il ] =

∑

k

(
δCov−1

k,il A[ǫk] + αCov−1

k,il Γ[ǫk]
)
+
∑

kj

βCov−1

kj,il Γ[ǫk, ǫj ] (33c)

where

δCov−1

k,il := −
∑

m

(
Cov−1

ik Cov
−1
ml + Cov−1

imCov
−1
kl

)
δCk,m

αCov−1

k,il := −
∑

m

(
Cov−1

ik Cov
−1
ml + Cov−1

imCov
−1
kl

)
αC
k,m

βCov−1

kj,il := −Cov−1
ik Cov

−1
jl β

C
kj −

∑

m

(
Cov−1

ik δ
C
k,mδ

Cov−1

j,ml + Cov−1
imδ

C
j,mδ

Cov−1

k,jl

)

Proof: Note that Cov Cov−1 = I, where I (the identity matrix) is unaffected by the uncer-
tainty on the coefficients of Cov. Using (16), we find 0 = I# = Cov#Cov−1+Cov(Cov−1)#.
Using (28), (33a) follows. (33b) follows from (33a) and (14). From (18), we get that

0 = A[I] = A[CovCov−1] = A[Cov]Cov−1 + CovA[Cov−1] + Γ[Cov, Cov−1].

Thus, using (14) we get that

A[Cov−1] = −Cov−1 A[Cov]Cov−1 − Cov−1
E

(
Cov#(Cov−1)#

)

and we conclude using (28), and (33a). �

We turn now to study the sensitivity of zi, see relations (24), we remark that only the
sensitivities of z1 to z5 need to be computed since z6 and z7 are linear combination of z1 to
z5.

Proposition 7 (Sensitivity of zi) For a = 1, . . . , 5, we have

z#a =
∑

k

δzak ǫ
#
k

A[za] =
∑

k

δzak A[ǫk] +
∑

k

αza
k Γ[ǫk] +

∑

kj

βza
kjΓ[ǫk, ǫj]
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where all sum are taken from 1 to K and

δz1k :=
∑

il

δCov−1

k,il αz1
k :=

∑

il

αCov−1

k,il βz1
kj :=

∑

il

βCov−1

kj,il

δz2k :=
∑

il

Miδ
Cov−1

k,il Ml + 2
∑

i

φk Cov
−1
ki Mi

αz2
k :=

∑

il

Miα
Cov−1

k,il Ml + (Tφk + ψk)
∑

i

MiCov
−1
ik

βz2
kj :=

∑

il

Miβ
Cov−1

kj,il Ml + 2
∑

i

φjMiδ
Cov−1

k,ij + Cov−1
jk φjφk

δz3k :=
∑

i

φk Cov
−1
ki +

∑

il

δCov−1

k,il Mi

αz3
k :=

∑

il

Miα
Cov−1

k,il +
∑

i

1

2
(Tφk + ψk)Cov

−1
ki

βz3
kj :=

∑

il

Miβ
Cov−1

kj,il +
∑

i

φkδ
Cov−1

j,ki

δz4k :=
∑

il

δCov−1

k,il Cov[0]l +
∑

i

δCk,0Cov
−1
ik

αz4
k :=

∑

il

αCov−1

k,il Cov[0]l +
∑

i

αC
k,0Cov

−1
ik

βz4
kj :=

∑

il

βCov−1

kj,il Cov[0]l ++
∑

i

δCj,0δ
Cov−1

k,ij

δz5k :=
∑

il

Miδ
Cov−1

k,il Cov[0]l +
∑

i

MiCov
−1
ik δ

C
k,0 +

∑

i

φkCov
−1
ki Cov[0]i

αz5
k :=

∑

il

Miα
Cov−1

k,il Cov[0]l +
∑

i

MiCov
−1
ik α

C
k,0 +

1

2
(Tφk + ψk)

∑

i

Cov−1
ki Cov[0]i

βz5
kj :=

∑

il

Miβ
Cov−1

kj,il Cov[0]l +
∑

i

Miδ
C
j,0δ

Cov−1

k,ij +
∑

i

δCov−1

k,ji φjCov[0]i + Cov−1
jk φjδ

C
k,0

Proof: The proof is similar to the proof of Proposition 6 and is based on Propositions 4, 5,
6 and Lemma 1 (recall also the definitions (24)). �

Remark 3 From (24), z#6 = −ζz#4 and A[z6] = −ζA[z4] and we set

δz6k := −ζδz4k αz6
k := −ζαz4

k βz6
kj := −ζβz4

kj

Similarly, z#7 = −ζz#5 and A[z7] = −ζA[z5] and we set

δz7k := −ζδz5k αz7
k := −ζαz5

k βz7
kj := −ζβz5

kj
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The following corollary comes directly from Proposition 7 together with (9).

Corollary 1 (Sensitivity of µ and ν) We have

µ# =
∑

k

δ
µ
k ǫ

#
k

ν# =
∑

k

δνkǫ
#
k

A[µ] =
∑

k

δ
µ
kA[ǫk] +

∑

k

α
µ
kΓ[ǫk] +

∑

k,j

(βµ
kj + χ

µ
kj)Γ[ǫk, ǫj ]

A[ν] =
∑

k

δνkA[ǫk] +
∑

k

αν
kΓ[ǫk] +

∑

kj

(βν
kj + χν

kj)Γ[ǫk, ǫj]

where

δ
µ
k :=

∑

a=1,...,5

∂µ

∂za
δzak α

µ
k :=

∑

a=1,...,5

∂µ

∂za
αza
k β

µ
kj :=

∑

a=1,...,5

∂µ

∂za
βza
kj

δνk :=
∑

a=1,...,5

∂ν

∂za
δzak αν

k :=
∑

a=1,...,5

∂ν

∂za
αza
k βν

kj :=
∑

a=1,...,5

∂ν

∂za
βza
kj

χ
µ
kj :=

1

2

∑

a,b=1,...,5

∂2µ

∂za∂zb
δz

a

k δz
b

j χν
kj :=

1

2

∑

a,b=1,...,5

∂2ν

∂za∂zb
δz

a

k δz
b

j

All derivatives are listed in appendix for sake of completeness.

We are now in position to state the result giving the sensitivity analysis of the optimal
allocation π∗.

Theorem 1 (Sensitivity of the optimal strategy) Let π∗ be the solution of Program
(P), given by Proposition 3. We get that:

(π∗
i )

# =
∑

k

δπk,iǫ
#
k

Γ[π∗
i , π

∗
l ] =

∑

kj

δπk,iδ
π
j,lΓ[ǫk, ǫj ]

Γ[π∗
i ,Ml] =

∑

k

δπk,iφlΓ[ǫk, ǫl]

A[π∗
i ] =

∑

k

δπk,iA[ǫk] +
∑

k

απ
k,iΓ[ǫk] +

∑

kj

βπ
kj,iΓ[ǫk, ǫj ]
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where

δπk,i :=
∑

l

δCov−1

k,il (ζCov[0]l + µMl − ν) (37a)

+
∑

l

Cov−1
il (δµkMl − δνk) + Cov−1

ik

(
ζδCk,0 + µφk

)

απ
k,i :=

∑

l

αCov−1

k,il (ζCov[0]l + µMl − ν) +
∑

l

Cov−1
il (Mlα

µ
k − αν

k) (37b)

+Cov−1
ik

[
ζαC

k,0 +
1

2
µ (Tφk + ψk)

]

βπ
kj,i :=

∑

l

βCov−1

kj,il (ζCov[0]l + µMl − ν) +
∑

l

δCov−1

k,il

(
δ
µ
jMl − δνj

)
(37c)

+
∑

l

Cov−1
il

(
Mlχ

µ
kj +Mlβ

µ
kj − χν

kj − βν
kj

)
+ δCov−1

k,ij

(
ζδCj,0 + µφj

)

+Cov−1
ik φkδ

µ
j

Proof: Again the proof is similar to the previous ones. We apply Propositions 4, 5, 6, 7,
Corollary 1, Lemma 1 together with (9) and (14). �

Let us provide a corollary the same analysis for the optimal return.

Corollary 2 With the notations of Theorem 1, let R∗ be the optimal return defined by
R∗ :=M ′π∗. Then we get that:

(R∗)# =
∑

k

(
φkπ

∗
k +

∑

i

δπk,iMi

)
ǫ
#
k

Γ[R∗] =
∑

k,j

(
φkπ

∗
k +

∑

i

δπk,iMi

)(
φjπ

∗
j +

∑

i

δπj,iMi

)
Γ[ǫk, ǫj]

A[R∗] =
∑

k

(
φkπ

∗
k +

∑

i

δπk,iMi

)
A[ǫk] +

∑

k

(∑

i

απ
k,iMi +

1

2
(Tφk + ψk)π

∗
k

)
Γ[ǫk]

+
∑

k,j

(
δπk,jφj +

∑

i

βπ
kj,iMi

)
Γ[ǫk, ǫj ]
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A Explicit derivatives of ν and µ

∂ν

∂z1
= −νz2z10

∂ν

∂z2
= −µz3z10

∂ν

∂z3
= νz3z10 + µz2z10

∂ν

∂z4
= ζz2z10

∂ν

∂z5
= −ζz3z10

∂µ

∂z1
= −νz3z10

∂µ

∂z2
= −µz1z10

∂µ

∂z3
= νz1z10 + µz3z10

∂µ

∂z4
= ζz3z10

∂µ

∂z5
= −ζz1z10
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∂2ν

∂z21
= 2νz22z

2
10

∂2ν

∂z1∂z2
= (νz1 + µz3)z2z

2
10 − νz10

∂2ν

∂z1∂z3
= −(3νz2 + µz2)z2z

2
10

∂2ν

∂z1∂z4
= −ζz22z210

∂2ν

∂z1∂z5
= ζz2z3z

2
10

∂2ν

∂z22
= 2µz1z3z

2
10

∂2ν

∂z2∂z3
= −(νz1 + 3µz3)z3z

2
10 − µz10

∂2ν

∂z2∂z4
= −ζz23z210

∂2ν

∂z2∂z5
= ζz1z3z

2
10

∂2ν

∂z23
= [ν(3z23 + z1z2) + 4µz2z3]z

2
10 + νz10

∂2ν

∂z3∂z4
= 2ζz2z3z

2
10

∂2ν

∂z3∂z5
= −ζ(z23 + z1z2)z

2
10

∂2ν

∂z24
=

∂2ν

∂z25
=

∂2ν

∂z4∂z5
= 0
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∂2µ

∂z21
= 2νz2z3z

2
10

∂2µ

∂z1∂z2
= (µz3 + νz1)z3z

2
10

∂2µ

∂z1∂z3
= −(3νz3 + µz2)z3z

2
10 − νz10

∂2µ

∂z1∂z4
= −ζz2z3z210

∂2µ

∂z1∂z5
= ζz23z

2
10

∂2µ

∂z22
= 2µz21z

2
10

∂2µ

∂z2∂z3
= −(3µz3 + νz1)z1z

2
10

∂2µ

∂z2∂z4
= −ζz1z3z210

∂2µ

∂z2∂z5
= ζz21z

2
10

∂2µ

∂z23
= [2µ(z23 + z1z2) + 4νz1z3]z

2
10

∂2µ

∂z3∂z4
= ζz10(1 + 2z23z10)

∂2µ

∂z3∂z5
= −2ζz1z3z

2
10

∂2µ

∂z24
=

∂2µ

∂z25
=

∂2µ

∂z4∂z5
= 0
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