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Junction of ferromagnetic thin films

Antonio Gaudiello*and Rejeb Hadiji'

Abstract

In this paper, starting from the classical 3D micromagnetic energy, we determine,
via an asymptotic analysis, the free energy of two joined ferromagnetic thin films. We
distinguish different regimes depending on the limit of the ratio between the small
thicknesses of the two films.
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1 Introduction

In this paper, starting from the classical 3D micromagnetic energy (see W. F. Brown [5] and
L. D. Landau and E. M. Lifshitz [18]), we determine, via an asymptotic analysis, the free
energy of two joined ferromagnetic thin films. Precisely, let
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Q, = (]—%,%lx]—%,%[x[0,1[>U(]—%,%Fx}—hiﬁ[), neN,

be a 3D ferromagnetic multidomain consisting of two orthogonal joined films, as in figure,
with small thicknesses h¢ and h®, respectively, where h¢ and h® are two positive parameters
tending to zero, as n diverges. For instance, such a structure appears as a component of
a rotor of a permanent magnetic synchronous micro-machine (see S. S. Irudayaraj and A.
Emadi [15]). In general, magnetic thin-film elements are used in many applications: inductive
thin films heads in magnetic recording, megnetoresistive sensors, thin films memories, etc.
About this subject we refer to A. Hubert and R. Schafer [14] and the references quoted
therein. The aim of our paper is to study the asymptotic behavior, as n diverges, of the
following non-convex, nonlocal variational problem:

1
J, = min {/ (a|DM|2 + (M) + 5 DUMM — 2FnM> dr: M € H(Q,, 52)} :
Qn

div(—=DUy + M) =0 in R?,

where « is a positive constant, ¢ : S? — [0, +o00[ is a continuous and even function, F, €
L?*(Q,,R3), and S? denotes the unit sphere of R3. Moreover, it is understood that M = 0 in
R3\ Q,. As we shall prove, the limit problem depends on the limit of the ratio between the
thicknesses h? and hZ.

In classical theory of micromagnetics, M : Q,, — R? denotes the magnetization and the
body is always locally magnetized to a saturation magnetization |M (z)| = m(T) > 0 unless
the local temperature T is greater or equal to Curie temperature depending on the body,
in the latter case m(7T) = 0, and the material ceases to behave ferromagnetically. In this
paper we suppose constant temperature lower than Curie temperature and, without loss of
generality, we assume that m = 1, that is M(z) € S?. The exchange energy an |DM|?dz
penalizes the spatial variation of M, driving the body to have large regions of uniform
magnetization separated by thin transition layers. The scalar function Uy, : R® — R is the
so-called magnetostatic potential. The magnetostatic energy [, DUyMdx = [, |DUy|*dx
favors divM = 0 in Q, and M -v = 0 on 0f),, where v is the exterior unit normal to
0%),. The constant « is typically on order of 100 nanometers and measures the relative
strength of exchange energy with respect to the magnetostatic energy. The anisotropy energy
an (M )dx favors magnetization along special crystallographic directions, while the external
(Zeeman) energy an F,,Mdx favors magnetization parallel to an externally applied field.

After having reformulated the problem on a fixed domain through appropriate rescalings
of the kind proposed by P.G. Ciarlet and P. Destuynder [7] and having imposed appropriate
convergence assumptions on the rescaled exterior fields, using the main ideas of I'-convergence

method introduced by E. De Giorgi [8], we derive the limit problem which depends on the
hb
limit limh—z = q € [0, +0o0]. Precisely, when ¢ €]0, +o0[ (i.e. h? ~ h2), in Theorem 4.1 we

n
n



prove that

1
. 1 a 2 a
min { / . (a [(Day | Dayt®) [ + 0 (u®) + Sl =2 | f (fvwzaws)drmu"“) d(s, 73)
1-5,5[x]0,1]

1
2

2 1 0
: (0‘ | (Do, 1| Dy i) | + @ (1”) + 5\#3’2 - 2/ fb($1>x2a$3)d$3ub) d(y, z2),
—1

—~
=
. IS}
=
S
S~—
m
=
| S
|
D=
N
X
=
—_
N
[\
~—
X
T
[E—
|
N
N |
L—
[N}
U
no
N—
=
S
—~
=]
»
(an)
SN—
|
=
o>
—~
=
8
[}
~—
—-
=
| S
|
N[
N

|

where f¢ and f° (see (3.6) and (3.9)) are the L?-weak limits of the rescaled exterior fields in
the vertical domain and in the horizontal domain, respectively, while u§ and p§ are the first
and the third component of p® and u°, respectively. Remark that h% + h® is the measure of
Q,,. We obtain two 2D problems coupled by the junction condition u®(xs,0) = p°(0,x5) in

] — 3, 3[. Moreover, the magnetostatic energy transforms into 3 (J}—%,%[X}O,I[ |ps|2d (g, 23)+

qf11p |\18)2d(zy, x2)>, so that the limit problem is completely local. It is easy to see that,
272

if o =0, f* =0and f° = 0, then the minimum in the limit problem is zero and it is attained

by ((0,1,0),(0,1,0)) and ((0,—1,0), (0, —1,0)), i.e. the limit magnetization is parallel to the

two orthogonal thin films.

In the other two cases, the structure behaves like a single thin film. Precisely, when ¢ = 0

(i.e. h® < h2), in Theorem 4.2 we prove that the limit problem reduces to a 2D problem in
the vertical thin film losing the junction condition:

lim In
n he+ hb

: a a a 1 a
— min { Lo (U0 D) 4 ol + Gl ) daa, )+
1=3,3[x]0,1]

1
2

/ (—2 fa(l'l,._'lfz,l‘g)dﬂfl,l,ta) d(zy,x3): p*€ H (}—%, %[ x |0, 1[,52) }
J=3,53[x]0,1] —3

In this case, if ¢ = 0 and f* = 0, then the minimum in the limit problem is zero and it
is attained by constant functions (0, co,c3) € S?, i.e. the limit magnetization is contained
in the vertical plane, but its orientation is undetermined. Analogously, when ¢ = +oo (i.e.
h® > h?), in Theorem 4.3 we prove that the limit problem reduces to a 2D problem in the
horizontal thin film:

. Jn . 2 1
hyrln e = min { /_ . (Oé |(Dm1,ub|Dm2,ub)‘ +o(u’) + §|Mg|2> d(xy, 2)+

/

0
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In all three cases, strong convergences in H'-norm are obtained for the rescaled magnetization
and in L?norm for the gradient of the rescaled magnetostatic potential.

The proofs of these results are developed in several steps. In the case ¢ €]0, +00], we begin
by proving, in Subsection 5.1, a general convergence result for the magnetostatic energy. The
proof of this result has the framework of the proof of Proposition 4.1 in G. Gioia and R.
D. James [12], but in our case we have to build couples of test functions satisfying suitable
junction conditions between the two films. In Subsection 5.2, we obtain classical a priori
estimates on the magnetization providing the converges of the magnetization to a couple

(ue,n) € HY(] — 1,4[x]0,1[, $%) x H'(] — 5,3[%,57%). A real difficulty is to recover the

?
junction condition /%afxg, 0) = a°(0,x2) in | — 3, 3[. It is obtained in Subsection 5.3 through
a suitable splitting of the trace and deducing sharp estimates for this. The crucial point
of this paper is the density result in Subsection 5.4, where we approximate couples of H!
maps, with values in S2, defined on the two 2D limit domains and with the same trace on
the line joining the two orthogonal thin films, by couples of regular maps, with values in

5?2, satisfying the same junction condition. This result is not trivial since our limit domain

({0} x [-3,3] x [0,1]) U ([—%, %]2 X {0}) is not a manifold and its elaborate proof is based
on the combination of an approximation result proved by F. Bethuel and X. Zheng [4] with
splitting techniques introduced by H. Le Dret [19] and with a projection technique from R?
into S% as in R. Hardt, D. Kinderlehrer and F. H. Lin [13]. In Subsection 5.5, combining
convex arguments with projection techniques as we used in [10] and with the convergence of
the magnetostatic energy, we build a recovery sequence for a generic regular couple in the
limit space and, by virtue of the density result, we conclude the proof in the case ¢ €]0, +o0[.

Section 6 is devoted to the cases ¢ = 0 and ¢ = +o0.

In what concerns the study of a single ferromagnetic thin film, several results are present
in literature. The fact that the magnetostatic energy behaves, at the limit, like an anisotropic
local term which forces the magnetization to be tangent to the thin film was proved, for the
first time, by G. Gioia and R. D. James [12]. This result was extended by C. Leone and R.
Alicandro [1] to the case with non-convex exchange energy, and by M. Bafa and E. Zappale
[3] to a thin film with nonhomogeneous profile. The time-dependent case was treated by H.
Ammari, L. Halpern and K. Hamdache [2], and by G. Carbou [6]. Very different regimes
were considered by A. Desimone, R.V. Kohn, S. Muller and F. Otto [9], and by R.V. Kohn
and V.V. Slastikov in [17], where % and § vanish, h being the film thickness, [ the in-plane
diameter and « the exchange length of the ferromagnetic material.

Our paper is, to our knowledge, the first work on the junction of ferromagnetic thin
bodies, unless we consider papers [10] and [11] where we developed an asymptotic analysis
of minimizing maps with values in S? for the energy fcn(|DM|2 — 2F, M)dzx, neglecting the
term with the nonlocal magnetostatic energy. The geometry of C,, consists of two cylinders
attached together that shrink respectively to a segment and to a 2D disc in the first paper,
while the two cylinders transform into a T-shaped domain in the second one. The limit
problem is uncoupled in the former, while it is coupled in the latter.



2 The setting of the problem

In the sequel, z = (x1, 75, 23) denotes the generic point of R3. If a,b,c € R3, then (a|b|c)
denotes the 3 x 3 real matrix having a” as first column, b7 as second column, and ¢! as
third column. In according to this notation, if v : A C R3® — R?, then Dv denotes the 3 x 3
real matrix (D,,v|D,,v|D,,v), where D, v € R3, i=1,2.3, stands for the derivative of v with
respect to x;. Moreover, ¥ denotes the zero-extension of v to R3.

Let {he},ens {h5}, o €10, 1] be two sequences such that

lim A% = 0 = lim A2,

Y (2.1)
limh—z =q € [0, 400,
and, for every n € N, let Q2 =] — %,%[x] — L AIx[0,1, @8 =] — 1, 1[*x] — h%,0[ and

Q, =Q2 Ul asin figure.
Let B be an interval containing €, for every n € N, for instance let B =|—1,1[*x]—2, 2|,
and for every n € N, set

U= {U € L, (R*:U e L*(B), DU € (L*(R%))?, /Bde = o} :

It is easy to prove that U is contained in L7 (R?) and it is a Hilbert space with the inner
product: (U, V) = [z DUDVdx + [,UVdz. Moreover, from the Poincaré-Wirtinger in-

1 1
equality it follows that a norm on U equivalent to (U, U)?z is given by ( Jgs |IDU \2d:1:) 2. Then,
Lax-Milgram Theorem provides that, for M € L*(Q,,R3), the following equation:

UM,n eEU,

/ (—DUpp + M)DUdz = 0, YU € U,\.
R3

admits a unique solution and Uy, is characterized as the unique minimizer of the following
problem:

1 —
min{— ]DU—M|2dx:U€U}.
2 Jas

Moreover, Uy belongs to H*(R?) (see [16]).
Let a be a positive constant, ¢ : S? — [0, +00[ be a continuous, even function and, for
every n € N, F,, € L*(Q,,, R?). The following problem:

1
min {/ (a!DM]Q + (M) + QDUM,HM — 2FnM) dr: M € H'(Q,, 52)} : (2.2)
has at least one solution (see [20]). In general, one can not expect a unique solution, because
of the non-convexity of the constraint M (z) € S2. The aim of this paper is to study the
asymptotic behavior, as n diverges, of problem (2.2). As we shall show, its asymptotic

behavior depends on the limit ¢ given in (2.1) and on some assumptions on F,.
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3 The rescaled problem

As it is usual (see [7]), problem (2.2) will be reformulated on a fixed domain through the
following rescalings:

1 1 1] 1 117

(x1,29,23) € Q"= | —=, = | X |—=, = | X]0,1[— (hlxy, z9,x3) € Int(Q%),
2720 | 272
1 1 1] ] 11

(1,22, 23) € Q" = BGD) [ X BGD) x] = 1,0[— (z1, 29, h)xs) € ),

where Int(2%) denotes the interior of Q2. Moreover, the energy will be multiplied by hia
when ¢ # 400 , by hi,, when ¢ = +o0o0. Namely, let R? = {(z1,29,25) € R® : 253 > O}n,
R?® = {(x1,29,73) € R : r3 < 0} and, for every n € N, B =] — é,%[x] —1,1[x]0, 2],
Bt =] —1,1[*x] — hl%,o[ and

U, ={ u=(u*u) €Ll (RY) x L} (R?) :

loc

(uf ) € LA(BY) x LA(BY), (Dut, Du) € (LA(RY))? x (LA(R2))

B}

hb
/ udx + —"/ ubdxr = 0,
B h Jge

a
n

(3.1)

u(z1, 22,0) = uP(hlxq, 22,0), for (z1,2) a.e. in R?}.

Then, for every m = (m® m®) € L*(Q, R?) x L?(Q° R?), the following equation:

1 —~ 1
/]RS (— <ﬁDm1ufn’n, Dmuam’n, D$3u$n,n) —+ m“) <ED$1UQ’ szu“7 DJDSUG) dr+
+ n n

h 1 ~ 1
n (— (Dzlu%n, Dyt s h—beSuim> +mb) (leub, D,,u h—szgub) dx =0,

hg Jr3

| Vu = (u*,u’) € U,.
(3.2)
admits a unique solution and u,,, = (u? ,,u’ ) € U, is characterized as the the unique

solution of the following problem: , ’

Jmn (Umn) = Min {jm o (u) ©u € Un}, (3.3)



where
2

1 1 —

jmn U= (ua’ub) € un -3 <_Dx1ua7Dm2uaan3ua) _ma dZC+

o 2 Jrs |\ g
(3.4)

1ht 1 ~1?

§h_% . '(Dxlub,Dmub, h—%D%ub) —mb| dz.

Remark that wy,, = (U ., ub, ,) belongs to H'(R%) x H'(R?).
For every n € N, let

M, ={ m=(m",mb) e H'(Q,S?) x H(Q, S?) :

(3.5)
m(xy,22,0) = mP(hexy, 29,0), for (z1,2,) a.e. in | — %, %[2},

fi(x) = F,(h%xy, x9,23), for z a.e. in Q7
fo:x€Q U — f(2) = (3.6)
f2(z) = F,(z1, 22, h2x3), for x a.e. in Q°,

and
E,:m= (m*m’) € M, —

(e
L L Dy u® Dy u® . D..u’ ) de+
5 . ]’L_% xlum,rw $2um,n7 fﬂsum,n m T (37)
hb ?
he Jor \*

1R 1
S ; ((Dxlufmn, Doyl h—be?)ufmn) m") da.

Then, the function defined by

1 2

(WDmlmqugmquma)

+ ¢(m*) — 2f$m“) dr—+

+ p(m”) — 2ff~imb> dx+

1
(Dxlmb‘ngmb ’ h_begmb)

M, (htxq,x9,23), for z a.e. in Q%

M, (x1, 29, hx3), for x a.e. in O,
with M, solution of problem (2.2), is a solution of the following problem:
min {E,(m) : m € M, }. (3.8)

Actually, the goal of this paper becomes to study the asymptotic behavior, as n diverges, of
problem (3.8). To this aim, it will be assumed that

o — f* weakly in L*(Q%, R?), I — f° weakly in L*(Q°,R?). (3.9)



Remark that, setting for every n € N
By :m = (m",m’) € L*(Q",R?) x L*(Q",R®) —

2

1 1

a _Dﬂﬂ u?nrmDJ»‘ u?nn"Dx‘u%”Ln dI+

2 o |t et D) o1

1ht 1 2

2 h /R 3 <Dw1ufm, Dy, s h—gDmufmn) d,

from (3.2) it follows that
1 a a a ? a a a
Ey(m) =/ (a (EDmm | Dgym| Dy, ) + @(m?) = 2fym ) dz+

2 (3.11)

1
<Dx1mb’Dm2mb‘ h_megmb)

hb
hg Jo \”

E™(m), VYm = (m*m’) e M,, ¥ncN.

+ p(m”) — 2ffim”> dr+

4 The main results

Let
M= { = (o, i) € H'(20, 5%) x HY(Q, 5°) ;

p® is independent of z;, i’ is independent of w3,

1(0, ,0) = p¥(0,22,0), for x5 ace. in ] — 1,

N[ =

[} ~ (4.1)
{i=(ue, ) € HY() = £, 3[x10,1[,8%) x H' (1=, 8?)

[}

p(2,0) = pb(0, x5), for x4 a.e. in | —
and, for ¢ €]0, +oo[, let

[N
N

)

Eyip=(p'p') e M —

/

2 1 0
q/ e (04 | (Da [ Daypt”) |+ (") + 5 gl — 2/ fb(xhxz,xs)dl’sub) d(z1, ),
]7575 -1

11
2°2

1
1 2
o (a (Do 11| Dy ™) + (1) + 5!#?!2 -2 fUwy, 2, asg)dxlu“> d(wa, x3)+
x]0,1

1
2

(4.2)
then this paper is essentially devoted to prove the following result:
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Theorem 4.1. Assume (2.1) with q €]0, 400 and (3.9). For everyn € N let m,, = (m2, m?)

be a solution of (3.8) and uy, n = (ug, ub ) be the unique solution of (3.3) correspondmg

to m,,. Moreover, let M and E, be deﬁned by (4.1) and (4.2), respectwely Then, there exist
an increasing sequence of positive integer numbers {n;}ien and i = (u*, %) € M, depending

on the selected subsequence, such that

mé — [i* stongly in H'(Q*,5?),

(4.3)
mb — ¥ strongly in H'(QP, S?),
1 a ; 2 a 3
EDxlmn — 0 stongly in L*(2* R?),
(4.4)
1
h—gngmz — 0 strongly in L?(Q°, R3),
LD, pe, D 0, D 0 strongly in L*(R
h_a_ xlumni,ni - M1, $2um n Y ﬂfsum n strongly mm ( +)7
1 (4.5)
1 vt .
Dyup, =0, Dyyup, =0, hTD%ubmni,m — 1% strongly in L*(R?),
as i and n diverge, and ji is a solution of the following problem:
Ey(1) = min {E¢(p) : p € M}, (4.6)

where ﬁl; and ﬁg denote the zero-extension of ¢ and 14 to R®, respectively. Moreover, it
results that

lim E,(m,) = E, (7). (47)
In this paper we also study the cases ¢ = 0 and ¢ = 4+00. Precisely, in the case ¢ = 0, let
Mo = {p* € H(Q*,5?) : u* is independent of z1, } ~ H'(] — 3, 3[x]0,1[, 5?) (4.8)

and

EO:/LGGMOH

/

then the following result will be proved:

a a a 1 a % a a
(a (Do 1| D ™) |* + 0 (%) + §|ul|2 =2 [ [, @, ws)daap > d(xa, x3),
)
(4.9)

3551101

Theorem 4.2. Assume (2.1) with ¢ =0 and (3.9). For everyn € N let m,, = (m2,mb%) be a
solution of (3.8) and um, » = (uly ,,ub, ) be the unique solution of (3. 3) corresponding to

mn7mn

m,,. Moreover, let M, and Ey be defined by (4.8) and (4.9), respectively. Then, there exist



an increasing sequence of positive integer numbers {n;};en and p* € My, depending on the
selected subsequence, such that

mé — [i* stongly in H'(Q*, S?),

. (4.10)
h 2
(h_z> mb — 0 strongly in H'(QP, 5?),
1 a ; 2(0Oa 3
h—aDzlmn — 0 stongly in L*(2*, R?),
X (4.11)
1 hb 2
7 (h—2> D,,mb — 0 strongly in L*(Q°,R3),
1 —
h—qulu“mni,ni — g, Dyup, ,,— 0, Dyuy, ,— 0 strongly in L*(RY),
A hb\ 2 1 [(hb\? (4.12)
(32) Pestn = (5g) Posbin=n () Do =0
L strongly in L*(R?),
as i and n diverge, and u® is a solution of the following problem:
Eo(p®) = min {Ey(u®) : p* € My}, (4.13)
where ﬁ% denotes the zero-extension of . Moreover, it results that
lim £, (m,) = Eo(i*)- (4.14)
In the case ¢ = +0o0, let
Moo = {pb € H(QP,5?) : pi* is independent of z3, } ~ H'(] — 1,12, 5?) (4.15)

and

Eoo:ubEMooﬁ

/

then the following result will be proved:

2 1 0
<0‘ | (D p| D ”) | 4+ p(1t”) + §|Mg|2 - 2/ o, $2>$3)dfﬂ3ﬂb) d(xy1, x2),
-1

(4.16)

hip

Theorem 4.3. Assume (2.1) with ¢ = +o00, and (3.9). For every n € N let m,, = (m2, m?)
be a solution of (3.8) and um, , = (u%, ., ub, ) be the unique solution of (3.3) corresponding

m,,n 'm,_n

to m,,. Moreover, let My, and E, bzndeﬁnza by (4.15) and (4.16), respectively. Then, there

10



exist an increasing sequence of positive integer numbers {n;}ien and [’ € My, depending
on the selected subsequence, such that

he\ ®
<h_g> m% — 0 stongly in H'(Q° 52)7

mb — [° strongly in H'(Q, S?),

1 (h\*
— <—"> D,,m® — 0 stongly in L*(Q* R3),

hi \ b3,
1p m? — 0 strongly in L*(Q°, R?)
hl;L T3—=—"n gty ’ )
1 h’raz % a hfrlz 2 a h% % a : 23
A Dy, 5 — 0, m Dyytigy 7 — 0, 7 Dyup, ., — 0 strongly in L*(R%),
1 = ,
Dg,uy, =0, Dyyup,  —0, hTD%ubmnm — % strongly in L*(R?),

as i and n diverge, and [1° is a solution of the following problem.:
Eoo(fi®) = min { B () : p* € Moo}, (4.17)

where /ig denotes the zero-extension of 1i5. Moreover, it results that

i (25, ) = Eu )

n

5 The case g €]0, +o00|

The proof of Theorem 4.1 will be developed in several steps. We begin by proving a gen-
eral convergence result for the magnetostatic energy. Its proof is inspired by the proof of
Proposition 4.1 in [12], but we have to build couples of test functions satisfying the junction
condition in (3.1).

5.1 A Convergence result for the magnetostatic energy

Proposition 5.1. Assume (2.1) with q €]0,+o00[. Let {m,, = (m%, m%)}en C L*(Q% R3) x
LY Q" R?) and p = (u%, 1) = ((uf, 15, 15, ), (13, 15, 13)) € L*(Q%,R?) x L2(Q",R?) be such
that

(mg, my,) — (u, u°) strongly in L*(Q°,R?) x L*(Q",R?), (5.1)

n

11



a b

as n diverges. Moreover, for everyn € N let uy, » = (us, ., u,, ,) be the unique solution of
— n’ oy

(8.3) corresponding to m,,, and let E™9 be defined by (3.10). Then, it results that

n’

1 _

ﬁDzluamn,n - :U’Cll7 Dwzuamn,n - 07 Dmsuamn,n —0 St’l”Oﬂgly n L2<Ri)7
(5.2)

1 ~
Dy, =0, Dyyup, , —0, h—besubmnn — b strongly in L*(R?),
as n diverges, and
3 ma, 1 a
lim E"*(m,,) = 5 ( |y |Pdx + q/ |,ul§|2d.1:) . (5.3)
" Qo Qb

Proof. By choosing u = (0,0) as test function in (3.3) corresponding to m,,, by virtue of
(2.1) with ¢ # 400 and (5.1) it results that

Je €]0, +ool: /R

hb

hg Jrs

2
dx+

1 —

a a a _ a

<_ha D,, Uy, > D,, Uy, > D,, Uy mé
n

3
+
2

1
der <c, VnéeN.

b b b -
(Dfﬂlumn,rn D$2umn,n7 h_mesumn,n> —m,
n

Consequently, applying the triangle inequality and using again (2.1) with ¢ # 0 and (5.1),
it follows that

(3¢ €]0, +oo:
1 a a a
ﬁDmlumn,n s < ||D$2U’mn,nHL2(Ri) <cg¢, HDQTSUmn,nHLQ(Ri) <c
n 12(RY)
(5.4)
1
HDxlubmn,n”Lz(Ri) < HDmubmn,n”Lz(Ri) < ‘ h_bDI3ubmn,n <
n L2(R%)
L vn € N.

Since (ug, , ufnn) belongs to H'(R?}) x H'(R?), the Sobolev-Gagliardo-Nirenberg Inequality

and (5.4) provide that
Je €]0, +ool: ||u“mn’n||L6(R§r) <c, ||ubmn,n||L6(Ri) <ec¢, VneN (5.5)

Estimates (5.4) and (5.5) guarantee the existence of a function u = (u®,u’) € LS(R?) x
LS(R3), with Du = (Du®, Du’) € (L*(R%))* x (L*(R%))?, u® independent of z; and u’
independent of z3, such that on extraction of a suitable subsequence (not relabelled)

up, , — u® weakly in L(R%),  Dug, , — Du® weakly in (L*(R?}))%,

my,,

(5.6)
ub, , — u’ weakly in LS(R?), Dub, , — Du’ weakly in (L*(R?))?,

LLLZo%) op

12



as n diverges. Moreover, the fact that u® is independent of 2y and Du® € (L*(R3))? provides

that
“+00 > /
R

(b—a) /2 (|Dyyu®)? 4 | Dyu?) d(za, 23)  Va,b € R with a < b,

R

b
|Du“|2dx2/ (/ (|D$2u“|2—|—|Da,3u“|2)d(x2,x3)> doy —
a R2

3
+ +

which gives that u® is independent of x5 and z3, too. Then u® = 0, since zero is the only
constant function belonging to L5(R3). Similarly, one proves that u* = 0. Then, from (5.6)

one concludes that

Duf , — 0 weakly in (L*(R}))?,

n7n

(5.7)

Dub,  — 0 weakly in (L*(R%))3,

n’n

as n diverges, and these converges hold true for the whole sequence.
The first and the last estimate in (5.4) guarantee the existence of £&* € L*(R3) and
€b € L*(R?) such that on extraction of a suitable subsequence (not relabelled)

1 1
ﬁDmlu“mmn — £* weakly in L*(R%), h—begubmmn — €% weakly in L*(R?), (5.8)

as n diverges.

For proving that convergences (5.7) are (5.8) are strong and for identifying £* and £°,
introduce a sequence {e} of positive numbers converging to zero, a diverging sequence {\}
of positive numbers, and two sequences {u2}. C C5°(Q2%) and {ul}. C C5°(Q) such that

p — pf strongly in L2(Q%), ul — ub strongly in L*(0°), (5.9)

as € tends to zero. Moreover, for every ¢, A and n € N set

( 1

1 ha 1 2
=t [ tsmnan)ds = 22 [y g [ s m)ds 4 e,

[SIE

1
2 o

a.e. in R,
Ue An =

0 b1 0
h
Ug,,\,n = —hfl/ Mg($1,$2,3)d8+—;/ X[—l—A,—l](T)dT/ Pl (1, 29, 8)ds + Com,
x3

x3 —1

\ a.e. in R? |

. . hb
where the constant c., is chosen in such a way to have [p, ul, do + 32 [, ul, do =
n ”n n n

£,A\,n
0. Remark that u?,, = c.an in R3 \ ([—%,%—i—)\] X [—%,%] x [0, 1]), ug/\,n = Coap ID
R\ ([—3, 3] x [-1 = X,0]). Since u.x, € Uy, by choosing u = u., as test function in
(3.3) corresponding to m, = (mf,m;,) = ((mf,, ms,,m3,), (m],,mj,.mj,)), it results

13



that

|(D u(in D U,(in )|2 - 2(D5172U'amn7n7 Dx3uam n)(m%,n7m§,n) + |(m%,n7m§,n)|2) d$+

hb — —_— —
h_z <|(D$1ubmn,n7 wzubmn,n”z - Z(leubmn,rw $2u?nn,n)<mli,n7mg n) + |<mli,n7 mg,n)|2+
n JR3
— 1 2
€ — mf | +2 (h—meu%n,n - s") ("= mb,.) + | Dty o = € )dm =
n n

+

He = 3 X(23+n(T1) / , a5 22, 20)ds —mi,
2

2
x1 1

a a h?L o 2 4 e
hiD,, 1 pe(s, o, x3)ds — T[ X[3,14A (r)drD,, 1 pe(s, v, v3)ds —ms, | +
-2 2 -2

1

2
ha 1 o
hiD,, pe(s, o, x3)ds — T” [ X[3,14A] (r)drD,, pe(s, v, v3)ds — ms, )dw+
2

D=

_1
2

2

0 —

hb 0 hb -1
n ‘—hfIDxl (w1, 2, 8)ds + T”/ Xic1-a—1(r)drDy, | pl(21, 2, s)ds — mb
z3

h% R3 x3 -1

0 —

0 b1
h
—ho Dy, | pl(zy, 29, 8)ds + T" / Xj—1-a—1](r)drDy, | pl(x1, 22, 8)ds — mb,
T3 —1

3

—

1 0
pe — A X=1=2-1] (23) /1 pe (w1, 22, 8)ds — mgvn

2
)dx, Ve, A\, n,

from which, fixing ¢ and A, passing to the limit as n diverges and using (2.1) with ¢ # +o0,

14



(5.1), (5.7), (5.8), it follows that

— 1
(w — o | Dyt — €°

2
+ |<Dz2uamn,m Dw3uzqn,n)|2> dz+

)d] <

ht — 1

h% 3 ¥'m, ,n

Al

o
R?

a a 2 a
2 !ua—u1!2d:v+X/ 2 |? da+
Qa Qa

NG

2
a 1 a —a
He — XX{;,;H}(%)/ pe (s, w2, w3)ds — pg )diﬁL

2
>dx§

1
2

(5.10)

1 0 ~
pl — XXHA,H(-’BB)/ pl(zy, a, 8)ds — pif

-1

2q/ |Mf;—ug|2dx+ﬁ/ |ub|* da Ve, A
Ob )\ Ob

Finally, passing to the limit in (5.10), as A diverges and ¢ tends to zero, and using (5.9), one
obtains

h;m[/R

hb —
- <|(D9U1U’Z”Ln,n7 D$2ubmn,n)|2 + |£b - mg,n|2 +

he Jrs

1
ﬁDilu{lmn,n — ga

<|£“ —mf >+

2
+ |(D$2uamn,nﬂ Dﬂ?fiu?nn,nﬂz) dl’-{—

)d] -

from which, by virtue of (2.1) with ¢ # 0 and (5.1), converges (5.2) follow and these converges
hold true for the whole sequence. Convergence (5.3) is a consequence of (2.1) with ¢ # +o00
and (5.2). O

3
+

1
h_besubmmn - éﬁb

5.2 A priori estimates on the magnetization

Proposition 5.2. Assume (2.1) with q € [0,4+o00[ and (3.9). For every n € N let m,, be a
solution of (3.8). Then, it results that

Jdec €]0, +o0: E,(m,) <¢, VneN. (5.11)

Proof. By choosing m = ((0,1,0)(0, 1,0)) as test function in (3.8) and by taking into account
(3.11), it follows that
a i,
En(m,) < ¢((0,1,0)) + 2[ fill 2 + 35 (2((0,1,0) + 2] fall o)) +

n

Em9(((0,1,0),(0,1,0))), VneN.

15



Consequently, taking into account (2.1) with ¢ # +oo and (3.9), for obtaining (5.11) it
remains to prove that

de €]0, +oo[: E(((0,1,0),(0,1,0))) <¢, VneN. (5.12)
By choosing u = <u‘(’(07170)’(07170))7n,u’(’(071,0)7(0’170))7n) as test function in (3.2) with m =
((0,1,0)(0,1,0)) and using the Cauchy-Schwarz inequality, one derives that

b

2E7°9(((0,1,0). (0,1,0))) < <1+(Z—)> (2E79(((0,1,0), (0,1,0))))F, VYneN,

[NIE

which gives (5.12), since ¢ # +o0. O
The following result is an immediate consequence of Proposition 5.2:

Corollary 5.3. Assume (2.1) with ¢ €]0,4o00[ and (3.9). For every n € N let m, =
(m®,mP) be a solution of (3.8). Then, there exists ¢ €]0,+oo| such that

| Doy || (z2(ayy2 < chyy [[Dgymin|l(r2ayys < ¢ || Daymi |[(z2ays < ¢, Vn €N,

||Dz1m2||(L2(Qb))3 S C, ||D$2ml;L||(L2(Qb))3 S C, ||Dz3m£LH(L2(Qb))3 S Chg, n € N.

5.3 Convergence of the magnetization

Previous a priori estimates provide that the magnetization converges to a function (1%, 1i’) €
H'(J-1,11x]0,1[, S?)x H*(]— 3, 3[%, 5%). A real difficulty is to recover the junction condition
[i*(x2,0) = 0b(0, x2) in ] — 3, 3[. This is proved in the following proposition through a suitable
splitting of the trace and deducing sharp estimates for this.
Proposition 5.4. Assume (2.1) with q €]0,4+o00[ and (3.9). For every n € N let m, =
(m%,mP) be a solution of (3.8) and let M be defined by (4.1). Then, there exist an increasing
sequence of positive integer numbers {n;}ien and i = (1%, 11°) € M, depending on the selected
subsequence, such that

mé — [i* weakly in H'(Q* R?),

(5.13)
mb — ¥ weakly in H'(Q",R?).

Proof. By taking into account that |m,| = 1 a.e. in Q*|JQ° for every n € N, Corollary
5.3 and assumption (2.1), there exist an increasing sequence of positive integer numbers
{n;}tien, 1% € HY(Q2, S?) independent of x1, i° € H*(Q°, 5?) independent of z3, such that
convergences (5.13) hold true. For asserting that (i, 1) € M, it remains to prove that

~ —~ . 11
[i%(z2,0) = 1°(0, x3), for zy a.c. 1n] ~53 [ (5.14)

The proof of (5.14) will be performed in several steps. At first, remark that

) o

DO | —

i [ (o o 2,0) = 0 0) elan)or,) =0, Y € G (|-

C g

16



Now, for every i € N, set

pi(zs) = /_

2 2 2
; (|Dx1mzi($1ﬁ2,$3)‘ + |Dm2m£’%($1,I2,$3)‘ + |m2i(I1,$271‘3)| ) d(z1,72),
[

[SIE
[NIE

for x3 a.e. in ] —1,0[.

;From Fatou’s Lemma, Corollary (5.3) and the fact that m? =1 a.e. in QP, it follows that

0 0
/ lim inf p;(z3)dzs < lim,inf/ pi(z3)drs < 4o0.
-1 v v -1

Consequently, there exist two constants ¢ €0, +oo[ and T3 €] — 1,0[, and an increasing
sequence of positive integer numbers {i }ren such that

Piy, (53) <c, VkelN.

Then, by virtue of the second convergence in (5.13), it results that

11
mzlk(7 '753) - ﬁb Weakly in Hl <:| _57 5 |: 7R3)7 (516)

as k — 4o0.
The next step is devoted to prove that

hm /

Ly —"Zk h I1,$2,0) b(0,$2)) @(xz)d(ﬂil,l’z) =0,
23l (5.17)

Vi € G (] =3:30) -

To this aim, for a fixed ¢ € C§° (] —%, % D, the integral in (5.17) will be split in the following
way:

mb- (hgz,-kxla T2, 0) - ﬁb(()? $2)> 90($2)d($17 m?) -

/ (mfh (h‘fll x1, T2, 0) —mfm (hfh xl,xg,fg)> o(ra)d(zy, x2)+
}_%7%[2 k k k k
(5.18)

md (hzikiﬁ, T2,T3) — mﬁik (O,x2,53)> @(x2)d(w1, 22)+

\\
N=
[

(_n (0,9, T3) — ,ub(O,:Eg)> o(za)d(z1,22) Vk €N,
2
and one will pass to the limit, as k diverges, in each term of this decomposition.

17



By virtue of the last inequality in Corollary 5.3 and of (2.1) with g # 400, there exists
a constant ¢ €]0, +o00[ such that

lim sup /
k =
lim sup /
k -

1
1. " 2
Hgo|]Loo(],%7%D\Qb]2hmksup (/Qb \ngmiik (hnik$1a$2,$3)|2d$> < (5.19)

(mb, (s, 21, 2,0) = mb, (B, 1, 22,75) ) ls) (1, 25)
[2

[SII=
[

<

0
(/ stmzik(hzik»%@a1’3)d333) p(z2)d(z1, x2)
z3

1 1[2
272

1
2

1
/lest ($1>9€27$3)\2dx> <
Qb k

ha,

||90HLoo(]

1.
~1,4p/’|? limsup (
g3
b
1. g
||90”Loo(]_%é[)|9b]2611]£n—; =0.

mk

By virtue of (5.16), there exists a constant ¢ €]0, +oo[ such that

lim sup /
k -

(mh, (B, o120, 7) = ml, (0.22,75)) (a2)d (a1, )
2

[

D=
D=

ng, 21
lim sup / (/ * Dm? (t,xg,fg)dt> o(x9)d(x1,19)| <
Eo [ -tde o "
ne.
1 ) % 5 b
[l oo 1 1p hmsup/ / ‘Dtmn‘ (t,xg,fg)‘dt dxo+
2 272 k _% 0 i

(5.20)

1
1 . 2 0 _
§||90||L°°(]—%,%[) hmksup/ (/h%k ‘Dtmzik(t,l'z,%)‘dt) dze <
2

N|=

\Drlmzik(5171,332753)\20[(531,952)) <
[2

1
2

D=

iFrom (5.16) it follows that
11
mf’bzk (07 '7f3) - ﬂb(oa ) Strongly n L2 (:| _57 5 |:7R3)7

18



as k — +o0o. Consequently, it results that

lim (mn (0,22, T3) — Hb(O,@)) p(z2)d(w1,29) =
ko Ji-11p2 "k

(5.21)
llm/1 0 , T, T3) — b(O,x2)> o(x9)dzy = 0.

N

Then, passing to the limit in (5.18), as k diverges, and taking into account (5.19)-(5.21),
one obtains (5.17).

Finally, junction condition (5.14) is obtained by passing to the limit, as k diverges, in

/ m?“.k (21,2, 0)p(w2)d (1, T9) :/ mgik(hzik%,@a0)%0($2)d(961,$2)7
]7 11

1 112
23

VkeN, VeoeCy(]-

N |—
N[
—
~—

and using (5.15) and (5.17). O

5.4 A density result

Let
Mreg { n= (,U“’,ub) = C’l([_% %] [0 1] 52) < C <[ % %]2’52>
i gapepay € € (200 < [=3,5]45%)

(5.22)

p(x9,0) = pb(0, z5), for x9 €] — %’ %[}

Remark that Mye, € WHe2(] = 4, 4[x]0, 1], 8%) x W (]-4, 1 [, 5?).
Next proposition is devoted to prove that M., is dense in M. We point out that this

result is not evident since the limit domain ({0} x [—1,1] x [0,1]) U <[—%, %}2 X {O}) is not

a manifold. The proof is based on the combination of an approximation result proved in [4]
with splitting techniques introduced in [19] and a projection technique from R?® into S? as
n [13].

Proposition 5.5. Let M and M., be the spaces defined in (4.1) and (5.22), respectively.
Then, M,¢q ts dense in M.

Proof. Let (u, 1°) € M. The goal is to find a sequence {(u?, ti%)}nen C M,y such that

11 11[?
(uiﬂufz) - (:uaa:ub) StI'OIlgly in Hl (:| _§7§|:X]Oa 1[7 52) X Hl <:| _57 §|: >SQ> ) (523)

19



as n diverges. The proof of (5.23) will be developed in several steps.
At first, consider a sequence {(v%,v%)}en C C*°([—3, 3] x[0,1],52) x C ([—%, %}2 : S2>
such that

2
(v2,0°) — (u®, p®) strongly in H* Q —%, % [ x]0, 1], 52) x H* G —%, % { ,SQ> , (5.24)

as n — 400 (see [4]). Next steps are devoted to modify v? in a neighbourhood of 23 = 0 and

v? in a neighbourhood of z; = 0, in order to obtain the junction condition required in (5.22).

To this aim, we begin by splitting 4° in the even part and in the odd part with respect to
ZI1-
. N R b
PO (@ 22) € | =5, 5| = (@, 22) + 4 (=2, 22))

and )
11

_[ - %(Mb(l“l,xz) - Mb(_aﬁ’m?))'

p (1, 22) E]—g, 5

Remark that p¢, p° € H' (] —2 —[ R3> (L <] —2 —[ R?’) p¢ is an even function with

272 272
respect to 1, p° is an odd function with respect to xy, p¢(0,-) = u®(0,-) = p®(-,0) and

1°(0,+) =0 a.e. in } ;, %[ Consequently, by convolution, it is easy to build three sequences

(see [19]) {C“}neN C C=([=3, 3] x [0,1],R?), {¢hnen € C([—4,4]" R®) and {(Z}nen C
(-3, %} ,R3) such that

L32[ x]0,1[,R?), as n — +oo,

wl
N |

( (% — u® strongly in H' (}

C¢ — pu¢ strongly in H! (}—%,%[Q ,]RS) , as n — 400,

C° — p° strongly in H* (]—%, %[2 ,R3> ,asn — 400,

n

A[x]0,1[,R3) <r, ¢ ||Loo<] Lip JRB) <71,

I\DM—‘
m\»—t




from which, by setting (¢ = (¢ + (2 € C( [—%, %}2 ,R3), since pb = p€ + p°, one derives that

( (% — po strongly in H' (] -1, 1[ x]0,1[,R?), as n — +oo,

¢t — pb strongly in H* G—%,%F ,R3) , as n — 400,

{Cg}nEN - Cm([_%u %} X [07 1] ’RS)

{ ] C =30 x 53] B, (5.25)

[><}0,1[,R3) < T, HG)L“LOO (]_%7%[233) < T, Vn € Nv

L CS(:O):Cg((L) in }_%7%[7 Vn € N.
Let, now,

neCeR,[0,1]) : nt)=1Vte[-1,1], nt) =0 VteR\]—22] (5.26)

and, for every n € N, set

it (o) € |5, 1011 Glonanin (22) + aptonan) (10 (2)),

n E’FL

2
w? (1), 70) € ] —%, %[ — (w1, 22)7) (?) + 0y (21, 22) (1 —n <?>) ’

where

1 1
— _ a _ (a _ b _ /b
€p = Max {\/n + ||Un €n||L2(]—%7%[X]0,1[,R3)7 \/n + ||Un CnHLQ(]f%,%[Q’R?)) } : (527)
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From (5.24), the first line in (5.25), (5.26) and (5.27), it follows that

2en
hm/ / | D,y (2, 373)|2 dzodrs =
Jo
2

hm/l/ D, (x2, x3)n (Z ) + D, vl (xg, x3) (1 ./ <?>)

211m/ / | D, (8 (2o, x3) — Dy,v n(x27x3)|2dx2da73+

2
dl’zdl‘g <

4hm/ / | Dy, vi (g, 3) —Dmu“(xQ,xg)]Q dxodrs+
1

1 2en
4hm/2 / |D1’2ua<x2’x3)|2 dl’zd:}?:; =0
n J_1Jg
2

and
% 2en 9
lim/ / | Dy wi (9, x3)|” drodrs =
n J_1 Jo
2
2en T
hm/ / D, (x2, x3)n ( ) + D, vi(xg, x3) (1 - (5—)> +
5 n
1 T3 2
(Glion ) = aponan)) o (22 )] drades <
. 2 [2n o 3 T3 2
2lim D, (% (o, x3)n 5 + Dy vn(xe,23) | 1 =1 = dxodxs+
n ~_1Jo n n
2
HU - CCLHL2 11
. (] 20 §[X}011[7R3)
2“’7’”%00(]1%)11? 22 =0,
that is
117?1 ||Dwg||L2(]7%’%[><]0725n[,]1{6) = 0. (528)
Similarly, one obtains that
. b
hin ||DwnHLQ(}—%nzan[x]—%,%[,RG) =0. (5.29)
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Then, (5.24), (5.25), (5.26), (5.28) and (5.29) provide that

[ w® — p® strongly in H* G—%, %[ x]0, 1], ]RB) , as n — 400,

why— i strongly in H' (]4, 3[* B as n — +oo,

(5.30)
{“’”[O,;}x[—;,;] } C C=([0,3] x [=5.3] . B?),

Irs 6]07 +OO[ : ngHUXJ(]—%,%[x]071[7R3) <73, HwZHLoo(]_ ,%[2,R3) <rg, Vn €N,

For obtaining (5.23), it remains to normalize w? in a neighbourhood of z3 = 0 and w?,
in a neighbourhood of z; = 0. To this aim, for y € B1(0) = {y € R®: |y| < i}, project
r € R?\ {y} on S? by the intersection of S? with the half line y + t(x — y) : ¢t €]0, 00|
(compare [13] and [10]). Precisely, introduce the projection

T :xeR?’\{y}_>y+_y@—y“\/(y(l'—y))“!x—yP(l—IyIZ)

(x—1y) € S* (5.31)

[z —yf?
It is easy to see that
m,(v) =z, VoeS? (5.32)
Moreover, it results that (see appendix)
Jc €]0,+o0] : |Dm,(z)]* < ﬁ, Yy € B1(0), VzeR*\ {y}. (5.33)
x—y 2

Then, for every n € N and for every
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(remark that the 3D Lebesgue measure of

(-5l (53] =)

is zero), the functions 7, o w? and m, o w’ are well defined and it results that

T, oW € C’l([—%, %} x [0, 1],.5%),

(5.34)

| (myowy)(+,0) = (my 0 wp)(0,) in |3, 5.
Moreover, from (5.33) and the 7th line in (5.30) one derives that

/B;(O)\ U (wg Q —%, % [ x]O,l[,R3) |t (}_% % [2’R3>>

keN

oy (e (4 [mne)un (3 #))
(/ / |\Dw xz,x3)| (9, 23) / / | Dk ( 3517@)!2
: wi (w2, vs) =yl —2e, J—

d(zy,x dy <
1 wh (r1, 12) — yl? (@, 2)) v=

2en 2en
(/ / | Dw? (4, x3)| d(22, 23) +/ / | Dw} (21, 22 | d(zy,m9) | VneN,
_% 0 %

[SIE

—2en

where ¢ and r3 are the constants given in (5.33) and in (5.30), respectively, and B,,3 +%(0) =
{z € R?: |z| < r3+35}. Consequently, by using the Fatou Lemma and by taking into account
(5.28), (5.29) and the fact that [, L0 Tz lez < +o00, there exists a subsequence of {n}, still
T +2
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denoted by {n}, and 7€ B,(0)\ | J <w;; (]—%,%[X]O,H,RB) L (}_%,%[Q,R?»))

such that

hgln ”D(W? © wg)HL%]—%,%[X}O,Z%[,RQ =0= hgn ||D(7T§ © wz>||L2(}—25n,2€n[><]—%,%[,RG)‘ (535)
Finally, by setting p? = 75 0o w® and p? = w5 0 wl, (5.34) assures that {(u, ul)}nen C
M,eg. Moreover, by taking into account that p? = w? in | — 1, 1[x]2e,,1[, pb = w’ in
(] — 3, —2e,[U]2e,, £[) x| — £, 2], the first two lines in (5.30) and (5.35) provide (5.23).

]

5.5 Proof of Theorem 4.1

Now, combining convex arguments with projection techniques we used in [10] and with the
convergence of the magnetostatic energy of Proposition 5.1, we build a recovery sequence for
a generic couple in the space M,.,. Then, using the density result of Proposition 5.5, we
conclude the proof of Theorem 4.1.

Proof. Proposition 5.4 assures the existence of an increasing sequence of positive integer

numbers {n;}ien and 1 = (1%, i) € M, depending on the selected subsequence, such that
mé — [i* weakly in H'(Q% R?),
(5.36)
mf, — i’ weakly in H*(Q°,R?),

as 1 diverges. Consequently, by virtue of Proposition 5.1, convergences (4.5) hold true, and

it results that

lim £, (m,, ) =

7

1 e ~
- / |ﬂ1($2aﬂ73)|2d($27$3)+(1/ |75 (21, 22) [*d (21, 22) |
2\ 5. 41101 RERTC

where E]'* is defined in (3.10).
Now, for u = (u®, p?) € M,eqy, where M., is defined in (5.22), we shall build a sequence
{gn}nen C HY (2%, 5%) such that

(5.37)

(g, — p° strongly in L?(Q% R3), as n — +oo,

1 .
(3 Dos9n1D2snlDes ) = (D | Do) sronsly n L7(08 ),

n

(5.38)
as n — 409,

| gn(21,22,0) = pb(Rixmy, 20), for (z1,25) €] — 5,13 VneN,
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and we shall choose (g, u°) as test function in (3.8). To this aim, for every n € N, set

,LLa<l’2,(L’3>, if x = (I1,$2,$3) E] - %7 %[2X]h27 1[)

gn(T) = he —
(xQ?hZ)ha + p (ha:[l?a:?) nh 37

n

[*x[0, A

t\')ll—l

if x = (I’l,fﬂg,xg) E] - %

Obviously, {g, tneny € H'(Q% R3) and the last line of (5.38) is satisfied. Moreover, by using
the properties of M,.,, it is easy to see that

1 2
lim — Dy, gn(z)| dr < ||u >y limAl =0,
P g g g O] S )
lim | Dy, gn(2)] da <
" J=5,32X]0hg]
2([| leoo(],%é[x]o 11,52) + I’ HWMQ(] %,%[2732)) h}Ln hy =0,
and
hm/ 1Dy, gn(2)|? da =
,l l[2><]0 ha|
. a a 2
lim T ’,u (29, h% )—,ub(hnxl,xg)‘ d(xy,z9) =
"J]=5.50
: 1 a a a a 2
lim h_“ ’,u (29, h%) — pu®(22,0) 4 pP(0, z9) — pP (%2, xg)’ d(zy,19) <
n ]71’%[2
2(f|l ||Wloo(] 1,3[x10.1,5?) + ||M ||W100(]7%’%[2752>)h}bn hy, =0,
that is

= 0. (5.39)

hm H ( w1gn’szgn|Da¢39n)
LQ(]fé’%F X}O’h%[»Rg)

Consequently, convergence (5.38) holds true. Unfortunately, |g,(z)] < 1 for every z €
] — 3,3[2x]0, h%[. To overcome this difficulty, using projection (5.31) and arguing as in the
proof of Theorem 2.1 in [10], it is possible to project g, on S? such that this projection,
still denoted by gy, satisfies (5.38). Remark that the first line in (5.38) and Proposition 5.1
provide that

lim B79((g, 1)) =

(5.40)
|1 (2, 23)[*d (22, 23) + Q/

}_%7%[2

\Mg(xl,lf2)|2d($1a$2)> :
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Finally, choosing (g,, 1°) as test function in (3.8) and taking into account (3.11), one has
that

[ (o
5 (e
L

h?’/ 2 ma, -
hal /b (O‘ ‘ (Dxllu“b|DI21ub’O)‘ + () - 2f,’;ub) dr + E,; I((gn,, 1)), Vi€N,
n; JQ

2

1
(h—aDmlmZi | Dy, ’Dmsm&v)

ng

+ @(my,) — 2f&ml) dz+

2

1
b b b
(Dmmm | Dy, | R Dyym,,.
n;

+ o(mb) — 2f2im2i> dz + E"(m,, ) <

2

1
(h_aDﬂc1gm|Dw2gni |Daz39m>

2

+ 0(gn,) — 2fﬁigni> dz+

from which, splitting Dy,m& , Dy,m? | Dyymb and D,,m? in the following way:
Dmgmgi = szﬁa + (ngmzz - sz/?’a>7 ngmgi = D:Egﬁa + (ngmzz - ngﬁa>7

D$1mlr)h - Dl‘ll/’zb + (Dxlml;h - D$1ﬁb)7 Dl‘gmgl = Dwz//zb + (ngmgl - Dlzﬁb)7
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it follows that

J

hb
e, (\Dmmi@ = Do+ | Dua, = Dt +

ng

1 2
D, m?

a 1l 2n,;
hg. :

+ |Dmgmzl - DIQﬁa‘2 + ‘D‘Tszz - ngﬁa|2> d.f"—

1
h?
~a [ (D! + 2D (D, — Do) dt

—Ck/ (lDCL‘3ﬁa‘2 + 2Dx3ﬁa(Dx3m%i - szjza)) dx — / (@(mzz) - QfSZmzl)d$+

a

h, R R N
—h—;”a/ (1Das " + 24, i (Daymal, = D)) da+ (5.41)
n; Qb
hﬁ; ~b|2 ~b b ~b
hg “ Qb <}D$21u ‘ + 2D, 11 (szmni — Dy, )) dz+
hb
| (ot~ 2 e~ )
ng Qb

2

1
(h_qulg”i Dwzgni DIst)
hb

he /Qb (O‘ [(Daa 1D pi?10) | + (") — 2ff;ﬂ”) dz + Em9((g,, i), Vi€ N,

T
VR
o

+ 90<gm) - 2fﬁ;9m> dx+

By passing to the limit, in (5.41), as i diverges, and using (2.1) (recall that ¢ # +00), (3.9),
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(5.36), (5.37), (5.38) and (5.40), one obtains that
lim sup a/
i Qo

hb ~
hZIO‘/Qb (‘Dzlmii— D |+ | Doyl — Do f?|” +

1 2
—D, m?

ha T1—-2n;

1D~ D Do, - D)

| ) dx] <

(Oé (|D902ﬁa’2 + ‘D$3ﬁa‘2) + (p(ﬁa) -2 . f (551,96'2,$3)dl’1ﬂ + _‘:ul‘ ) d(l‘g,l‘g)—i—

T2

1
h_me

0
b2 b2 - PUREE B
—Q/] L1 (CY (‘Dmﬂb‘ + |Dm/ﬁb‘ ) +<P(Hb) - 2/ fb($17$2,$3)d$3ﬂb + §|Mg 2) d(xy, 12)+
—232 -1

1

/] T (a (IDay it + | Doy i) + () — 2 A (z1, 29, x3)dx1 1" + —\u1\2> (9, 23)+
—3553 X 0,1 1

2

0
2 2 1
(O‘ (|‘D$11ub‘ + | Dyt ) + o(u’) - 2/ FP(x1, wo, w3)dasp” + §!Ml§|2) d(z1, T2).
2 -1

(5.42)
Since pu = (u® ) is a generic element of M,,, by virtue of the density result stated in
Proposition 5.5, this inequality holds true also with p = . Consequently, it results that

limsup |« /
i Qa

b

2
+ }Dmgmgl - $2,u ’ + ‘-D.rg_n - $3,u |

) dx] o

By combining this limit with (2.1) (recall that ¢ # 0) and (5.36), one derives (4.3) and
(4.4). Moreover, (5.42), (5.43) and Proposition 5.5 provide that 1 is a solution of (4.6).
Furthermore, convergence of the energies (4.7) is a consequence of (2.1) with ¢ €]0, +o0],
(4.3), (4.4) and (4.5). O

1
D, m®

ha r1—"n;

(5.43)

6 The cases ¢ =0 and ¢ = +o©

6.1 A Convergence result for the magnetostatic energy

Proposition 6.1. Assume (2.1) with q € [0,+00]. Let {m, = (m%, m%)},en C L*(Q% R3) x

LX(QVR3) and p® = (u§, pg, us) € L*(Q%,R3) be such that

n7—n

b\ 2
<m:;, (Z—) mz> — (4", 0) strongly in I*(Q°, R®) x I*(@%,R?), (6.1)
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a b

as n diverges. Moreover, for everyn € N let Uy, n, = (um 0 Uy ) be the unique solution of

(3.3) corresponding to m,,, and let E be deﬁned by (5. 10) Then, it results that

—_=n>’

¢ 1 —_—
Dy = n1iy Dyug, o — 0, Dyug . — 0 strongly in L*(RY),

2 -'m, ,n 3 'm,, ,n

strongly in L?(R3),

as n diverges and

1
lim B (m,) = 5 [ |t de. (6.3)
n Qa

Proof. By choosing v = (0,0) as test function in (3.3) corresponding to m,,, by virtue of
(6.1) it results that

2
dz+

Je €]0, o0l : /

3
RJr

1 —

a a a _ a

(ha Drlumn,mDm2umn,n’D$3umn,n my
n

2

hb
= de <ec¢, VneN.

ha,

1 —

b b b

(Dxlum s szumnnv m D,, Uy, | — My
n

Consequently, applying the triangle inequality and using again (6.1), it follows that

[ Fc €]0, +oo:
1 a a
EDQH m,,n < HD$2um nHL2 (R%) <g, HDISumn,nHLQ(Ri) <ec
n L2(RY)
ho\ 2 6.4
(h_Z) Dx1ulr)n n H xg mmn <egc, ( )
" L2(R3) L2(R3)
1 (hb) 2 "
— (=) D <e¢, VnéeN.
b a 3m —
i AT L2(82)

\

Since (u%, ,ub, ) belongs to H'(R%) x H'(R?), the Sobolev imbedding theorem and (6.4)

m,, ? m

provide that

Je €]0, +oo[: [Jup, nlls@s) < ¢ ‘ <¢, VneN. (6.5)
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Estimates (6.4) and (6.5) guarantee the existence of a function u = (u®,u’) € LS(R3) x
LS(R?), with Du = (Du®, Du’) € (L*(R%))* x (L*(R%))?, u® independent of z; and u’
independent of z3, such that on extraction of a suitable subsequence (not relabelled)

(g, , —u* weakly in LO(R}), Dug, , — Du® weakly in (L*(R?))?,

My 1 my,

[NIES

a m
ha 2

h/lT)L b b s 6 3
<_> w), . — u’ weakly in L°(R?), (6.6)

N

hb
(h—z> Dub, ,, — Du’ weakly in (L*(R?))?,
as n diverges. By arguing as in the proof of Proposition 5.1, one obtains that u* = 0 and
u® = 0. Then, from (6.6) one concludes that

Dug, , — 0 weakly in (L*(R%))?,

m,,

. (6.7)

1
B\ 2
( ") Dub, ,, — 0 weakly in (L*(R?))?,

hg n
as n diverges, and these converges hold true for the whole sequence.

The first and the last estimate in (6.4) guarantee the existence of £&* € L?(R3%) and
€ € L?(R3) such that on extraction of a suitable subsequence (not relabelled)

1
ha

n

b\ 3
Dy, o, — €* weakly in L*(RY), hib (%) Dmubmwn — €b weakly in L*(R*), (6.8)
as n diverges.

For proving that convergences (6.7) are (6.8) are strong and for identifying £ and &°,
arguing as in the proof of Proposition 5.1, introduce a sequence {e} of positive numbers
converging to zero, a diverging sequence {A} of positive numbers, and a sequence {ul}. C
C§°(Q%) such that
p — pf strongly in L?(Q%), (6.9)

as € tends to zero. Moreover, for every €, A and n € N set

1
1 ha 1 bl
uly, = hfL/ pe(s,xe, x3)ds — —):‘ ) X[é’é“}(r)dr/ pe(s, xe, x3)ds + Coxn,
1 _

[SIE
N

Ue an = a.e. in R3,

b

u

_ T3
| Urn = Cepn, ae. InRZ,

. . hb
where the constant c ), is chosen in such a way to have fBa ul ) pdr + 7 fBb ug wndr = 0.
n 9 b n n b b

Since ucy, € Uy, choosing u = wu. ), as test function in (3.3) corresponding to m, =
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(m&,mb) = ((m§,,m3,,ms,), (m},,my,  mf, )), it results that
o a2 1 o\ (ca  —u

|£ _mln’ +2 Dﬂ’»‘lum n_g <£ _m1n>+
Ri I h b

|(D$2uamn,n7 D933uamn,n) |2 - 2(D332U’amn,n7 Dwsuamn,n)<m(2l,n’ mg,n) + |<m%,n7 mg,n) |2> dl’—i-

2

1
_D u(l _ 501 _I_

ha 17 m,,n
n

<‘<D$1ufnn,n7 DQUQubm n)|2 - Q(Dﬂflubmn,rw DxQme n)(ml{,nnmg,n) + |<ml{,n7mg,n)‘2+

n? n?
2
dr =

a 1 a a
Pe = X5 54N (1) /1 pe(s, xa, x3)ds —ms

2

1
b
m D%Umn,n
n

—— 1 _
|m3 n|2 - 2h_bD903um nmgn +

2jmn7n(umn) < Qjmn,n(ue,k,n) =

L

hiD,, pe(s, o, xg)ds — =
1 A

2

2
+

N

1 2

2
X (P)ArDsy [ (s, 0, 5)ds — i, | +
)

1
2

1

2
he [ . _
hD,, pe (s, xo, x3)ds — 7[ X334 (r)drD,, pe (s, o, w3)ds — mg )d:v—l—
- 3

hb :
b
/u@ (W) e

from which, fixing € and A, passing to the limit as n diverges and using (6.1), (6.7), (6.8), it

M

1
2

N

dx, Ve, \, n,
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follows that

lim sup [/ (!fa—mmh]2+
n R3
+
1
hb 2
/ ( (_n> (Dﬂﬁlu?n n7D$2u$n n)
R3 hs, - -
IR
R?’ ILLE )\><[%7

+
a a2 2 a2
2 [ |pd— gl dx—i—x || dx Ve, A
Qe Qe

1
D ua _ a

ﬁ z1%m,, n
1
L\ e
i i) 2o

2
)dwﬁ

Finally, passing to the limit in (6.10), as A diverges and ¢ tends to zero, and using (6.9), one
obtains
he

2
lim [/3 (\fa _m%7n|2 + m,, ,n + |( U m,, n?stu'Cann,n)P) dx+
n R+ n

1 2 1 2
R\ 2 1 /ht\?
/ (‘(—hg) (Dg,ul, , Dgul, | + 5 (—h”) Dyul, )daz] =0,
Ri n - - n gz, -

from which, by virtue of (6.1), converges (6.2) follow and the converges hold true for the
whole sequence. Convergence (6.3) is a consequence of (6.2). O

2
+|(Day iy, n,ngu%n,n)l2>d$+

+

(6.10)

N|=

() / 15 (5, 22, 23)ds —

[NIES

N|=

D, up . —&°

Remark 6.2. Proposition 6.1 holds true for every q € [0, +00]. Really, i the sequel, this
result will be applied to a sequence {m, }nen, where m, = (m%, mb) € M, is a solution of
(8.8). Then, for obtain that such a sequence satisfies (6.1), the restrictive assumption ¢ =0
in (2.1) will need (see below).

6.2 Proof of Theorem 4.2

Proof. When in (2.1) ¢ = 0, from Proposition 5.2 it is not possible to derive Corollary 5.3,
but only the existence of a constant ¢ €]0, +o0[ such that

[ Daymg |l (z2(0eyys < chy, HDmmZH(Lz(Qa)ys <¢, |Duymyllz2@ays < ¢

1 1
ht\? 1 (h\?
(h_;l> Dxlmfz h_b (h_z> stmz

for every n € N. Consequently, taking also into account (2.1) with ¢ = 0, and the fact
that |m?| = 1 a.e. in Q% and |m} 1 a.e. in QP there exist an increasing sequence

<c
(L2 (20))?

<egc,

(L2 (2%))3

Y

b
Iz—n

(L2(Qb))

nl =
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of positive integer numbers {n;}iey and ¢ € HY(Q? S?), independent of z;, (£%,&%) €
L0 R3) x L?(Q2%,R?) depending on the selected subsequence, such that

b 2
(mgi( "z‘) mﬁ;) — (i, 0) weakly in H'(Q% R?) x H'(Q" R?), (6.11)

1
1 1 /h>\?2
(h—aDmmzi,h—b ( hzl) Dmm;z> - (€7, €%) weakly in L2(2%, R?) x L*(2,R?),

ng

as i diverges. Consequently, by virtue of Proposition 6.1, convergences (4.12) hold true, and

it results that )

lim £ (m,,.) = = 715 (29, 23)|?d(22, T3), (6.12)
i 2 -1 1xjo,1]

where E]'* is defined in (3.10).

For p* € C([—3, 3] % [0,1],5%), set

p(we, w3), if v = (21,79, 73) € Q°,
g(x) =
p(z2,0), if x = (2,29, 23) € Q.
Then, Proposition 6.1 provides that

: ma 1 a
lim E7(g) = - |5 (22, 23) [Pd (s, 3). (6.13)
n 2 /-1 <01

Finally, choosing g as test function in (3.8) and taking into account (3.11), one has that

L
ht

/ (0 |(O) Dt | Dy 1) 2+ 0l4®) — 20 %) dct

2

1

s

+ o(my, ) — 2fﬁim%i) dz+

2

N

1
b b b
(D:clmm | Dyym,, | e Dy,m,.
n;

+ o(mb ) — 2fﬁimii> dz + E'(m,, ) <

B |
| (@ OIDnn a0 + o (a2,0)) = 262 (22,0)) do + E0(g), Vi€ N,
Q

Uz

from which, splitting D,,m;; and D,,m;, in the following way:

Dyymy = Dy, " + (Doymiy, — Doy i), Dygmyy, = Dy i + (Dggmy,, — Doy i),
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it follows that

1 2
CV/ <h_aD:t1mZi + }szmn :rzlu' | + ‘Dmm 333:“ | )dl’—i—

Be N\ 2 b2 b\ 2 b2 1 /R \? b2
°f, (rgi) Dot | (m;) Deatita] h—(h—) Peatita ] ] 00 =

—a [ (D 4 2D (Do, ~ Do) ot

—~ —~ a —~ 6.14
[ (D + 2D (D, — Do) o~ [ (ot — 2t e Y
hgl b b b 1 ma
h%z Ob i i i 2 i

L @UOD.ap D)+ ) — 2520 ) s

b

h ) 2 ma
T | (1O OO + 1 02,0)) = 21200, 0)) -+ B,

for every i € N. By passing to the limit, in (6.14), as i diverges, and using (2.1) with ¢ = 0,
(3.9), (6.11), (6.12) and (6.13), one obtains that

i 2
hmsup CE/ ( h_aDanmn ‘Dmm xz:u | + ‘st—n - xs:u | ) d!B+
Bb o\ 2 ? b\ 3 2 1 b\ 2z ?
o / ) D,mb |+ %) Dem? | 4| — (2 ) D,m’ dr| <
" hgz 1—n; h?ll 2—n; h’[r)ll (rlli 3—"n; —

(0‘ (|Dw2ﬁa|2 + |Dz3ﬁa|2) +o(p®) -2 f(l(xlv Ty, r3)dr 1" + —|M1|2> d(xa, x3)+

/}
2 1
/] o (a (IDaatt[* + Doy i®°) + 0(n) =2 [ f* (1,0, 25)deer p® + 5\%‘?) (w2, 3).
—5,51%]0,1

) (6.15)
Since C*([—3, 5] x [0,1],5?) is dense in H*(]— 3, 5[x]0, 1[, S?) (see [4]), this inequality holds

11 1
2°2 2
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1 2

true also with u® = . Consequently, it results that
7o Dy,

im [ / ( Do, Do+ | Dy, x3u|)czx+
h?u % b : 1 hflz % b
0] Qb hf’lll Dxlmnz h_zl h%z D:tgmn,b

= 0.
By combining this limit with (6.11), one derives (4.10) and (4.11). Moreover, (6.15), (6.16)
and the density of C*([—3,3] x [0,1],5%) in H'(] — 1,1[x]0,1[, 5?) provide that fi* is

33 a
solution of (4.13). Furthermore, convergence of the energies (4.14) is a consequence of (2.1)

with ¢ =0, (4.10), (4.11) and (4.12). O

2

dx] (6.16)

6.3 Proof of Theorem 4.3

The proof of Theorem 4.3 is very snmlar to that of Theorem 4.3. So we omit it. We only
suggest of working with the functional "En, ie.

m = (m*,m’) € M,, —

hé 1

h_g Q (Q ‘ (ﬁDmm”Dl‘zma'Dmma)

1 he 1

éh_g ((h, DmumnaDmQumn’D%ufna”) m“) d$+
n J Qo n B

Ine

1 1 b b

5 o Dmumn?DfEQumn’ hb Dm3um’n m’ | dv

and of remarking that lim -+ = 0, since ¢ = +o0.

2

+ p(m®) — 2fﬁm“> dx+

2

(Dmlmb\Dmm |+ Dasmt >

+ o(m”) — 2f2mb> dz+

7 Appendix

For sake of completeness we give the proof of the following known result:

Proposition 7.1. Fory € B1(0) = {z eR?:|z| < %}, let m, be the projection defined by

Wy:x€R3\{y}—>y+ y) + vyl |x—y|2 =y (1_|y|)(x—y)652.
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VyEB%(O), Ve € R*\ {y}. (7.1)

Then,
c
Je €]0,+00[ :  |Dmy(x)]* < ,

Proof. For y € B%(O) and j =1,2,3, let
)+

§:$€R3\{y}—>w+

|g; - y|2

)2+ |z —yl2(1 = |y|? )5 N
27‘7

Then, for 7,5 = 1,2, 3, it results that
—y(z —y) +
0. mife) = =DVl )P
!x - y!
—y; + y(z—y)yi+(zi—y:i) A1—|y|*)
( R ) (7.2)
|z — y|? (5 = w3)+
9+ v —yP( =[P ) 2(z: — v:)
(mj - yj)?

(v V61
|-’Jc—y|4

for every y € B1(0) and every z € R*\ {y}
As regard as the first and last term in the right-hand side of (7.2), it is easily seen that

for j =1,2,3,
— 1-— 1 3 1
D+ VOGPl PO, | bt 3 1
Iw—yl [z =yl = 2]z -y
(—v@— o) + Vil =)+ o — g = o)) 2(wi — ) _
|x —y|* )<
(7.4)
5 ly| +1 < 3 ,
[z =yl ~ |z -yl
for every y € B 1 (0) and every x € R*\ {y}. As regard as the second term in the right-hand
side of (7.2), since |y| < 1, it results that, for j = 1,2, 3
2
(y(x = y)ys + (2 = v) (L= 911)” < 2 ((w(x — )07 + (@0 — v:)*(1 = [y*)?)
<2(((x—y)* +lz —yl* 0 - [y*)
(7.5)

<

and consequently
~ =yl

y(e—y)yi+ (=) 1=[yl?) )
_ 2
(z; —y;)

( Yi Tyt Ha—y (1)

|z —y[?
for every y € B1(0) and every x € R\ {y}. Finally, by combining estimate (7.2) with
]

Ly

(7.3)-(7.4), one obtains (7.1)
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