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In this paper, starting from the classical 3D micromagnetic energy, we determine, via an asymptotic analysis, the free energy of two joined ferromagnetic thin films. We distinguish different regimes depending on the limit of the ratio between the small thicknesses of the two films.

Introduction

In this paper, starting from the classical 3D micromagnetic energy (see W. F. Brown [START_REF] Brown | Micromagnetics[END_REF] and L. D. Landau and E. M. Lifshitz [START_REF] Landau | On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[END_REF]), we determine, via an asymptotic analysis, the free energy of two joined ferromagnetic thin films. Precisely, let 1

Ω n = - h a n 2 , h a n 2 × - 1 2 , 1 2 × [0, 1[ ∪ - 1 2 , 1 2 2 ×] -h b n , 0[ , n ∈ N,
be a 3D ferromagnetic multidomain consisting of two orthogonal joined films, as in figure, with small thicknesses h a n and h b n , respectively, where h a n and h b n are two positive parameters tending to zero, as n diverges. For instance, such a structure appears as a component of a rotor of a permanent magnetic synchronous micro-machine (see S. S. Irudayaraj and A. Emadi [START_REF] Irudayaraj | Micromachines: Principles of Operation, Dynamics, and Control, Electric Machines and Drives[END_REF]). In general, magnetic thin-film elements are used in many applications: inductive thin films heads in magnetic recording, megnetoresistive sensors, thin films memories, etc. About this subject we refer to A. Hubert and R. Schafer [START_REF] Hubert | Magnetic Domains: The Analysis of Magnetic Microstructures[END_REF] and the references quoted therein. The aim of our paper is to study the asymptotic behavior, as n diverges, of the following non-convex, nonlocal variational problem:

       J n = min Ωn α|DM | 2 + ϕ(M ) + 1 2 DU M M -2F n M dx : M ∈ H 1 (Ω n , S 2 ) , div(-DU M + M ) = 0 in R 3 ,
where α is a positive constant, ϕ : S 2 → [0, +∞[ is a continuous and even function, F n ∈ L 2 (Ω n , R 3 ), and S 2 denotes the unit sphere of R 3 . Moreover, it is understood that M = 0 in R 3 \ Ω n . As we shall prove, the limit problem depends on the limit of the ratio between the thicknesses h b n and h a n . In classical theory of micromagnetics, M : Ω n → R 3 denotes the magnetization and the body is always locally magnetized to a saturation magnetization |M (x)| = m(T ) > 0 unless the local temperature T is greater or equal to Curie temperature depending on the body, in the latter case m(T ) = 0, and the material ceases to behave ferromagnetically. In this paper we suppose constant temperature lower than Curie temperature and, without loss of generality, we assume that m = 1, that is M (x) ∈ S 2 . The exchange energy Ωn |DM | 2 dx penalizes the spatial variation of M , driving the body to have large regions of uniform magnetization separated by thin transition layers. The scalar function U M : R 3 → R is the so-called magnetostatic potential. The magnetostatic energy Ωn DU M M dx = R 3 |DU M | 2 dx favors divM = 0 in Ω n and M • ν = 0 on ∂Ω n , where ν is the exterior unit normal to ∂Ω n . The constant α is typically on order of 100 nanometers and measures the relative strength of exchange energy with respect to the magnetostatic energy. The anisotropy energy Ωn ϕ(M )dx favors magnetization along special crystallographic directions, while the external (Zeeman) energy Ωn F n M dx favors magnetization parallel to an externally applied field.

After having reformulated the problem on a fixed domain through appropriate rescalings of the kind proposed by P.G. Ciarlet and P. Destuynder [START_REF] Ciarlet | A Justification of the Two-Dimensional Linear Plate Model[END_REF] and having imposed appropriate convergence assumptions on the rescaled exterior fields, using the main ideas of Γ-convergence method introduced by E. De Giorgi [START_REF] De Giorgi | Su un tipo di convergenza variazionale[END_REF], we derive the limit problem which depends on the limit lim 

= 1 1 + q min ]-1 2 , 1 2 [×]0,1[ α |(D x 2 µ a |D x 3 µ a )| 2 + ϕ(µ a ) + 1 2 |µ a 1 | 2 -2 1 2 -1 2 f a (x 1 , x 2 , x 3 )dx 1 µ a d(x 2 , x 3 ) +q ]-1 2 , 1 2 [ 2 α D x 1 µ b |D x 2 µ b 2 + ϕ(µ b ) + 1 2 |µ b 3 | 2 -2 0 -1 f b (x 1 , x 2 , x 3 )dx 3 µ b d(x 1 , x 2 ), (µ a , µ b ) ∈ H 1 -1 2 , 1 2 ×]0, 1[, S 2 × H 1 -1 2 , 1 2 2 , S 2 , µ a (x 2 , 0) = µ b (0, x 2 ) in -1 2 , 1 2 
, where f a and f b (see (3.6) and (3.9)) are the L 2 -weak limits of the rescaled exterior fields in the vertical domain and in the horizontal domain, respectively, while µ a 1 and µ b 3 are the first and the third component of µ a and µ b , respectively. Remark that h a n + h b n is the measure of Ω n . We obtain two 2D problems coupled by the junction condition µ a (x 2 , 0) = µ b (0, x 2 ) in ] - 1 2 , 1 2 [. Moreover, the magnetostatic energy transforms into

1 2 ]-1 2 , 1 2 [×]0,1[ |µ a 1 | 2 d(x 2 , x 3 )+ q ]-1 2 , 1 2 [ 2 |µ b 3 | 2 d(x 1 , x 2 
) , so that the limit problem is completely local. It is easy to see that, if ϕ = 0, f a = 0 and f b = 0, then the minimum in the limit problem is zero and it is attained by ((0, 1, 0), (0, 1, 0)) and ((0, -1, 0), (0, -1, 0)), i.e. the limit magnetization is parallel to the two orthogonal thin films. In the other two cases, the structure behaves like a single thin film. Precisely, when q = 0 (i.e. h b n ≪ h a n ), in Theorem 4.2 we prove that the limit problem reduces to a 2D problem in the vertical thin film losing the junction condition:

lim n J n h a n + h b n = min ]-1 2 , 1 2 [×]0,1[ α |(D x 2 µ a |D x 3 µ a )| 2 + ϕ(µ a ) + 1 2 |µ a 1 | 2 d(x 2 , x 3 )+ ]-1 2 , 1 2 [×]0,1[ -2 1 2 -1 2 f a (x 1 , x 2 , x 3 )dx 1 µ a d(x 2 , x 3 ) : µ a ∈ H 1 -1 2 , 1 2 × ]0, 1[ , S 2 .
In this case, if ϕ = 0 and f a = 0, then the minimum in the limit problem is zero and it is attained by constant functions (0, c 2 , c 3 ) ∈ S 2 , i.e. the limit magnetization is contained in the vertical plane, but its orientation is undetermined. Analogously, when q = +∞ (i.e. h b n ≫ h a n ), in Theorem 4.3 we prove that the limit problem reduces to a 2D problem in the horizontal thin film:

lim n J n h a n + h b n = min ]-1 2 , 1 2 [ 2
on the combination of an approximation result proved by F. Bethuel and X. Zheng [START_REF] Bethuel | Density of Smooth Functions between Two Manifolds in Sobolev Spaces[END_REF] with splitting techniques introduced by H. Le Dret [START_REF] Landau | Problèmes variationnels dans le multi-domaines: modélisation des jonctions et applications[END_REF] and with a projection technique from R 3 into S 2 as in R. Hardt, D. Kinderlehrer and F. H. Lin [START_REF] Hardt | Existence and Partial Regularity of Static Liquid Crystal Configurations[END_REF]. In Subsection 5.5, combining convex arguments with projection techniques as we used in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF] and with the convergence of the magnetostatic energy, we build a recovery sequence for a generic regular couple in the limit space and, by virtue of the density result, we conclude the proof in the case q ∈]0, +∞[. Section 6 is devoted to the cases q = 0 and q = +∞.

In what concerns the study of a single ferromagnetic thin film, several results are present in literature. The fact that the magnetostatic energy behaves, at the limit, like an anisotropic local term which forces the magnetization to be tangent to the thin film was proved, for the first time, by G. Gioia and R. D. James [START_REF] Gioia | Micromagnetism of Very Thin Films[END_REF]. This result was extended by C. Leone and R. Alicandro [START_REF] Alicandro | 3D-2D Asymptotic Analysis for Micromagnetic Thin Films[END_REF] to the case with non-convex exchange energy, and by M. Baía and E. Zappale [START_REF] Baía | A Note on the 3D-2D Dimensional Reduction of a Micromagnetic Thin Film with Nonhomogeneous Profile[END_REF] to a thin film with nonhomogeneous profile. The time-dependent case was treated by H. Ammari, L. Halpern and K. Hamdache [START_REF] Ammari | Asymptotic behavior of thin ferromagnetic films[END_REF], and by G. Carbou [START_REF] Carbou | Thin Layers in micromagnetism[END_REF]. Very different regimes were considered by A. Desimone, R.V. Kohn, S. Muller and F. Otto [START_REF] Desimone | A Reduced Theory for Thin-Film Micromagnetics[END_REF], and by R.V. Kohn and V.V. Slastikov in [START_REF] Kohn | Another Thin-Film Limit of Micromagnetics[END_REF], where h l and α l vanish, h being the film thickness, l the in-plane diameter and α the exchange length of the ferromagnetic material.

Our paper is, to our knowledge, the first work on the junction of ferromagnetic thin bodies, unless we consider papers [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF] and [START_REF] Gaudiello | Junction of One-Dimensional Minimization Problems Involving S 2 Valued Maps[END_REF] where we developed an asymptotic analysis of minimizing maps with values in S 2 for the energy Cn (|DM | 2 -2F n M )dx, neglecting the term with the nonlocal magnetostatic energy. The geometry of C n consists of two cylinders attached together that shrink respectively to a segment and to a 2D disc in the first paper, while the two cylinders transform into a T -shaped domain in the second one. The limit problem is uncoupled in the former, while it is coupled in the latter.

The setting of the problem

In the sequel, x = (x 1 , x 2 , x 3 ) denotes the generic point of R 3 . If a, b, c ∈ R 3 , then (a|b|c) denotes the 3 × 3 real matrix having a T as first column, b T as second column, and c T as third column. In according to this notation, if v : A ⊂ R 3 → R 3 , then Dv denotes the 3 × 3 real matrix (D x 1 v|D x 2 v|D x 3 v), where D x i v ∈ R 3 , i=1,2,3, stands for the derivative of v with respect to x i . Moreover, v denotes the zero-extension of v to R 3 .

Let

{h a n } n∈N , h b n n∈N ⊂]0, 1[ be two sequences such that          lim n h a n = 0 = lim n h b n , lim n h b n h a n = q ∈ [0, +∞], (2.1) 
and, for every

n ∈ N, let Ω a n =] -h a n 2 , h a n 2 [×] -1 2 , 1 2 [×[0, 1[, Ω b n =] -1 2 , 1 2 [ 2 ×] -h b n , 0[ and Ω n = Ω a n ∪ Ω b n , as in figure. Let B be an interval containing Ω n for every n ∈ N , for instance let B =]-1, 1[ 2 ×]-2, 2[, and for every n ∈ N, set U = U ∈ L 1 loc (R 3 ) : U ∈ L 2 (B), DU ∈ (L 2 (R 3 )) 3 , B U dx = 0 .
It is easy to prove that U is contained in L 2 loc (R 3 ) and it is a Hilbert space with the inner product: (U, V ) = R 3 DU DV dx + B U V dx. Moreover, from the Poincaré-Wirtinger inequality it follows that a norm on U equivalent to (U, U )

1 2 is given by R 3 |DU | 2 dx 1 2 . Then, Lax-Milgram Theorem provides that, for M ∈ L 2 (Ω n , R 3 ), the following equation:        U M,n ∈ U, R 3 (-DU M,n + M )DU dx = 0, ∀U ∈ U, \.
admits a unique solution and U M,n is characterized as the unique minimizer of the following problem:

min 1 2 R 3 |DU -M | 2 dx : U ∈ U .
Moreover, U M belongs to H 1 (R 3 ) (see [START_REF] James | Frustation in Ferromagnetic Materials[END_REF]).

Let α be a positive constant, ϕ : S 2 → [0, +∞[ be a continuous, even function and, for every n ∈ N, F n ∈ L 2 (Ω n , R 3 ). The following problem:

min Ωn α|DM | 2 + ϕ(M ) + 1 2 DU M,n M -2F n M dx : M ∈ H 1 (Ω n , S 2 ) . (2.2)
has at least one solution (see [START_REF] Visintin | On Landau-Lifschitz' Equations for Ferromagnetism[END_REF]). In general, one can not expect a unique solution, because of the non-convexity of the constraint M (x) ∈ S 2 . The aim of this paper is to study the asymptotic behavior, as n diverges, of problem (2.2). As we shall show, its asymptotic behavior depends on the limit q given in (2.1) and on some assumptions on F n .

The rescaled problem

As it is usual (see [START_REF] Ciarlet | A Justification of the Two-Dimensional Linear Plate Model[END_REF]), problem (2.2) will be reformulated on a fixed domain through the following rescalings:

           (x 1 , x 2 , x 3 ) ∈ Ω a = - 1 2 , 1 2 × - 1 2 , 1 2 ×]0, 1[-→ (h a n x 1 , x 2 , x 3 ) ∈ Int(Ω a n ), (x 1 , x 2 , x 3 ) ∈ Ω b = - 1 2 , 1 2 × - 1 2 , 1 2 ×] -1, 0[-→ (x 1 , x 2 , h b n x 3 ) ∈ Ω b n ,
where Int(Ω a n ) denotes the interior of Ω a n . Moreover, the energy will be multiplied by 1

h a n when q = +∞ , by 1 h b n when q = +∞. Namely, let R 3 + = {(x 1 , x 2 , x 3 ) ∈ R 3 : x 3 > 0}, R 3 -= {(x 1 , x 2 , x 3 ) ∈ R 3 : x 3 < 0} and, for every n ∈ N, B a n =] -1 h a n , 1 h a n [×] -1, 1[×]0, 2[, B b n =] -1, 1[ 2 ×] -2 h b n
, 0[ and

U n = u = (u a , u b ) ∈ L 1 loc (R 3 + ) × L 1 loc (R 3 -) : (u a | B a n , u b | B b n ) ∈ L 2 (B a n ) × L 2 (B b n ), (Du a , Du b ) ∈ (L 2 (R 3 + )) 3 × (L 2 (R 3 -)) 3 , B a n u a dx + h b n h a n B b n u b dx = 0, u a (x 1 , x 2 , 0) = u b (h a n x 1 , x 2 , 0), for (x 1 , x 2 ) a.e. in R 2 . (3.1) 
Then, for every m = (m a , m b ) ∈ L 2 (Ω a , R 3 ) × L 2 (Ω b , R 3 ), the following equation:

                             u m,n = (u a m,n , u b m,n ) ∈ U n , R 3 + - 1 h a n D x 1 u a m,n , D x 2 u a m,n , D x 3 u a m,n + m a 1 h a n D x 1 u a , D x 2 u a , D x 3 u a dx+ h b n h a n R 3 - -D x 1 u b m,n , D x 2 u b m,n , 1 h b n D x 3 u b m,n + m b D x 1 u b , D x 2 u b , 1 h b n D x 3 u b dx = 0, ∀u = (u a , u b ) ∈ U n . (3.
2) admits a unique solution and u m,n = (u a m,n , u b m,n ) ∈ U n is characterized as the the unique solution of the following problem:

j m,n (u m,n ) = min {j m,n (u) : u ∈ U n } , (3.3) 
where

j m,n : u = (u a , u b ) ∈ U n -→ 1 2 R 3 + 1 h a n D x 1 u a , D x 2 u a , D x 3 u a -m a 2 dx+ 1 2 h b n h a n R 3 - D x 1 u b , D x 2 u b , 1 h b n D x 3 u b -m b 2 dx. (3.4) Remark that u m,n = (u a m,n , u b m,n ) belongs to H 1 (R 3 + ) × H 1 (R 3 -). For every n ∈ N, let M n = m = (m a , m b ) ∈ H 1 (Ω a , S 2 ) × H 1 (Ω b , S 2 ) : m a (x 1 , x 2 , 0) = m b (h a n x 1 , x 2 , 0), for (x 1 , x 2 ) a.e. in ] -1 2 , 1 2 [ 2 , (3.5) 
f n : x ∈ Ω a ∪ Ω b → f n (x) =    f a n (x) = F n (h a n x 1 , x 2 , x 3 ), for x a.e. in Ω a , f b n (x) = F n (x 1 , x 2 , h b n x 3 ), for x a.e. in Ω b , (3.6) 
and

E n : m = (m a , m b ) ∈ M n -→ Ω a α 1 h a n D x 1 m a |D x 2 m a |D x 3 m a 2 + ϕ(m a ) -2f a n m a dx+ 1 2 Ω a 1 h a n D x 1 u a m,n , D x 2 u a m,n , D x 3 u a m,n m a dx+ h b n h a n Ω b α D x 1 m b |D x 2 m b | 1 h b n D x 3 m b 2 + ϕ(m b ) -2f b n m b dx+ 1 2 h b n h a n Ω b D x 1 u b m,n , D x 2 u b m,n , 1 h b n D x 3 u b m,n m b dx. (3.7)
Then, the function defined by

   M n (h a n x 1 , x 2 , x 3 ), for x a.e. in Ω a , M n (x 1 , x 2 , h b n x 3 ), for x a.e. in Ω b , with M n solution of problem (2.
2), is a solution of the following problem:

min {E n (m) : m ∈ M n } . (3.8)
Actually, the goal of this paper becomes to study the asymptotic behavior, as n diverges, of problem (3.8). To this aim, it will be assumed that

f a n ⇀ f a weakly in L 2 (Ω a , R 3 ), f b n ⇀ f b weakly in L 2 (Ω b , R 3 ). (3.9)
Remark that, setting for every n ∈ N

E mag n : m = (m a , m b ) ∈ L 2 (Ω a , R 3 ) × L 2 (Ω b , R 3 ) -→ 1 2 R 3 + 1 h a n D x 1 u a m,n , D x 2 u a m,n , D x 3 u a m,n 2 dx+ 1 2 h b n h a n R 3 - D x 1 u b m,n , D x 2 u b m,n , 1 h b n D x 3 u b m,n 2 dx, (3.10) 
from (3.2) it follows that

E n (m) = Ω a α 1 h a n D x 1 m a |D x 2 m a |D x 3 m a 2 + ϕ(m a ) -2f a n m a dx+ h b n h a n Ω b α D x 1 m b |D x 2 m b | 1 h b n D x 3 m b 2 + ϕ(m b ) -2f b n m b dx+ E mag n (m), ∀m = (m a , m b ) ∈ M n , ∀n ∈ N. (3.11)
4 The main results

Let M = µ = (µ a , µ b ) ∈ H 1 (Ω a , S 2 ) × H 1 (Ω b , S 2 ) : µ a is independent of x 1 , µ b is independent of x 3 , µ a (0, x 2 , 0) = µ b (0, x 2 , 0), for x 2 a.e. in ] -1 2 , 1 2 [ ≃ µ = (µ a , µ b ) ∈ H 1 (] -1 2 , 1 2 [×]0, 1[, S 2 ) × H 1 -1 2 , 1 2 
2 , S 2 :

µ a (x 2 , 0) = µ b (0, x 2 ), for x 2 a.e. in ] -1 2 , 1 2 [ (4.1)
and, for q ∈]0, +∞[, let

E q : µ = (µ a , µ b ) ∈ M -→ ]-1 2 , 1 2 [×]0,1[ α |(D x 2 µ a |D x 3 µ a )| 2 + ϕ(µ a ) + 1 2 |µ a 1 | 2 -2 1 2 -1 2 f a (x 1 , x 2 , x 3 )dx 1 µ a d(x 2 , x 3 )+ q ]-1 2 , 1 2 [ 2 α D x 1 µ b |D x 2 µ b 2 + ϕ(µ b ) + 1 2 |µ b 3 | 2 -2 0 -1 f b (x 1 , x 2 , x 3 )dx 3 µ b d(x 1 , x 2 ), (4.2 
) then this paper is essentially devoted to prove the following result: Theorem 4.1. Assume (2.1) with q ∈]0, +∞[ and (3.9). For every n ∈ N let m n = (m a n , m b n ) be a solution of (3.8) and u m n ,n = (u a m n ,n , u b m n ,n ) be the unique solution of (3.3) corresponding to m n . Moreover, let M and E q be defined by (4.1) and (4.2), respectively. Then, there exist an increasing sequence of positive integer numbers {n i } i∈N and µ = ( µ a , µ b ) ∈ M, depending on the selected subsequence, such that

   m a n i → µ a stongly in H 1 (Ω a , S 2 ), m b n i → µ b strongly in H 1 (Ω b , S 2 ), (4.3) 
         1 h a n D x 1 m a n → 0 stongly in L 2 (Ω a , R 3 ), 1 h b n D x 3 m b n → 0 strongly in L 2 (Ω b , R 3 ), (4.4) 
           1 h a n i D x 1 u a m n i ,n i → µ a 1 , D x 2 u a m n ,n → 0, D x 3 u a m n ,n → 0 strongly in L 2 (R 3 + ), D x 1 u b m n ,n → 0, D x 2 u b m n ,n → 0, 1 h b n i D x 3 u b m n i ,n i → µ b 3 strongly in L 2 (R 3 -), (4.5) 
as i and n diverge, and µ is a solution of the following problem:

E q ( µ) = min {E q (µ) : µ ∈ M} , (4.6) 
where µ a 1 and µ b 3 denote the zero-extension of µ a 1 and µ b 3 to R 3 , respectively. Moreover, it results that

lim n E n (m n ) = E q ( µ). (4.7) 
In this paper we also study the cases q = 0 and q = +∞. Precisely, in the case q = 0, let

M 0 = {µ a ∈ H 1 (Ω a , S 2 ) : µ a is independent of x 1 , } ≃ H 1 (] -1 2 , 1 2 [×]0, 1[, S 2 ) (4.8)
and

E 0 : µ a ∈ M 0 → ]-1 2 , 1 2 [×]0,1[ α |(D x 2 µ a |D x 3 µ a )| 2 + ϕ(µ a ) + 1 2 |µ a 1 | 2 -2 1 2 -1 2 f a (x 1 , x 2 , x 3 )dx 1 µ a d(x 2 , x 3 ), ( 4 
.9) then the following result will be proved: Theorem 4.2. Assume (2.1) with q = 0 and (3.9). For every n ∈ N let m n = (m a n , m b n ) be a solution of (3.8) and u m n ,n = (u a m n ,n , u b m n ,n ) be the unique solution of (3.3) corresponding to m n . Moreover, let M 0 and E 0 be defined by (4.8) and (4.9), respectively. Then, there exist an increasing sequence of positive integer numbers {n i } i∈N and µ a ∈ M 0 , depending on the selected subsequence, such that

       m a n i → µ a stongly in H 1 (Ω a , S 2 ), h b n h a n 1 2 m b n → 0 strongly in H 1 (Ω b , S 2 ), (4.10) 
           1 h a n D x 1 m a n → 0 stongly in L 2 (Ω a , R 3 ), 1 h b n h b n h a n 1 2 D x 3 m b n → 0 strongly in L 2 (Ω b , R 3 ), (4.11) 
                   1 h a n i D x 1 u a m n i ,n i → µ a 1 , D x 2 u a m n ,n → 0, D x 3 u a m n ,n → 0 strongly in L 2 (R 3 + ), h b n h a n 1 2 D x 1 u b m n ,n → 0, h b n h a n 1 2 D x 2 u b m n ,n → 0, 1 h b n h b n h a n 1 2 D x 3 u b m n ,n → 0 strongly in L 2 (R 3 -), (4.12) 
as i and n diverge, and µ a is a solution of the following problem:

E 0 ( µ a ) = min {E 0 (µ a ) : µ a ∈ M 0 } , (4.13) 
where µ a 1 denotes the zero-extension of µ a 1 . Moreover, it results that

lim n E n (m n ) = E 0 ( µ a ). (4.14)
In the case q = +∞, let

M ∞ = µ b ∈ H 1 (Ω b , S 2 ) : µ b is independent of x 3 , ≃ H 1 (] -1 2 , 1 2 [ 2 , S 2 ) (4.15)
and

E ∞ : µ b ∈ M ∞ → ]-1 2 , 1 2 [ 2 α D x 1 µ b |D x 2 µ b 2 + ϕ(µ b ) + 1 2 |µ b 3 | 2 -2 0 -1 f b (x 1 , x 2 , x 3 )dx 3 µ b d(x 1 , x 2 ), (4.16 
) then the following result will be proved: Theorem 4.3. Assume (2.1) with q = +∞, and (3.9). For every n ∈ N let m n = (m a n , m b n ) be a solution of (3.8) and u m n ,n = (u a m n ,n , u b m n ,n ) be the unique solution of (3.3) corresponding to m n . Moreover, let M ∞ and E ∞ be defined by (4.15) and (4.16), respectively. Then, there exist an increasing sequence of positive integer numbers {n i } i∈N and µ b ∈ M ∞ , depending on the selected subsequence, such that

       h a n h b n 1 2 m a n → 0 stongly in H 1 (Ω a , S 2 ), m b n i → µ b strongly in H 1 (Ω b , S 2 ),            1 h a n h a n h b n 1 2 D x 1 m a n → 0 stongly in L 2 (Ω a , R 3 ), 1 h b n D x 3 m b n → 0 strongly in L 2 (Ω b , R 3 ),            1 h a n h a n h b n 1 2 D x 1 u a m n ,n → 0, h a n h b n 1 2 D x 2 u a m n ,n → 0, h a n h b n 1 2 D x 3 u a m n ,n → 0 strongly in L 2 (R 3 + ), D x 1 u b m n ,n → 0, D x 2 u b m n ,n → 0, 1 h b n i D x 3 u b m n i ,n i → µ b 3 strongly in L 2 (R 3 -),
as i and n diverge, and µ b is a solution of the following problem:

E ∞ ( µ b ) = min E ∞ (µ b ) : µ b ∈ M ∞ , (4.17) 
where µ b 3 denotes the zero-extension of µ b 3 . Moreover, it results that

lim n h a n h b n E n (m n ) = E ∞ ( µ b ).
5 The case q ∈]0, +∞[

The proof of Theorem 4.1 will be developed in several steps. We begin by proving a general convergence result for the magnetostatic energy. Its proof is inspired by the proof of Proposition 4.1 in [START_REF] Gioia | Micromagnetism of Very Thin Films[END_REF], but we have to build couples of test functions satisfying the junction condition in (3.1).

A Convergence result for the magnetostatic energy

Proposition 5.1. Assume (2.1) with q ∈]0, +∞[. Let {m n = (m a n , m b n )} n∈N ⊂ L 2 (Ω a , R 3 ) × L 2 (Ω b , R 3 ) and µ = (µ a , µ b ) = ((µ a 1 , µ a 2 , µ a 3 , ), (µ b 1 , µ b 2 , µ b 3 )) ∈ L 2 (Ω a , R 3 ) × L 2 (Ω b , R 3 ) be such that (m a n , m b n ) → (µ a , µ b ) strongly in L 2 (Ω a , R 3 ) × L 2 (Ω b , R 3 ), (5.1) 
as n diverges. Moreover, for every n ∈ N let u m n ,n = (u a m n ,n , u b m n ,n ) be the unique solution of (3.3) corresponding to m n , and let E mag n be defined by (3.10). Then, it results that

         1 h a n D x 1 u a m n ,n → µ a 1 , D x 2 u a m n ,n → 0, D x 3 u a m n ,n → 0 strongly in L 2 (R 3 + ), D x 1 u b m n ,n → 0, D x 2 u b m n ,n → 0, 1 h b n D x 3 u b m n ,n → µ b 3 strongly in L 2 (R 3 -), (5.2) 
as n diverges, and

lim n E mag n (m n ) = 1 2 Ω a |µ a 1 | 2 dx + q Ω b |µ b 3 | 2 dx . (5.3) 
Proof. By choosing u = (0, 0) as test function in (3.3) corresponding to m n , by virtue of (2.1) with q = +∞ and (5.1) it results that ∃c ∈]0, +∞[ :

R 3 + 1 h a n D x 1 u a m n ,n , D x 2 u a m n ,n , D x 3 u a m n ,n -m a n 2 dx+ h b n h a n R 3 - D x 1 u b m n ,n , D x 2 u b m n ,n , 1 h b n D x 3 u b m n ,n -m b n 2 dx ≤ c, ∀n ∈ N.
Consequently, applying the triangle inequality and using again (2.1) with q = 0 and (5.1), it follows that

                             ∃c ∈]0, +∞[ : 1 h a n D x 1 u a m n ,n L 2 (R 3 + ) ≤ c, D x 2 u a m n ,n L 2 (R 3 + ) ≤ c, D x 3 u a m n ,n L 2 (R 3 + ) ≤ c, D x 1 u b m n ,n L 2 (R 3 
-) ≤ c, D x 2 u b m n ,n L 2 (R 3 
-) ≤ c, 1 h b n D x 3 u b m n ,n L 2 (R 3 -) ≤ c, ∀n ∈ N. (5.4) Since (u a m n , u b m n ) belongs to H 1 (R 3 + ) × H 1 (R 3 -), the Sobolev-Gagliardo-Nirenberg Inequality and (5.4) provide that ∃c ∈]0, +∞[ : u a m n ,n L 6 (R 3 + ) ≤ c, u b m n ,n L 6 (R 3 -) ≤ c, ∀n ∈ N. (5.5) 
Estimates (5.4) and (5.5) guarantee the existence of a function u

= (u a , u b ) ∈ L 6 (R 3 + ) × L 6 (R 3 -), with Du = (Du a , Du b ) ∈ (L 2 (R 3 + )) 3 × (L 2 (R 3 -)) 3 , u a independent of x 1 and u b independent of x 3 , such that on extraction of a suitable subsequence (not relabelled)    u a m n ,n ⇀ u a weakly in L 6 (R 3 + ), Du a m n ,n ⇀ Du a weakly in (L 2 (R 3 + )) 3 , u b m n ,n ⇀ u b weakly in L 6 (R 3 -), Du b m n ,n ⇀ Du b weakly in (L 2 (R 3 -)) 3 , (5.6) 
as n diverges. Moreover, the fact that u a is independent of x 1 and Du a ∈ (L 2 (R 3 + )) 3 provides that

+∞ > R 3 + |Du a | 2 dx ≥ b a R 2 + |D x 2 u a | 2 + |D x 3 u a | 2 d(x 2 , x 3 ) dx 1 = (b -a) R 2 + |D x 2 u a | 2 + |D x 3 u a | 2 d(x 2 , x 3 ) ∀a, b ∈ R with a < b,
which gives that u a is independent of x 2 and x 3 , too. Then u a = 0, since zero is the only constant function belonging to L 6 (R 3 + ). Similarly, one proves that u b = 0. Then, from (5.6) one concludes that

   Du a m n ,n ⇀ 0 weakly in (L 2 (R 3 + )) 3 , Du b m n ,n ⇀ 0 weakly in (L 2 (R 3 -)) 3 , (5.7) 
as n diverges, and these converges hold true for the whole sequence.

The first and the last estimate in (5.4) guarantee the existence of ξ a ∈ L 2 (R 3 + ) and

ξ b ∈ L 2 (R 3 
-) such that on extraction of a suitable subsequence (not relabelled)

1 h a n D x 1 u a m n ,n ⇀ ξ a weakly in L 2 (R 3 + ), 1 h b n D x 3 u b m n ,n ⇀ ξ b weakly in L 2 (R 3 -), (5.8) 
as n diverges.

For proving that convergences (5.7) are (5.8) are strong and for identifying ξ a and ξ b , introduce a sequence {ε} of positive numbers converging to zero, a diverging sequence {λ} of positive numbers, and two sequences

{µ a ε } ε ⊂ C ∞ 0 (Ω a ) and {µ b ε } ε ⊂ C ∞ 0 (Ω b ) such that µ a ε → µ a 1 strongly in L 2 (Ω a ), µ b ε → µ b 3 strongly in L 2 (Ω b ), (5.9) 
as ε tends to zero. Moreover, for every ε, λ and n ∈ N set

u ε,λ,n =                      u a ε,λ,n = h a n x 1 -1 2 µ a ε (s, x 2 , x 3 )ds - h a n λ x 1 1 2 χ [ 1 2 , 1 2 +λ] (r)dr 1 2 -1 2 µ a ε (s, x 2 , x 3 )ds + c ε,λ,n , a.e. in R 3 + , u b ε,λ,n = -h b n 0 x 3 µ b ε (x 1 , x 2 , s)ds + h b n λ -1 x 3 χ [-1-λ,-1] (r)dr 0 -1 µ b ε (x 1 , x 2 , s)ds + c ε,λ,n , a.e. in R 3 -,
where the constant c ε,λ,n is chosen in such a way to have

B a n u a ε,λ,n dx + h b n h a n B b n u b ε,λ,n dx = 0. Remark that u a ε,λ,n = c ε,λ,n in R 3 + \ [-1 2 , 1 2 + λ] × [-1 2 , 1 2 ] × [0, 1] , u b ε,λ,n = c ε,λ,n in R 3 -\ [-1 2 , 1 2 ] 2 × [-1 -λ, 0] . Since u ε,λ,n ∈ U n , by choosing u = u ε,λ,n as test function in (3.3) corresponding to m n = (m a n , m b n ) = ((m a 1,n , m a 2,n , m a 3,n ), (m b 1,n , m b 2,n , m b 3,n )), it results that R 3 + |ξ a -m a 1,n | 2 + 2 1 h a n D x 1 u a m n ,n -ξ a ξ a -m a 1,n + 1 h a n D x 1 u a m n ,n -ξ a 2 + |(D x 2 u a m n ,n , D x 3 u a m n ,n )| 2 -2(D x 2 u a m n ,n , D x 3 u a m n ,n )( m a 2,n , m a 3,n ) + |( m a 2,n , m a 3,n )| 2 dx+ h b n h a n R 3 - |(D x 1 u b m n ,n , D x 2 u b m n ,n )| 2 -2(D x 1 u b m n ,n , D x 2 u b m n ,n )( m b 1,n , m b 2,n ) + |( m b 1,n , m b 2,n )| 2 + |ξ b -m b 3,n | 2 + 2 1 h b n D x 3 u b m n ,n -ξ b ξ b -m b 3,n + 1 h b n D x 3 u b m n ,n -ξ b 2 dx = 2j m n ,n (u m n ) ≤ 2j m n ,n (u ε,λ,n ) = R 3 + µ a ε - 1 λ χ [ 1 2 , 1 2 +λ] (x 1 ) 1 2 -1 2 µ a ε (s, x 2 , x 3 )ds -m a 1,n 2 + h a n D x 2 x 1 -1 2 µ a ε (s, x 2 , x 3 )ds - h a n λ x 1 1 2 χ [ 1 2 , 1 2 +λ] (r)drD x 2 1 2 -1 2 µ a ε (s, x 2 , x 3 )ds -m a 2,n 2 + h a n D x 3 x 1 -1 2 µ a ε (s, x 2 , x 3 )ds - h a n λ x 1 1 2 χ [ 1 2 , 1 2 +λ] (r)drD x 3 1 2 -1 2 µ a ε (s, x 2 , x 3 )ds -m a 3,n 2 dx+ h b n h a n R 3 - -h b n D x 1 0 x 3 µ b ε (x 1 , x 2 , s)ds + h b n λ -1 x 3 χ [-1-λ,-1] (r)drD x 1 0 -1 µ b ε (x 1 , x 2 , s)ds -m b 1,n 2 + -h b n D x 2 0 x 3 µ b ε (x 1 , x 2 , s)ds + h b n λ -1 x 3 χ [-1-λ,-1] (r)drD x 2 0 -1 µ b ε (x 1 , x 2 , s)ds -m b 2,n 2 + µ b ε - 1 λ χ [-1-λ,-1] (x 3 ) 0 -1 µ b ε (x 1 , x 2 , s)ds -m b 3,n 2 dx, ∀ε, λ, n,
from which, fixing ε and λ, passing to the limit as n diverges and using (2.1) with q = +∞, (5.1), (5.7), (5.8), it follows that

lim sup n R 3 + |ξ a -m a 1,n | 2 + 1 h a n D x 1 u a m n ,n -ξ a 2 + |(D x 2 u a m n ,n , D x 3 u a m n ,n )| 2 dx+ h b n h a n R 3 - |(D x 1 u b m n ,n , D x 2 u b m n ,n )| 2 + |ξ b -m b 3,n | 2 + 1 h b n D x 3 u b m n ,n -ξ b 2 dx ≤ R 3 + µ a ε - 1 λ χ [ 1 2 , 1 2 +λ] (x 1 ) 1 2 -1 2 µ a ε (s, x 2 , x 3 )ds -µ a 1 2 dx+ q R 3 - µ b ε - 1 λ χ [-1-λ,-1] (x 3 ) 0 -1 µ b ε (x 1 , x 2 , s)ds -µ b 3 2 dx ≤ 2 Ω a |µ a ε -µ a 1 | 2 dx + 2 λ Ω a |µ a ε | 2 dx+ 2q Ω b µ b ε -µ b 3 2 dx + 2q λ Ω b µ b ε 2 dx ∀ε, λ.
(5.10) Finally, passing to the limit in (5.10), as λ diverges and ε tends to zero, and using (5.9), one obtains

lim n R 3 + |ξ a -m a 1,n | 2 + 1 h a n D x 1 u a m n ,n -ξ a 2 + |(D x 2 u a m n ,n , D x 3 u a m n ,n )| 2 dx+ h b n h a n R 3 - |(D x 1 u b m n ,n , D x 2 u b m n ,n )| 2 + |ξ b -m b 3,n | 2 + 1 h b n D x 3 u b m n ,n -ξ b 2 dx = 0,
from which, by virtue of (2.1) with q = 0 and (5.1), converges (5.2) follow and these converges hold true for the whole sequence. Convergence (5.3) is a consequence of (2.1) with q = +∞ and (5.2).

A priori estimates on the magnetization

Proposition 5.2. Assume (2.1) with q ∈ [0, +∞[ and (3.9). For every n ∈ N let m n be a solution of (3.8). Then, it results that 

∃c ∈]0, +∞[ : E n (m n ) ≤ c, ∀n ∈ N. ( 5 
E n (m n ) ≤ ϕ((0, 1, 0)) + 2 f a n L 2 (Ω a ) + h b n h a n ϕ((0, 1, 0)) + 2 f b n L 2 (Ω b ) + E mag n (((0, 1, 0), (0, 1, 0))), ∀n ∈ N.
Consequently, taking into account (2.1) with q = +∞ and (3.9), for obtaining (5.11) it remains to prove that ∃c ∈]0, +∞[ : E mag n (((0, 1, 0), (0, 1, 0))) ≤ c, ∀n ∈ N.

(5.12)

By choosing u = u a ((0,1,0),(0,1,0)),n , u b ((0,1,0),(0,1,0)),n as test function in (3.2) with m = ((0, 1, 0)(0, 1, 0)) and using the Cauchy-Schwarz inequality, one derives that

2E mag n (((0, 1, 0), (0, 1, 0))) ≤ 1 + h b n h a n 1 2 (2E mag n (((0, 1, 0), (0, 1, 0)))) 1 2 , ∀n ∈ N,
which gives (5.12), since q = +∞.

The following result is an immediate consequence of Proposition 5.2:

Corollary 5.3. Assume (2.1) with q ∈]0, +∞[ and (3.9). For every n ∈ N let m n = (m a n , m b n ) be a solution of (3.8). Then, there exists c ∈]0, +∞[ such that

D x 1 m a n (L 2 (Ω a )) 3 ≤ ch a n , D x 2 m a n (L 2 (Ω a )) 3 ≤ c, D x 3 m a n (L 2 (Ω a )) 3 ≤ c, ∀n ∈ N, D x 1 m b n (L 2 (Ω b )) 3 ≤ c, D x 2 m b n (L 2 (Ω b )) 3 ≤ c, D x 3 m b n (L 2 (Ω b )) 3 ≤ ch b n , ∀n ∈ N.

Convergence of the magnetization

Previous a priori estimates provide that the magnetization converges to a function (

µ a , µ b ) ∈ H 1 (]-1 2 , 1 2 [×]0, 1[, S 2 )×H 1 (]-1 2 , 1 2 [ 2 , S 2 ). A real difficulty is to recover the junction condition µ a (x 2 , 0) = µ b (0, x 2 ) in ]-1 2 , 1 2 
[. This is proved in the following proposition through a suitable splitting of the trace and deducing sharp estimates for this. Proposition 5.4. Assume (2.1) with q ∈]0, +∞[ and (3.9). For every n ∈ N let m n = (m a n , m b n ) be a solution of (3.8) and let M be defined by (4.1). Then, there exist an increasing sequence of positive integer numbers {n i } i∈N and µ = ( µ a , µ b ) ∈ M, depending on the selected subsequence, such that

   m a n i ⇀ µ a weakly in H 1 (Ω a , R 3 ), m b n i ⇀ µ b weakly in H 1 (Ω b , R 3 ).
(5.13)

Proof. By taking into account that |m n | = 1 a.e. in Ω a Ω b for every n ∈ N, Corollary 5.3 and assumption (2.1), there exist an increasing sequence of positive integer numbers

{n i } i∈N , µ a ∈ H 1 (Ω a , S 2 ) independent of x 1 , µ b ∈ H 1 (Ω b , S 2
) independent of x 3 , such that convergences (5.13) hold true. For asserting that ( µ a , µ b ) ∈ M, it remains to prove that

µ a (x 2 , 0) = µ b (0, x 2 ), for x 2 a.e. in - 1 2 , 1 2 . 
(5.14)

The proof of (5.14) will be performed in several steps. At first, remark that

lim i ]-1 2 , 1 2 [ 2 m a n i (x 1 , x 2 , 0) -µ a (x 2 , 0) ϕ(x 2 )d(x 1 , x 2 ) = 0, ∀ϕ ∈ C ∞ 0 - 1 2 , 1 2 . (5.15)
Now, for every i ∈ N, set

ρ i (x 3 ) = ]-1 2 , 1 2 [ 2 D x 1 m b n i (x 1 , x 2 , x 3 ) 2 + D x 2 m b n i (x 1 , x 2 , x 3 ) 2 + m b n i (x 1 , x 2 , x 3 ) 2 d(x 1 , x 2 ),
for x 3 a.e. in ] -1, 0[. ¿From Fatou's Lemma, Corollary (5.3) and the fact that m b n i = 1 a.e. in Ω b , it follows that

0 -1 lim inf i ρ i (x 3 )dx 3 ≤ lim inf i 0 -1 ρ i (x 3 )dx 3 < +∞.
Consequently, there exist two constants c ∈]0, +∞[ and x 3 ∈] -1, 0[, and an increasing sequence of positive integer numbers {i k } k∈N such that

ρ i k (x 3 ) < c, ∀k ∈ N.
Then, by virtue of the second convergence in (5.13), it results that

m b n i k (•, •, x 3 ) ⇀ µ b weakly in H 1 - 1 2 , 1 2 
2 , R 3 , (5.16) 
as k → +∞. The next step is devoted to prove that

lim k ]-1 2 , 1 2 [ 2 m b n i k (h a n i k x 1 , x 2 , 0) -µ b (0, x 2 ) ϕ(x 2 )d(x 1 , x 2 ) = 0, ∀ϕ ∈ C ∞ 0 -1 2 , 1 2 
.

(5.17)

To this aim, for a fixed ϕ ∈ C ∞ 0 -1 2 , 1 2 , the integral in (5.17) will be split in the following way:

]-1 2 , 1 2 [ 2 m b n i k (h a n i k x 1 , x 2 , 0) -µ b (0, x 2 ) ϕ(x 2 )d(x 1 , x 2 ) = ]-1 2 , 1 2 [ 2 m b n i k (h a n i k x 1 , x 2 , 0) -m b n i k (h a n i k x 1 , x 2 , x 3 ) ϕ(x 2 )d(x 1 , x 2 )+ ]-1 2 , 1 2 [ 2 m b n i k (h a n i k x 1 , x 2 , x 3 ) -m b n i k (0, x 2 , x 3 ) ϕ(x 2 )d(x 1 , x 2 )+ ]-1 2 , 1 2 [ 2 m b n i k (0, x 2 , x 3 ) -µ b (0, x 2 ) ϕ(x 2 )d(x 1 , x 2 ) ∀k ∈ N, (5.18) 
and one will pass to the limit, as k diverges, in each term of this decomposition.

By virtue of the last inequality in Corollary 5.3 and of (2.1) with q = +∞, there exists a constant c ∈]0, +∞[ such that

lim sup k ]-1 2 , 1 2 [ 2 m b n i k (h a n i k x 1 , x 2 , 0) -m b n i k (h a n i k x 1 , x 2 , x 3 ) ϕ(x 2 )d(x , x 2 ) = lim sup k ]-1 2 , 1 2 [ 2 0 x 3 D x 3 m b n i k (h a n i k x 1 , x 2 , x 3 )dx 3 ϕ(x 2 )d(x 1 , x 2 ) ≤ ϕ L ∞ (]-1 2 , 1 2 [) |Ω b | 1 2 lim sup k Ω b |D x 3 m b n i k (h a n i k x 1 , x 2 , x 3 )| 2 dx 1 2 ≤ ϕ L ∞ (]-1 2 , 1 2 [) |Ω b | 1 2 lim sup k 1 h a n i k Ω b |D x 3 m b n i k (x 1 , x 2 , x 3 )| 2 dx 1 2 ≤ ϕ L ∞ (]-1 2 , 1 2 [) |Ω b | 1 2 c lim k h b n i k h a n i k = 0. (5.19)
By virtue of (5.16), there exists a constant c ∈]0, +∞[ such that

lim sup k ]-1 2 , 1 2 [ 2 m b n i k (h a n i k x 1 , x 2 , x 3 ) -m b n i k (0, x 2 , x 3 ) ϕ(x 2 )d(x 1 , x 2 ) = lim sup k ]-1 2 , 1 2 [ 2 h a n i k x 1 0 D t m b n i k (t, x 2 , x 3 )dt ϕ(x 2 )d(x 1 , x 2 ) ≤ 1 2 ϕ L ∞ (]-1 2 , 1 2 [) lim sup k 1 2 -1 2   h a n i k 2 0 D t m b n i k (t, x 2 , x 3 ) dt   dx 2 + 1 2 ϕ L ∞ (]-1 2 , 1 2 [) lim sup k 1 2 -1 2 0 - h a n i k 2 D t m b n i k (t, x 2 , x 3 ) dt dx 2 ≤ ϕ L ∞ (]-1 2 , 1 2 [) lim sup k h a n i k 2 ]-1 2 , 1 2 [ 2 |D x 1 m b n i k (x 1 , x 2 , x 3 )| 2 d(x 1 , x 2 ) ≤ 1 √ 2 ϕ L ∞ (]-1 2 , 1 2 [) c lim k h a n i k = 0.
(5.20) ¿From (5.16) it follows that

m b n i k (0, •, x 3 ) → µ b (0, •) strongly in L 2 - 1 2 , 1 2 , R 3 , as k → +∞. Consequently, it results that lim k ]-1 2 , 1 2 [ 2 m b n i k (0, x 2 , x 3 ) -µ b (0, x 2 ) ϕ(x 2 )d(x 1 , x 2 ) = lim k 1 2 -1 2 m b n i k (0, x 2 , x 3 ) -µ b (0, x 2 ) ϕ(x 2 )dx 2 = 0.
(5.21) Then, passing to the limit in (5.18), as k diverges, and taking into account (5.19)-( 5.21), one obtains (5.17).

Finally, junction condition (5.14) is obtained by passing to the limit, as k diverges, in

]-1 2 , 1 2 [ 2 m a n i k (x 1 , x 2 , 0)ϕ(x 2 )d(x 1 , x 2 ) = ]-1 2 , 1 2 [ 2 m b n i k (h a n i k x 1 , x 2 , 0)ϕ(x 2 )d(x 1 , x 2 ), ∀k ∈ N, ∀ϕ ∈ C ∞ 0 -1 2 , 1 2 
, and using (5.15) and (5.17).

A density result

Let

M reg = µ = (µ a , µ b ) ∈ C 1 ([-1 2 , 1 2 ] × [0, 1], S 2 ) × C -1 2 , 1 2 
2 , S 2 :

µ b | [ -1 2 ,0 ] × [ -1 2 , 1 2 ] ∈ C 1 ( -1 2 , 0 × -1 2 , 1 2 , S 2 ), µ b | [ 0, 1 2 ] × [ -1 2 , 1 2 ] ∈ C 1 ( 0, 1 2 × -1 2 , 1 2 , S 2 ), µ a (x 2 , 0) = µ b (0, x 2 ), for x 2 ∈] -1 2 , 1 2 [ . (5.22) Remark that M reg ⊂ W 1,∞ (] -1 2 , 1 2 [×]0, 1[, S 2 ) × W 1,∞ -1 2 , 1 2 2 , S 2 .
Next proposition is devoted to prove that M reg is dense in M. We point out that this result is not evident since the limit domain

{0} × [-1 2 , 1 2 ] × [0, 1] ∪ -1 2 , 1 2 
2 × {0} is not a manifold.
The proof is based on the combination of an approximation result proved in [START_REF] Bethuel | Density of Smooth Functions between Two Manifolds in Sobolev Spaces[END_REF] with splitting techniques introduced in [START_REF] Landau | Problèmes variationnels dans le multi-domaines: modélisation des jonctions et applications[END_REF] and a projection technique from R 3 into S 2 as in [START_REF] Hardt | Existence and Partial Regularity of Static Liquid Crystal Configurations[END_REF].

Proposition 5.5. Let M and M reg be the spaces defined in (4.1) and (5.22), respectively. Then, M reg is dense in M.

Proof. Let (µ a , µ b ) ∈ M. The goal is to find a sequence {(µ a n , µ b n )} n∈N ⊂ M reg such that (µ a n , µ b n ) → (µ a , µ b ) strongly in H 1 - 1 2 , 1 2 ×]0, 1[, S 2 × H 1 - 1 2 , 1 2 2 
, S 2 , (5.23)

as n diverges. The proof of (5.23) will be developed in several steps. At first, consider a sequence

{(v a n , v b n )} n∈N ⊂ C ∞ ([-1 2 , 1 2 ] × [0, 1], S 2 ) × C ∞ -1 2 , 1 2 2 , S 2 such that (v a n , v b n ) → (µ a , µ b ) strongly in H 1 - 1 2 , 1 2 ×]0, 1[, S 2 × H 1 - 1 2 , 1 2 
2 , S 2 , (5.24)

as n → +∞ (see [START_REF] Bethuel | Density of Smooth Functions between Two Manifolds in Sobolev Spaces[END_REF]). Next steps are devoted to modify v a n in a neighbourhood of x 3 = 0 and v b n in a neighbourhood of x 1 = 0, in order to obtain the junction condition required in (5.22).

To this aim, we begin by splitting µ b in the even part and in the odd part with respect to x 1 :

µ e : (x 1 , x 2 ) ∈ - 1 2 , 1 2 2 → 1 2 (µ b (x 1 , x 2 ) + µ b (-x 1 , x 2 ))
and

µ o : (x 1 , x 2 ) ∈ - 1 2 , 1 2 2 → 1 2 (µ b (x 1 , x 2 ) -µ b (-x 1 , x 2 )). Remark that µ e , µ o ∈ H 1 -1 2 , 1 2 2 , R 3 L ∞ -1 2 , 1 2 
2 , R 3 , µ e is an even function with respect to x 1 , µ o is an odd function with respect to x 1 , µ e (0,

•) = µ b (0, •) = µ a (•, 0) and µ o (0, •) = 0 a.e. in -1 2 , 1 2
. Consequently, by convolution, it is easy to build three sequences (see [START_REF] Landau | Problèmes variationnels dans le multi-domaines: modélisation des jonctions et applications[END_REF])

{ζ a n } n∈N ⊂ C ∞ ( -1 2 , 1 2 × [0, 1] , R 3 ), {ζ e n } n∈N ⊂ C( -1 2 , 1 2 2 , R 3 ) and {ζ o n } n∈N ⊂ C ∞ ( -1 2 , 1 2 2 , R 3 ) such that                                                                            ζ a n → µ a strongly in H 1 -1 2 , 1 2 ×]0, 1[, R 3 , as n → +∞, ζ e n → µ e strongly in H 1 -1 2 , 1 2 2 , R 3 , as n → +∞, ζ o n → µ o strongly in H 1 -1 2 , 1 2 2 , R 3 , as n → +∞, ζ e n| [ -1 2 ,0 ] × [ -1 2 , 1 2 ] n∈N ⊂ C ∞ ( -1 2 , 0 × -1 2 , 1 2 , R 3 ), ζ e n| [ 0, 1 2 ] × [ -1 2 , 1 2 ] n∈N ⊂ C ∞ ( 0, 1 2 × -1 2 , 1 2 , R 3 ), ∃r 1 ∈]0, +∞[ : ζ a n L ∞ (]-1 2 , 1 2 [×]0,1[,R 3 ) < r 1 , ζ e n L ∞ ]-1 2 , 1 2 [ 2 ,R 3 < r 1 , ζ o n L ∞ ]-1 2 , 1 2 [ 2 ,R 3 < r 1 , ∀n ∈ N, ζ a n (•, 0) = ζ e n (0, •) in -1 2 , 1 2 , ∀n ∈ N, ζ o n (0, •) = 0 in -1 2 , 1 2 , ∀n ∈ N, from which, by setting ζ b n = ζ e n + ζ o n ∈ C( -1 2 , 1 2 2 , R 3 ), since µ b = µ e + µ o , one derives that                                                                  ζ a n → µ a strongly in H 1 -1 2 , 1 2 ×]0, 1[, R 3 , as n → +∞, ζ b n → µ b strongly in H 1 -1 2 , 1 2 2 , R 3 , as n → +∞, {ζ a n } n∈N ⊂ C ∞ ( -1 2 , 1 2 × [0, 1] , R 3 ) {ζ b n } n∈N ⊂ C( -1 2 , 1 2 2 , R 3 ), ζ b n| [ -1 2 ,0 ] × [ -1 2 , 1 2 ] n∈N ⊂ C ∞ ( -1 2 , 0 × -1 2 , 1 2 , R 3 ), ζ b n| [ 0, 1 2 ] × [ -1 2 , 1 2 ] n∈N ⊂ C ∞ ( 0, 1 2 × -1 2 , 1 2 , R 3 ), ∃r 2 ∈]0, +∞[ : ζ a n L ∞ (]-1 2 , 1 2 [×]0,1[,R 3 ) < r 2 , ζ b n L ∞ ]-1 2 , 1 2 [ 2 ,R 3 < r 2 , ∀n ∈ N, ζ a n (•, 0) = ζ b n (0, •) in -1 2 , 1 2 , ∀n ∈ N.
(5.25)

Let, now,

η ∈ C ∞ (R, [0, 1]) : η(t) = 1 ∀t ∈ [-1, 1], η(t) = 0 ∀t ∈ R\] -2, 2[, (5.26) 
and, for every n ∈ N, set

w a n : (x 2 , x 3 ) ∈ - 1 2 , 1 2 ×]0, 1[→ ζ a n (x 2 , x 3 )η x 3 ε n + v a n (x 2 , x 3 ) 1 -η x 3 ε n , w b n : (x 1 , x 2 ) ∈ - 1 2 , 1 2 2 → ζ b n (x 1 , x 2 )η x 1 ε n + v b n (x 1 , x 2 ) 1 -η x 1 ε n ,
where

ε n = max 1 n + v a n -ζ a n L 2 (]-1 1 n + v b n -ζ b n L 2 ]-1 2 , 1 2 [ 2 ,R 3 
.

(5.27) From (5.24), the first line in (5.25), (5.26) and ( 5.27), it follows that lim

n 1 2 -1 2 2εn 0 |D x 2 w a n (x 2 , x 3 )| 2 dx 2 dx 3 = lim n 1 2 -1 2 2εn 0 D x 2 ζ a n (x 2 , x 3 )η x 3 ε n + D x 2 v a n (x 2 , x 3 ) 1 -η x 3 ε n 2 dx 2 dx 3 ≤ 2lim n -1 2 1 0 |D x 2 ζ a n (x 2 , x 3 ) -D x 2 v a n (x 2 , x 3 )| 2 dx 2 dx 3 + 4lim n -1 2 1 0 |D x 2 v a n (x 2 , x 3 ) -D x 2 µ a (x 2 , x 3 )| 2 dx 2 dx 3 + 4lim n -1 2 2εn 0 |D x 2 µ a (x 2 , x 3 )| 2 dx 2 dx 3 = 0 and lim n 1 2 -1 2 2εn 0 |D x 3 w a n (x 2 , x 3 )| 2 dx 2 dx 3 = lim n 1 2 -1 2 2εn 0 D x 3 ζ a n (x 2 , x 3 )η x 3 ε n + D x 3 v a n (x 2 , x 3 ) 1 -η x 3 ε n + (ζ a n (x 2 , x 3 ) -v a n (x 2 , x 3 )) 1 ε n η ′ x 3 ε n 2 dx 2 dx 3 ≤ 2lim n 1 2 - 2εn 0 D x 3 ζ a n (x 2 , x 3 )η x 3 ε n + D x 3 v a n (x 2 , x 3 ) 1 -η x 3 ε n 2 dx 2 dx 3 + 2 η ′ 2 L ∞ (R) lim n v a n -ζ a n 2 L 2 (]-1 2 , 1 2 [×]0,1[,R 3 ) ε 2 n = 0, that is lim n Dw a n L 2 (]-1 2 , 1 2 [×]0,2εn[,R 6 ) = 0.
(5.28)

Similarly, one obtains that

lim n Dw b n L 2 (]-2εn,2εn[×]-1 2 , 1
Then, (5.24), (5.25), (5.26), (5.28) and (5.29) provide that

                                                                                 w a n → µ a strongly in H 1 -1 2 , 1 2 ×]0, 1[, R 3 , as n → +∞, w b n → µ b strongly in H 1 -1 2 , 1 2 2 , R 3 , as n → +∞, {w a n } n∈N ⊂ C ∞ ( -1 2 , 1 2 × [0, 1] , R 3 ), {w b n } n∈N ⊂ C( -1 2 , 1 2 2 , R 3 ), w b n| [ -1 2 ,0 ] × [ -1 2 , 1 2 ] n∈N ⊂ C ∞ ( -1 2 , 0 × -1 2 , 1 2 , R 3 ), w b n| [ 0, 1 2 ] × [ -1 2 , 1 2 ] n∈N ⊂ C ∞ ( 0, 1 2 × -1 2 , 1 2 , R 3 ), ∃r 3 ∈]0, +∞[ : w a n L ∞ (]-1 2 , 1 2 [×]0,1[,R 3 ) < r 3 , w b n L ∞ ]-1 2 , 1 2 [ 2 ,R 3 < r 3 , ∀n ∈ N, |w a n | = 1 in -1 2 , 1 2 ×]2ε n , 1[, ∀n ∈ N, |w b n | = 1 in ( -1 2 , -2ε n ∪ 2ε n , 1 2 ) × -1 2 , 1 2 , ∀n ∈ N, w a n (•, 0) = w b n (0, •) in -1 2 , 1 2 , ∀n ∈ N.
(5.30)

For obtaining (5.23), it remains to normalize w a n in a neighbourhood of x 3 = 0 and w b n in a neighbourhood of x 1 = 0. To this aim, for y ∈ B 1 2 (0) = {y ∈ R 3 : |y| ≤ 1 2 }, project x ∈ R 3 \ {y} on S 2 by the intersection of S 2 with the half line y + t(xy) : t ∈]0, +∞[ (compare [START_REF] Hardt | Existence and Partial Regularity of Static Liquid Crystal Configurations[END_REF] and [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF]). Precisely, introduce the projection

π y : x ∈ R 3 \ {y} → y + -y(x -y) + (y(x -y)) 2 + |x -y| 2 (1 -|y| 2 ) |x -y| 2 (x -y) ∈ S 2 . (5.31)
It is easy to see that π y (x) = x, ∀x ∈ S 2 .

(5.32)

Moreover, it results that (see appendix)

∃c ∈]0, +∞[ : |Dπ y (x)| 2 ≤ c |x -y| 2 , ∀y ∈ B 1 2 (0), ∀x ∈ R 3 \ {y}.
(5.33)

Then, for every n ∈ N and for every

y ∈ B 1 2 (0) \ k∈N w a k - 1 2 , 1 2 ×]0, 1[, R 3 w b k - 1 2 , 1 2 
2 , R 3 (remark that the 3D Lebesgue measure of k∈N w a k - 1 2 , 1 2 ×]0, 1[, R 3 w b k - 1 2 , 1 2 2 , R 3
is zero), the functions π y • w a n and π y • w b n are well defined and it results that

                                 π y • w a n ∈ C 1 ( -1 2 , 1 2 × [0, 1], S 2 ), π y • w b n ∈ C( -1 2 , 1 2 2 , S 2 ), (π y • w b n ) | [ -1 2 ,0 ] × [ -1 2 , 1 2 ] ∈ C 1 ( -1 2 , 0 × -1 2 , 1 2 , S 2 ), (π y • w b n ) | [ 0, 1 2 ] × [ -1 2 , 1 2 ] ∈ C 1 ( 0, 1 2 × -1 2 , 1 2 , S 2 ), (π y • w a n )(•, 0) = (π y • w b n )(0, •) in -1 2 , 1 2 .
(5.34) Moreover, from (5.33) and the 7th line in (5.30) one derives that

B 1 2 (0) \ k∈N w a k - 1 2 , 1 2 ×]0, 1[, R 3 w b k - 1 2 , 1 2 
2 , R 3 1 2 -1 2 2εn 0 |D(π y (w a n (x 2 , x 3 )))| 2 d(x 2 , x 3 ) + 2εn -2εn 1 2 -1 2 D(π y (w b n (x 1 , x 2 ))) 2 d(x 1 , x 2 ) dy ≤ B 1 2 (0) \ k∈N w a k - 1 2 , 1 2 ×]0, 1[, R 3 w b k - 1 2 , 1 2 
2 , R 3 c 1 2 -1 2 2εn 0 |Dw a n (x 2 , x 3 )| 2 |w a n (x 2 , x 3 ) -y| 2 d(x 2 , x 3 ) + 2εn -2εn 1 2 -1 2 Dw b n (x 1 , x 2 ) 2 |w b n (x 1 , x 2 ) -y| 2 d(x 1 , x 2 ) dy ≤ c B r 3 + 1 2 (0) 1 |z| 2 dz 1 2 -1 2 2εn 0 |Dw a n (x 2 , x 3 )| 2 d(x 2 , x 3 ) + 2εn -2εn 1 2 -1 2 Dw b n (x 1 , x 2 ) 2 d(x 1 , x 2 ) ∀n ∈ N,
where c and r 3 are the constants given in (5.33) and in (5.30), respectively, and

B r 3 + 1 2 (0) = {z ∈ R 3 : |z| ≤ r 3 + 1 2 }.
Consequently, by using the Fatou Lemma and by taking into account (5.28), (5.29) and the fact that B r 3 + 1 denoted by {n}, and y ∈ B1

2 (0) \ k∈N w a k - 1 2 , 1 2 ×]0, 1[, R 3 w b k - 1 2 , 1 2 2 , R 3 such that lim n D(π y • w a n ) L 2 (]-1 2 , 1 2 [×]0,2εn[,R 6 ) = 0 = lim n D(π y • w b n ) L 2 (]-2εn,2εn[×]-1 2 , 1 2 [,R 6 ) . (5.35) Finally, by setting µ a n = π y • w a n and µ b n = π y • w b n , (5.34) assures that {(µ a n , µ b n )} n∈N ⊂ M reg . Moreover, by taking into account that µ a n = w a n in ] -1 2 , 1 2 [×]2ε n , 1[, µ b n = w b n in (] -1 2 , -2ε n [∪]2ε n , 1 2 [)×] -1 2 , 1 2 
[, the first two lines in (5.30) and (5.35) provide (5.23).

Proof of Theorem 4.1

Now, combining convex arguments with projection techniques we used in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF] and with the convergence of the magnetostatic energy of Proposition 5.1, we build a recovery sequence for a generic couple in the space M reg . Then, using the density result of Proposition 5.5, we conclude the proof of Theorem 4.1.

Proof. Proposition 5.4 assures the existence of an increasing sequence of positive integer numbers {n i } i∈N and µ = ( µ a , µ b ) ∈ M, depending on the selected subsequence, such that

   m a n i ⇀ µ a weakly in H 1 (Ω a , R 3 ), m b n i ⇀ µ b weakly in H 1 (Ω b , R 3 ), (5.36) 
as i diverges. Consequently, by virtue of Proposition 5.1, convergences (4.5) hold true, and it results that

lim i E mag n i (m n i ) = 1 2 ]-1 2 , 1 2 [×]0,1[ | µ a 1 (x 2 , x 3 )| 2 d(x 2 , x 3 ) + q ]-1 2 , 1 2 [ 2 | µ b 3 (x 1 , x 2 )| 2 d(x 1 , x 2 ) , (5.37) 
where E mag n i is defined in (3.10). Now, for µ = (µ a , µ b ) ∈ M reg , where M reg is defined in (5.22), we shall build a sequence

{g n } n∈N ⊂ H 1 (Ω a , S 2 ) such that                    g n → µ a strongly in L 2 (Ω a , R 3 ), as n → +∞, 1 h a n D x 1 g n |D x 2 g n |D x 3 g n → (0|D x 2 µ a |D x 3 µ a ) strongly in L 2 (Ω a , R 9 ),
as n → +∞,

g n (x 1 , x 2 , 0) = µ b (h a n x 1 , x 2 ), for (x 1 , x 2 ) ∈] -1 2 , 1 2 [ 2 , ∀n ∈ N, (5.38) 
and we shall choose (g n , µ b ) as test function in (3.8). To this aim, for every n ∈ N, set

g n (x) =        µ a (x 2 , x 3 ), if x = (x 1 , x 2 , x 3 ) ∈] -1 2 , 1 2 [ 2 ×]h a n , 1[, µ a (x 2 , h a n ) x 3 h a n + µ b (h a n x 1 , x 2 ) h a n -x 3 h a n , if x = (x 1 , x 2 , x 3 ) ∈] -1 2 , 1 2 [ 2 ×[0, h a n ].
Obviously, {g n } n∈N ⊂ H 1 (Ω a , R 3 ) and the last line of (5.38) is satisfied. Moreover, by using the properties of M reg , it is easy to see that

lim n ]-1 2 , 1 2 [ 2 ×]0,h a n [ 1 h a n D x 1 g n (x) 2 dx ≤ µ b 2 W 1,∞ ]-1 2 , 1 2 [ 2 ,S 2 lim n h a n = 0, lim n ]-1 2 , 1 2 [ 2 ×]0,h a n [ |D x 2 g n (x)| 2 dx ≤ 2( µ a 2 W 1,∞ (]-1 2 , 1 2 [×]0,1[,S 2 ) + µ b 2 W 1,∞ ]-1 2 , 1 2 [ 2 ,S 2 ) lim n h a n = 0, and lim n ]-1 2 , 1 2 [ 2 ×]0,h a n [ |D x 3 g n (x)| 2 dx = lim n ]-1 2 , 1 2 [ 2 1 h a n µ a (x 2 , h a n ) -µ b (h a n x 1 , x 2 ) 2 d(x 1 , x 2 ) = lim n ]-1 2 , 1 2 [ 2 1 h a n µ a (x 2 , h a n ) -µ a (x 2 , 0) + µ b (0, x 2 ) -µ b (h a n x 1 , x 2 ) 2 d(x 1 , x 2 ) ≤ 2( µ a 2 W 1,∞ (]-1 2 , 1 2 [×]0,1[,S 2 ) + µ b 2 W 1,∞ ]-1 2 , 1 2 [ 2 ,S 2 ) lim n h a n = 0, that is lim n 1 h a n D x 1 g n |D x 2 g n |D x 3 g n L 2 (]-1 2 , 1 2 [ 2 ×]0,h a n [,R 9 ) = 0. (5.39) 
Consequently, convergence (5.38) holds true. Unfortunately,

|g n (x)| ≤ 1 for every x ∈ ] -1 2 , 1 2 [ 2 ×]0, h a n [.
To overcome this difficulty, using projection (5.31) and arguing as in the proof of Theorem 2.1 in [START_REF] Gaudiello | Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with values in S 2[END_REF], it is possible to project g n on S 2 such that this projection, still denoted by g n , satisfies (5.38). Remark that the first line in (5.38) and Proposition 5.1 provide that

lim n E mag n ((g n , µ b )) = 1 2 ]-1 2 , 1 2 [×]0,1[ |µ a 1 (x 2 , x 3 )| 2 d(x 2 , x 3 ) + q ]-1 2 , 1 2 [ 2 |µ b 3 (x 1 , x 2 )| 2 d(x 1 , x 2 ) .
(5.40)

Finally, choosing (g n , µ b ) as test function in (3.8) and taking into account (3.11), one has that

Ω a α 1 h a n i D x 1 m a n i |D x 2 m a n i |D x 3 m a n i 2 + ϕ(m a n i ) -2f a n i m a n i dx+ h b n i h a n i Ω b α D x 1 m b n i |D x 2 m b n i | 1 h b n i D x 3 m b n i 2 + ϕ(m b n i ) -2f b n i m b n i dx + E mag n i (m n i ) ≤ Ω a α 1 h a n i D x 1 g n i |D x 2 g n i |D x 3 g n i 2 + ϕ(g n i ) -2f a n i g n i dx+ h b n i h a n i Ω b α D x 1 µ b |D x 2 µ b |0 2 + ϕ(µ b ) -2f b n i µ b dx + E mag n i ((g n i , µ b )), ∀i ∈ N, from which, splitting D x 2 m a n i , D x 3 m a n i , D x 1 m b n i and D x 2 m b n i in the following way: D x 2 m a n i = D x 2 µ a + (D x 2 m a n i -D x 2 µ a ), D x 3 m a n i = D x 3 µ a + (D x 3 m a n i -D x 3 µ a ), D x 1 m b n i = D x 1 µ b + (D x 1 m b n i -D x 1 µ b ), D x 2 m b n i = D x 2 µ b + (D x 2 m b n i -D x 2 µ b ), it follows that α Ω a 1 h a n i D x 1 m a n i 2 + D x 2 m a n i -D x 2 µ a 2 + D x 3 m a n i -D x 3 µ a 2 dx+ h b n i h a n i α Ω b D x 1 m b n i -D x 1 µ b 2 + D x 2 m b n i -D x 2 µ b 2 + 1 h b n i D x 3 m b n i 2 dx ≤ -α Ω a |D x 2 µ a | 2 + 2D x 2 µ a (D x 2 m a n i -D x 2 µ a ) dx+ -α Ω a |D x 3 µ a | 2 + 2D x 3 µ a (D x 3 m a n i -D x 3 µ a ) dx - Ω a (ϕ(m a n i ) -2f a n i m a n i )dx+ - h b n i h a n i α Ω b D x 1 µ b 2 + 2D x 1 µ b (D x 1 m b n i -D x 1 µ b ) dx+ - h b n i h a n i α Ω b D x 2 µ b 2 + 2D x 2 µ b (D x 2 m b n i -D x 2 µ b ) dx+ - h b n i h a n i Ω b (ϕ(m b n i ) -2f b n i m b n i )dx -E mag n i (m n i )+ Ω a α 1 h a n i D x 1 g n i |D x 2 g n i |D x 3 g n i 2 + ϕ(g n i ) -2f a n i g n i dx+ h b n i h a n i Ω b α D x 1 µ b |D x 2 µ b |0 2 + ϕ(µ b ) -2f b n i µ b dx + E mag n i ((g n i , µ b )), ∀i ∈ N.
(5.41)

By passing to the limit, in (5.41), as i diverges, and using (2.1) (recall that q = +∞), (3.9),

(5.36), (5.37), (5.38) and (5.40), one obtains that

lim sup i α Ω a 1 h a n i D x 1 m a n i 2 + D x 2 m a n i -D x 2 µ a 2 + D x 3 m a n i -D x 3 µ a 2 dx+ h b n i h a n i α Ω b D x 1 m b n i -D x 1 µ b 2 + D x 2 m b n i -D x 2 µ b 2 + 1 h b n i D x 3 m b n i 2 dx ≤ - ]-1 2 , 1 2 [×]0,1[ α |D x 2 µ a | 2 + |D x 3 µ a | 2 + ϕ( µ a ) -2 1 2 -1 2 f a (x 1 , x 2 , x 3 )dx 1 µ a + 1 2 | µ a 1 | 2 d(x 2 , x 3 )+ -q ]-1 2 , 1 2 [ 2 α D x 1 µ b 2 + D x 2 µ b 2 + ϕ( µ b ) -2 0 -1 f b (x 1 , x 2 , x 3 )dx 3 µ b + 1 2 | µ b 3 | 2 d(x 1 , x 2 )+ ]-1 2 , 1 2 [×]0,1[ α |D x 2 µ a | 2 + |D x 3 µ a | 2 + ϕ(µ a ) -2 1 2 -1 2 f a (x 1 , x 2 , x 3 )dx 1 µ a + 1 2 |µ a 1 | 2 d(x 2 , x 3 )+ q ]-1 2 , 1 2 [ 2 α D x 1 µ b 2 + D x 2 µ b 2 + ϕ(µ b ) -2 0 -1 f b (x 1 , x 2 , x 3 )dx 3 µ b + 1 2 |µ b 3 | 2 d(x 1 , x 2 ).
(5.42) Since µ = (µ a , µ b ) is a generic element of M reg , by virtue of the density result stated in Proposition 5.5, this inequality holds true also with µ = µ. Consequently, it results that

lim sup i α Ω a 1 h a n i D x 1 m a n i 2 + D x 2 m a n i -D x 2 µ a 2 + D x 3 m a n i -D x 3 µ a 2 dx+ h b n h a n α Ω b D x 1 m b n i -D x 1 µ b 2 + D x 2 m b n i -D x 2 µ b 2 + 1 h b n i D x 3 m b n i 2 dx = 0.
(5.43)

By combining this limit with (2.1) (recall that q = 0) and (5.36), one derives (4.3) and (4.4). Moreover, (5.42), (5.43) and Proposition 5.5 provide that µ is a solution of (4.6). Furthermore, convergence of the energies (4.7) is a consequence of (2.1) with q ∈]0, +∞[, (4.3), (4.4) and (4.5).

6

The cases q = 0 and q = +∞ 

)} n∈N ⊂ L 2 (Ω a , R 3 ) × L 2 (Ω b , R 3 ) and µ a = (µ a 1 , µ a 2 , µ a 3 ) ∈ L 2 (Ω a , R 3 ) be such that m a n , h b n h a n 1 2 m b n → (µ a , 0) strongly in L 2 (Ω a , R 3 ) × L 2 (Ω b , R 3 ), (6.1) 
as n diverges. Moreover, for every n ∈ N let u m n ,n = (u a m n ,n , u b m n ,n ) be the unique solution of (3.3) corresponding to m n , and let E mag n be defined by (3.10). Then, it results that

                   1 h a n D x 1 u a m n ,n → µ a 1 , D x 2 u a m n ,n → 0, D x 3 u a m n ,n → 0 strongly in L 2 (R 3 + ), h b n h a n 1 2 D x 1 u b m n ,n → 0, h b n h a n 1 2 D x 2 u b m n ,n → 0, 1 h b n h b n h a n 1 2 D x 3 u b m n ,n → 0 strongly in L 2 (R 3 -), (6.2) 
as n diverges and

lim n E mag n (m n ) = 1 2 Ω a |µ a 1 | 2 dx. (6.3) 
Proof. By choosing u = (0, 0) as test function in (3.3) corresponding to m n , by virtue of (6.1) it results that ∃c ∈]0, +∞[ :

R 3 + 1 h a n D x 1 u a m n ,n , D x 2 u a m n ,n , D x 3 u a m n ,n -m a n 2 dx+ h b n h a n R 3 - D x 1 u b m n ,n , D x 2 u b m n ,n , 1 h b n D x 3 u b m n ,n -m b n 2 dx ≤ c, ∀n ∈ N.
Consequently, applying the triangle inequality and using again (6.1), it follows that

                                       ∃c ∈]0, +∞[ : 1 h a n D x 1 u a m n ,n L 2 (R 3 + ) ≤ c, D x 2 u a m n ,n L 2 (R 3 
+ ) ≤ c, D x 3 u a m n ,n L 2 (R 3 
+ ) ≤ c, h b n h a n 1 2 D x 1 u b m n ,n L 2 (R 3 -) ≤ c, h b n h a n 1 2 D x 2 u b m n ,n L 2 (R 3 -) ≤ c, 1 h b n h b n h a n 1 2 D x 3 u b m n ,n L 2 (R 3 -) ≤ c, ∀n ∈ N. (6.4) Since (u a m n , u b m n ) belongs to H 1 (R 3 + ) × H 1 (R 3 
-), the Sobolev imbedding theorem and (6.4) provide that

∃c ∈]0, +∞[ : u a m n ,n L 6 (R 3 + ) ≤ c, h b n h a n 1 2 u b m n ,n L 6 (R 3 -)
≤ c, ∀n ∈ N. (6.5)

Estimates (6.4) and (6.5) guarantee the existence of a function u = (u a , u b ) ∈ L 3 , u a independent of x 1 and u b independent of x 3 , such that on extraction of a suitable subsequence (not relabelled)

6 (R 3 + ) × L 6 (R 3 -), with Du = (Du a , Du b ) ∈ (L 2 (R 3 + )) 3 × (L 2 (R 3 -))
                     u a m n ,n ⇀ u a weakly in L 6 (R 3 + ), Du a m n ,n ⇀ Du a weakly in (L 2 (R 3 + )) 3 , h b n h a n 1 2 u b m n ,n ⇀ u b weakly in L 6 (R 3 -), h b n h a n 1 2 Du b m n ,n ⇀ Du b weakly in (L 2 (R 3 -)) 3 , (6.6) 
as n diverges. By arguing as in the proof of Proposition 5.1, one obtains that u a = 0 and u b = 0. Then, from (6.6) one concludes that

         Du a m n ,n ⇀ 0 weakly in (L 2 (R 3 + )) 3 , h b n h a n 1 2 Du b m n ,n ⇀ 0 weakly in (L 2 (R 3 -)) 3 , (6.7) 
as n diverges, and these converges hold true for the whole sequence.

The first and the last estimate in (6.4) guarantee the existence of ξ a ∈ L 2 (R 3 + ) and

ξ b ∈ L 2 (R 3 
-) such that on extraction of a suitable subsequence (not relabelled)

1 h a n D x 1 u a m n ,n ⇀ ξ a weakly in L 2 (R 3 + ), 1 h b n h b n h a n 1 2 D x 3 u b m n ,n ⇀ ξ b weakly in L 2 (R 3 -), (6.8) 
as n diverges.

For proving that convergences (6.7) are (6.8) are strong and for identifying ξ a and ξ b , arguing as in the proof of Proposition 5.1, introduce a sequence {ε} of positive numbers converging to zero, a diverging sequence {λ} of positive numbers, and a sequence {µ a

ε } ε ⊂ C ∞ 0 (Ω a ) such that µ a ε → µ a 1 strongly in L 2 (Ω a ), (6.9) 
as ε tends to zero. Moreover, for every ε, λ and n ∈ N set

u ε,λ,n =              u a ε,λ,n = h a n x 1 -1 2 µ a ε (s, x 2 , x 3 )ds - h a n λ x 1 1 2 χ [ 1 2 , 1 2 +λ] (r)dr 1 2 -1 2 µ a ε (s, x 2 , x 3 )ds + c ε,λ,n , a.e. in R 3 + , u b ε,λ,n = c ε,λ,n , a.e. in R 3 -,
where the constant c ε,λ,n is chosen in such a way to have

B a n u a ε,λ,n dx + h b n h a n B b n u b ε,λ,n dx = 0. Since u ε,λ,n ∈ U n , choosing u = u ε,λ,n as test function in (3.3) corresponding to m n = (m a n , m b n ) = ((m a 1,n , m a 2,n , m a 3,n ), (m b 1,n , m b 2,n , m b 3,n )), it results that R 3 + |ξ a -m a 1,n | 2 + 2 1 h a n D x 1 u a m n ,n -ξ a ξ a -m a 1,n + 1 h a n D x 1 u a m n ,n -ξ a 2 + |(D x 2 u a m n ,n , D x 3 u a m n ,n )| 2 -2(D x 2 u a m n ,n , D x 3 u a m n ,n )( m a 2,n , m a 3,n ) + |( m a 2,n , m a 3,n )| 2 dx+ h b n h a n R 3 - |(D x 1 u b m n ,n , D x 2 u b m n ,n )| 2 -2(D x 1 u b m n ,n , D x 2 u b m n ,n )( m b 1,n , m b 2,n ) + |( m b 1,n , m b 2,n )| 2 + | m b 3,n | 2 -2 1 h b n D x 3 u b m n ,n m b 3,n + 1 h b n D x 3 u b m n ,n 2 dx = 2j m n ,n (u m n ) ≤ 2j m n ,n (u ε,λ,n ) = R 3 + µ a ε - 1 λ χ [ 1 2 , 1 2 +λ] (x 1 ) 1 2 -1 2 µ a ε (s, x 2 , x 3 )ds -m a 1,n 2 + h a n D x 2 x 1 -1 2 µ a ε (s, x 2 , x 3 )ds - h a n λ x 1 1 2 χ [ 1 2 , 1 2 +λ] (r)drD x 2 1 2 -1 2 µ a ε (s, x 2 , x 3 )ds -m a 2,n 2 + h a n D x 3 x 1 -1 2 µ a ε (s, x 2 , x 3 )ds - h a n λ x 1 1 2 χ [ 1 2 , 1 2 +λ] (r)drD x 3 1 2 -1 2 µ a ε (s, x 2 , x 3 )ds -m a 3,n 2 dx+ R 3 - h b n h a n 1 2 m b n 2 dx, ∀ε, λ, n,
from which, fixing ε and λ, passing to the limit as n diverges and using (6.1), (6.7), (6.8), it follows that lim sup

n R 3 + |ξ a -m a 1,n | 2 + 1 h a n D x 1 u a m n ,n -ξ a dx = 0,
from which, by virtue of (6.1), converges (6.2) follow and the converges hold true for the whole sequence. Convergence (6.3) is a consequence of (6.2).

Remark 6.2. Proposition 6.1 holds true for every q ∈ [0, +∞]. Really, in the sequel, this result will be applied to a sequence {m n } n∈N , where m n = (m a n , m b n ) ∈ M n is a solution of (3.8). Then, for obtain that such a sequence satisfies (6.1), the restrictive assumption q = 0 in (2.1) will need (see below).

Proof of Theorem 4.2

Proof. When in (2.1) q = 0, from Proposition 5.2 it is not possible to derive Corollary 5.3, but only the existence of a constant c ∈]0, +∞[ such that

D x 1 m a n (L 2 (Ω a )) 3 ≤ ch a n , D x 2 m a n (L 2 (Ω a )) 3 ≤ c, D x 3 m a n (L 2 (Ω a )) 3 ≤ c, h b n h a n 1 2 D x 1 m b n (L 2 (Ω b )) 3 ≤ c, h b n h a n 1 2 D x 2 m b n (L 2 (Ω b )) 3 ≤ c, 1 h b n h b n h a n 1 2 D x 3 m b n (L 2 (Ω b )) 3 ≤ c,
for every n ∈ N. Consequently, taking also into account (2.1) with q = 0, and the fact that |m a n | = 1 a.e. in Ω a and |m b n | = 1 a.e. in Ω b , there exist an increasing sequence of positive integer numbers {n i } i∈N and µ a ∈ H 1 (Ω a , S 2 ), independent of x 1 , (ξ a , ξ b ) ∈ L 2 (Ω a , R 3 ) × L 2 (Ω b , R 3 ) depending on the selected subsequence, such that

m a n i , h b n i h a n i 1 2 m b n i ⇀ ( µ a , 0) weakly in H 1 (Ω a , R 3 ) × H 1 (Ω b , R 3 ), (6.11) 1 h a n i D x 1 m a n i , 1 h b n i h b n i h a n i 1 2 D x 3 m b n i ⇀ (ξ a , ξ b ) weakly in L 2 (Ω a , R 3 ) × L 2 (Ω b , R 3 ),
as i diverges. Consequently, by virtue of Proposition 6.1, convergences (4.12) hold true, and it results that lim

i E mag n i (m n i ) = 1 2 ]-1 2 , 1 2 [×]0,1[ | µ a 1 (x 2 , x 3 )| 2 d(x 2 , x 3 ), (6.12) 
where

E mag n i is defined in (3.10). For µ a ∈ C ∞ ([-1 2 , 1 2 ] × [0, 1], S 2 ), set g(x) =    µ a (x 2 , x 3 ), if x = (x 1 , x 2 , x 3 ) ∈ Ω a , µ a (x 2 , 0), if x = (x 1 , x 2 , x 3 ) ∈ Ω b .
Then, Proposition 6.1 provides that

lim n E mag n (g) = 1 2 ]-1 2 , 1 2 [×]0,1[ |µ a 1 (x 2 , x 3 )| 2 d(x 2 , x 3 ). ( 6.13) 
Finally, choosing g as test function in (3.8) and taking into account (3.11), one has that

Ω a α 1 h a n i D x 1 m a n i |D x 2 m a n i |D x 3 m a n i 2 + ϕ(m a n i ) -2f a n i m a n i dx+ h b n i h a n i Ω b α D x 1 m b n i |D x 2 m b n i | 1 h b n i D x 3 m b n i 2 + ϕ(m b n i ) -2f b n i m b n i dx + E mag n i (m n i ) ≤ Ω a α |(0|D x 2 µ a |D x 3 µ a )| 2 + ϕ(µ a ) -2f a n i µ a dx+ h b n i h a n i Ω b α |(0|D x 2 µ a (x 2 , 0)|0)| 2 + ϕ(µ a (x 2 , 0)) -2f b n i µ a (x 2 , 0) dx + E mag n i (g), ∀i ∈ N,
from which, splitting D x 2 m a n i and D x 3 m a n i in the following way:

D x 2 m a n i = D x 2 µ a + (D x 2 m a n i -D x 2 µ a ), D x 3 m a n i = D x 3 µ a + (D x 3 m a n i -D x 3 µ a ), it follows that α Ω a 1 h a n i D x 1 m a n i 2 + D x 2 m a n i -D x 2 µ a 2 + D x 3 m a n i -D x 3 µ a 2 dx+ α Ω b   h b n i h a n i 1 2 D x 1 m b n i 2 + h b n i h a n i 1 2 D x 2 m b n i 2 + 1 h b n i h b n i h a n i 1 2 D x 3 m b n i 2   dx ≤ -α Ω a |D x 2 µ a | 2 + 2D x 2 µ a (D x 2 m a n i -D x 2 µ a ) dx+ -α Ω a |D x 3 µ a | 2 + 2D x 3 µ a (D x 3 m a n i -D x 3 µ a ) dx - Ω a (ϕ(m a n i ) -2f a n i m a n i )dx+ - h b n i h a n i Ω b (ϕ(m b n i ) -2f b n i m b n i )dx - 1 2 E mag n i (m n i )+ Ω a α |(0|D x 2 µ a |D x 3 µ a )| 2 + ϕ(µ a ) -2f a n i µ a dx+ h b n i h a n i Ω b α |(0|D x 2 µ a (x 2 , 0)|0)| 2 + ϕ(µ a (x 2 , 0)) -2f b n i µ a (x 2 , 0) dx + E mag n i (g), (6.14) 
for every i ∈ N. By passing to the limit, in (6.14), as i diverges, and using (2.1) with q = 0, (3.9), (6.11), (6.12) and (6.13), one obtains that lim sup ) provide that µ a is a solution of (4.13). Furthermore, convergence of the energies (4.14) is a consequence of (2.1) with q = 0, (4.10), (4.11) and (4.12).

i α Ω a 1 h a n i D x 1 m a n i 2 + D x 2 m a n i -D x 2 µ a 2 + D x 3 m a n i -D x 3 µ a 2 dx+ α Ω b   h b n i h a n i 1 2 D x 1 m b n i 2 + h b n i h a n i 1 2 D x 2 m b n i 2 + 1 h b n i h b n i h a n i 1 2 D x 3 m b n i 2   dx ≤ - ]-1 2 , 1 2 [×]0,1[ α |D x 2 µ a | 2 + |D x 3 µ a | 2 + ϕ( µ a ) -2 1 2 -1 2 f a (x 1 , x 2 , x 3 )dx 1 µ a + 1 2 | µ a 1 | 2 d(x 2 , x 3 )+ ]-1 2 , 1 2 [×]0,1[ α |D x 2 µ a | 2 + |D x 3 µ a | 2 + ϕ(µ a ) -2 1 

Proof of Theorem 4.3

The proof of Theorem 4.3 is very similar to that of Theorem 4.3. So we omit it. We only suggest of working with the functional 

Appendix

For sake of completeness we give the proof of the following known result: Then, for i, j = 1, 2, 3, it results that ∂ x i π j y (x) = -y(xy) + (y(xy)) 2 + |x -y| 2 (1 -|y| 2 ) |x -y| 2 δ i,j + -y i + y(x-y)y i +(x i -y i )(1-|y| 2 ) √ (y(x-y)) 2 +|x-y| 2 (1-|y| 2 )

|x -y| 2 (x jy j )+ --y(xy) + (y(xy)) 2 + |x -y| 2 (1 -|y| 2 ) 2(x iy i )

|x -y| 4 (x jy j ), (

for every y ∈ B 1 2 (0) and every x ∈ R 3 \ {y}. As regard as the first and last term in the right-hand side of (7.2), it is easily seen that, for j = 1, 2, 3, -y(xy) + (y(xy)

) 2 + |x -y| 2 (1 -|y| 2 ) |x -y| 2 δ i,j ≤ |y| + 1 |x -y| ≤ 3 2 1 |x -y| , (7.3) 
-y(xy) + (y(xy)) 2 + |x -y| 2 (1 -|y| 2 ) 2(x iy i )

|x -y| 4 (x jy j ) ≤

2 |y| + 1 |x -y| ≤ 3 |x -y| , (7.4) 
for every y ∈ B 1 2 (0) and every x ∈ R 3 \ {y}. As regard as the second term in the right-hand side of (7.2), since |y| < 1, it results that, for j = 1, 2, 3,

y(x -y)y i + (x i -y i )(1 -|y| 2 ) 2 ≤ 2 (y(x -y)) 2 y 2 i + (x i -y i ) 2 (1 -|y| 2 ) 2 ≤ 2 (y(x -y)) 2 + |x -y| 2 (1 -|y| 2 ) ,
and consequently -y i + y(x-y)y i +(x i -y i )(1-|y| 2 ) √ (y(x-y)) 2 +|x-y| 2 (1-|y| 2 )

|x -y| 2 (x jy j ) ≤ 

=

  q ∈ [0, +∞]. Precisely, when q ∈]0, +∞[ (i.e. h b n ≃ h a n ), in Theorem 4

. 11 )

 11 Proof. By choosing m = ((0, 1, 0)(0, 1, 0)) as test function in(3.8) and by taking into account(3.11), it follows that

6. 1 A

 1 Convergence result for the magnetostatic energy Proposition 6.1. Assume (2.1) with q ∈ [0, +∞]. Let {m n = (m a n , m b n

ED x 1 m a |D x 2 m a |D x 3 m a 2 + ϕ(m a ) -2f a n m a dx+ 1 D x 1 D x 3 m b 2 +

 2112 n , i.e. m = (m a , m b ) ∈ M n -→ u a m,n , D x 2 u a m,n , D x 3 u a m,n m a dx+ Ω b α D x 1 m b |D x 2 m b | 1 h b n ϕ(m b ) -2f b n m b dx+ 1 2 Ω b D x 1 u b m,n , D x 2 u b m,n , since q = +∞.

Proposition 7 . 1 . 2 ( 0 ) 2 ( 0 )

 712020 For y ∈ B1 = {x ∈ R 3 : |x| ≤ 1 2 }, let π y be the projection defined byπ y : x ∈ R 3 \ {y} → y + -y(xy) + (y(xy)) 2 + |x -y| 2 (1 -|y| 2 ) |x -y| 2 (xy) ∈ S 2 .Then,∃c ∈]0, +∞[ : |Dπ y (x)| 2 ≤ c |x -y| 2 , ∀y ∈ B1 2 (0), ∀x ∈ R 3 \ {y}. (7.1)Proof. For y ∈ B1 and j = 1, 2, 3, letπ j y : x ∈ R 3 \ {y} → y j + -y(xy) + (y(xy)) 2 + |x -y| 2 (1 -|y| 2 )|x -y| 2 (x jy j ).

  and every x ∈ R 3 \ {y}. Finally, by combining estimate (7.2) with (7.3)-(7.4), one obtains (7.1).

2 - 1 2

 21 f a (x 1 , x 2 , x 3 )dx 1 µ a + 1 2 |µ a 1 | 2 d(x 2 , x 3 ). ] × [0, 1], S 2 ) is dense in H 1 (] -1 2 , 1 2 [×]0, 1[, S 2 ) (see[START_REF] Bethuel | Density of Smooth Functions between Two Manifolds in Sobolev Spaces[END_REF]), this inequality holds true also with µ a = µ a . Consequently, it results that lim+ D x 2 m a n i -D x 2 µ a 2 + D x 3 m a n i -D x 3 µ a 2 dx+ αBy combining this limit with (6.11), one derives (4.10) and (4.11). Moreover, (6.15),(6.16) and the density ofC 1 ([-1 2 , 1 2 ] × [0, 1], S 2 ) in H 1 (] -1 2 , 1 2 [×]0, 1[, S 2

	Since C ∞ ([-1 2 , 1 α Ω a = 0. 2 i Ω b   h b n i h a n i	1 h a n i 1 2	D x 1 m a n i D x 1 m b n i	2 2	+	h b n i h a n i	1 2	D x 2 m b n i	2	+	1 h b n i	h b n i n i h a	1 2	D x 3 m b n i	2   dx	(6.15) (6.16)

, 1 2 [×]0,1[,R

) ,

[,R 6 ) = 0. (5.29)

(0) 1 |z| 2 dz < +∞, there exists a subsequence of {n}, still
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