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Abstract. In this paper, a class of minimization problems, labeled by an
index 0 < h < 1, is considered. Each minimization problem is for a free-

energy, motivated by the magnetics in 3D-ferromagnetic thin film, and in the
context, the index h denotes the thickness of the observing film. The Main
Theorem consists of two themes, which are concerned with the study of the
solvability (existence of minimizers) and the 3D-2D asymptotic analysis for our
minimization problems. These themes will be discussed under degenerative
setting of the material coefficients, and such degenerative situation makes the
energy-domain be variable with respect to h. In conclusion, assuming some
restrictive conditions for the domain-variation, a definite association between
our 3D-minimization problems, for very thin h, and a 2D-limiting problem, as
h ց 0, will be demonstrated with helps from the theory of Γ-convergence.

1. Introduction. Let S ⊂ R
2 be a two-dimensional bounded domain with a

smooth boundary, and let Ω ⊂ R
3 be a three-dimensional cylindrical domain, given

by Ω := S × (0, 1). Let α : Ω −→ [0,∞) be a given nonnegative and continuous
function.

In this paper, let us imagine the situation that a ferromagnetic thin film is
applied on a thin region Ω(h) := S × (0, h) with a (small) thickness 0 < h < 1.
As a possible free-energy for the magnetic study in such situation, the following

functional, denoted by E
(h)
α :

E(h)
α (m) := Ψ(h)

α (m) + −

∫

Ω(h)

(

ϕ(m) +
1

2
∇ζ · m

)

dL3,

for any m = (m1,m2,m3) ∈ L2(Ω(h); R3);

(1)

2000 Mathematics Subject Classification. Primary: 74G65, 35J70; Secondary: 74K35, 82D40.
Key words and phrases. 3D-2D asymptotic analysis, degenerative free-energy, Γ-convergence.
The second author is supported by Grant-in-Aid for Encouragement of Young Scientists (B)

(No. 21740120) JSPS.

1

http://www.ams.org/mathscinet/msc/msc.html?t=&s=74G65&ls=s�
http://www.ams.org/mathscinet/msc/msc.html?t=&s=35J70&ls=s�
http://www.ams.org/mathscinet/msc/msc.html?t=&s=74K35&btn=Search&ls=s�
http://www.ams.org/mathscinet/msc/msc.html?t=&s=82D40&ls=s�


2 REJEB HADIJI AND KEN SHIRAKAWA

subject to:

div (−∇ζ + 0m) = 0, in R
3, (2)

|m| = ms, L3-a.e. in Ω; (3)

was proposed by Brown [7] (1963), where Ψα is the lower semi-continuous envelop-
ment of a functional:

ψ ∈ W 1,2(Ω(h); R3) ∩ L2(Ω(h); S2) 7→ −

∫

Ω(h)

α|∇ψ|2 dL3;

onto the space L2(Ω(h); R3).

In (1), the value of E
(h)
α denotes an energy quantity, per unit volume in Ω(h),

and the variable m = (m1,m2,m3) denotes the magnetization in the region Ω(h) of

magnetic thin film. In this light, the minimizers of E
(h)
α are supposed to represent the

most probable profile of the magnetization distribution applied on Ω(h). Here, the
given function α is the so-called material coefficient, and this coefficient is supposed
to be degenerative somewhere in Ω. ϕ : R

3 −→ [0,∞) is a given continuous function,
which is involved in the magnetization anisotropy.

The function ζ : R
3 −→ R as in (1)-(2) denotes the magnetic field potential,

and hence, it is prescribed as the solution of the simplified Maxwell equation (2).

Here, the notation “ 0 ” denotes the zero-extension of functions. In addition to

the above, let us note that the free-energy E
(h)
α is considered under the constrained

condition (3), by a positive constant ms of the magnetization saturation.
In this paper, we set:

L2(S) = 1 (and hence L3(Ω) = 1), and ms = 1;

for simplicity. On that basis, let us denote by T (h) the scale transform, defined as:

T (h) : x = (x1, x2, x3) ∈ R
3 7→ (x1, x2, hx3) ∈ R

3;

to consider a rescaled minimization problem, denoted by (MP)(h).

(MP)(h) Find a vectorial function m(h) = (m
(h)
1 ,m

(h)
2 , m

(h)
3 ) ∈ L2(Ω; R3) of three

variables, which minimizes the following functional on L2(Ω; R3):

F (h)
α (m) := Φ(h)

α (m) +

∫

Ω

ϕ(m) dL3

+
1

2

∫

Ω

(

∇Pζ · mP +
1

h
∂3ζ m3

)

dL3,

for any m = (m1,m2,m3) ∈ L2(Ω; R3);

(4)

subject to:

∇P · (−∇Pζ + 0mP) +
1

h
∂3

(

−
1

h
∂3ζ + 0m3

)

= 0, in R
3; (5)

where the subscript “ P ” denotes the restriction of the situation onto the
two-dimensional plane R

2, e.g.:

yP := (y1, y2), for y = (y1, y2, y3) ∈ R
3,

µP := (µ1, µ2) ∈ L2(Ω; R2), for µ = (µ1, µ2, µ3) ∈ L2(Ω; R3),

and the distributional gradient

∇Pµ :=





∂1µ1 ∂2µ1

∂1µ2 ∂2µ2

∂1µ3 ∂2µ3



 , for µ = (µ1, µ2, µ3) ∈ L2(Ω; R3);



3D-2D ASYMPTOTIC OBSERVATION FOR MINIMIZATION PROBLEMS 3

and Φ
(h)
α is the rescaled version of the lower semi-continuous envelopment Ψ

(h)
α

by T (h), and it is rigorously defined as:

Φ(h)
α (m) :=















inf
{ψ(i)}∈QΩ(m)

lim inf
i→∞

∫

Ω

α(h)

(

|∇Pψ(i)|2 +
1

h2
|∂3ψ

(i)|2
)

dL3,

if |m| = 1, L3-a.e. in Ω,

∞, otherwise, for any m ∈ L2(Ω; R3);

(6)

by using a composition:

α(h)(x) := (α ◦ T (h))(x) = α(x1, x2, hx3), for all x = (x1, x2, x3) ∈ Ω;

and a class of approximating functions:

QΩ(m) :=

{

{ψ(i)}
ψ(i) ∈ W 1,2(Ω; R3)∩L2(Ω; S2), i = 1, 2, 3, · · · ,
and ψ(i) → m in L2(Ω; R3) as i → ∞

}

; (7)

for any m ∈ L2(Ω; S2).

As is easily seen, the inverse transform (T (h))−1 provides a bijective corre-

spondence between the minimizers m(h) of (MP)(h) and the minimizers m
(h)
org :=

m(h) ◦ (T (h))−1 of the original free-energy E
(h)
α . Besides, let us note that the do-

mains Dom(F
(h)
α ) of free-energies are not uniform, but variable with respect to

0 < h < 1, and the variation is directly governed by the degenerating part of the
coefficient:

A
(h)
0 := (α(h))−1(0) ⊂ Ω, for 0 < h < 1.

Under very thin situation of the thickness h, it is naturally expected that the
minimization problem (MP)(h) can be reduced to a simpler problem, considered in
two-dimensional domain S. Such reduction will be realized through the limiting
observation for (MP)(h) as h ց 0, and then, the binary function:

α◦(x1, x2) := α(x1, x2, 0) for any (x1, x2) ∈ S,
with the degenerating part A◦

0 := (α◦)−1(0);

will be the material coefficient in the limiting problem. Actually, in the h-inde-

pendent case of A
(h)
0 , a number of like-minded study results, such as [1, 2, 3, 4,

5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18], were reported, from various viewpoints,
and some of them concluded a definite association between the limiting profile of
(MP)(h), as h ց 0, and the following minimization problem, denoted by (MP)◦.

(MP)◦ Find a vectorial function m◦ = (m◦
1,m

◦
2,m

◦
3) ∈ L2(S; R3) of two variables,

which minimizes the following functional:

F◦
α(m) := Φ◦

α(m) +

∫

S

ϕ(m) dL2 +
1

2

∫

S

|m3|
2 dL2,

for any m = (m1, m2, m3) ∈ L2(S; R3);

(8)

where Φ◦
α is a convex function on L2(S; R3), defined as:

Φ◦
α(m) :=















inf
{ψ(i)}∈QS(m)

lim inf
i→∞

∫

S

α◦|∇ψ(i)|2 dL2,

if |m| = 1, L2-a.e. in S,

∞, otherwise, for any m ∈ L2(S; R3);

(9)

by using a class of approximating sequences:

QS(m) :=

{

{ψ(i)}
ψ(i) ∈ W 1,2(S; R3)∩L2(S; S2), i = 1, 2, 3, · · · ,
and ψ(i) → m in L2(S; R3) as i → ∞

}

.
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Now, the main theme of this paper is to verify whether analogous observation is

available even under h-variable situation of A
(h)
0 (or energy domains), or not. To

this end, we here impose the following two conditions for the material coefficient α:

(a1) L3(A
(h)
0 ) = 0, for 0 < h < 1;

(a2) L2(A◦
0) = 0, and α◦(xP) ≤ α(x), for all x = (x1, x2, x3) ∈ Ω.

Consequently, a certain positive answer for our theme will be demonstrated in the
main theorem, stated as follows.

Main Theorem. (I) Let us assume the condition (a1). Then, for any 0 < h < 1,
the problem (MP)(h) admits at least one solution (minimizer) m(h).

(II) Under the conditions (a1)-(a2), there exist a sequence {hi | i = 1, 2, 3, · · · } ⊂
(0, 1) and a function m◦ ∈ L2(S; R3) of two variables, such that:

(i) hi ց 0, m(hi) → m◦ in L2(Ω; R3), F
(hi)
α (m(hi)) → F◦

α(m◦), as i → ∞;
(ii) the limit m◦ solves the problem (MP)◦;

where {m(h) | 0 < h < 1} is the sequence of minimizers m(h), 0 < h < 1,
obtained in (I).

The content of this paper is as follows. In the next Section 2, some key-properties
for the minimization problems (MP)(h), 0 < h < 1, and (MP)◦ are briefly mentioned
as preliminaries. In subsequent Section 3, the continuous dependence between the

energy sequence {F
(h)
α | 0 < h < 1} and the energy F◦

α, as h ց 0, will be shown by
means of the notion of Γ-convergence (cf. [9]). On that basis, the final Section 4
will be devoted to the proof of Main Theorem.

Notation. Throughout this paper, the Lebesgue measure is denoted by Ln, for
any observing dimension n ∈ N.

For any abstract Banach space, the norm of X is denoted by | · |X . However,
when X is an Euclidean space, the norm is simply denoted by | · |. Besides, for
any functional F : X −→ (−∞,∞], we denote by Dom(F ) the domain of F , and
for any r > 0, we denote by L(r; F ) the sublevel set of F , more precisely:

Dom(F ) :=
{

ξ ∈ X F (ξ) < ∞
}

and L(r; F ) :=
{

ξ ∈ X F (ξ) ≤ r
}

.

For any abstract Hilbert space H, the inner product of H is denoted by (·, ·)H .
However, when H is an Euclidean space, the inner product between two vectors
ξ, η ∈ H is simply denoted by ξ · η.

2. Preliminaries. Let us start with summarizing the known-facts, concerned with
the coupled Maxwell equation (5).

(Fact 1) (Summary of [18, Lemma 3.1]) Let us fix any 0 < h < 1. Then, for any
function m = (m1, m2, m3) ∈ L2(Ω; R3), the solution ζ(h) of the Maxwell
equation (5) is prescribed in the scope of a Hilbert space:

V (h) :=

{

v ∈ H1
loc(R

3) ∇v ∈ L2(R3; R3) and

∫

BΩ

v dL3 = 0

}

;

endowed with a h-dependent inner product:

(u, v)V (h) := (∇Pu,∇Pv)L2(R3;R3×2) +
1

h2
(∂3u, ∂3v)L2(R3;R3), for u, v ∈ V (h);
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where BΩ is an (fixed) open ball containing Ω. Then, the solution ζ(h) ∈ V (h)

is supposed to fulfill a weak formulation by the following variational identity:
∫

Ω

(

(∇Pζ(h) − mP) · ∇Pv +
1

h

(

1

h
∂3ζ

(h) − m3

)

∂3v

)

dL3 = 0,

for any v ∈ V (h);
(10)

Moreover, taking more one function m̃ ∈ L2(Ω; R3), arbitrarily, and taking

another solution ζ̃(h) of (10) when m = m̃, it follows that:

|ζ(h) − ζ̃(h)|V (h) ≤ |m − m̃|L2(Ω;R3). (11)

Hence, the variational problem (10) is well-posed.
(Fact 2) (Summary of [15, Proposition 4.1]) Let us set:















F (h)
mag(m) :=

1

2

∫

Ω

(

∇Pζ(h) · mP +
1

h
∂3ζ

(h) m3

)

dL3,

F ◦
mag(m) :=

1

2

∫

Ω

|m3|
2 dL3,

for any m = (m1,m2,m3) ∈ L2(Ω; R3);

(12)

by using the solution ζ(h) of the variational identity (10). On that basis, let
us assume that {m̄(h) | 0 < h < 1} ⊂ L2(Ω; R3), and m̄(h) → m̄ in L2(Ω; R3)
as h ց 0, for some m̄ = (m̄1, m̄2, m̄3) ∈ L2(Ω; R3). Then:

F (h)
mag(m̄

(h)) → F ◦
mag(m̄), as h ց 0.

Next, let us look toward the key-properties of the lower semi-continuous envel-

opments Φ
(h)
α , 0 < h < 1, and Φ◦

α.

Lemma 2.1. (I) For any 0 < h < 1, the functional Φ
(h)
α is a maximal functional

in the class of l.s.c. functionals on L2(Ω; R3), supporting the functional:

ψ ∈ W 1,2(Ω; R3) ∩ L2(Ω; S2) 7→

∫

Ω

α(h)

(

|∇Pψ|2 +
1

h2
|∂3ψ|

2

)

dL3.

Moreover:

(i-1) Φ
(h)
0,α(m) :=

∫

Ω\A
(h)
0

α(h)

(

|∇Pm|2 +
1

h2
|∂3m|2

)

dL3 ≤ Φ(h)
α (m),

for any m ∈ W
1,2
loc (Ω \ A

(h)
0 ; R3) ∩ L2(Ω; S2);

(i-2) W 1,2(Ω; R3) ∩ L2(Ω; S2) ⊂ Dom(Φ
(h)
α ) ⊂ Dom(Φ

(h)
0,α) ⊂ W

1,2
loc (Ω \ A

(h)
0 ; R3),

and Φ
(h)
0,α = Φ

(h)
α on W 1,2(Ω; R3) ∩ L2(Ω; S2);

(i-3) for any m ∈ Dom(Φ
(h)
α ), there exists a sequence {µ(i) | i = 1, 2, 3, · · · }

⊂ W 1,2(Ω; R3) ∩ L2(Ω; S2) such that

µ(i) → m in L2(Ω; R3) and Φ
(h)
0,α(µ(i)) → Φ

(h)
α (m), as i → ∞.

(II) The functional Φ◦
α is a maximal functional in the class of l.s.c. functionals

on L2(S; R3), supporting the functional:

ψ ∈ W 1,2(S; R3) ∩ L2(S; S2) 7→

∫

S

α◦|∇ψ|2 dL2.

Moreover:
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(ii-1) Φ◦
0,α(m) :=

∫

S\A◦
0

α◦|∇m|2 dL2 ≤ Φ(h)
α (m), for any m ∈ W

1,2
loc (S \ A◦

0; R
3)

∩L2(S; S2);

(ii-2) W 1,2(S; R3)∩L2(S; S2) ⊂ Dom(Φ◦
α) ⊂ Dom(Φ◦

0,α) ⊂ W
1,2
loc (S \A◦

0; R
3), and

Φ◦
0,α = Φ◦

α on W 1,2(S; R3)

(ii-3) for any m ∈ Dom(Φ
(h)
α ), there exists a sequence {µ(i) | i = 1, 2, 3, · · · }

⊂ W 1,2(S; R3) ∩ L2(S; S2) such that

µ(i) → m in L2(S; R3) and Φ◦
0,α(µ(i)) → Φ◦

α(m), as i → ∞.

Proof. This lemma follows, directly, from the definition formulas (6) and (9).

Remark 1. (Key-properties for free-energies) By virtue of (4), (8) and Lemma

2.1, the functional F
(h)
α (resp. F◦

α) turns out to be l.s.c. in L2(Ω; R3) (resp. in

L2(S; R3)), and Dom(F
(h)
α ) = Dom(Φ

(h)
α ), for 0 < h < 1 (resp. Dom(F◦

α) =
Dom(Φ◦

α)). Furthermore, under the conditions (a1)-(a2), as in introduction, the

variation of energy-domains Dom(F
(h)
α ), with respect to h, will be restrictive in the

sense that Dom(F
(h)
α ) will be included in W

1,2
loc (Ω \ (A◦

0 × (0, 1)); R3), uniformly, for
all 0 < h < 1.

Taking into account of Lemma 2.1, Remark 1 and [16, Corollary 2], we can derive
the following corollary.

Corollary 1. (Compactness) Let us assume the condition (a1), as in introduction.

Then, for any 0 < h < 1 and any r > 0, the sublevel sets L(r; Φ
(h)
α ) and L(r;F

(h)
α )

are compact in L2(Ω; R3). Additionally, if we assume the conditions (a1)-(a2), as
in introduction, then for any r > 0, the sublevel sets L(r; Φ◦

α) and L(r;F◦
α) are

compact in L2(S; R3), and the unions

UΦ(r) :=
⋃

0<h<1

L(r; Φ(h)
α ) and UF (r) :=

⋃

0<h<1

L(r;F (h)
α );

are relatively compact in L2(Ω; R3).

Proof. Let us assume (a1), and let us fix any 0 < h < 1 and any r > 0. Here, taking
the solution ζ(h) as the test function of (10), we have:

F (h)
mag(m) =

1

2
|ζ(h)|2

V (h) ≥ 0, for any m ∈ L2(Ω; R3). (13)

Subsequently, we see from (4), (13) and (i-1) of Lemma 2.1 that:

L(r;F (h)
α ) ⊂ L(r; Φ(h)

α ) ⊂ L(r; Φ
(h)
0,α).

Since the compactness of L(r; Φ
(h)
0,α) in L2(Ω; R3) is already concluded in [16, Corol-

lary 2], we can say that its closed subsets L(r; Φ
(h)
α ) and L(r;F

(h)
α ) are also so.

Just as in the above, the assertion for the sublevel sets L(r; Φ◦
α) and L(r;F◦

α)
(resp. for the unions UΦ(r) and UF (r)) can be concluded, with the helps from the
condition (a2) and [16, Corollary 2] (resp. [16, Theorem 3.4]).
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3. Continuous dependence of energies. The objective in this section is summa-
rized in the following theorem, concerned with continuous dependence (Γ-convergence)
of lower semi-continuous envelopments, as h ց 0.

Theorem 3.1. (Γ -convergence from Φ
(h)
α to Φ◦

α as h ց 0) Let us assume the

conditions (a1)-(a2), as in introduction. Then, the sequence {Φ
(h)
α | 0 < h < 1}

of the lower semi-continuous envelopments converges to Φ◦
α, in the sense of Γ -

convergence, as h ց 0. More precisely, referring to [9] (or [1, Lemma 2.3]), the
above assertion is equivalent to:

(γ1) lim inf
hց0

Φ(h)
α (m̌(h)) ≥ Φ◦

α(m̌◦), if {m̌(h) | 0 < h < 1} ⊂ L2(Ω; R3), m̌◦ ∈

L2(Ω; R3), and m̌(h) → m̌◦ in L2(Ω; R3) as h ց 0;
(γ2) for any m̂◦ ∈ Dom(Φ◦

α), there exists a sequence {m̂(h) | 0 < h < 1} ⊂

L2(Ω; R3), such that m̂(h) → m̂◦ in L2(Ω; R3) and Φ
(h)
α (m̂(h)) → Φ◦

α(m̂◦),
as h ց 0.

This theorem is proved by relying on some classes of open sets, mentioned in the
following lemma.

Lemma 3.2. (Open coverings for non-degenerate parts) There exists a sequence
{ᾱ◦

ℓ | ℓ = 1, 2, 3, · · · } ⊂ (0, 1) and a covering {Sℓ | ℓ = 1, 2, 3, · · · } ⊂ S \A◦
0 of S \A◦

0

with smooth boundaries ∂Sℓ (ℓ = 1, 2, 3, · · · ), such that:










∅ 6= S1 ⊂⊂ · · · ⊂⊂ Sℓ ⊂⊂ · · · ⊂⊂ S \ A◦
0 =

∞
⋃

ℓ=0

Sℓ,

ᾱ◦
1 > · · · > ᾱ◦

ℓ > · · · > 0 = lim
ℓ→∞

ᾱ◦
ℓ , and α◦ ≥ ᾱ◦

ℓ on Sℓ, for ℓ = 1, 2, 3, · · · .

Hence, if we assume the conditions (a1)-(a2) as in introduction, then a sequence

{Ω†
ℓ} := {Sℓ × (0, 1) | ℓ = 1, 2, 3, · · · } turns out to be a covering of an open set

Ω† := Ω \ (A◦
0 × (0, 1)), with Lipschitz boundaries ∂Ω†

ℓ (ℓ = 1, 2, 3, · · · ), such that:






∅ 6= Ω†
1 ⊂ · · · ⊂ Ω†

ℓ ⊂ · · · ⊂ Ω† =

∞
⋃

ℓ=0

Ω†
ℓ ⊂ Ω \ A

(h)
0 , L3(Ω \ Ω†) = 0,

α(h) ≥ α◦ ≥ ᾱ◦
ℓ > 0 on Ω†

ℓ, for ℓ = 1, 2, 3, · · · and 0 < h < 1.

(14)

Proof of Lemma 3.2. This lemma is a direct consequence of the line of arguments,
discussed in [16, Lemma 4.1, Remark 4-5].

Proof of Theorem 3.1. First, we verify the assertion (γ1). Then, it is enough to

consider only the case when lim infhց0 Φ
(h)
α (m̌(h)) < ∞, since another case is trivial.

On account of (i-3) in Lemma 2.1, we find a sequence {ȟi | i = 1, 2, 3, · · · } ⊂ (0, 1)
and a sequence {µ̌(i) | i = 1, 2, 3, · · · } ⊂ W 1,2(Ω; R3) ∩ L2(Ω; S2), such that:

{

ȟi ց 0 and µ̌(i) → m̌◦ in L2(Ω; R3), as i → ∞,

lim
i→∞

Φ
(ȟi)
0,α (µ̌(i)) = lim inf

hց0
Φ(h)

α (m̌(h)).

Here, in the light of (14) and (i-1) in Lemma 2.1,

|∂3m̌
◦|2

L2(Ω†
ℓ
;R3)

≤ lim inf
i→∞

|∂3µ̌
(i)|2

L2(Ω†
ℓ
;R3)

≤
1

ᾱ◦
ℓ

sup
i≥1

Φ
(ȟi)
0,α (µ̌(i)) lim

i→∞
ȟ2

i = 0, ℓ = 1, 2, 3, · · · , (15)
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which implies ∂3m̌
◦ = 0, L3-a.e. in Ω†. Hence, the limit m̌◦ can be regarded to

belong to the class L2(S \A◦
0; R

3) (= L2(S; R3)) of binary functions. Subsequently,
let us set:

µ̌(i)(x1, x2) := µ̌(i)(x1, x2, ci), for L2-a.e. (x1, x2) ∈ S and i = 1, 2, 3, · · · ;

by using a collection {ci | i = 1, 2, 3, · · · } ⊂ (0, 1) of constants, such that:
∫

S

α(ȟi)(x1, x2, ci)|∇Pµ̌(i)(x1, x2, ci)|
2 dL2 ≤

∫

Ω

α(ȟi)|∇Pµ̌(i)|2 dL3, i = 1, 2, 3, · · · .

Then, with the helps from (15) and Fubini’s theorem, it is computed that:

lim
i→∞

|ψ̌(i) − µ̌(i)|2L2(Ω;R3)

= lim
i→∞

(

|ψ̌(i) − µ̌(i)|2
L2(Ω†

ℓ
;R3)

+ |ψ̌(i) − µ̌(i)|2
L2(Ω\Ω†

ℓ
;R3)

)

≤ lim
i→∞

∫

Ω†
ℓ

∫ 1

0

|∂3µ̌
(i)|2dL1dL3 + 4L3(Ω \ Ω†

ℓ)

≤ lim
i→∞

|∂3µ̌
(i)|2

L2(Ω†
ℓ
)
+ 4L3(Ω \ Ω†

ℓ) = 4L3(Ω \ Ω†
ℓ), for ℓ = 1, 2, 3, · · · .

It implies that:
ψ̌(i) → m̌◦ in L2(Ω; R3), as i → ∞; (16)

since L3(Ω \Ω†
ℓ) → 0 as ℓ → ∞. Taking into account of (a2), (16), (ii-2) in Lemma

2.1 and the lower semi-continuity of Φ◦
α, we deduce that:

lim inf
hց0

Φ(h)
α (m̌(h)) = lim

i→∞
Φ(ȟi)

α (µ̌(i)) ≥ lim inf
i→∞

∫

Ω

α(ȟi)|∇Pµ̌(i)|2dL3

≥ lim inf
i→∞

∫

S

α(ȟi)(x1, x2, ci)|∇ψ̌(i)(x1, x2)|
2 dL2 ≥ lim inf

i→∞
Φ◦

α(ψ̌(i)) ≥ Φ◦
α(m̌◦).

Thus, the assertion (γ1) is concluded.
Next, we verify the assertion (γ2). Let us take any m̂◦ ∈ Dom(Φ◦

α). Then,
construction of the required sequence {m̂(h) | 0 < h < 1} will be on the basis of a
sequence {µ̂(i) | i = 1, 2, 3, · · · } ⊂ W 1,2(S; R3)∩L2(S; R3) , which will be obtained as
the approximating sequence, as in (ii-3) of Lemma 2.1, when m = m̂◦. Here, noting

that α(h) → α◦ in C(Ω) as h ց 0, there exists a sequence {ĥi | i = 1, 2, 3, · · · } ⊂
(0, 1), such that:



















• ĥ1 > · · · > ĥi > · · · > 0 = lim
i→∞

ĥi,

• 0 ≤ Φ
(h)
0,α(µ̂(i))−Φ◦

0,α(µ̂(i)) =

∫

Ω

(α(h) − α◦)|∇Pµ̂(i)|2 dL3 <
1

2i
,

for any 0 < h < ĥi, i = 1, 2, 3, · · · .

On that basis, the finding sequence {m̂(h)} will be constructed by putting:

m̂(h) := µ̂(i) in L2(Ω; R3), if ĥi+1 ≤ h < ĥi, i = 1, 2, 3, · · · ;

with an optional setting m̂(h) := µ̂(1) in L2(Ω; R3), for ĥ1 ≤ h < 1.

The above Theorem 3.1 actually implies the Γ-convergence of free-energies, stated
as follows.

Corollary 2. (Γ -convergence from F
(h)
α to F◦

α as h ց 0) Let us assume the con-

ditions (a1)-(a2). Then, the sequence {F
(h)
α | 0 < h < 1} of free-energies converges

to the limiting one F◦
α, in the sense of Γ -convergence, as h ց 0.
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Proof of Corollary 2. This corollary is immediately concluded, by taking into ac-
count of Theorem 3.1 and (Fact 2) in Section 2.

Remark 2. On account of (13) and (Fact 2), we will see that the sequence {m̂(h) | 0 <

h < 1} as in (γ2) of Theorem 3.1 will realize the convergence:

F (h)
α (m̂(h)) → F◦

α(m̂◦) as h ց 0.

4. Proof of Main Theorem. We divide this section into two subsections, for the
respective assertions (I) and (II) of Main Theorem.

4.1. Proof of (I) of Main Theorem. The proof of this assertion will be a slight
modification of the argument, discussed in [16, Section 5.1]. In fact, under (a1), and
under the fixed setting of 0 < h < 1, we can take the so-called minimizing sequence

{m
(i)
∗ | i = 1, 2, 3, · · · } ⊂ Dom(F

(h)
α ) that is supposed to satisfy:

F (h)
α (m

(i)
∗ ) ց F

(h)
∗ := inf

m∈L2(Ω;R3)
F (h)

α (m) as i → ∞.

Here, on account of (13), (Fact 1) and Corollary 1, a convergence subsequence

{m
(ik)
∗ | k = 1, 2, 3, · · · } ⊂ {m

(i)
∗ } will be found with the limit m∗ ∈ L2(Ω; R3),

and it will be seen that:
{

m
(ik)
∗ → m∗ in L2(Ω; R3), ϕ(m

(ik)
∗ ) → ϕ(m∗) in L1(Ω),

F
(h)
mag(m

(ik)
∗ ) → F

(h)
mag(m∗),

as k → ∞.

In response to the above, we infer from the lower semi-continuity of F
(h)
α that the

limit m∗ is one of minimizers of (MP)(h).

4.2. Proof of (II) of Main Theorem. Let us assume the conditions (a1)-(a2),

and let us take a sequence {m(h) | 0 < h < 1} of minimizers of F
(h)
α , 0 < h < 1.

Let us set ν∗ := [1, 0, 0] ∈ S
2. Then, for the variational identity (10) when m ≡

ν∗, taking the solution itself as the test function v in (10) yields that F
(h)
mag(ν∗) ≤ 1,

for any 0 < h < 1 (see [16, Section 5.2], for details). In view of this,

Φ(h)
α (m(h)) ≤ F (h)

α (m(h)) ≤ F (h)
α (ν∗) = Φ(h)

α (ν∗) + |ϕ(ν∗)|L1(Ω) + F (h)
mag(ν

∗)

≤ ϕ(ν∗) + 1, for all 0 < h < 1. (17)

Since, the above (17) implies that {m(h)} ⊂ UF (ϕ(ν∗) + 1), we can apply Corol-
lary 1, to find a sequence {hi | i = 1, 2, 3, · · · } ⊂ (0, 1) and a limiting function
m◦ ∈ L2(Ω; R3), such that:

{

hi ց 0, m(hi) → m◦ in L2(Ω; R3),

ϕ(m(hi)) → ϕ(m◦) in L1(Ω),
as i → ∞.

Here, taking into account of Theorem 3.1, Corollary 2 and (17),

F◦
α(m◦) ≤ lim inf

i→∞
F (hi)

α (m(hi)) ≤ ϕ(ν∗) + 1;

and hence m◦ ∈ Dom(F◦
α) ⊂ L2(S; R3).

Next, taking any m̂◦ ∈ Dom(F◦
α) (= Dom(Φ◦

α)), and taking the sequence
{m̂(h) | 0 < h < 1} ⊂ L2(Ω; R3), obtained in (γ2) of Theorem 3.1, it will be seen
from Theorem 3.1 Corollary 2 and Remark 2 that:
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F◦
α(m◦) ≤ lim inf

i→∞
F (hi)

α (m(hi)) ≤ lim sup
i→∞

F (hi)
α (m(hi))

≤ lim
i→∞

F (hi)
α (m̂(hi)) = F◦

α(m̂◦).
(18)

It implies that m◦ solves the limiting problem (MP)◦. Furthermore, putting m̂◦ =
m◦ in (18), it is deduced that:

F (h)
α (m(h)) → F◦

α(m◦) as h ց 0.

Thus, we conclude the assertion (II).
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