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Abstract

We propose in this work an original finite volume scheme for the system of gas dynamics in
a nozzle. Our numerical method is based on a piecewise constant discretization of the cross-
section and on a approximate Riemann solver in the sense of Harten, Lax and van Leer. The
solver is obtained by the use of a relaxation approximation that leads to a positive and entropy
satisfying numerical scheme for all variation of section, even discontinuous with arbitrary large
jumps. To do so, we introduce in the first step of the relaxation solver a singular dissipation
measure superposed on the standing wave which enables us to control the approximate speeds
of sound and thus, the time step, even for extreme initial data.

Key-words : Discontinuous nozzle flows, relaxation techniques, Riemann problem.
AMS subject classifications : 76S05, 35L60, 35F55.

1 Introduction

The design of stable and accurate numerical schemes for hyperbolic systems is still a difficult prob-
lem and the challenge becomes much more difficult in presence of stiff source terms. Such an issue
may occur in the frame of flows which are influenced by external effects, due for instance to the
surrounding domain, another fluid, external forces... We are interested here in the numerical ap-
proximation of the solutions of a model describing one-dimensional barotropic flows in a nozzle. In
this model, ρ and w are respectively the density and the velocity of the fluid while α stands for the
cross-section of the nozzle, which is assumed to be constant in time. Under the classical assump-
tion that α (and its variations) is small with respect to a characteristic length in the mainstream
direction, the flow can be supposed to be one-dimensional and described by the following set of
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partial differential equations:{
∂t(αρ) + ∂x(αρw) = 0,
∂t(αρw) + ∂x(αρw2 + αp(τ))− p(τ)∂xα = 0,

(1.1)

where τ = ρ−1 is the specific volume and τ 7→ p(τ) is a barotropic pressure law. The first equation
is the classical conservation of mass and the second equation governs the dynamics of the horizontal
mean momentum.

The set of equations (1.1) can also model the dynamics of a fluid flow in a porous medium. In
such a case, α represents the local porosity in which the fluid evolves. While classical derivations
in the context of a flow in a nozzle assume the cross-section α to be smooth, the porosity can
achieve large discontinuities. Moreover, this model can be seen as a first step in the design of a
robust numerical scheme for two-phase flows, see [2] and [10], where α stands for the void fraction.
As a consequence, we are interested in a numerical scheme which complies with the following
requirements, even for discontinuous α with arbitrary large jumps:

1. robustness: it has to preserve the positivity of the density ρ,

2. consistency and nonlinear stability: it has to satisfy discrete entropy inequalities,

3. efficiency: the two previous requirements have to be achieved in such a way that the time
step remains acceptable.

It is clear that the two first points are not so easy to obtain, but, in our opinion, the third point
is probably the most challenging. Moreover, we want to obtain a numerical scheme which is easy
to implement. Let us emphasize that we do not pay too much attention to accuracy issues in
this paper, the scheme we propose is clearly first-order, we only focus on these stability properties.
Nevertheless, an increase of the accuracy could be proposed using high order reconstruction methods
for instance (note that such techniques cannot help us to answer to the difficulties mentioned above).

We here propose a new numerical scheme for gas dynamics in a nozzle which meets all these
requirements. Up to our knowledge, this is the only scheme whith such properties, except the
Godunov scheme based on the exact Riemann problem, which cannot be considered for industrial
applications [30, 22]. The three main ingredients which enable us to obtain them are: a piecewise
constant discretisation of the cross-section α, the construction of a simple Riemann problem to
compute the numerical fluxes, a dissipative modification of the underlying system to allow to deal
with severe cases.

The idea of taking a constant-by-cell cross-section goes back to the works of LeRoux and
co-workers [21, 20] and to the paper of Isaacson and Temple [27], which have been extended by
Gosse and co-workers [18, 19, 1]. The consequence of such a discretisation is to concentrate the
source term at the interfaces of the mesh and to ease the construction of well-balanced schemes. In
all these pioneering works, the numerical fluxes are obtained by solving each interfacial Riemann
problem exactly, which is not an easy task because of the presence of a singular source term. Several
attempts to simplify this Riemann solver have been proposed (see for instance [12]), but the overall
resulting numerical scheme may lack for stability properties for severe test cases.

The numerical scheme we construct is based on an approximate Riemann solver, in the
spirit of Harten, Lax and van Leer [23]. It is only composed by constant states separated by
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discontinuities, which makes its practical implementation easy. In order to ensure the positivity
of the density and the decrease of the total energy, we interprete this simple solver as the exact
solver of a relaxation approximation of system (1.1), following [11, 9]. Let us mention that
several numerical schemes have been developed on the basis of exact Riemann solvers but without
the constant-by-cell discretisation of the cross-section. Generalized Riemann problems and/or non
constant-by-cell discretisations of the unknown have to be considered [14, 15, 4, 26, 7].

The cornerstone of this scheme is the resolution of the Riemann problem associated with the
homogeneous relaxation model for arbitrary data. Even if the relaxation approximation provides
a linearly degenerate system, the resonance phenomenon persists since the source term is singular
(the cross-section is discontinuous at the interface). In few words, resonance in hyperbolic systems
consists in the superimposition of an acoustic wave on the discontinuity of the cross-section, also
called the standing wave, leading the associated eigenvectors to be colinear (as a consequence, the
system is no longer hyperbolic). In the frame of the original model of gas dynamics in a nozzle,
the resonance causes nonuniqueness of the solution of the Riemann problem, as proved in [27] and
[16] (see also [24, 25, 30, 22]). In such cases, the superposed shock wave introduces a singular
dissipation concentrated in the standing wave. Here, the troubles are different. Global existence
still remains true but, for particular initial data, measure solutions have to be considered. They
naturally appear when resonance occurs, as parts of the solution in some limit regimes for given
patterns of solutions, but we are able to circumvent these solutions by slightly perturbing the
relaxation coefficient a which governs the acoustic part of the relaxation model. As a result, the
solutions we consider for the final numerical scheme belong the the classical setting of piecewise
constant solutions seperated by linearly degenerate waves. Nevertheless, we authorize ourselves to
consider a singular dissipation term concentrated in the standing wave, as it may occurs
in the original setting. It is woth noting that it only intervenes for severe initial data: resonant
cases, high jumps of cross-section, low densities. The main consequence of the use of this possible
singular dissipation is a strong control of the time step for all data. This last feature is the most
original part of our work.

The outline of this paper is the following. The next section is devoted to the presentation of
the main features of the model for gas dynamics in a nozzle. Section 3 is the core of this work:
the relaxation approximation is presented and the associated Riemann problem is solved. With the
help of this analysis, the numerical approximation is studied in Section 4. Properties of the scheme
are described with a special care about the positivity of the density and the non-linear stability.
A preliminary numerical test is also presented at the end. Two appendices about some technical
developments complete this work.

Let us stress that the purpose of this work is to propose an entropy satisfying numerical scheme
with positivity properties. The main consequence is that we do not focus on the uniqueness of
the solution of the relaxed Riemann problem (and actually, it fails in the presence of resonance
as expected [27]). Moreover, we make an extensive description of the Riemann solver and its
properties, therefore only one numerical test is presented. A careful numerical study of our scheme
is the subject of a forthcoming work.
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2 The Euler equations in a nozzle with variable cross-section

2.1 Presentation and main properties

The model describing one-dimensional barotropic flows in a nozzle can be described by the following
set of partial differential equations: ∂tα = 0,

∂t(αρ) + ∂x(αρw) = 0,
∂t(αρw) + ∂x(αρw2 + αp(τ))− p(τ)∂xα = 0,

(2.1)

where τ = ρ−1 is the specific volume and τ 7→ p(τ) is a barotropic pressure law. The first equation
expresses the constancy of the section α, while the second and the third equations are respectively
the mass and the momentum equations. All along this paper, we assume that the pressure p is a
smooth function of τ satisfying the following classical properties. For all τ > 0, p(τ) > 0, p′(τ) < 0,
with limτ→0 p(τ) = +∞ and limτ→+∞ p(τ) = 0. An example of such a pressure law is an ideal gas
barotropic pressure law p(τ) = Sτ−γ with S > 0 and γ > 1.
System (2.1) takes the following condensed form:

∂tU + ∂xf(U) + c(U)∂xU = 0, (2.2)

where U = (α, αρ, αρw)T is the vector of unknowns and the functions f and c are given by

f(U) =

 0
αρw

αρw2 + αp(τ)

 , c(U)∂xU =

 0
0

−p(τ)∂xα

 . (2.3)

In practice, the constant section α is determined once and for all by the initial condition, and
thus it is not properly speaking an unknown function. However, the section α appears in the
mass and momentum equations, especially in the pressure terms. Therefore, in the numerical
simulations, where the solutions of system (2.1) are approximated by a Finite Volume Method, it
is more appropriate to consider α as an unknown function, since it allows us to use the convenient
machinery of hyperbolic systems theory. In particular, we will be able to construct (approximate)
self-similar solutions to system (2.1) (i.e. solution depending only on x/t). The following proposition
holds, that characterizes the fields of this system.

Proposition 2.1. For any U in the phase space Ω defined by

Ω =
{
U = (α, αρ, αρw)T ∈ R3, α > 0, αρ > 0

}
, (2.4)

system (2.1) admits the three following eigenvalues

σ0(U) = 0,

σ1(U) = w − c(τ), σ2(U) = w + c(τ), (2.5)

where c(τ) = τ
√
−p′(τ) is the speed of sound. The system is hyperbolic on Ω (i.e. the corresponding

right eigenvectors span R3) if, and only if (w − c(τ))(w + c(τ)) 6= 0. If the latter condition is not
fulfilled, the system is said to be resonant. Moreover, the characteristic field associated with σ0 is
linearly degenerate, while the characteristic fields associated with σ1 and σ2 are genuinely non-linear.
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Proof . The proof is classical (see for instance [30]).

The phase space Ω introduced in (2.4) is the physically relevant domain where the solutions of
(2.1) have to lie. Indeed, the section α has to be positive (which is trivially imposed by the initial
condition) as well as the fluid density ρ. In the sequel Ω will be referred to as the phase space of
positive solutions. As regards the smooth solutions of system (2.1), we have the following property:

Proposition 2.2. The smooth solutions of (2.1) obey the following additional conservation law

∂t (αρE) + ∂x (αρEw + αp(τ)w) = 0, (2.6)

where E =
w2

2
+e(τ) is the total energy and where the function τ 7→ e(τ) is given by e′(τ) = −p(τ).

Moreover, the function (α, αρ, αρw) 7→ αρE is convex.

Proof . Equation (2.6) follows from classical manipulations of system (2.1). The convexity of αρE
as a function of U is a consequence of the convexity of the internal energy e with respect to τ .

When one considers non-smooth weak solutions of system (2.1), it is well known that there is
no uniqueness of such solutions and one has to add a so-called entropy selection criterion in order
to select the relevant physical solutions of (2.1).

Definition 2.1. A weak solution of system (2.1) is said to be an entropy solution if it satisfies
the following inequality in the weak sense of the distributions

∂t (αρE) + ∂x (αρEw + αp(τ)w) ≤ 0. (2.7)

As the function (α, αρ, αρw) 7→ αρE is convex, this selection criterion can be formally justified
by the vanishing viscosity method (see for example [17]). When the solution contains strong shocks,
inequality (2.7) is strict, and this accounts for the loss of energy due to viscosity.

2.2 Standing wave and resonance

For the sake of numerical applications, one has to consider the case of discontinuous cross-sections
α, the simpler example of which is given by a Riemann-type initial condition α(x) = αL if x < 0 and
α(x) = αR if x > 0. Since α is constant throughout time, this gives rise to a standing discontinuity
across which one has to define jump relations. The main difficulty lies in the treatment of the
non-conservative product p(τ)∂xα since this product cannot be represented in the usual sense of
distributions. Nevertheless, in the region of hyperbolicity of system (2.1), i.e. when w 6= ±c(τ), this
non-conservative product is supported by the standing wave associated with the linearly degenerate
field σ0 = 0, and the natural definition of p(τ)∂xα is drawn from the conservation of the Riemann
invariants associated with σ0. A well-known result on hyperbolic systems, see for instance [29, 13, 5],
states that for a linearly degenerate field, the Rankine-Hugoniot jump relations are valid for any
additional conservation law which is satisfied by smooth solutions. Therefore, the two Riemann
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invariants are obtained by applying the Rankine-Hugoniot jump conditions to the mass conservation
equation and to the conservative equation on the velocity

∂tw + ∂

(
w2

2
+ e(τ) + τp(τ)

)
= 0, (2.8)

which leads to

[αρw]
0

=

[
w2

2
+ e(τ) + τp(τ)

]0

= 0, (2.9)

where [X]0 denotes the jump of any quantity X across the standing wave. An easy consequence of
these relations is the preservation of the energy flux across the standing wave: [αρEw+αp(τ)w]0 =
0. In the case of steady states at rest, the jump relations reduce to

w = 0 and [ρ]0 = 0. (2.10)

When the resonance phenomenon appears, i.e. when there exists in the solution a state
(α, αρ, αρw) such that w = ±c(τ), the hyperbolicity of the system is lost which means that the
right eigenvectors are no longer linearly independent, and the standing wave superimposes with a
non-linear field associated with one of the extreme eigenvalues σ1 or σ2. In this particular case,
defining the non-conservative product is difficult and the uniqueness of solutions is lost in general
(even with the entropy criterion given by Definition 2.1), see [16, 27]. Besides, if the standing wave
superimposes with a stationary shock, while the Rankine-Hugoniot jump relation

[αρw]
0

= 0

remains valid, the second one of (2.9) is no longer true. As a consequence, the energy flux is no
longer preserved across the wave and we rather have

[αρEw + αp(τ)w]
0
< 0 (2.11)

since the energy strictly decreases through the shock.

2.3 Numerical approximation and Riemann solvers

One of the most classical approaches for the numerical approximation of the solutions of (2.1) is
the so-called well-balanced approach (see [21, 20, 8]) which relies on the construction of the exact
solution of system (2.1) for the particular case where the initial condition is given by a constant
state UL for x < 0 and a constant state UR for x > 0 (one speaks of a Riemann problem):

U0(x) =

{
UL if x < 0,
UR if x > 0.

(2.12)

Unfortunately, the exact solution of this Riemann problem is quite uneasy to obtain (see [30, 3, 22])
due to the non-linearities of the pressure law and to the difficulties linked with the resonance
phenomenon (definition of the non-conservative product, non-uniqueness...). Therefore, an other
approach is preferred, where solving the Riemann problem for system (2.1) is replaced by solving an
easier Riemann problem for an enlarged system obtained by a relaxation approximation method.
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3 Relaxation approximation

3.1 The relaxation system and its main properties

In this section, we propose a suitable relaxation approximation of the entropy weak solutions of
system (2.1). For this purpose, we first recall that the genuine non-linearity of the two extreme fields
(also referred to as the {σ1, σ2}-fields in the sequel) is due to the non-linearities of the pressure
law τ 7→ p(τ). In the spirit of [5, 28], we consider an enlarged system involving an additional
unknown T associated with a linearization π of the pressure law. This linearization is designed to
get a quasilinear enlarged system, shifting the initial non-linearity from the convective part to a
stiff relaxation source term. The relaxation approximation is based on the idea that the solutions
of the original system are formally recovered as the limit of the solutions of the proposed enlarged
system, in the regime of a vanishing relaxation coefficient ε > 0. As a relaxation approximation of
(2.1), we propose the following system:


∂tα

ε = 0,
∂t(αρ)ε + ∂x(αρw)ε = 0,
∂t(αρw)ε + ∂x(αρw2 + απ(τ, T ))ε − π(τ, T )ε∂xα

ε = 0,

∂t(αρT )ε + ∂x(αρT w)ε =
1

ε
(αρ)ε(τ − T )ε,

(3.1)

where the linearization of the pressure law is given by

π(τ, T ) = p(T ) + a2(T − τ). (3.2)

System (3.1) takes the following condensed form:

∂tWε + ∂xg(Wε) + d(Wε)∂xWε =
1

ε
R(Wε), (3.3)

where W = (α, αρ, αρw, αρT )T is the vector of unknowns and the functions g, d and R are given
by

g(W) =


0

αρw
αρw2 + απ
αρT w

 , d(W)∂xW =


0
0

−π∂xα
0

 , R(W) =


0
0
0

αρ(τ − T )

 . (3.4)

To ease the notation hereafter, we will omit the superscript ε. From this point, we will refer to
the original system (2.1) as the equilibrium system, while system (3.1) will be referred to as the
relaxation system. We can see that in the formal limit ε → 0, the additionned variable T tends
towards the specific volume τ , and the linearized pressure π tends towards the original non-linear
pressure p, thus recovering the equilibrium system (2.1) in the first three equations of (3.1). The
constant a in (3.2) is a constant positive parameter that must be taken large enough to prevent
system (3.1) from instabilities in the regime of small values of ε. This will be clarified in section
4.4.

It is relevant to focus on the convective part of system (3.1) since a fractional step method is
commonly used in the implementation of relaxation methods: the first step is a time-advancing
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step using the solution of the Riemann problem for the convective part of (3.1):
∂tα = 0,
∂t(αρ) + ∂x(αρw) = 0,
∂t(αρw) + ∂x(αρw2 + απ(τ, T ))− π(τ, T )∂xα = 0,
∂t(αρT ) + ∂x(αρT w) = 0,

(3.5)

while the second step consists in an instantaneous relaxation towards the equilibrium system by
imposing T = τ in the outcome of the first step. This second step is equivalent to sending ε to 0
instantaneously (see section 4 for details).

We now state the main property that motivates the introduction of the proposed relaxation
system:

Proposition 3.1. For any W in the phase space Ωr defined by

Ωr =
{
W = (α, αρ, αρw, αρT )T ∈ R4, α > 0, αρ > 0, αρT > 0

}
, (3.6)

system (3.5) admits the four following eigenvalues

σr0(W) = 0,

σr1(W) = w − aτ, σr2(W) = w, σr3(W) = w + aτ, (3.7)

and is hyperbolic on Ωr (i.e. the corresponding right eigenvectors span R4) if, and only if (w −
aτ)(w+aτ) 6= 0. If the latter condition is not fulfilled, the system is said to be resonant. Moreover,
all the characteristic fields associated with {σri }i=0..3 are linearly degenerate.

Proof . The proof can be easily recovered following closely related steps developped in [5]. Details
are left to the reader.

Note that the crucial property here is the linear degeneracy of the two extreme waves. This
enables us to easily define jump relations across these two waves. More precisely, the first equation
of (3.5) shows that for any solution of the Riemann problem, the jump of α only occurs through the
σ0 standing wave, therefore α is a Riemann invariant for both acoustic fields. Similarly, equation
four in (3.5) shows that T is also a Riemann invariant for these fields and the last Riemann invariant
is determined by observing that for any linearly degenerate wave, the eigenvalue is also constant
through this field (any other invariant of the field can be expressed as a continuous function of these
three Riemann invariants).

Remark 3.1. System (3.5) could be studied for itself without relaxation consideration, i.e. without
considering that it is precisely designed to approximate the natural physical system (2.1). In that
case, there is no reason to impose the positivity of the density in the solutions and the phase space for
(3.5) turns to be larger than Ωr defined in (3.6). For our relaxation approximation purposes though,
we ask the solutions of (3.5) to stay within the phase space Ωr. The positivity of the additioned
variable T is necessary in order for the relaxed pressure π(τ, T ) to be well-defined. Subsequently,
any vector W is said to be positive if it satisfies W ∈ Ωr, and any solution (x, t) 7→W(x, t) is said
to be a positive solution if for all (x, t) in Rx × R+

t , W(x, t) belongs to Ωr.
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3.2 Jump relations across the standing wave

We now focus on the definition of jump relations across the standing wave in the PDE model
(3.5). Applying the Rankine-Hugoniot jump relation to the mass conservation equation as well
as to the transport equation of T yields two Riemann invariants for the standing wave provided
that system (3.5) is hyperbolic (see hereafter). But as the non-conservative product π(τ, T )∂xα is
not well defined across the standing wave (π(τ, T ) may not be continuous across this wave), we
cannot apply the Rankine-Hugoniot relation to the momentum conservation equation. Moreover,
the variable w no longer satisfies a conservative equation as in the equilibrium case (2.8). Instead,
we seek an additional conservation law satisfied by the smooth solutions of (3.5) eventually leading
to a full set of jump relations. We have the following statement:

Proposition 3.2. The smooth solutions of (3.5) obey the following additional conservation law

∂t (αρE) + ∂x (αρEw + απ(τ, T )w) = 0, (3.8)

where the total energy is

E =
w2

2
+ e(T ) +

π2(τ, T )− p2(T )

2a2
. (3.9)

Proof . This follows from classical manipulations. The details are left to the reader.

For a hyperbolic conservative system, the conservation of energy (3.8) holds true in the weak
sense for any solution presenting only contact discontinuities, and the Riemann invariant obtained
by applying the Rankine-Hugoniot jump relation to equation (3.8) can be expressed as a continuous
function of the other Riemann invariants. Nevertheless, system (3.5) is not conservative in the
neighborhood of the standing wave and this is the reason why applying the Rankine-Hugoniot
relation to (3.8) yields a new jump relation. Note that there are no theoretical results that impose
relation (3.8) to be exactly maintained across the standing wave when the resonance occurs (i.e.
when w = ±aτ), and we will see that, if equation (3.8) is exactly satisfied in the weak sense, we
will not be able to impose the invariance of the domain Ωr. Indeed, it will be proved that keeping
domain Ωr invariant requires the decrease of the energy in general. This is related to the fact that
Ωr is not the natural space for the solutions of system (3.5) (see Remark 3.1). These considerations
motivate the construction of solutions to the Riemann problem where the energy decreases (in the
weak sense) across the standing wave:

∂t (αρE) + ∂x (αρEw + απ(τ, T )w) ≤ 0, in D′, (3.10)

as it may happen for the equilibrium system (see (2.11)).

3.3 Solving the Riemann problem for the relaxation system

3.3.1 Definition of the solutions and existence theorem

Let be given WL and WR, two positive states in Ωr. We are now interested in solving the Riemann
problem for system (3.5), i.e. we seek solutions satisfying the initial condition
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W0(x) =

{
WL if x < 0,
WR if x > 0.

(3.11)

Definition 3.1. A solution of the Riemann problem (3.5)-(3.11) is a function W : (x, t) ∈ Rx ×
R+
t 7→W(x, t) ∈ Ωr satisfying the following properties:

1. W is a self similar mapping W(x, t) = Wr(x/t;WL,WR).

2. W is made of constant intermediate states separated by waves whose constant speeds are
eigenvalues {σri }i=0..3 of the system, and each eigenvalue σri appears at most once in W.

3. W is a weak solution on R∗x × R+
t of ∂t(αρ) + ∂x(αρw) = 0,

∂t(αρw) + ∂x(αρw2 + απ(τ, T )) = 0,
∂t(αρT ) + ∂x(αρT w) = 0.

(3.12)

4. Defining [X]
0

= X(0+) −X(0−) for any function X of x/t, the dissipation of energy across
the standing wave is non-positive in the sense that

[αρwE + απw]
0 ≤ 0. (3.13)

5. W satisfies, for all T > 0 and R > 0 such that for all x ≥ R, W(−x, T ) = WL and W(x, T ) =
WR,

T [αρw]
0

=

∫ R

−R
(αρ)(T, x)dx−R((αρ)L + (αρ)R) + T ((αρw)R − (αρw)L). (3.14)

Moreover, we impose the following alternative

• if [αρw]
0

= 0 then [αρwT ]
0

= 0,

• if [αρw]
0 6= 0 then [T ]

0
= 0.

Let us provide some comments on this definition. The three first points are classical and they
also imply that (3.8) is satisfied in R∗x × R+

t . The remaining points specify the behavior of the
solution through the standing wave.

Denoting f = − [αρwE + απw]
0, a solution satisfies

∂t (αρE) + ∂x (αρEw + απ(τ, T )w) = −fδ0.

As mentioned before, we allow a non-zero energy dissipation through the standing wave. In some
cases, an appropriate choice of the dissipation rate f will enable us to guarantee the positivity of
the intermediate states (c.f. remark 3.1).

Point 5 expresses that a Dirac measure corresponding to a mass concentration is allowed to
appear at x = 0. But thanks to (3.14), the global conservation of mass is ensured. Solutions
which involve Dirac measures have already been introduced in many works, see for instance [6].
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Here, this phenomenon is due to the linear denegeracy of the extreme fields together with the
resonance pathology. Indeed, such singular solutions do not appear in the equilibrium problem (see
for example [27, 16, 24, 25] and previously quoted references).

When [αρw]
0 6= 0, the classical conservative jump relation on the PDE for T is no longer avail-

able and the alternative which ends point 5 is a natural way define T .

Let us now define some notations depending only on the physical data VL := (ρL, wL, TL) and
VR := (ρR, wR, TR) and that will be useful afterwards:

w] :=
1

2
(wL + wR)− 1

2a
(πR − πL), (3.15)

π] :=
1

2
(πR + πL)− a

2
(wR − wL), (3.16)

τ ]L := τL +
1

a
(w] − wL) = τL +

1

2a
(wR − wL)− 1

2a2
(πR − πL), (3.17)

τ ]R := τR −
1

a
(w] − wR) = τR +

1

2a
(wR − wL) +

1

2a2
(πR − πL). (3.18)

In fact, these quantities are respectively the speed, the linearized pressure, and the specific
volumes of the solution obtained with a constant initial section αL = αR, provided that the specific
volumes τ ]L and τ ]R are positive. Let us stress from now on that a will be chosen large for stability
matters (see section 4.4) and in particular large enough to enforce the positivity of τ ]L and τ ]R. In the
sequel, we always assume that the constant parameter a is such that τ ]L and τ ]R are positive. This
requirement is equivalent to imposing the natural ordering of the waves wL−aτL < w] < wR+aτR.

x

t

wL − aτL
w]

wR + aτR

τL, wL, πL

τ ]L, w
], π]

τ ]R, w
], π]

τR, wR, πR

Self-similar solution in the case of an initial data with αL = αR.

Thereafter, the self-similar function depicted above will be referred to as the constant section
solution. We also introduce the Mach numbers of the intermediate states for the constant section
solution:

ML :=
wL
aτL

, M]
L :=

w]

aτ ]L
, M]

R :=
w]

aτ ]R
, MR :=

wR
aτR

. (3.19)

The main result of this section is the following existence theorem for the Riemann problem.

Theorem 3.3. Let WL and WR be two positive states in Ωr. Assume that a is such that τ ]L > 0

and τ ]R > 0. Then the Riemann problem (3.5)-(3.11) admits a positive solution in the sense of
Definition 3.1, whatever the ratio ν = αL

αR
is.
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Remark 3.2.
1. By choosing a large enough, it is always possible to have τ ]L > 0 and τ ]R > 0. By the same

way, one can also ensure that [αρw]0 = [αρEw+απw]0 = 0, which means that there is neither
mass concentration nor entropy dissipation at the standing wave.

2. This procedure for the choice of a should be attractive since the solution of the Riemann
problem becomes easier to describe (and to compute). However, in the numerical simulations,
too much large values of a could imply very small time steps ∆t through the CFL condition
and unnecessary numerical diffusion.

3. It is well-known that the Riemann problem for the equilibrium system (2.1) may admit up
to three self-similar solutions in the context of resonance. Concerning the relaxation system,
several solutions exist near the resonance, in particular when the energy flux is not constant
across the standing wave. Actually, since we only aim at constructing a numerical scheme,
we did not focus on the uniqueness issue.

4. The continuity of the solution with respect to the data is a very difficult question. On the one
hand, the lack of uniqueness is an obvious obstacle to prove any continuity property. On the
other hand, in the resonant cases, the solution admits singular parts at the standing wave,
which have to be accounted for in the topology used for defining the continuity, which is still
unclear for the authors. However, we construct resonant solutions as limits of non-resonant
solutions through the computation of the respective intermediate states, when the speed of any
wave tends to zero.

The proof of this existence theorem follows from an actual construction of the solution for
every given initial data WL and WR. For strictly hyperbolic systems of conservation laws, the
characteristic eigenvalues are naturally ordered (see for example Euler’s equations). Consequently,
if all the characteristic fields are linearly degenerate, the solution is sought in the form of constant
states separated by contact discontinuities whose speeds are equal to the corresponding eigenvalues.
For system (3.5), the eigenvalues are not naturally ordered because of the existence of a standing
wave, and a resonance phenomenon does appear for sonic flows (i.e. flows with vanishing (w −
aτ)(w+aτ)). Therefore, the classical proof must be slightly modified. We first focus on a particular
non-resonant ordering of the eigenvalues (for instance w−aτ < 0 < w < w+aτ) and we determine
sufficient conditions (that sometimes appear to be necessary) on the initial states WL and WR for
the solution to have this particular ordering. We do the same for the other possible non-resonant
orderings (that may be supersonic). Resonant solutions are then studied as limits of non resonant
solutions as the speed of any wave tends to zero. Eventually, we check a posteriori that the
determined conditions totally cover the entire domain of initial conditions Ωr × Ωr. We show that
the conditions that give the ordering of the wave speeds can be expressed in terms of the physical
data (VL,VR) and of the ratio of left and right sections : ν = αL

αR
. In addition, for certain values of

ν (large or small values depending on the flow direction) the solution may have to dissipate energy
in the standing wave in order to preserve the positivity of the densities (again, see Remark 3.1).

The following figure provides a schematic representation of the solution given by Theorem 3.3.
It represents the map of the admissible solutions with respect to the initial states WL and WR.
The right part of the chart corresponds to the solutions with positive material speed, while the left
part depicts the symmetric configurations with negative material speed. The blue lines represent
the solutions whose structure needs to refer to a measure concentrated at x = 0.
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ν =
αL

αR

MLMR

ν = 1

ν = 0

ML = 0 ML = 1MR = 0MR = −1

w] < 0 w] > 0

M
R = −ν

νML = 1

In the sequel, a solution of the Riemann problem is said to have signature < i, j > with i and
j in {0, 1, 2, 3} if it is composed with i left-going waves and j right-going waves. For example, the
solution with the ordering of the eigenvalues w − aτ < 0 < w < w + aτ is said to have signature
< 1, 2 >.

3.3.2 Non-resonant solutions

Solutions with signature < 1, 2 >:

Let us now turn on to solutions with the subsonic non-resonant ordering of the eigenvalues w−aτ <
0 < w < w + aτ i.e. solutions with the wave signature < 1, 2 >.

x

t

w − aτ
0 w

w + aτ

WL

W− W+

W3

WR

Signature < 1, 2 >

The following result shows that, under a sufficient (and necessary) condition on the initial states,
one can build a one-parameter family of solutions (in the sense of Definition 3.1) with signature
< 1, 2 >, and the dissipation of energy across the standing wave is directly driven by the underlying
parameter.
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Proposition 3.4. Let WL and WR be two positive states in Ωr. The Riemann problem (3.5)-(3.11)
admits positive solutions in the sense of Definition 3.1 with signature < 1, 2 >, if and only if

w] > 0 and ML < 1, (3.20)

where w] andML are defined respectively in (3.15) and (3.19). These solutions can be parametrized
by M := M− = w−

aτ− , the Mach number of the state on the left of the standing wave, and the
intermediate states are given by:

τ− = τ ]L
1−M]

L

1−M
, w− = aMτ−, T − = TL, (3.21)

τ+ = τ ]L
1 +M]

L

1 + νM
, w+ = νaMτ+, T + = TL, (3.22)

τ3 = τ ]R + τ ]L
M]

L − νM
1 + νM

, w3 = νaMτ+, T3 = TR. (3.23)

Besides, there exists a critical value ν] in (1,+∞] depending only on the physical data (VL,VR)
and possibly infinite such that the following alternative holds:

• Either ν < ν], and in this case, M belongs to the interval (0,M0(ω, ν)] ⊂ (0,min(1, 1/ν))
with

M0(ω, ν) =
1

2

1 + ω2

1− ω2

(
1 +

1

ν

)
−

√(
1 + ω2

1− ω2

)2(
1 +

1

ν

)2

− 4

ν

 , (3.24)

where

ω =
1−M]

L

1 +M]
L

∈ (0, 1). (3.25)

The valueM =M0(ω, ν) gives the unique solution that exactly preserves the energy equality
(3.8) across the standing wave, and for 0 <M <M0(ω, ν), the energy is dissipated.

• Or ν ≥ ν], and in that case, no positive solution can preserve the energy equality (3.8). The

initial data is such that 0 <
M]

L

ν < M0(ω, ν) where M0(ω, ν) is given by (3.24). M must

be strictly less than M0(ω, ν), and by taking M close enough to M
]
L

ν we ensure that all the
densities remain positive.

In both cases, the mass is conserved across the standing wave [αρw]0 = 0 and the choice of the
value ofM determines the dissipation of energy across the standing wave through

[αρwE + απw]
0

=
1

2
(w] + aτ ]L)2Q0(M)Ψ(M; ν, ω) ≤ 0, (3.26)

where Q0(M) = αLρ
−w− = αRρ

+w+ > 0 is the constant mass flux across the standing wave and
Ψ is a non-positive function defined by

Ψ(M; ν, ω) =
νM− 1

νM+ 1
− ω2M+ 1

M− 1
, with ω =

1−M]
L

1 +M]
L

. (3.27)
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Proof . The proof relies on lengthly but easy calculations and therefore, we only sketch it. We look
for a solution that satisfies the mass conservation across the standing wave [αρw]0 = 0. We first
focus on energy preserving solutions and we express the jump relation corresponding to the energy
conservation equation (3.8) across the standing wave in terms of the left and right states W− and
W+, which reads

[αρwE + απw]
0

= −f with f = 0.

This, combined with the mass conservation implies that

τ+2 (
(νM)2 − 1

)
− τ−2 (M2 − 1

)
= 0. (3.28)

In addition, the solution must satisfy equations (3.12) outside a neighborhood of x = 0 which results
in a full set of classical Rankine-Hugoniot jump relations. Using these jump relations through the
other waves, we can wind up the information to the initial left and right states, showing that (3.28)
is equivalent to

Ψ(M; ν, ω) =
νM− 1

νM+ 1
− ω2M+ 1

M− 1
= 0

⇐⇒ (νM− 1)(M− 1)− ω2(νM+ 1)(M+ 1) = 0, (3.29)

where the expression of ω is given in (3.27). Then we observe that for the solution to be of
signature < 1, 2 >, w+ has to be positive and so has to be w− (by the mass conservation). Thus,
M = M− must be positive. Moreover, the {w − aτ}-wave must be negative which means that
wL − aτL = w− − aτ− < 0, i.e. ML < 1 and M < 1. By (3.28), this implies that M < 1/ν.
Consequently, M must be sought in the interval (0,min(1, 1/ν)). Let us now check that (3.29)
has a (unique) root in (0,min(1, 1/ν)) if and only if w] > 0, and that this root is given by (3.24).
Defining ϕ(M) = (νM− 1)(M− 1)− ω2(νM+ 1)(M+ 1), its first derivative reads

ϕ′(M) = ν(M− 1) + (νM− 1)− ω2(ν(M+ 1) + νM+ 1),

which is negative on the interval (0,min(1, 1/ν)). In addition, we have ϕ(min(1, 1/ν)) = −2ω2(1 +
min(ν, 1/ν)) < 0. Hence, by the intermediate value theorem, ϕ has a unique root in (0,min(1, 1/ν))

if and only if ϕ(0) = 1 − ω2 > 0. From the definition (3.25) of ω, we have ω2 < 1 ⇔ M]
L >

0 ⇔ w] > 0. The expressions of the intermediate states follow from the Rankine-Hugoniot jump
relations. Conversely, if w] > 0, then (3.29) has a unique rootM0 in (0,min(1, 1/ν)), and formulas
(3.21)-(3.23) give a positive solution of signature < 1, 2 > provided that wL−aτL < 0 i.e. ML < 1.
The existence of ν] is related to the expression of τ3 in (3.23) which is the only intermediate specific
volume that may be non-positive. It is possible to show that for fixed VL and VR, the function

ν 7→ τ3(ν,M0(ω, ν)) = τ ]R + τ ]L
M]

L − νM0(ω, ν)

1 + νM0(ω, ν)
(3.30)

is a non-increasing function that may become negative for large values of ν. Then, in order to
impose the positivity of τ3 we must no longer exactly conserve the energy at the standing wave (by
takingM =M0(ω, ν)) but dissipate it by takingM smaller thanM0(ω, ν). The expression of τ3
clearly shows that ifM is taken close enough to M

]
L

ν , we have τ3 close to τ ]R which is positive.
Finally, the global mass conservation (3.14) is naturally true since the Rankine-Hugoniot relation
associated to the mass equation is satisfied for all the waves.
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Remark 3.3. We can compute explicitly the expression of ν]: it is the value of ν which cancels τ3
in equation (3.30) If we introduce

τ∞3 = lim
ν→+∞

τ3(ν,M0(ω, ν)) = τ ]R − τ
]
LM

]
L

1−M]
L

1 +M]
L

, (3.31)

we can prove that

ν] =


+∞ if τ∞3 ≥ 0,

M]
L +

τ]
R

τ]
L

1− τ]
R

τ]
L

(1− τ]
R

τ]
L

)(1 + ω2)− (1− ω2)(M]
L +

τ]
R

τ]
L

)

(1− τ]
R

τ]
L

)(1− ω2)− (1 + ω2)(M]
L +

τ]
R

τ]
L

)
> 1 if τ∞3 < 0.

(3.32)

Moreover, for ν ≥ ν], appendix A gives a procedure to choose the value of M and determine the
corresponding energy dissipation.

Solutions of signature < 0, 3 >:

We now seek solutions with the supersonic non-resonant ordering of the eigenvalues 0 < w−aτ <
w < w + aτ i.e. solutions of signature < 0, 3 >.

x

t
w − aτ0

w

w + aτ

WL

W+

W2

W3

WR

Signature < 0, 3 >

Again, a one-parameter family of solutions is built, the involved parameter being directly related
to the energy dissipation across the standing wave.

Proposition 3.5. Let WL and WR be two positive states in Ωr. The Riemann problem (3.5)-(3.11)
admits positive solutions in the sense of Definition 3.1 with signature < 0, 3 > if and only if

w] > 0, ML > 1 and νML > 1. (3.33)

These solutions can be parametrized by a real parameter θ ∈ (0, 1] measuring the dissipation of
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energy across the standing wave, and the intermediate states are given by:

τ+ = θτL

√
M2

L − 1

ν2M2
L − 1

, w+ = νaMLτ
+, T + = TL,

(3.34)

τ2 = τ ]L +
τL
2

(ML − 1)

(
1− θ

√
(ML + 1)(νML − 1)

(ML − 1)(νML + 1)

)
, w2 = w+ + a(τ2 − τ+), T2 = TL,

(3.35)

τ3 = τ ]R +
τL
2

(ML − 1)

(
1− θ

√
(ML + 1)(νML − 1)

(ML − 1)(νML + 1)

)
, w3 = w2, T3 = TR.

(3.36)

Besides, there exists a critical value ν] ∈ (1,+∞] depending only on the physical data (VL,VR) and
possibly infinite such that the following alternative holds

• Either ν < ν], and in this case the value θ = 1 gives the unique solution that exactly preserves
the energy equality (3.8) across the standing wave, and for 0 < θ < 1, the energy is dissipated.

• Or ν ≥ ν], and in that case, no positive solution can preserve the energy equality (3.8). The
parameter θ must be strictly less than 1, and by taking θ close enough to 0, we ensure that all
the densities remain positive.

In both cases, the mass is conserved across the standing wave [αρw]0 = 0 and the choice of the
value of θ determines the dissipation of energy across the standing wave through

[αρwE + απw]
0

=
1

2
a2τL

2(ML
2 − 1)(θ2 − 1)αLρLwL ≤ 0. (3.37)

Proof . Here again, we only sketch the proof. We look for a solution satisfying the mass conservation
across the stationary wave [αρw]0 = 0. The jump relation corresponding to the energy inequality
(3.10) leads to nearly the same equation as (3.28):

τ+2 (
(νML)2 − 1

)
− τL2

(
ML

2 − 1
)
≤ 0.

Hence there exists θ in (0, 1) such that

τ+ = θτL

√
M2

L − 1

ν2M2
L − 1

,

and the value θ = 1 corresponds to the exact preservation of energy. The intermediate states are
then computed thanks to the Rankine-Hugoniot jump relations. Eventually, we observe that the
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functions

ν 7→ τ2(ν, θ) = τ ]L +
τL
2

(ML − 1)

(
1− θ

√
(ML + 1)(νML − 1)

(ML − 1)(νML + 1)

)
,

ν 7→ τ3(ν, θ) = τ ]R +
τL
2

(ML − 1)

(
1− θ

√
(ML + 1)(νML − 1)

(ML − 1)(νML + 1)

)
,

with θ identically equal to 1, are non-increasing functions that may become negative for large values
of ν. Then, in order to impose the positivity of τ2 and τ3, we must no longer exactly preserve the
energy at the standing wave but dissipate it by taking θ in the interval (0, 1) close enough to 0.
Finally, the global mass conservation (3.14) is naturally true since the Rankine-Hugoniot relation
associated to the mass equation is satisfied for all the waves.

Remark 3.4. We can compute explicitly the expression of ν]. If we introduce

τ∞ = min

(
lim

ν→+∞
τ2(ν, θ = 1), lim

ν→+∞
τ3(ν, θ = 1)

)
= min(τ ]L, τ

]
R)− τL

2
(ML−1)

(√
ML + 1

ML − 1
− 1

)
,

(3.38)
we can prove that

ν] =


+∞ if τ∞ ≥ 0,

1

ML

M2
L − 1 +

(
2 min(τ]

L,τ
]
R)

τL
+ML − 1

)2

M2
L − 1−

(
2 min(τ]

L,τ
]
R)

τL
+ML − 1

)2 > 1 if τ∞ < 0.

(3.39)

Moreover, for ν ≥ ν], appendix B describes a procedure to choose the value of θ and determine the
corresponding energy dissipation.

3.3.3 Resonant solutions

We now study resonant solutions that are obtained by formally passing to the limit in the non-
resonant configuration < 1, 2 > when letting the material wave speed w tend to zero.

Solutions with signature < 1, 1 >:

We first seek solutions with the subsonic non-resonant ordering of the eigenvalues w − aτ < 0 =
w < w + aτ i.e. solutions with signature < 1, 1 >.
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x

t

w − aτ

0 w

w + aτ

WL

W− W+

WR

Signature < 1, 1 >

We have the following result:

Proposition 3.6. Let WL and WR be two positive states in Ωr. The Riemann problem (3.5)-(3.11)
admits a positive solution in the sense of Definition 3.1 with signature < 1, 1 >, if

w] = 0. (3.40)

The intermediate states of this solution are given by:

τ− = τ ]L, w− = 0, T − = TL, (3.41)

τ+ = τ ]R, w+ = 0, T + = TR. (3.42)

The mass and energy fluxes are exactly preserved across the standing wave:

[αρw]
0

= [αρwE + απw]
0

= 0. (3.43)

Proof . We assume that w] = 0. Let us prove that the intermediate states given by equations
(3.41)-(3.42) determine a positive solution of signature < 1, 1 >. For the left-going acoustic wave,
we have α = cst = αL and T = cst = TL. Besides, we have wL−aτL = w]−aτ ]L = −aτ ]L = −aτ− =
w−− aτ−. Thus the Rankine-Hugoniot jump relations for (3.12) are clearly satisfied. Similarly, we
prove that the jump relations corresponding to the right-going acoustic wave are also satisfied. As
for the 0-w wave, the fact that w− = w+ = 0, clearly yields

[αρw]
0

= 0, [αρwT ]
0

= 0 and [αρwE + απw]
0

= 0. (3.44)

Here again, the global mass conservation (3.14) is naturally true since the Rankine-Hugoniot relation
associated to the mass equation is satisfied for all the waves. Thus Definition 3.1 is satisfied.

Remark 3.5. As mentioned in Section 3.2, the valid jump relations are those of (3.44). In par-
ticular, the relaxed pressure π is not constant across the standing wave.

Let us now study resonant solutions that are obtained by formally passing to the limit in non-
resonant configurations < 1, 2 > or < 0, 3 > when letting the acoustic wave speed w − aτ tend to
zero. We distinguish the case of a divergent section αR > αL i.e. ν < 1 and the case of a convergent
section αR < αL i.e. ν > 1.

Acoustic resonance for ν < 1:
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We consider initial left and right states WL and WR such that w] > 0 and ML < 1 which
means that the corresponding solution is of signature < 1, 2 > according to Proposition 3.4. Then,
we study the formal limit of the solution asML goes to 1− which is equivalent to sending wL−aτL
to 0−. We expect the {w − aτ}-wave to cross the standing wave and reappear on its right, thus
letting the solution to shift from signature < 1, 2 > to signature < 0, 3 >. However, Proposition
3.5 shows that signature < 0, 3 > is possible only if νML > 1. This implies that in the case of a
divergent section ν < 1, there exists a range of values ofML, namely [1, 1

ν ], for which the acoustic
wave w − aτ does not appear in the solution. Therefore, we are brought to study the resonant
signature < 0, 2 > represented in the figure below.

x

t
0 w

w + aτ

WL

W2

W3

WR

Signature < 0, 2 >

Proposition 3.7 shows that in this acoustic resonance case where ν < 1, one can build a dissipative
solution in the sense of Definition 3.1 where the {w − aτ}-wave does not appear.

Proposition 3.7. Let WL and WR be two positive states in Ωr. The Riemann problem (3.5)-(3.11)
admits a unique positive solution in the sense of Definition 3.1 with signature < 0, 2 >, if

w] > 0, ML ≥ 1 and νML ≤ 1. (3.45)

The intermediate states are given by

τ2 =
2τ ]L + τL(ML − 1)

1 + νML
, w2 = νaMLτ2, T2 = TL, (3.46)

τ3 = τ ]R + τ ]L
1− νML

1 + νML
+ τL

ML − 1

1 + νML
, w3 = w2 = νaMLτ2, T3 = TR. (3.47)

The mass is conserved across the standing wave [αρw]0 = 0, while the energy dissipation across this
wave is given by

[αρwE + απw]
0

=
1

2

(
a2(2τ ]L + τL(ML − 1))2 νML − 1

νML + 1
− a2τ2

L(M2
L − 1)

)
αLρLwL ≤ 0. (3.48)

Proof . There are eight unknowns since we have to determine only two intermediate states. Thus
we need eight independent jump relations in order to calculate these intermediate states. For the
discontinuities located at x

t = w2 and x
t = w3 + aτ3, we use the classical Rankine-Hugoniot jump

relations associated with system (3.5) which provides us with six independent equations (three
for each wave). And for the stationary discontinuity, we use the mass conservation equation (i.e.
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[αρw]0 = 0) as well as the conservation equation of T (i.e. [αρwT ]0 = 0) which provides us with
two more equations. It is then possible to verify that for given WL and WR, there exists a unique
solution of signature < 0, 2 > given by equations (3.46)-(3.47). Eventually, we calculate the flux
related to the energy equation (3.10) on the standing wave:

[αρwE + απw]
0

=
a2

2

(
τ2

2
(
(νML)2 − 1

)
− τL2

(
ML

2 − 1
))
αLρLwL.

This dissipation is wholly determined by WL and WR, and is non-positive since ML ≥ 1 and
νML ≤ 1. Finally, the global mass conservation (3.14) is naturally true since the Rankine-Hugoniot
relation associated to the mass equation is satisfied for all the waves.

Acoustic resonance for ν > 1:

Following similar steps as previously, we consider initial left and right states WL and WR such
that w] > 0 and ML < 1.The corresponding solution is of signature < 1, 2 >, and we study the
formal limit of the solution asML goes to 1− which is equivalent to sending wL − aτL to 0−. It is
easy to verify that forML close to 1, ν] = +∞ which means that the Mach number of the state on
the left of the standing wave is given byM =M0(ω, ν) (see equation (3.24)). Simple calculations
show that

lim
ML→1−

M0(ω, ν) = lim
M]

L→1−
M0(ω, ν) = lim

ω→0+
M0(ω, ν) =

1

ν

as soon as ν > 1. This implies that the specific volume on the left of the standing wave tends to
zero:

lim
ML→1−

τ− = lim
M]

L→1−
τ ]L

1−M]
L

1−M0(ω, ν)
= 0,

which means that the partial mass tends to infinity:

lim
ML→1−

α−ρ− = +∞.

However, the Lebesgue measure of the cone supporting this intermediate state tends to zero asML

goes to 1−:
µ
{

(x, t), wL − aτL <
x

t
< 0
}
−→

ML→1−
0,

and we expect a Dirac measure to appear whose weight is given by

lim
ML→1−

∫ 0

wL−aτL
(α−ρ−)(ξ)dξ = lim

ML→1−

∫ 0

w−−aτ−
(α−ρ−)(ξ)dξ

= lim
ML→1−

−(w− − aτ−)αLρ
−

= lim
ML→1−

−a(M0 − 1)αL

= −a
(

1

ν
− 1

)
αL

= −a(αR − αL) > 0.

Therefore, we are brought to study the resonant signature < 0, 2 > + δ0, with little abuse in the
notation, depicted in the figure below,
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x

t
0 w

w + aτ

WL

W2

W3

WR

Signature < 0, 2 > + δ0

This non classical solution may be represented by a function that however does not satisfy the
mass conservation across the standing wave. The missing mass between the states at the left and
right of the standing wave is precisely supported by a Dirac measure on the half-line {x = 0, t > 0}
represented in blue in the above figure. Thus Proposition 3.8 shows that there exists a solution in
the sense of Definition 3.1 which is a piecewise constant function with non-zero mass flux across
the standing wave [αρw]

0
= a(αR − αL) 6= 0.

Proposition 3.8. Let WL and WR be two positive states in Ωr. The Riemann problem (3.5)-(3.11)
admits a solution in the sense of Definition 3.1 with signature < 0, 2 > + δ0, if

ν > 1, w] > 0 and ML = 1. (3.49)

The intermediate states are given by

τ2 = τ ]L, w2 = w] = aτ ]L, T2 = TL, (3.50)

τ3 = τ ]R, w3 = w] = aτ ]L, T3 = TR. (3.51)

The mass flux across the standing wave is non-zero:

[αρw]
0

= a(αR − αL). (3.52)

Moreover, this solution dissipates energy across the standing wave, and the dissipation is completely
determined by the initial condition:

[αρwE + απw]
0

= a(αR − αL)

(
a2T 2

L

2
+ e(TL) + pLTL

)
, (3.53)

which is negative since αR < αL.

Proof . The intermediate states are obtained by passing to the limit asML → 1− in the expressions
(3.21)-(3.23) of the intermediate states of signature < 1, 2 >. Note that whenML → 1−, we have
M]

L → 1− andM =M0 → 1
ν . Easy manipulations show that the jump relations corresponding to

the w and w + aτ waves are satisfied. Indeed π2 = π(τ ]L, TL) = π] = π(τ ]R, TR) = π3, and therefore
we have

[α,w, π]
w

= 0 and [α,w + aτ, T ]
w+aτ

= 0.

As for the jump relations across the stationary wave, one easily checks that

[αρw]
0

= αR
w]

τ ]L
− αL

wL
τL

= a(αR − αL) 6= 0, and T2 = TL.
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It remains to verify that the global mass conservation (3.14) is satisfied in this context where
[αρw]

0 6= 0. For any T > 0 and R > 0 such that for all x ≥ R, W(−x, T ) = WL and W(x, T ) = WR,
we have∫ R

−R
(αρ)(T, x)dx = R(αLρL) + Tw]

αR

τ ]L
+ T (w] + aτ ]R − w

])
αR

τ ]R
+ (R− T (wR + aτR))(αRρR),

with w] = aτ ]L. Noticing that (αρw)L = aαL, we get∫ R

−R
(αρ)(T, x)dx−R((αρ)L + (αρ)R) + T ((αρw)R − (αρw)L) = Ta(αR − αL) = [αρw]

0
.

3.3.4 Proof of the main result Theorem 3.3

In sections 3.3.2 and 3.3.3, we constructed solutions for w] ≥ 0. These solutions correspond to
a material wave with positive speed w ≥ 0. We can also construct the symmetric solutions for
w] < 0 which are denoted by < 2, 1 >, < 3, 0 >, < 2, 0 > and < 2, 0 > + δ0 with clear
notations. Thanks to the Gallilean invariance of system (3.5) (see [17]), the intermediate states of
these symmetric solutions are obtained by exchanging the subscripts L and R and by applying the
mapping (α, αρ, αρw, αρT ) 7→ (α, αρ,−αρw, αρT ) to the solutions constructed above. The details
are left to the reader. Finally the proof of theorem 3.3 is straightforward. If the constant a is such
that τ ]L > 0 and τ ]R > 0, then Propositions 3.6, 3.4, 3.5, 3.7 and 3.8 as well as their symmetric
counterparts show that, for all positive initial sates WL and WR, there exists a solution in the sense
of Definition 3.1. Indeed, the conditions stated in the propositions cover the whole domain of initial
conditions Ωr × Ωr.

4 Numerical approximation

In this section, we use the relaxation approximation defined in section 3 in order to derive a
numerical scheme for approximating the entropy weak solutions of the equilibrium system (2.1).
We consider a Cauchy problem{

∂tU + ∂xf(U) + c(U)∂xU = 0, x ∈ R, t > 0,
U(x, 0) = U0(x).

For simplicity in the notations, we assume a constant positive time step ∆t and a constant space step
∆x > 0 and we define λ = ∆t

∆x . We introduce a partition of the space R =
⋃
j∈Z

[xj− 1
2
, xj+ 1

2
[ where

xj+ 1
2
−xj− 1

2
= ∆x for all j in Z. We also introduce the discrete intermediate times tn = n∆t, n ∈ N.

The approximate solution at time tn, x ∈ R 7→ Uλ(x, tn) ∈ Ω is a piecewise constant function whose
value on each cell Cj = [xj− 1

2
, xj+ 1

2
[ is a constant value denoted by Unj :

Uλ(x, tn) = Unj , for all x in Cj , j in Z, in n ∈ N.

23



Endwise, we denote by xj = 1
2 (xj− 1

2
+ xj+ 1

2
) the center of each cell Cj . At time t = 0, we use the

initial condition U0 to define the sequence (U0
j )j∈Z by

U0
j =

1

∆x

∫ x
j+ 1

2

x
j− 1

2

U0(x)dx, j in Z.

4.1 The relaxation method

We now describe the two-step splitting method associated with the relaxation system (3.1) in
order to calculate Uλ(·, tn+1) from Uλ(·, tn). The first step consists in a time-advancing step for the
convective part of the relaxation system (3.1), and the second step takes into account the relaxation
source term. We first introduce the piecewise constant approximate solution at time tn of system
(3.5) x 7→Wλ(x, tn) = Wn

j in Cj with

Wn
j =


αnj

(αρ)nj
(αρw)nj
(αρT )nj

 .
At time t = 0, W0

j is set at equilibrium which means that (αρT )0
j = α0

j . The two steps are defined
as follows.

Step 1: Evolution in time (tn → tn+1−)

In the first step, the following Cauchy problem is exactly solved for t ∈ [0,∆t] with ∆t small enough
(see condition (4.2) below) {

∂tW̃ + ∂xg(W̃) + d(W̃)∂xW̃ = 0,

W̃(x, 0) = Wλ(x, tn).
(4.1)

Since x 7→Wλ(x, tn) is piecewise constant, the exact solution of (4.1) is obtained by gluing together
the solutions of the Riemann problems set at each cell interface xj+ 1

2
, provided that these solutions

do not interact during the period ∆t, i.e. provided the following classical CFL condition

∆t

∆x
max
W
|σri (W)| < 1

2
, i ∈ {0, ..., 3} , (4.2)

for all the W under consideration. More precisely,

If (x, t) ∈ [xj , xj+1]× [0,∆t], then W̃λ(x, t) = Wr

(
x− xj+1/2

t
;Wn

j ,Wn
j+1

)
,

where (x, t) 7→Wr

(
x
t ;WL,WR

)
is the solution of the Riemann problem
∂tW + ∂xg(W) + d(W)∂xW = 0,

W(x, 0) =

{
WL if x < 0,
WR if x > 0,

(4.3)

24



constructed in section 3. In order to define a piecewise constant approximate solution at time
tn+1−, the solution W̃λ(x, t) is averaged on each cell Cj at time ∆t:

Wλ(x, tn+1−) = Wn+1−
j =


αn+1−
j

(αρ)n+1−
j

(αρw)n+1−
j

(αρT )n+1−
j

 =
1

∆x

∫ x
j+ 1

2

x
j− 1

2

W̃λ(x,∆t)dx, ∀x ∈ Cj , ∀j ∈ Z.

(4.4)

Step 2: Instantaneous relaxation (tn+1− → tn+1)

In the second step, we solve at time tn + ∆t the ordinary differential equation

∂tWε =
1

ε
R(Wε), (4.5)

in the asymptotic regime ε→ 0. As an initial condition, we take the functionWλ(x, tn+1−) obtained
at the end of the first step. Using the definition (3.4) of the relaxation term R, we see that this
amounts to imposing T n+1

j := τn+1
j , thus we have

Wn+1
j =


αn+1−
j

(αρ)n+1−
j

(αρw)n+1−
j

αn+1−
j

 ,
and the new cell value at time tn+1 of the approximate solution Uλ(·, tn+1) is given by

Un+1
j =

 αn+1−
j

(αρ)n+1−
j

(αρw)n+1−
j

 .
This completes the description of the two-step relaxation method.

Remark 4.1 (Choice of the parameter a). In the first step, the solution of the Riemann problem
at each interface xj+ 1

2
always exists if the constant a is chosen large enough. As a matter of fact,

at each interface, since WL and WR are set to equilibrium, we have TL = τL and TR = τR. Thus

τ ]L = τL +
1

2a
(wR − wL)− 1

2a2
(p(τR)− p(τL)) , (4.6)

τ ]R = τR +
1

2a
(wR − wL) +

1

2a2
(p(τR)− p(τL)) , (4.7)

and if a is taken large enough, we ensure that τ ]L > 0 and τ ]R > 0 since τL and τR are strictly positive.
Besides, a can be chosen locally at each interface xj+ 1

2
since the Riemann problems do not interact

under the CFL condition (4.2), and it can be chosen so as to avoid any non classical solution with
a mass concentration at one of the interfaces, this in order to guarantee the conservativity of the
partial mass αρ and the non-linear stability of the method.
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4.2 Finite volume formulation

It this section, we show that the two-step relaxation method described in the previous section can
be written in the form of a non conservative finite volume scheme

Un+1
j = Unj −

∆t

∆x

(
F−
j+ 1

2

−F+
j− 1

2

)
,

where F−
j+ 1

2

= F−(Unj ,Unj+1) and F+
j− 1

2

= F+(Unj−1,Unj ) are the left and right numerical fluxes
at the cell interfaces xj− 1

2
and xj+ 1

2
. Here, the left and right fluxes F− and F+ are two distinct

functions in order to take into account the non conservative product (see also [5]).

The first step of the relaxation method shows that Wλ(x, t) is the exact solution of

∂tW + ∂xg(W) + d(W)∂xW = 0,

on R× [tn, tn+1] with the initial data Wλ(x, tn) = Wn
j for all x in Cj , with j in Z. Integrating on

the rectangle Cj × [tn, tn+1], we get

Wn+1−
j = Wn

j −
∆t

∆x

(
g(Wr(0

−;Wn
j ,Wn

j+1))− g(Wr(0
+;Wn

j−1,Wn
j ))
)
, (4.8)

since α = αnj is constant on Cj × [tn, tn+1] so that the product d(W)∂xW identically vanishes
within Cj . We then recall that the initial values Wn

j are set to equilibrium which means that
Wn
j = (Unj , αnj ), i.e. Wn

j = M (Unj ) where the mapping M is defined as

M : R3 −→ R4

(x, y, z) 7−→ (x, y, z, x). (4.9)

This mapping, which happens here to be linear, maps U to its so-called maxwellian equilibrium
M (U) according to the terminology used in [5]. Moreover, the relaxation step shows that Un+1

j =

PWn+1−
j where P is the linear operator

P : R4 −→ R3

(x, y, z, t) 7−→ (x, y, z). (4.10)

Eventually, when applying operator P to equation (4.8) (note that P ◦M = IdR3) we obtain the
finite volume formulation of our scheme

Un+1
j = Unj −

∆t

∆x

(
F−(Unj ,Unj+1)−F+(Unj−1,Unj )

)
, (4.11)

with
F±(UL,UR) = P g

(
Wr

(
0±; M (UL),M (UR)

))
. (4.12)

In the sequel, F±α , F±αρ and F±αρw are respectively the first, the second and the third coordinates
of the fluxes vectors F− and F+. In practice, it is the finite volume formulation that is used
to implement the numerical simulation. Subsequently, we denote by (RS) the relaxation scheme
described in sections 4.1-4.2, and whose finite volume form is given by equations (4.11)-(4.12).
In the following two sections, we state the main properties of the relaxation scheme.
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4.3 Basic properties of the scheme

The relaxation approximation method provides a very convenient framework for the L1-stability
of finite volume methods since the preservation of the phase space Ω by the scheme is almost
straightforward. Indeed, the following property states the positivity of the approximated values of
the section αnj as well as the the positivity of the partial masses (αρ)nj .

Property 4.1 (L1-stability). Under the CFL condition (4.2), the relaxation Finite Volume scheme
(RS) preserves positive values for the section and for the density. Indeed, if the initial condition
x 7→ U0(x) is in Ω, then the values (Unj )j∈Z,n∈N computed by the scheme are such that,

αnj = α0
j > 0, (αρ)nj > 0, for all j in Z and all n in N, (4.13)

that is to say, the section α is preserved throughout time at the discrete level, and the piecewise
constant approximate solution Uλ(x, t) is also in Ω.

Proof . The first line of equation (4.11) reads αn+1
j = αnj for all j in Z and all n in N. Thus,

if α0
j > 0, this gives the result on αnj . For the positivity of the partial masses (αρ)nj , it is more

convenient to consider the two-step splitting formulation of the scheme. The second line of equation
(4.4) shows that (αρ)n+1

j is the P0 projection of the partial mass in the solution W̃λ(x,∆t) of the
relaxation system. Under the CFL condition (4.2), this solution is obtained by gluing together the
Riemann solutions arising from each interface xj+1/2. Since these solutions are positive according
to Theorem 3.3, this concludes the proof.

We also have the following classical consistency property for the relaxation scheme (RS) which
guarantees that the constant solutions of system (2.1) are exactly computed.

Property 4.2 (Consistency). The relaxation Finite Volume scheme (RS) is consistent in the
sense that, for all U in the phase space Ω, the numerical fluxes F− and F+ satisfy

F−(U,U) = F+(U,U) = f(U), (4.14)

where f(U), which is defined in (2.3), is the conservative part of the exact flux of the equilibrium
system (2.1).

Proof . The proof is almost straightforward, denoting W = M (U), we immediately see that
Wr (0±;W,W) = W (see equations (3.41) and (3.42)). And P g (W) = f(U) since W = M (U) is
at equilibrium.

In addition, under some condition on the choice of the numerical parameter a, the relaxation
method is conservative for the mass equation:

Property 4.3 (Conservativity). Denote νj+ 1
2

=
αn

j

αn
j+1

. If for each interface xj+ 1
2
, the local value
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of the parameter a = aj+ 1
2
is chosen large enough so that
νj+ 1

2
> 1 =⇒ML,j+ 1

2
=

wnj
aj+ 1

2
τnj
6= 1,

νj+ 1
2
< 1 =⇒MR,j+ 1

2
=

wnj+1

aj+ 1
2
τnj+1

6= −1,

(4.15)

then the relaxation scheme (RS) is conservative for the partial mass αρ, in the sense that

F−αρ(Unj ,Unj+1) = F+
αρ(Unj ,Unj+1) for all j in Z. (4.16)

Proof . We have

F+
αρ(Unj ,Unj+1)−F−αρ(Unj ,Unj+1) = [αρw]0

(
Wr( . ; M (Unj ),M (Unj+1))

)
. (4.17)

If aj+ 1
2
is chosen as in (4.15), then the solutionWr( . ; M (Unj ),M (Unj+1)) of the relaxation Riemann

problem is a classical solution without mass concentration at x = xj+ 1
2
. Hence [αρw]0 = 0.

Property 4.4 (Well-balanced property). The relaxation scheme (RS) exactly preserves the
steady states at rest : w = 0 and ρ = cst. Indeed, if there exists w0 ∈ R and ρ0 > 0 such that
(αρw)0

j = 0 and (αρ)0
j

α0
j

= ρ0 for all j in Z then

(αρw)nj = 0 and
(αρ)nj
αnj

= ρ0, for all j in Z and all n in N. (4.18)

Proof . Let us assume that at time tn, (αρw)nj = 0 and (αρ)nj
αn

j
= ρ0 for all j in Z, i.e. wnj = 0 and

ρnj = ρ0 for all j in Z. At each interface, one has wL = wR = 0 and τL = τR = 1/ρ0. Hence w] = 0

and the solution has the signature < 1, 1 > with w− = w+ = 0 and τ ]L = τ ]R = 1/(ρ0) i.e. all the
intermediate states are at equilibrium (w = 0 and ρ = ρ0). After averaging the solution we obtain

(αρw)n+1
j = 0 and

(αρ)n+1
j

αn+1
j

= ρ0 for all j in Z. The proof follows from an induction argument.

4.4 Non-linear stability

The aim of this section is to exhibit a sufficient condition on the parameter a, which so far is still
not determined, that ensures a discrete entropy inequality of the form

(αρE)(Un+1
j )− (αρE)(Unj ) +

∆t

∆x
(G(Unj ,Unj+1)−G(Unj−1,Unj )) ≤ 0, (4.19)

which is a discrete counterpart of the energy inequality (2.7) verified by the exact solutions, thus
assessing the stability of the method. Here, the numerical entropy flux G(UL,UR) is to be deter-
mined. This can be seen as a stability condition because if one considers the discrete L1-norm of the
total energy at time tn:

∑
j∈Z(αρE)(Unj )∆x, then summing inequality (4.19) over the cells yields∑

j∈Z
(αρE)(Un+1

j )∆x ≤
∑
j∈Z

(αρE)(Unj )∆x, for all n in N, (4.20)
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which means that the total energy is decreasing in time.

In the first step of the relaxation method, the solution of the Riemann problem (3.5)-(3.11) is
computed at each interface xj+ 1

2
, and therefore, one must determine the values of the numerical

parameter a. Observe that, under the CFL condition (4.2), the Riemann problems do not interact
and the parameter a can be chosen locally at each cell interface xj+ 1

2
. In this section, we prove that

if a so-called sub-characteristic condition (also known as Whitham’s condition, see [5]) is verified by
the parameter a at each cell interface, then the discrete values computed by the relaxation scheme
satisfy a discrete entropy inequality.

Definition 4.1. Consider (UL,UR) ∈ Ω×Ω and let (WL,WR) = (M (UL),M (UR)) ∈ Ωr ×Ωr be
the corresponding relaxation initial data. Let ∆x and ∆t be two space and time steps satisfying the
CFL condition (4.2). Denoting τ(ξ) the specific volume ρ−1(ξ) in the solution Wr(ξ;WL,WR) of
the Riemann problem (3.5)-(3.11), the parameter a is said to satisfy Whitham’s condition for
(UL,UR) if

a2 > −p′(τ(ξ)), for almost every ξ in
[
− ∆x

2∆t
,

∆x

2∆t

]
. (4.21)

In order to ease the presentation, let us first define some notations for the entropy inequalities of
both the equilibrium and the relaxed system. We denote η(U) = αρE the energy of the equilibrium
system and Fη(U) = αρwE+αwp the associated entropy flux. Hence, the energy inequality satisfied
by the entropy weak solutions of (2.1) reads

∂tη(U) + ∂xFη(U) ≤ 0. (4.22)

We recall that the mapping η : U 7→ η(U) is convexe on Ω. In the same way we denote ηr(W) = αρE
the energy of the relaxation system and the associated entropy flux reads Frη (W) = αρwE + αwπ.
With these notations, we have the following theorem which proves the non-linear stability of the
scheme under Whitham’s condition.

Theorem 4.5. Assume the CFL condition (4.2) and suppose that for all n ∈ N and j ∈ Z, the
parameter aj+ 1

2
satisfies Whitham’s condition for (Unj ,Unj+1). Then the relaxation scheme satisfies

the following discrete entropy inequality:

η(Un+1
j )− η(Unj ) +

∆t

∆x
(G(Unj ,Unj+1)−G(Unj−1,Unj )) ≤ 0, (4.23)

where the numerical entropy flux is given by G(UL,UR) = Frη (Wr (0+; M (UL),M (UR))).

Remark 4.2. In [31], we exhibit a less restrictive condition on the parameter a that still ensures
the discrete entropy inequality (4.23) while also handling nearly resonnant solutions for which the
specific volumes may be very small. This so-called weak Whitham’s condition is based on averaged
entropy inequalities instead of a pointwise study of the self-similar Riemann solution.

In order to prove this theorem, let us first prove the following lemma.

Lemma 4.6. With the same notations as in Definition 4.1 and denoting Wr(ξ) so as to ease the
notation, if a satisfies Whitham’s condition for (UL,UR), then the relaxation approximate Riemann
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solver satisfies a discrete entropy inequality by interface (see [23]) in the sense that

η(〈U〉L)− η(UL) +
2∆t

∆x

(
Frη
(
Wr(0

+)
)
−Fη(UL)

)
≤ 0, (4.24)

η(〈U〉R)− η(UR) +
2∆t

∆x

(
Fη(UR)−Frη

(
Wr(0

+
))
≤ 0, (4.25)

where

〈U〉L =
2

∆x

∫ 0

−∆x
2

PWr(x/∆t)dx =
2∆t

∆x

∫ 0

− ∆x
2∆t

PWr(ξ)dξ, (4.26)

〈U〉R =
2

∆x

∫ ∆x
2

0

PWr(x/∆t)dx =
2∆t

∆x

∫ ∆x
2∆t

0

PWr(ξ)dξ. (4.27)

Proof . We only prove inequality (4.24) (the proof of (4.25) is similar). By Jensen’s inequality, the
convexity of the map U 7→ η(U) implies that it is sufficient to prove

2∆t

∆x

∫ 0

− ∆x
2∆t

η (PWr(ξ)) dξ − η(UL) +
2∆t

∆x

(
Frη
(
Wr(0

+)
)
−Fη(UL)

)
≤ 0, (4.28)

under Whitham’s condition (4.21). The solutionWr(ξ) of the Riemann problem (3.5)-(3.11) satisfies

∂tη
r(Wr) + ∂xFrη (Wr) = −fδ0, (4.29)

in the weak sense, where fδ0 = −[αρEw+απw]0δ0 is a positive measure. Integrating this equation
over ]− ∆x

2 , 0[×]0,∆t[, and dividing by ∆x
2 , we get

2∆t

∆x

∫ 0

− ∆x
2∆t

ηr(Wr(ξ))dξ − ηr(WL) +
2∆t

∆x

(
Frη (Wr(0

−))−Frη (WL)
)
≤ 0. (4.30)

Now, as (WL,WR) = (M (UL),M (UR)) are at equilibrium, we have ηr(WL) = η(UL) and Frη (WL) =
Fη(UL). Moreover, the Riemann solution is constructed such that Frη (Wr(0

+))−Frη (Wr(0
−)) ≤ 0.

Replacing in (4.30) this yields

− η(UL) +
2∆t

∆x

(
Frη
(
Wr(0

+)
)
−Fη(UL)

)
≤ −2∆t

∆x

∫ 0

− ∆x
2∆t

ηr (Wr(ξ)) dξ. (4.31)

Hence, a sufficient condition for (4.28) (and thus for (4.24)) to hold true is

2∆t

∆x

∫ 0

− ∆x
2∆t

{η (PWr(ξ))− ηr (Wr(ξ))} dξ ≤ 0. (4.32)

Now, for almost every ξ in
[
− ∆x

2∆t , 0
]
, we have

η (PWr(ξ))−ηr (Wr(ξ)) = αρ(ξ)

(
e(τ(ξ))− e(T (ξ))− 1

2a2

(
π2(τ(ξ), T (ξ))− p2(T (ξ))

))
. (4.33)
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Omitting the dependence on ξ, we have:

π2(τ, T )− p2(T ) = (π(τ, T )− p(T )) (π(τ, T ) + p(T ))

= a2(T − τ)
(
2p(T ) + a2(T − τ)

)
= −2a2e′(T )(T − τ) + a4(T − τ)2,

since e′ = −p. Hence,

e(τ)− e(T )− 1

2a2

(
π2(τ, T )− p2(T )

)
= e(τ)− e(T )− e′(T )(τ − T )− a2

2
(T − τ)2. (4.34)

A Taylor expansion with integral remainder gives

e(τ)− e(T )− e′(T )(τ − T ) = (T − τ)2

∫ 1

0

e′′(sτ + (1− s)T )(1− s)ds. (4.35)

Then, replacing in (4.34) and observing that e′′ = −p′ we get a sufficient condition for (4.28) (and
thus for (4.24)):

2

∫ 1

0

−p′(sτ(ξ) + (1− s)T (ξ))(1− s)ds− a2 ≤ 0 for a.e. ξ in
[
− ∆x

2∆t
, 0

]
. (4.36)

Noticing that in the solution T (ξ) = τL or τR and using the strict convexity of τ 7→ p(τ), we get
for a.e. ξ in

[
− ∆x

2∆t , 0
]
:

2

∫ 1

0

−p′(sτ(ξ) + (1− s)T (ξ))(1− s)ds ≤ max
s∈[0,1]

{−p′(sτ(ξ) + (1− s)T (ξ))} 2

∫ 1

0

(1− s)ds

≤ ess sup
ξ∈[− ∆x

2∆t ,
∆x
2∆t ]

{ −p′(τ(ξ))}

< a2 (4.37)

by Whitham’s condition. This concludes the proof of inequality (4.24) under Whitham’s condition.

We may now prove theorem 4.5:

Proof . The proof is given in [5], but for the sake of completeness, we reproduce it here. Defining
the averages for each half-cell [xj− 1

2
, xj ] and [xj , xj+ 1

2
]:

〈U〉Rj− 1
2

=
2

∆x

∫ xj

x
j− 1

2

PWr

(
x/∆t; M (Unj−1),M (Unj )

)
dx, (4.38)

〈U〉Lj+ 1
2

=
2

∆x

∫ x
j+ 1

2

xj

PWr

(
x/∆t; M (Unj ),M (Unj+1)

)
dx, (4.39)

we have, under the CFL condition (4.2): Un+1
j = 1

2 〈U〉
R
j− 1

2
+ 1

2 〈U〉
L
j+ 1

2
, and as η is convex

η
(
Un+1
j

)
≤ 1

2
η
(
〈U〉Rj− 1

2

)
+

1

2
η
(
〈U〉Lj+ 1

2

)
. (4.40)
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As aj− 1
2
satisfies Whitham’s condition for (Unj−1,Unj ), we can apply inequality (4.25) of Lemma 4.6

with UL = Unj−1 and UR = Unj , which yields

η
(
〈U〉Rj− 1

2

)
− η(Unj ) +

2∆t

∆x

(
Fη(Unj )−Frη

(
Wr(0

+; M (Unj−1),M (Unj )
))
≤ 0. (4.41)

In the same way, as aj+ 1
2
satisfies Whitham’s condition for (Unj ,Unj+1), we can apply inequality

(4.24) of Lemma 4.6 with UL = Unj and UR = Unj+1, which gives

η
(
〈U〉Lj+ 1

2

)
− η(Unj ) +

2∆t

∆x

(
Frη
(
Wr(0

+; M (Unj ),M (Unj+1)
)
−Fη(Unj )

)
≤ 0. (4.42)

Summing equations (4.41) and (4.42) and using (4.40) we obtain

η(Un+1
j )− η(Unj ) +

∆t

∆x
(G(Unj ,Unj+1)−G(Unj−1,Unj )) ≤ 0, (4.43)

where the numerical entropy flux is given by G(UL,UR) = Frη (Wr (0+; M (UL),M (UR))). Finally,
observe that G is consistent with the exact entropy flux Fη since G(U,U) = Fη(U) for all U in Ω.
Indeed, for any W in Ωr, we have Wr (0+;W,W) = W. And if W = M (U) is at equilibrium, we
get Frη (W) = Fη(U). This concludes the proof of Theorem 4.5.

4.5 Numerical results

In this section, we present two preliminary numerical illustrations in order to assess the good
behaviour of the method. An extensive comparison of our method with several schemes of the
literature and with exact solutions will be provided in a forthcoming paper [32]. In particular,
important issues such as accuracy, robustness and CPU efficiency will be dealt with.

In both test-cases, the chosen pressure law is an ideal gas pressure law

p(τ) = τ−γ , γ = 3. (4.44)

In the sequel, we denote U = (α, ρ, w) the vector of non-conservative variables.

4.5.1 A subsonic Riemann problem

We consider the following Riemann initial data:

U(x, t = 0) =

{
UL = (0.3, 0.206052848877390,−0.003218270138816), x < 0,

UR = (0.4, 0.099,−0.015876669673295), x > 0.
(4.45)

Setting

U1 = (0.3, 0.144092901312860, 0.104099507077253), U2 = (0.4, 0.15, 0.075), (4.46)

the solution is composed of a standing wave separating the states U1 and U2, a left-going σ1-
rarefaction wave separating UL and U1, and a right-going σ2-shock separating U2 and UR. This test
is said to be subsonic in the sence that |w| < c(τ) everywhere in the solution. Figure 1 displays the
relaxation approximation of some classical quantities at the final time T = 1.0 and for two different
mesh sizes of 102 and 103 cells, as well as the exact solution. We observe that the relaxation scheme
has a satisfactory behaviour even for the coarse 102-cell mesh.

32



4.5.2 A Riemann problem with a large α jump

We now consider a Riemann problem with a large jump in the initial cross-section:

U(x, t = 0) =

{
UL = (1., 0.988056834959612, 0.125759712385390), x < 0,

UR = (100., 1.01, 0.018403108075689), x > 0.
(4.47)

Setting

U1 = (1., 0.998037207029911, 0.108472909864928), U2 = (100., 1., 0.0010826), (4.48)

the solution is composed of a standing wave separating the states U1 and U2, a left-going σ1-shock
separating UL and U1, and a right-going σ2-rarefaction wave separating U2 and UR. Such a Riemann
solution is actually difficult to approximate in practice because of the very large jump in the initial
section. Figure 2 displays the relaxation approximation of some classical quantities at the final time
T = 0.15 and for two different mesh sizes of 102 and 103 cells, as well as the exact solution. We
can see that even for the coarse mesh composed with 102 cells, the relaxation scheme provides a
rather good numerical approximation of the exact solution. For the sake of comparison, the same
Riemann solution is computed with Rusanov’s scheme, which is known for its robusteness due to its
very diffusive feature. The results, provided in Figure 3, show a very unstable behaviour even for a
quite refined mesh of 103 cells. For the coarse mesh of 102 cells, the density values may reach 10−5

in some cells. Thus, despite its very diffusive nature, Rusanov’s scheme is not robust enough for the
computation of nozzle flows with strongly discontinuous cross-section. Moreover, to our knowledge,
there exists no similar test-cases in the related literature which exemplifies a satisfactory behaviour
with such large initial cross-section jumps.

Appendix

A Choice of M for signature < 1, 2 > and corresponding dis-
sipation

When ν] < +∞ and ν ≥ ν], M must be chosen in the open interval (0,M0(ω, ν)), small enough
so as to guarantee the positivity of τ3. Being given a fixed real number µ in (0, 1), we may choose
M by prescribing τ3 to a fixed strictly positive value

τ3 = µτ ]R, (A.1)

for every ν ≥ νc where νc is the only value of ν that satisfies

τ3(ν) = τ ]R + τ ]L
M]

L − νM0(ω, ν)

1 + νM0(ω, ν)
= µτ ]R (A.2)

and whose expression is

νc =
M]

L + (1− µ)
τ]
R

τ]
L

1− (1− µ)
τ]
R

τ]
L

(1− (1− µ)
τ]
R

τ]
L

)(1 + ω2)− (1− ω2)(M]
L + (1− µ)

τ]
R

τ]
L

)

(1− (1− µ)
τ]
R

τ]
L

)(1− ω2)− (1 + ω2)(M]
L + (1− µ)

τ]
R

τ]
L

)
. (A.3)
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Hence, for ν < νc, we take M = M0(ω, ν) and for ν ≥ νc, the chosen value of M is obtained by
evaluating the inverse function ofM 7→ τ3 at τ3 = µτ ]R, which gives

M[µ] :=
1

ν

M]
L + (1− µ)

τ]
R

τ]
L

1− (1− µ)
τ]
R

τ]
L

, (A.4)

and the corresponding dissipation reads[
αρw

(
E +

π

ρ

)]0

:=
1

2
(w]L + aτ ]L)2Q0(M[µ])Ψ(M[µ]; ν, ω). (A.5)

B Choice of θ for signature < 0, 3 > and corresponding dissi-
pation

When ν] < +∞ and ν ≥ ν], the parameter θ must be chosen in the open interval (0, 1) small
enough so as to guarantee the positivity of τ2 and τ3. For the sake of clarity, let us assume that
τ ]L ≤ τ

]
R. The case τ ]L ≥ τ

]
R is straightforward. Being given a fixed real number µ in (0, 1), we may

choose θ by prescribing τ2 to a fixed strictly positive value

τ2 = µτ ]L, (B.1)

for every ν ≥ νc where νc is the only value of ν that satisfies

τ2 = τ ]L −
τL
2

(ML − 1)

(√
(ML + 1)(νML − 1)

(ML − 1)(νML + 1)
− 1

)
= µτ ]L (B.2)

and whose expression is

νc =
1

ML

M2
L − 1 +

(
2(1−µ)τ]

L

τL
+ML − 1

)2

M2
L − 1−

(
2(1−µ)τ]

L

τL
+ML − 1

)2 . (B.3)

Hence, for ν < νc, we take θ = 1 and for ν ≥ νc, the chosen value of θ is obtained by evaluating the
inverse function of θ 7→ τ2 at τ2 = µτ ]L, which gives

θ[µ] :=

(
2(1− µ)τ ]L
τL(ML − 1)

+ 1

)(
(ML + 1)(νML − 1)

(ML − 1)(νML + 1)

)−1/2

, (B.4)

and the corresponding dissipation reads[
αρw

(
E +

π

ρ

)]0

:=
1

2
(wL

2 − a2τL
2)(θ[µ]

2 − 1)αLρLwL. (B.5)
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Figure 1: Relaxation approximation of the subsonic Riemann problem (4.45) at time T = 1.0, for
two mesh sizes of 102 and 103 cells.
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Figure 2: Relaxation approximation of the subsonic Riemann problem (4.47) at time T = 0.15, for
two mesh sizes of 102 and 103 cells.
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Figure 3: Rusanov’s scheme approximation of the subsonic Riemann problem (4.47) at time T =
0.15, for two mesh sizes of 102 and 103 cells.
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