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THE OBERBECK-BOUSSINESQ APPROXIMATION IN CRITICAL
SPACES

RAPHAEL DANCHIN AND LINGBING HE

ABSTRACT. In this paper we study the validity of the so-called Oberbeck-Boussinesq ap-
proximation for compressible viscous perfect gases in the whole three-dimensional space.
Both the cases of fluids with positive heat conductivity and zero conductivity are consid-
ered. For small perturbations of a constant equilibrium, we establish the global existence of
unique strong solutions in a critical regularity functional framework. Next, taking advantage
of Strichartz estimates for the associated system of acoustic waves, and of uniform estimates
with respect to the Mach number, we obtain all-time convergence to the Boussinesq system
with a explicit decay rate.

1. INTRODUCTION

This work aims at giving a mathematical justification of the Oberbeck-Boussinesq approx-
imation that is commonly used to model stratified fluids such as e.g. atmosphere or oceans.
One of the characteristics of the this approximation is that, although the primitive system
is the full compressible Navier-Stokes system, the limit equations are incompressible, and
the density is a constant. In fact, the velocity field just convects an active scalar creating
buoyancy force, proportional to the discrepancy between the temperature and its equilibrium.

1.1. Formal derivation. The starting point of our analysis is the full Navier-Stokes system
for compressible viscous fluids, namely

Op + div (pu) = 0,

. . 1 1
O (pu) + div (pu @ u) — divr + M—aQVP =52 pVV,
O(ps) + div (ps) +div (¢/T) = o.

Above p = p(t,z) € RT, u = u(t,z) € R® and T = T(t,z) € R stand for the density,
velocity field and temperature, respectively. The scalar function V' stands for some (given)
external potential (e.g. the gravity potential). We concentrate on the study of the evolution
toward the future in the whole space R? (hence the time variable ¢ belongs to RT and the
space variable z, to R?).

In the Newtonian case that we shall consider, the stress tensor 7 is given by

7= pu(Vu+ Du) + Adivu Id.

For simplicity, the viscosity coefficients A\ and p are assumed to be constant. As we only
consider viscous fluids, those two coefficients satisfy

w>0 and v:=A+2u>0.

This ensures ellipticity for the second order operator A := pA + (A + p)Vdiv.
1
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The heat flux ¢ is equal to —kVT for some constant conductivity coefficient x > 0. The
pressure P, the internal energy e and the specific entropy s are related to p and 7 through
the Gibbs relation

T ds=de+ Pd(1/p).

We focus on perfect gases, namely we assume that for some a > 0 and b > 0, P = apT
and e = b7 . After rescaling, it is non restrictive to take a = b = 1.

Finally, in the velocity equation, the Mach number Ma and the Froude number Fr are
two dimensionless small parameters accounting for the compressibility and the stratification
of the fluid. Formally, Oberbeck-Boussinesq approximation is obtained in the asymptotics
e —0if

Ma=¢ and Fr= /e,

an assumption that we shall make from now on.

Gathering all the above assumptions over the coefficients and state laws, we end up with
the following system (with exponents ¢ emphasizing the dependency with respect to ¢):
Ot + div (p°uf) =0,
c, € 3 g, € 15 15 : 15 VPE 1 (> 3
(1.1) O (ptu®) + div (p°u® ® u) — pAu® — (A + p)Vdive® + 2 =P VVe,

Op(p°Te) + div (up°T°) — kAT = 2[2u|Duf|* 4+ A(divu®)?).

Let us first provide a formal derivation of the Oberbeck-Boussinesq approximation in the
case where the heat conductivity s is positive. We want to consider so-called ill-prepared
data of the form pf = 1+ ¢eaf, uj and 75 = 1+ €65 where (a, uj, 0j) are bounded in a sense
that will be specified later on. Setting p® = 1 4+ ca® and T7¢ = 1 + €6, we get the following
governing equations for (a®,u®, 6°):

( d' 3
oa® + VY div (a®uf),
Auf V(a® +6° +ea®0®) 1
€ €, € _ [ €
(1.2) Ot +u° - Vu - 0 +eaf) EVV ,
divu® . kAG® € 9 . 9
\ 00" + + div (6°u®) — Tl e 2| Duf |* 4+ A(div u®)?].

In order to handle the singular potential term in the r.h.s. of the velocity equation, it is
usual to work with the modified deviation of density b° := a® — V. We get

3 £
O +uf - VI + DY g vE  div (VeuE) — bodiv,
9
b€ 98 g __ 98 £
8tu€—i—u€-Vu€—Au€+v( i ):<a > a - 2 Au’,
(13) g 1 + eaf 1 + eaf
3 €
007 +uf - Vo + I npe = - fg —[2p1| Dt ? + A(div u)?]
a
13
LN o
1+ eaf

which may formally written as follows:

o b° 1 0 div 0 b°

g v | +-1 V 0 V u® | =0(1).
E\e=) \ 0 div o 6
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The notation O(1) designates terms that are expected to be bounded uniformly with respect
to €.

As a consequence of our considering ill-prepared data, the first order time derivatives are
likely to blow-up like 1/¢ for € going to 0. At the ‘physical’ level, this means that highly
oscillating acoustic waves may propagate in the fluid.

In order to better understand the action of those singular terms, we may first look at
the kernel Ker L of the 5 x 5 first order antisymmetric differential matrix operator L above.
The basic idea is that modes that are in Ker L will not be affected, while modes that are in
(Ker L)' may experience wild oscillations. A straightforward computation shows that

Ker L = {(b,u,a):divu:o and V(b+9):o},
(Ker L)t = {(b,u,@):curlu:O and V(b—@):O}-

Hence it is natural to look more closely at the equations satisfied by (¢, Qu®) and (©%, Pu®)
where P and Q stand for the orthogonal projectors over divergence-free and curl-free vector
fields, respectively, and

€ . 3

V2 V2

As L is antisymmetric, we expect the oscillating components of the solution, namely Quf and
¢° to be dispersed whereas L will have no effect on Pu® and ©°. Let us be more accurate: we
see that (¢°, Qu®) satisfies

Ll

(

2 2 A6°
o + Lo Qur = —aiv (¢7u) ~ 2 (007 + v (V) )

Kl + eaf
(1.4) V2 e

+ 22 oulDu P+ Adiva)?,
ca
V2 af — 0°¢ Au®
3 v- SR g _ _ .. £
0, Qu® + - Vq Q<<1+€a€>Va T U Vu)

whereas (©°, Pu®) fulfills

(
0;0° + Put-VO© — gA@a = —div (esgu€)+g(atvs + Puf-VVe +div (V€Qu5))
K V2k  eaf A6+ V2 e

(1.5) 9~ 2 1+ea® 2 1+eas
O Pu® — pAPu® + P(Pu® - VPu®) + P(0°Va®) = =P (u® - VOu© + Qu° - VPu®)

—P( = .Au€>+79<7m (6 _a)ch)-
1+ eas 1+ca®

If we assume the solution (b°,u,6%) and the data to be bounded independently of & then
the right-hand side of (1.4) is bounded, too. Hence, owing to the antisymmetric (and nonde-
generate) structure of the left-hand side of (1.4), one may expect (¢°, Quf) to tend weakly to
0. We shall see later on that in the whole space setting that is here considered, it is possible
to get strong convergence (for suitable negative Besov norms), with an explicit rate.

20| Duf | 4 A(div )],
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In order to find out what the limit system for (1.5) is, let us observe that
V2P(6°Vaf) = P(O°VVE) + P(¢FVVE) + V2P(6°VH)
= P(O°VVE) + P(¢FVVE) + V2P((6° + b°)VHF)
(1.6) =P(O°VVE) +P(¢°VV?) + 2P(¢°Vb°).
Because ¢° tends to 0, we expect that
V2P(6°Vaf) — P(O°VV?®) = 0 for ¢ going to 0.
Hence, if we assume in addition that V¢ — V, Puj — vg and ©F — Oy, then (0°, Pu®) should

tend to the solution (O, v) to the following Boussinesq system:

2
at@+v-v9—gA@:§(at+v-V)v,

1.7 2
(L.7) &gv—i—v-Vv—,uAv%—VH:—%@VV, dive =0,

(©,9)li=0 = (O, v0)-
Setting © = © — /2 /2V, and changing VII accordingly, we see that this system is equivalent
to the following one, which is commonly used:

~ ~ ~ 2
9,0 +0v-VO — gAG - %mv,

/3

(1.8)
- 2 .
8tv—i—v-Vv—,uAv+VH:—7@VV, dive = 0.

Note that although the density is constant in the limit system, it comes into play in the
buoyancy force where it is related to the temperature and the potential.

We end this paragraph with a formal derivation in the case k = 0. It turns out to be easier
to work with the pressure rather than with the temperature. We thus set p* = 1 4 ea® and
Pe=p°T¢ =1+ (R 4+ V¢), and obtain that

( divu®

oa® + = —div (a®u®),
Au VRE af
) Al € . € _ _ €
(1.9) ww Fu Vu 1+ eca® * e(14ea®) 14cea® ’
div uf
ORE + ”6“ + div (REu€) = e2p|Duf|? + M(div u)?] — 9,V* — div (VEus).

Setting ©°¢ := a® — R® — V¢, we thus get
10° + div (0°u°) = —¢[2u|Duf|? + A(divuf)?],

=4 Au€>+73< a V(V€+R€)>,

€ €, ey _ € _ _
OPu+P(u - Vu®) — pAPu P Ty T

(1.10) — ot .
0y Qu° + Q(u°-Vu) — vAQu® + = _Q<1+easAu>+Q<l+ea5v(V +R )),

divu®

O R® + + div (R°u®) = e[2,u|Du€|2 + A(div uE)Q] — 0,V —div (VEu).

As before, owing to the first order antisymmetric terms, we expect (Qu®, R°) to go to 0.
Concerning (0%, Puf), we notice that

P(a*V(VE + R?)) = P(O°VVE) + P(O°VR?).
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Therefore the limit system for (0%, Pu®) reads
0,0 +v-VO =0,

(1.11) 0w +v-Vu—pAv+ VII=0VV,
dive = 0.

Note that in contrast with (1.7), this system is not fully parabolic.

1.2. Some related works. There is an important literature dedicated to the limit system,
that is the Oberbeck-Boussinesq equations (1.7), (1.8) and (1.11), under various hypotheses
over the coefficients x and p, and the potential V' (although the most common assumption is
that V' = x3). Loosely speaking the classical results concerning the existence issue are (see
e.g. [8,9, 16] and the references therein):

e Dimension 2: Global existence of strong solutions if (i, ) # (0, 0).

e Dimension 3 with p # 0: Global weak solutions and local strong solutions (which
become global if the data are small).

e Dimension 3 with 4 = 0 : only local-in-time strong solutions are available.

In contrast, although the Oberbeck-Boussinesq approximation is commonly used in geo-
physics (see e.g. the books by J. Pedlosky [20] or R. K. Zeytounian [21]) there are few re-
sults concerning the rigorous justification of the derivation that we presented in the previous
subsection. To our knowledge, the first mathematical justification of Oberbeck-Boussinesq
approximation in this context has been given only rather recently in the framework of the
so-called wvariational weak solutions (see [11] for a complete presentation of such solutions for
the full Navier-Stokes equations). The case of bounded domains with potential V' = z3 (or
more generally, in W1°°(Q)) has been treated by E. Feireisl and A. Novotny in [12, 13], while
the exterior domain case has been studied by E. Feireisl and M. Schonbek in [14] (still under
the assumption V € W1>°(Q), thus ruling out the common but not so physical assumption
that V' = x3). For passing to the limit, all those works borrow some seminal ideas that have
been introduced by P.-L. Lions in his book [19] and B. Desjardins et al in [10] in the related

context of low Mach number limit for the isentropic Navier-Stokes equations’.

On the one hand, those results are very general for one may consider any finite energy
data. On the other hand, the convergence results are not very accurate for they strongly rely
on compactness methods : in particular convergence holds up to extraction only, and no rate
may be given.

1.3. Aim of the paper. Getting stronger results of convergence that is in particular con-
vergence of the whole sequence with an explicit rate, is the main purpose of the present
work. Considering general variational solutions is hopeless. We shall focus on strong solu-
tions with the so-called critical regularity, a framework which is nowadays classical for the
study of viscous compressible fluids (see e.g. [2, 4, 5]). Of course, this will enforce us to
restrict considerably the set of admissible data, but we will get much more accurate results
of convergence.

Working in a functional framework that has the same scaling invariance as (1.2), if any,
is the basic idea. Here we see that (if V¢ = 0 to simplify the presentation), the system is
“almost” invariant for all £ > 0 by the rescaling

af(t,x) — a*(N*t, \x),  uf(t,z) — (N2t Ax),  0°(t, ) — N20°(\*t, \x).

LFor other recent results concerning the low Mach number asymptotics for the full Navier-Stokes equations,
the reader may refer to [1, 15, 17, 18].
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If we believe in an energy type method then a good candidate for initial data is thus the
homogeneous Sobolev space

H3(R?) x (H2(R?)® x H2(R?),
or rather the slightly smaller following homogeneous Besov space:

.3 L1 3 .1

B22,1(R3) X (B22,1(R3)) X Bz,f(R3)

.3
which has nicer embedding properties (B5; is embedded in bounded functions for instance)
and better behaves with respect to maximal parabolic estimates.

However, owing to the lower order pressure term, the above scaling invariance is not
quite respected. Consequently, we have to work at a different level of regularity for the low
frequencies of a® and 6°, to compensate this scaling defect. All this is now well understood
and already occurs in the isentropic case [4].

Finally, in the case k = 0 that we shall also consider (and that cannot be studied in the
framework of variational solutions), only the velocity is smoothed out during the evolution,
and it is no longer possible to use a critical regularity framework: we will have to assume
much more regularity.

We end this introductory part with a short description of the rest of the paper. After an
unavoidable introduction of some notations and functional spaces, the next section is devoted
to the presentation of the main results of the paper. The analysis of the heat conducting case
is carried out in Section 3 while k = 0 is considered in Section 4. Some technical estimates
are postponed in the Appendix.

2. RESuLTS

Before presenting the main statements of the paper, we briefly introduce some notations
and function spaces. We are given an homogeneous Littlewood-Paley decomposition (A]) jez
that is a dyadic decomposition in the Fourier space for R?. One may for instance set Aj =
©(277D) with (&) := x(&/2) — x(£), and x a non-increasing nonnegative smooth function
supported in B(0,4/3), and value 1 on B(0,3/4) (see [2], Chap. 2 for more details).

We then define, for p € [1,+00] and s € R, the semi-norms
- JS||A -
HZ”B;’I = 22 1Az v
JEZ
In order to avoid complications due to polynomials, we adopt the following definition of

homogeneous Besov spaces:

.;71 = {z e S'(R3): HZHBZ,l <oo and lim Sz = O} with S; := x(277D).

j——o00

To compensate the lack of strict scaling invariance of the system under consideration (as
pointed out in the previous section), we also need to introduce the following hybrid Besov
spaces with different regularity exponent in low and high frequencies:

Definition 2.1. For s € R, p € [1,00] and a > 0, we set

i . _ iy L) A
2l g5 = > 2% (min(a !, 27)) Az 1o
JEZ
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and define
Byt = {2 € S®?): |12l gy < o0} and Jim 85z = 0}
We shall mainly use the above definition with p = 2, in which case, the corresponding

hybrid Besov space will be simply denoted by ngi, if the fact that p = 2 is clear from the
context.

We agree that?:
(2.12) 2= Z Ajz and "= Z Ajz.
2ia<1 2 a>1
With this notation, we have

¢ h
2l g = N2 pesr + @M 12" 5, -

Therefore B;l is the bulk regularity of a function in B’;ﬁ while the behavior at infinity is

given by the low frequency part which is in B;,ill. Of course, changing the value of o does
not affect the space, and the corresponding norms are equivalent. However a suitable choice
of a will enable us to get uniform estimates with respect to €.

As we shall work with time-dependent functions with values in Besov spaces, we introduce
the norms:

Fll g sy o= I Mg ooy a0 Nl gy o= Nt s ooy

As in many works using parabolic estimates in Besov spaces, it is somehow natural to take
the time-Lebesgue norm before performing the summation for computing the Besov norm.
This motivates us to introduce the following quantities:

. . . . _ . :tl .
”uHI:%(B;’I) = Z QJS“Aju“L%(LP) and |”LLH£%(B;:$) = Z QJS(mm(a 1’ 21)) “Aju“L%(Lp)'
JET JEZ
The index T \ivill 1t.)e omitted if; T = +00 and we shall denote by C’(B;,l) (resp. C’(B;ﬁ))
the subset of L>°(B, ;) (resp. LOO(B;,%)) constituted by continuous functions over R* with
values in B | (resp. Byd)
p71 p' p,x ).
Let us emphasize that, owing to Minkowski inequality, we have
HUHL‘IT(B;’I) = HUHE‘IT(B;J)
with equality if and only if ¢ = 1. Similar properties hold for hybrid Besov spaces.
Throughout, we shall denote
(2.13) Ri=r/v, ANi=MNv, [:=p/v with v:i=\+2pu.
One can state our first main result : the global existence of solutions corresponding to
small (critical) data with estimates independent of € in the case k > 0.

Theorem 2.1. Assume that the initial data (bj, uf, 05) and that the potential term V¢ satisfy,
for a small enough constant n depending only on £ and fi:

(2.14) 116G

s+ lugll . r + 65l L <y,
.-+ el yp +1650, 4.0 <7
(2.15) VAIVVEL s VEL s+ 0VE s <
L2(B27) Lo(B2Z ) LYW(B2 )

2We omit the dependency with respect to the threshold « in the above notation because the value of o will
be always clear from the context.
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Let af := b5 + V=(0). Then System (1.2) with initial data (1 + caf, uf, 1 + €6§) has a unique
global solution (a®,u®,0%) (with a® = b + V¢) which satisfies

S T 1 pat e - AIR2 153 e - Ap2t 1 2t
b € C(BE )NLY(BZ"), w €C(Bf)NL'(B;)), 6°€C(B.* )nL'(BZ")
and, for a constant K depending only on &k and [,

(L I VN g T I +vfll]

3 (B3 )
BQl 2

+ 1671

3
77 LOOB 2+)

9° & c
e 2+)SK(”%”BE%;,HWOHBQ% 105130 + 10V, )

Remark 2.1. Smoother data give rise to smoother solutions. For example if in addition to
the above hypotheses, we have

be Lo 9, Ve vVe
ell HBf_+V I( O,uo)ué,_ﬂut H 15 )+€H H

)

55—
ev ev ev EV )

then the above solution also satisfies
ellp). s +vTH(65,u . Wl 5. +ev|(uf, 6" 1. < Kn.
61, e, + v NN, s e, s eI < K
Next, combining this result with Strlchartz estlmates, we shall prove the following result
of convergence to the Boussinesq system.

Theorem 2.2. Consider a family of data (bg, uy, 05, V®)es0 satisfying the conditions of The-
orem 2.1 with in addition
My :=sup(||bg]l _s _ + ||lug
0 6>18(H oll 3. + llug]

ev

5y 86l
(2.16) P2 Fev

+Vz|yvveu sy TNV - 10V ) <.

El/ LOO(BEV’ ) 1( El/ )
Let ¢ := (0° +b°)/v/2 and ©° := (6° — be)/\/—. Assume that (Pug, ©f, VE) converges (in the
sense of distributions) to some triplet (vg, ©g, V') such that
.1 .1 1
v € B3y, ©eBj, VVe L*(B 2 1) o,V e LYB 1)
Then the following properties hold true :

1) System (1.2) with initial data (1 + eaf, ul, 1 4+ €65) has a unique global solution with
0> *0 0
the properties described in Theorem 2.1;

L1 L5
(2) Boussinesq system (1.7) admits a unique global solution (v,©) in C(Bg ) N Ll(Bz2 )
satisfying for some constant K = K (R, fi):
1+ v,@ 5 <K Uo,@o 1 |0V 1 ).
1w, O k) I(v, ©)]] Bl (K )l B}, 10 ||L1(B§1))

(3) The functions ¢¢ and Quf go to 0 in the following meaning for all p € [2,00] and
€[=1/2+4/p,3/pl:

1 1 3_
V2 ||q€||iz(ég’;b+) +rv2 HQUEH[?(B; 1) S K(&I/)P SM(].

(4) The couple (Pu®,©%) tends to (v,0) in the following meaning for all p € [2,00] and
€[-1/24+4/p,3/p| with s >1/2:

V100 e gy + 100 e ey + VI iy + 180 2oe g2
3_
< O (10085, 05)l gy 2+ + 10Vl o gy 2ty + Moe? " + MollVOVE o)
with B° := 0 — O, W := Pu —v, WV :=VEe -V and C = C(ji, R, s,p).
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Remark 2.2. If the data are smoother, e.g. as in Remark 2.1 then the results of convergence

hold for stronger norms. For instance, it may be shown that (Quf,¢°) — 0 in LQ(BP _),
3

~ . 4.3 - 41 ~ L 4_3
that Pu® — v in Ll(B" )OLOO(B;,1 %), and that ©° — © in LQ(B;,1 )NLe(By,° ), with

the decay rate 62 P.

Let us finally state our main global existence and convergence result for nonconducting

fluids.

Theorem 2.3. Assume that the initial data (af, uf, R§) and the force term V¢ verify that
+(ev)?|l(a§, R

8 = H(a87u07Re)H % % (EV)2”u8H %
B3y B3, B3, -
+|os Ve <
HOV g HE IV, 1
Vel FEPIVELL g +wlVEIL g v Vel g <
L= (B 22 ) 221) 221) LI(B22,1)

where the constant 1 is sufficiently small and depends only on .

Then System (1.9) admits a unique global solution (a®,u®, R¢) which satisfies
a*€C(B3,NB3,), w eC(B3 NB3,)NL (B3,NB3,), R°eC(B3,NB;3,)NL (B NB& )

and, for some constant K depending only on [,

1@ RN .3 + (ev)’[ (a5, RN, g3 T s + (@)l s
221) 221 Lee B22,1) L°°(322,1)
€ € € AT €
Rl 5 +v(ev)?|IR I, Eh + vlju HLI(BQ%) +v(ev) [lu HL1(3§1> < KCj.

Suppose in addition that © — ©q, that Pug — vo and that V¢ — V with

(2.17) lwoll .3 +IVVII | g 10l 3 < e

1
LI(BQ 1 221
Then the corresponding limit Boussinesq system (1.11) admits a unique global solution (©,v)
o1 .1 .5
in C(B3 ;) x (C(B;l) N Ll(le)). Furthermore we have

2.18 o, < K|(® :
(2.18) 1©,v)ll, w5l MIIUIILIB231)_ It o,vo)llBé1

D=
o

In addition, if C§ is bounded by some constant Cy when € goes to 0 then (Qu®,R?) goes to
zero with the following rates of convergence for all p € [2,00) :

(2.19) QU= R, 2,

2
- (Bzil

1

1
< KCpe? 7

(S
—

3_g .
(2.20) V%H(Qua,nf)Hp(B;I) < KCy(ev)r ™ if s€[-1/2+4/p,3/p].

Finally, if ©f and Pug are independent® of ¢ then for all p and s as above (with in addition
s>1/2), and T >0,

0°—0 — 0 in CN'T(B;,E2) and Pu‘—v —0 in C’T(Bs 1+B;32) (LT( )—l—LT( 1),
and the rate of convergence is 6%_8
The above statements deserve some comments:

3The reader may refer to Inequalities (4.116) and (4.117) for the general case.
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(1) In this paper, for simplicity, we focussed on the physical dimension 3. However similar
statements may be established in any dimension d > 2.

(2) In the case of large data, we expect, as for the isentropic Navier-Stokes equations stud-
ied in [6], the lifespan of the solutions to (1.2) to tend to that of the limit Oberbeck-
Boussinesq equations. Global existence for the limit equations should entail global
existence for (1.2) with small ¢, if x > 0. This is of particular interest in dimen-
sion two, as the limit equations are globally well-posed for any data with the above
smoothness. We reserve this study to future works.

(3) We also reserve the case of other boundary conditions, in particular the periodic ones,
to future works. We want to point out that the global existence statements (that is
Theorem 2.1 as well as the first part of Theorem 2.3) extend to that case. At the
same time, no dispersive inequalities are available, hence the approach for proving
convergence is expected to be completely different, provided based on the filtering
method, as in the isentropic case [7].

We end this section by explaining the general strategy for the proof of convergence. The
first step consists in proving uniform global a priori estimates. This in fact corresponds to
the statement of Theorem 2.1 and to the first part of Theorem 2.3. We shall see that the
proof reduces to the case ¢ = 1 after suitable rescaling of the equations. Then, proving
convergence requires two steps : first we establish that the oscillating part of the solution
converges to 0 (this relies on Strichartz estimates), and next establish strong convergence to
Oberbeck-Boussinesq for the incompressible modes. Note that, owing to the fact that only
small solutions are considered, we do not need to resort to bootstrap arguments.

3. GLOBAL EXISTENCE AND CONVERGENCE IN THE CASE k > 0

Let us first notice that performing the change of unknown®:
(3.21) (b,u,0)(t, ) := (b, us, 0°)(*vt, evz)
and the change of data
(3.22) (bo, uo, 00)(x) := e(b5,us, 05) (cva) and V(i) := eVE(2wt, eva)

reduces the study to the case v = 1 and £ = 1. Indeed it is obvious that (b, u®,6°) satisfies
(1.2) if and only if (b,u, ) satisfies the same system with ¢ = 1, Lamé coefficients (X, i) :=
v~Y(\, p) and heat conductivity & := v~ !k, provided the data have been changed according to
(3.22). This change of variables has the desired effect on the norms that are used in Theorem
2.1. For example, we have, up to a constant independent of £ and v,

ltoll .- = v IRl g ol g = vy 6ol g =006 g e
v _ 20 N Tt . _ 2 2,
va(t7)HBI%,— - 5HVV€(5 Vta )”BE%V,— and Hatv(t7 )HBI%,— =€ Hatve(g Vt7 )H ~i,—7
hence
INVI s =v 3|VVE s and 8V s =v YOV s
L2(B’ L2(B&) ) LY(BP' ) LY(Ba,

Consequently, in order to prove Theorem 2.1, it is suffices to consider the case v = 1 and
e = 1. We shall resume to the original variables only at the end of this section, for getting
the convergence results of Theorem 2.2.

“Recall that v = A + 20
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3.1. The linearized system. In the case ¢ = v = 1, the linearized equations about (0, 0,0)
read

8tb +divu = 0,
(3.23) du — fidu — (A + )Vdivu + V(b + 6) = 0,
80 + divu — RAG = 0.

We aim at proving energy type estimates for (b, u,6). Roughly speaking, we shall exhibit a
low frequency parabolic type smoothing for all the components of the solution whereas, in
high frequency, only (u, 6) will experience a parabolic smoothing. As for b, it will be damped
with no gain of regularity whatsoever. Throughout our proof (which will require several
steps) we shall also pinpoint where one has to work in different level of regularities to get the
aforementioned features of the system.

Let us first notice that the gradient terms in the velocity equation involve only the potential
part of the velocity. More precisely, setting d := A~!divu (with A® := |D|*) and w := Pu =
u+ V(=A"1)divu, we get

Ob+ Ad =0,

Od — Ad — A(b+0) =0,
0 + Ad — RAO = 0,
Ow — pAw = 0.

(3.24)

As the last equation is the standard heat equation with constant diffusion, we focus on the
proof of estimates for the first three equations. After localization by means of the homoge-
neous Littlewood-Paley decomposition (A;);ez, the obtained system reads

8,5[)]‘ + Adj =0,
(3.25) Ovdj — Ad; — A(b; +0;) =0,

0i0; + Ad; — RAO; =0
with bj := A;b, dj := Ajd and 6, := A;0.
Step 1: Basic Energy Estimate for (b,d,). Owing to the antisymmetric structure of the first
order terms in (3.25), we readily get

1d [

2 dt

(3.26) 105122 + s 172 + 116;1Z2] + [1Ad; 172 + &lIAG; |72 = 0.

Step 2: Improved Energy Estimate for (b,d,0). We want to track the decay properties of b.
For that we notice that the auxiliary function Ab — d satisfies:

8,5[Abj — dj] + A(bj + (9]) =0.

Hence taking the L? inner product with Ab; — d; yields

1d
5 71805 = 32 + 14653 + (A65148;) 1, = (b +6,)|Ads) 1o = .
from which we deduce that

1d

(3:27) 5 |I1Ab; = djlIZz + I1bslIZ2 + 1165172 | + [1Ab; 1172 + (AG;Ab;) 1 + EIIAG; |7 = 0.
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Putting (3.26) and (3.27) together, we thus get for any a > 0,
1d
328) 55 ol + 14 = G2 + (14 @l + (L + )65 ]
+ [|Ab; (172 + (AO;]AD;) o + #(1 + )| A0 |72 + al|Ad; |72 = 0.
Let us denote

(3.29) 7= alldil72 + (1 + a)lbjll72 + 1Ab; — djlI72 + (1 + )07,
1 . 1
(3.30) H = S| Abj|72 + of|Ad; |72 + (n(l +a) - 5) |A8)]32.
Then combining (3.28) with the following Young inequality:
1 1
(A0 148,) 2| < SIAG 32+ SlAD 2.

implies that

1d

.31 - H?<0.
(33) thf]+ ]—0

Let us notice that
7= (a+1))(bs, dj, 0)[172 + [[Ab; 172 — 2(Abs|d;) 2.
Therefore, because
2 3
2|(Abjldj) 2| < g\lAijiz + 5 ld511Zz,
we have
1 2 1 2 2 2 5 2 , 0 2

(3:32) (a3 )Id;l3e + 1613 < f7 = (@ + DIl (b 012 < (a+ 3 ) 5113 + 311405 3.
Let us first assume that £ < 1. Then we take a = 2/k — 1 and (3.32) thus implies that
2~ R by, dji 0)]172 it 22 <1,

7RI 0N 7e + A7, i A2¥ > 1.
At the same time, we have
2> { 2706y d;, 0)117 if &2 <1,

7RI 0172 + A7 if A2¥ > 1.
Therefore, one may easily conclude that for some (universal) constant ¢ € (0, 1],
(3.33) 165, dj, 65) (D2 S €% | (by dy, 0)(0) |2 i 2R <1,
(3.34) 1(RAb;, dj, ;) (D)2 S e (RADy, dj, 0,)(0) 2 if 2R > 1.

Let us now assume that £ > 1. Then we take a = 1 so that following the above computations
after replacing everywhere % by 1, it is easy to conclude that

2% e
(3.35) (b5, d;,05) (D)l 22 S €7 (b5, dj, 0,) (0| 2 if j <0,
(3.36) 1(AD;. dj 0;) (1)l 2 S € I|(Abj, dj, 0;)(0)| 2 if 5 > 0.
Therefore, denoting # = min(1, %) and putting together (3.33), (3.34), (3.35) and (3.36), we
end up with

gy 100Dl S 5050) Ol if 2%k < 1,
3.37
JAb; ()12 + KM, ) ()2 S e~ (IAb;O)]| 2 +1IA2(dy, 0,) (O 2) i 227R > 1.
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For reasons that will appear more clearly in the following steps, it is suitable to work with
one less derivative in the high frequency regime. Now from the second inequality of (3.37)
and Bernstein inequality, we get for 2% % > 1,

(3.38) s (&)l 2+ 1A (g, 07)(B)[ 22 < €= (1bs (O) | 2+ AT (s, 6;)(0) | 2).-

Step 3: Parabolic smoothing for 8. We here aim at tracking the high-frequency parabolic
smoothing for §. For that, we rewrite the last two equations of (3.25) as follows

8,5/\716[]‘ — A(Afldj) — 0]' = bj,
OA10; — RAA10;) + d; = 0.

Then applying a direct energy method, we readily get

1d

55 (AT 4 IA703 1 ) + 1512 + R0 = (84 ~1dy),

Therefore, performing a time integration yields

IA™(d;,0,)(t)l| 2 + c& /Ot IA(dj. 05) 2 dr < |ATH(d;,0;)(0)]] 2 + /Ot 165 z2 dr,
and taking advantage of the second inequality of (3.37) eventually leads to
(3:39)  [IATH(d;,0:)(#)]|z2 + f%/ot 1A}, 05|22 dr < 11b;(0) |2 + &A™ (d;,05)(0) | 2
in the high frequency regime, that is whenever 27/v/& > 1.

Step 4: Parabolic smoothing for d. Given that
815(1]' — Adj = A(b] + Hj),

one may write that
. t t
150012+ <2 [ s lzz dr < sVl + [ 1083052
The previous steps ensure that, for 2/v/i > 1,
t
/0 IAbjll2dr S AL ()12 + & (dy, 0,)(0)]] o
t
L 180l dr S & Oz + 5 2IA . 8)0)
Therefore we have

t
(3.40) 22]/0 Id; 2 dr < Ab; () 2 + & [1b;(0)] 2

+ R ATHd,05)(0)l 2 + & HI(dj,05)(0)]] 2
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Step 5: Final a priori estimate for (b,u,#). Putting together inequalities (3.37), (3.39) and
(3.40) and using the standard properties of the heat equation (as regards w), we get if j < 0:

t
(3.41) 1(bs, uj, 03) ()]l 22 + 22]/0 [1(bj, 15, 05)l 2 dT < Cl|(bj, u;,605)(0)] 12,
and, if j > 0:
(342)  [[(27b),u;,2770;) (1)l 2 +/0 12705, 2% uj, 270;) | 12 dr < 12705, uz,2776;)(0)]| -
The above constant C' depends only on & and k.

3.2. A priori estimates for the paralinearized system. As pointed out in the previous
subsection (see in particular (3.42)), there is no gain of regularity for b throughout the
evolution (only damping in fact). Therefore, the convection term v - Vb cannot just be
considered as a source term, tractable by Duhamel formula, for the presence of Vb will
induce a loss of one derivative in the estimates.

At the same time, at the level of L? estimates, this convection term is rather harmless
provided divo is in L'(RT; L>) (it is only a matter of integrating by parts). The natural
idea is thus to keep the convection terms in the linearized equations® and to resume to the
method of the previous paragraph. As however the Littlewood-Paley localization operator Aj
does not commute with the material derivative (9, + v - V), it is convenient to keep only the
‘bad’ part of the convection term, that is the one which does induce a loss of one derivative.
In order to better explain what we mean, we have to give a short presentation of Bony’s
decomposition (first introduced in [3]) and paraproduct calculus. The paraproduct is the
bilinear operator defined on the set of couples of tempered distributions, by

Trg:= ZS'j,lf Ajg with ijl = X(Qf(jfl)D)‘
J

The (formal) Bony decomposition of the product fg reads
fg="Trg+ T; I

The basic idea is that the term Tg is always defined but cannot be more regular than g,
and that under suitable assumptions the other term Té f is more regular. If we look at
the convection term, the ‘bad’ part that may cause a loss of one derivative and has to be
included in the linear analysis is thus (with the summation convention over repeated indices)
T ,xOkb. This motivates us to extend the analysis of the previous subsection to the following
‘paralinearized’ system:

Ob+ Ad + T,x Orb = B,

Od+ T pOrd — Ad—A(b+0) =D,
O + Ad + T,1.0x0 — RAO = G,

ow + Tk Opw — lAw = W,

(3.43)

where the source terms B, D, G, W and the vector field v are given.

SWe keep all the terms just for questions of symmetry, but only v - Vb may cause a loss of derivative.
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Proposition 3.1. Let V(t fo |IVv||pe dr. For all s € R, there exists a constant K
depending only on [, &, and a universal constant C such that the following inequality holds
true:

t
I8z 1y I e 10 o+ [ (1Bl +1(d )l 10] )

C
< Ke®O ol g+ 1dor 00, + 0lg-1

t
+ [ OB g + 1D Wy, + 161 )

Proof. Compared to the study of the previous subsection, the main additional difficulty lies
in the paraconvection terms. Indeed, the source terms may be easily dealt with by means of
the Duhamel formula.

The paraconvection terms may be handled thanks to the following inequality:

(344) |(¢(277D)(T,x0k2)|6(277 D)2) 1| < ClIV0llL 6277 D)2l 2 > 6277 D)z 12
li'—jI<N

which holds true for any smooth function ¢ with compact support away from the origin and
large enough integer N depending only on Supp ¢ and Supp .

Let us justify (3.44). We fix some integer N so that
Supp¢(277-) N Supp (X(ij/-) * @(Q*jl-)) =0 whenever |j—j|> N.
Then we use the following algebraic identity:

(62T D) (T 0h2)6(27D)2) o = 3 (6279 D) (810" 0Aj02) 6277 D)2)

lj'—jI<N
= ) (#@7D)(Sya—Si) hA2)6(277 D)z)
§'—jI<N
+ > ([¢277D), 8 10*10kA 29277 D)z2)
l7'=jlI<N

+(9j-10" 0 $ (277 D)z|¢(277 D)2) 2

The first term may be bounded thanks to spectral localization and Bernstein inequality, and
the second, to a standard commutator estimate (see e.g. [2], Lemma 2.97). The last term
may be dealt with according to the following integration by parts:

/Sjlvk(?kqb(QjD)z $(279 D)z dx = —% / div.S;_1v (¢(277D)2)? dx.

Let us now resume to the proof of Proposition 3.1. As an example, we show how the first
two steps of the previous subsection have to be adapted for (3.43). So we apply A; to the
first three equations and get:

Oibj + Adj; + A]‘(Tvkakb) =B
ddj + Aj(TwOpd) — Ad; — A(b; + 6;) = Dj,
0:0; + Ad;j + Aj(Tvk(?kQ) - RAO; = Gj.
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Taking the L2-inner product of the first, second and third equations with bj, d; and 0;,
respectively, we find that

1d

5 77 UIBllZ2 + ld; 172 + 10511Z2] + A 11Tz + RIAG 1Tz + (Aj(Tor0kb)Asb) 12

+(AH(T k)| Ajd) 1 + (A5 (T 0k0)|A;0) 1o = (Bylbj) 2 + (Djlds) 2 + (Gj165) 2.
Therefore using Inequality (3.44) we readily get

1d i
5 7715 4503172 + A5 1172 + &I A0, 172 < 1[(b, s, 05)] 2

< (1108, Dy Gi)llzz + ClI Vel D by, )22 )-
lj'=j|<N

Next, we use the fact that Ab; — d; satisfies
O(Abj — d;) + A(b; +dj) + AA (T 0kb) — Aj(T,r0d) = ABj — D;.

Therefore arguing as in the second step of the previous section, we get
1d , 9 . :
S 12+ (AT 040) — Ay (T O (A, — ) .
+(1+ ) (Aj (T 0kd)| A1) o + a(Aj(Trdkd)|Ajd) o + (14 a) (AT, 0k0)|As6)

= (14 a)(Bjlbs)r2 + a(Djld;) 2 + (1 + ) (Gj0;) 2 + ((ABj — Dy)|(Abj — d;)) 1
where f/ and H’ have been defined in (3.29) and (3.30), and o = 2/ — 1.

Note that all the paraconvection terms except the first one may be directly dealt with
according to (3.44). As for the first one, we may use the decomposition:

AAG(T.0b) — Aj(To e Opd) = AT,k 0p(Ab — d) + 27 [p(277 D), T, |01
with ¢(&) := |£]@(&). Therefore, applying again (3.44) and Lemma 2.97 in [2], we end up with
| (AA(T,rO4b) — Aj(T0kd)) | (AD; — dj)) 1]

SIVollzee|Ab; = djllz Y (I1Aby — dyrllz2 + [|Aby || 2).-
' —3I<N

The following steps may be done similarly, once noticed that operators such as AilAj
may be written 2¥/¢(277 D) for some suitable function ¢ with the same support as . The
final inequality may be obtained after multiplying by 27¢, performing a summation over j
and applying Gronwall’s lemma. The details are left to the reader. ([l

3.3. The proof of global existence. This paragraph is devoted to proving Theorem 2.1
in the case ¢ = v = 1. As explained at the incipit of this section, this will imply the global
existence for general positive € and v. The proof of existence and uniqueness is similar to that
for the full Navier-Stokes system in [5]. The only difference here is that the source term VV*

.1 .1
is not in L'(R™; B3 ). However it still belongs to L} (R*; B3 ) which suffices to establish
local-in-time results, global results being a consequence of the following a priori estimates.
Note that a direct proof based on Friedrichs spectral truncation method may also be easily

implemented as we are interested in L? type estimates.
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So let us now derive global a priori estimates under the smallness assumptions (2.14) and
(2.15). Such estimates rely on Proposition 3.1 with s = 1/2, once noticed that

u="Pu+ (Id—P)u=w— VA~ 1d,

that (b,d, 6, w) satisfies (3.43) with v = u and, using the summation convention over repeated
indices,

B = Tudgb—u-Vb—bdivu— 8,V — div (uV),
= — A Ydiv (- Vi) — A div | —2— (7 \ 4 ) Vdiva) + L Ve
D = Txokd— A""div(u-Vu) — A div [1 n a(,uAu + (A + a)Vdivu) + 0ta) |
. _ o _a 1 5 9 T, 9
G = T,00 —u-VO—6divu i aKAH + TTa CL[Q,u|Du| + A(divuw)?],
W = Tuoyw—P(u-Vu)—P L(NA + (A + @) Vdi )—i—m
= Tr0pw u-Vu T g A i v )

Setting U(t) := fot |Vl o dT and

X(t
® oy Fll

t
= ||b 0 b 0 dr,
180, 3 by 1O b /0 (190 3.0 + ol + 101 3.0)

we may write

t
cu) —CU(7) .
345 X(0) < KUO(XO) + [ TOBl g+ 1DW 161 ) )

Throughout we suppose that 1+ a is bounded and bounded away from 0, an assumption that

is satisfied provided ||a|| .3 is small enough.
L>(BZ,

Bounding || Bl| 3 According to Bony’s decomposition, we have

1
BZ
w- Vb= T,0b = Th yu”.

Hence standard results for the paraproduct imply (just decompose b into low and high fre-
quencies):

(3.46) HTukakb— u - VbHB

3o SIVOl g el 5

2,1

Likewise, according to Lemma 5.1, we have

(3.47) [odivall 5 S {bll o5 _[ldivul .3
312’ B127 322,1

Finally, because div (Vu) = Vdivu + u - VV, we have

(3.49) v V)5 S 170 g -l g+ N9Vl

-3
By 2,1
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. We concentrate on D, proving estimates for W being similar. We
1

Bounding ||(D, W)|| .
B

Do

have

T Od — A~ div (u - Vu) = [Tor, A 0] 0ku’ — A0 T, iul.
Therefore, resorting to standard commutator estimates and continuity results for the para-
product (see e.g. [2]), we get

(3.49) | T Ord — A= div (u- V) || 1 < || Vallpeo|jul| L1 .
B3y B22,1

Next, combining composition and product estimates yields

3.50 <

(3.50) T4V Ul B~ lall . 23'1“u”32%1’

and also

(0 —a)Va
] S el g Vel g (16715 +1671s +lall 5 ).
a B3, B3, B3, B3, B3, B3,

.3 3
Note that we expect 8¢ and #" to belong to L?(R™; B22,1) and L'(R™; B221) respectively, and
that, applying Holder inequality yields

(0—a)Va
1 0 oh :
[k s, S (el ga Dal o 1@ 800, a el 160, 5 )
~3 _ .3
So finally, because B’ < Bj,,
6 —
(3.51) Hw‘ 3 Sllal s )
l+a lsg) L(BET)
2
0 0 .
el g+l 100 o el pa 101, )

Bounding ||G|| _; . We first use the fact that
BZ

u- VO — T, 0 = T, gu".

Therefore

(3.52) 72010 = V0l o S 190 g <l 5

Next, Lemma 5.1 implies that

(3.53) [0 divall 1, S ||9H 1lldivall s
Bl - 221

(3.54)

b4 S HaH 53 1101 g si+
2

1+4+a B %
.1 L _1
Finally, since Bzf — B, 2’+, standard product laws enable us to write that
(3.55) H—Vu@VuH (1+flall g )Hvuugw.
2,1

Plugging inequalities (3.46) to (3.55) in (3.45) and makmg the assumption that
(3.56) [Vullpi(zey <1 and HVH . + ||VV||

<1,

.3
B2
Bj



THE OBERBECK-BOUSSINESQ APPROXIMATION IN CRITICAL SPACES 19

we thus get
X(t) < C(X(0) + [0,V X2(t) + X(1)).
(0 < COXO + 171, g+ X0 +X'()
It is now clear that the solution may be bounded for all time if X (0) and V are small enough:
we get for some constant K depending only on &, fi and A,

(3.57) X(t) < KCy
with
+ H90H BN o ||3tV||

%
Br')

Co := |[bol| .3 _ + [Juol| .1

0= ollélg, | 0”3251
3.4. Convergence to the viscous and diffusive Boussinesq system. The key observa-
tion is that in the asymptotics € going to 0, the leading order part of the system for (¢°, QuF) is
the acoustic wave equation, which has dispersive properties. This will enable us to show (first
step) that (¢, Qu®) tends strongly to 0 in some negative Besov space. Next, we shall check

1 .1

that the limit Boussinesq system (1.7) supplemented with small data vo € B3, ©9 € By {
.1 1

and potential V' with 9,V € LI(BQQJ) and VV € L2(B2271) has a unique global solution. Fi-

nally, resorting to maximal regularity estimates for the heat equation, we will conclude that

(Pus,0%) = (v,0).

3.4.1. Convergence to zero for the oscillating modes (¢¢, Quf). In order to exhibit the decay
properties of (¢°, Qu®), we only have to consider the case ¢ = 1 and v = 1 thanks to the
rescaling (3.21), which implies in particular that

(q, Qu)(t, ) = (q°, Qu°)(e’vt, eva).

Then using Strichartz estimates for the acoustic wave equation (see Proposition 5.1 in the
appendix) will enable us to bound some suitable norm of (¢, Qu). Resuming to the original
variables, we then get for free the convergence to 0 for (¢°, Quf), with an explicit rate.

Let us give more details : (q, Qu) satisfies

dq + V2div Qu = —div (qu) — \/75 <8t1~/ +div (Vu) + /%1A+6a>
(3.58) + ?%[QMDUF + Mdivu)?],

8tQu+\/§Vq= Q((a_0>Va— Au —u-Vu)-

1+a 1+a

Therefore Strichartz estimates (ﬁrst 1nequahty of Proposition 5.1 with s = 1/2) enable us to

bound the norm of (¢, Qu) in i (Bp ?) for all p € [2,00) in terms of the norm of the data
.1
in B271 and of the right-hand side in Ll(BQQJ). Under our present assumptions however, the

~_1
last term in the r.h.s. of the first equation belongs only to the larger space Ll(B1 2’+). So
one has to use the second inequality of Proposition 5.1 and just get estimates in the wider

___7_‘,_
spaceLP Q(B” 2.

~_1
Let us bound the r.h.s. of (3.58) in L' (B, 2’+). All the terms may be dealt with by taking
advantage of standard product laws and Lemma 5.1. More precisely we have, keeping in
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3

_3 .3
mind the smallness of a in L>(B{" ) (and thus also in L*°(Bg;) and L®(RT x R?)):

HdIV(VU)H 1 <||VH gl
LY(B3,) 2(B3,) LQ(B
1+a)"1A0 ~,l < 3.,
1€ )1 I, -4+, 16 \\51(312,+)
[(1+a) VU®VUH ek <HUH R
L(B21) 322
1 OV < +|6 0
I0+0) a0l o Sl s o 00, )l g 11, s
[(1+a)~" Aul| ) S H .g :
B21) LY(B3)

Ju-Vul| 1 Slul?

LI(BQ’I) L2(32271)

Given that Q is a 0- th order multlpher (hence maps all Besov Spaces involved here into

L3 _
themselves), that B2 { and B2 , are continuously embedded in B 3t , and that B}’ is

continuously embedded in B 2’+, we eventually conclude that (with the notation of (3.45)

and (3.57)):

, 2 3 , aH XXV s VI s
ll(q QU)HE%(BEI%) (g0 QuO)H + 10 H wsh) [ |!L2(B§1)

Therefore, given that X (¢t) < KCy and that Cj is small,

(3.59) II(q, Qu)|| 2, < KCp forall pe[2,00)

2_3
S —5,+
P2

2(Byy

with K depending only on p, & and ji.
On the other hand, Inequality (3.57) implies that

1(a, Qu)|

i < KCy.
LY(B

3.+
1
Therefore, using the fact that

2_3 4_3
—3t T2 pa T2

~§7+ ~ 2  ~= s .
[LNBE), L=2(By 1 * Vpjpe) € LA(Bg, *) with g = (p +2)/2,

we get also
(g, Qu)|| . _a_3. <KCy forall qe€ |2 00).
FR30: XA

q,1 )

Zo 5% =0 mltE A+ : : :
Given that (¢, Qu) is in L2(B12’+) hence in L2(Bq71 7" ), an ultimate interpolation ensures

that
(3.60) Il(q, Qu)\|z2(]§;—11,+) < KCp forall se[-1/2+4/p,3/p] and p € [2,00).

3
Of course, we also have Qu in L2(B221) whence in L2( 1) for all p > 2. Therefore, interpo-

lating with (3.60), we deduce that

(3.61) HQquQ(BSI) < KCy forall se[-1/2+4/p,3/p].
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Now coming back to the initial variables, (3.59), (3.60) and (3.61) translate into

(3.62) 270 (¢, Quf Moz, 3 5. < K(ev)? vCE forall pe [2,00),
Q(Bpsv )

(3.63) Vi | pagpesry < K ()7 GG for all s € [~1/2+4/p.3/p),

(3.64) V3| Que o ) < K(ev)r°CS for all s € [~1/2+4/p,3/p].

3.4.2. Global existence for the Boussinesq system (1.7). Let us first briefly justify that, under
our assumptions, the limit data (©g, v, V') give rise to a global solution to (1.7). Establishing
this is an obvious modification of the proof for the standard incompressible Navier-Stokes
equation. It is only a matter of rewriting the system as

t
K K 2
O(t) = e'320y + / e(t_T)5A<§(8tV +v-VV)—wv- V@) dr,
0

t
’U(t) _ etMA,UO _ / eM(t—T)A'P<U -Vov + %ﬁ@VV) dT,
0

and the global-in-time solvability for small data may be achieved as a consequence of the
Banach fixed point theorem. Let us just check that global a priori estimates are available in
the case of small data Applying Proposition 5.2 and using that the product is continuous

from B 31 X 321 to B 51 implies that

+ 1oV

el () +xllOll 53 S 1©oll . 3 sl
21) 21 BQ,I 21
#loll, 1 (900, o +I9VIL, )
B3, L*(Bs) B2 1)
and that
ol sty TR0, g3 ) S ol g Il g IV, g S IVVIL, 3 1O, 8
L°°(322,1 221) 322,1 LQ(B22,1) L2(322,1 22, 22,1)
Hence, setting
=@l _ 1 +vieal s,
L>(B3;) LY (B3,)
we get for some constant K = K (fi, k),
1
Y <K Yo+\|6tV|| 1 Y XY +v 2| VV 1),
( 21) LQ(B22,1) )
and it thus easy to close the estimates globally if Yp, H(?tVH % and v2 IVV]] ! : are
B3, L?(Bs

small compared to v.

3.4.3. Convergence for the “incompressible” modes (©°,Pu). In this paragraph, we prove
the convergence of (©%,Puf) to the solution (0,v) to the Boussinesq equation (1.7). We
claim that for any p € [2,00) and s € [-1/2+4/p,3/p] with s > 1/2:

e O° := ©° — O tends to 0 in EQ(B;;,E N EOO(BS,;%’JF),
e %° := Puf — v tends to 0 in LY(By2,) N LOO(B;;,%’JF).
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For proving that, we shall use the parabolic estimates of Proposition 5.2 for the system
satisfied by (0%, &°). Let us first focus on ©°. By performing the difference between (1.5)
and (1.7), we see that

0100° — SABF = —Puf - VoO© — &° - VO + */75(@5&/8 + Pu-VVE + &° - V)

K V2 ca® V2 e
div (Ve —0%)Qu°) + —Aq¢° — — AO° + —
Fdiv(( JQU) + 580 — o E A S T
Hence, according to Proposition 5.2, it suffices to get suitable estimates for the right-hand side
in LY BN+ L3(Bszo™). From product estimates (see Lemma 5.1) we easily get under the

assumption that s > 1/2 (in fact here we just need s > —1/2 owing to div &® = div Pu® = 0):

(20| Duf |2+ A (div u)?).

(3.65) P V8%l gy S 1P g 1990 gy
(3.66) |8 9611 554, S IVE ||&E||L2(B;;,+>,
(3.67) [Pu VoV 1 a2t <H77u€H B§ L ——
(3.68) 1= - VV | 1 g2y SIVVIL, () \I&E\ILz(g;;;,+)-

2

We split the next term into (referring to the notation introduced in (2.12) with o = ev)
div ((VE — ©%)Quf) = div (Ve — 059 Quf) — div (05" Que).
First we have
Idiv (VF — ©)Qu) |1 gr-2t) < V7~ ©°)Qu] 1 g
(3.69) SAVel, e+ 1071,

1

3 Q55200
2 21) P

and, second

~

1
. e,h € B - e,h 5 . € . e,h
(3.70) v (0% Qu)l s g2y S 107 Q0 sy S 190 IO, o

Next, we see that, for all a € [0, 1),

6

ca
AG*F €a NG
I 2 8 oy I IAF,
Now, by interpolation
5 e|l—ay| el
|a ”32 —o S et 21HOL [ 3
and the definition of the norm in BEV’* implies that
la*]l .4 +evlla®] .3 < lla®ll 5
B22,1 322,1 BQ JEV
Therefore
3.71 eva® < (ev)%||a® .
(3.71) Jevafl g0 ()"l

_a7+

~ 1 ~ §727 7+
We also notice that B, 2, — Bpey “ for p > 2. Therefore if we take

a:=3/p—s,
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then we get, keeping in mind that [[a®||  _3 _ is small,
LDO(B22,;L/)
(3.72) | i NG| 1 o2ty S v Hew)la®| H9€||
. 1+6a€ Ll(prsy’ )N L‘X’(B D LI(B2EV)
Finally,
20| Duf|? + \(div u® 1 <e(1+ |lea® Vs ||? ,
H1+€ 2 (20| Dt P+ A(div u)? ]”Ll(BQJ%) Se(l+| HLOO( )l HL2(3221)
Se(l+v” 1HCLEH w2
2,51/) L2(B2,1

1
At this point, let us notice that for all z € B ¢ and a € [0,1],

¢ —1y,h
2l 1 = z + (ev 20 .1,

Iy = | \\321 1y
S () el oy
o0

2 —o,+ "5—27—}— . _ .
Since B, o — Bp o (with o = 3/p — s), we thus end up with
(3.73) H 1+ 2a €[2M|Du€|2—}—)\(dlvu ) ]||L1(B;;g,+) S 1/*1(51/)0“|UEH2

3 -
L2(BE)
So putting (3.65) to (3.73) together and using (2.16), we conclude that
V2”(5@€HL2 3521+ + H(SGEHLOO 5522 < H(S@ HBS 2+ + My||(dv®, 5@€)|HL2 551 t)
(3.74) +Mo(€V) (Mo +1) + M0\|V5V6HL2(B;;3’+) + HathVE\|L1(35;3,+)+L2(g;;g,+)-
Let us now concentrate on the proof of estimates for dw®. We have, subtracting (1.7) from
(1.5) and using (1.6),

2
0b0° — pA&" + P(Puf-V&© + 8°- V) :—ip(@'fv&/5+5@6vv+ ¢VVE — 2¢° V)

_ €, € 6_50’6(66_0’6) e\,
73<u Vouf + Quf VPu+ 5 e ./4 gy Va

Therefore, according to Proposition 5.2 and to the fact that P is a self-map on any homoge-
neous Besov space, we have

160 oo (3224 + VI0% M Lo gt ) S N005l g2t + IPU” - VO©[l 1y go2t)
+H51)6 : vvynyl(B;;3,+) + \\@avwey,Ll(B;;3,+) + HaeﬁvaLl(B;ﬁ,+
HEVV gz + 10V sz + 0 VOl s

eac ea®(6° — a%)
HQu - VPl gz + I A v en + I o Vel

)

The following inequalities stem from product laws (see Lemma 5.1), under the assumption
that s > —1/2:

(3.75) PV s gty S 1P o 198 gy
2 l

L2(B;1)
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Next we have, if s > 1/2,

(3.77) Il - VQuel o g2ty S 711 oo HVQQfHLz(Bs S22ty
(3.78) HQu‘f-VPuEHLl(B;;l)§HV7’u€HL2(32 19w L2 )
(3.79) 1OVl 11 gs=24) S H@allL e ||V6V€IIL2(BS 1y
(3.80) HfEEVVHLl(B;;?,’ﬂ SIVVl 2 -g ”&)6”L2(Bg;5+)a
(3.81) 1YVl s <“W€”L2<Bz Il 2 g+,
(3.82) IIq'be‘f\lLl(B;;%*) S IVHE|| 1971 L2 s 21+-

L2(B21)
So arguing as in the proof of (3.72), we get

ca®

€ . < -1 al| € €
(3.83) Mz A gz S v (ev)%la |!LW(B§;;)\\U HLI(BQ%I)-
Finally,
ea®(0° — a%)
o Vol ot SIVEIL, g 107 a7l , 1y llea’ll s
1+ea LY (B, 2 ) (B%)) L2(B3l,) L>(BF, )
Hence using again that B2 ey’+ — BSEB’JF and (3.71), we conclude that
ea®(0°—a®)
R S s wwra L PNV
< 1 alf| € € 9¢ + 5 )
S CO L IO L B ISR E BN

So putting together inequalities (3.75) to (3.84), we end up with
I8 1 )+ 180 2y S 1051155

Mol (30, 30°) 2 gy VOVl o) + (20) ME(L 4w M),
Bearing in mind (3.65), we thus see that if M is small enough with respect to v,
V180 o gty + 10 sy + VIO ) + 18 e e, (005,605 352
(3.85) +ME(ev)® + M0||V6V€||L2(B;31,+) 10Vl g2ty ro(Bimsy

whenever s > 1/2, 4/p —1/2 < s < 3/p and 2 < p < oco. This completes the proof of the
theorem.

3.5. The case of smoother data. In order to improve the results of convergence (see

Remark 2.2), we need to have higher order a priori estimates for the linear system (3.43).
2

2p
In effect if we want to have convergence in (3.62) for the norm L7- Q(B” 2) rather than
3

3
Lp—2 (B;e,,w ) then we need 6 to have the same regularity as b, namely B$,. So we need in

addition that 6y € Bf and, owing to linear coupling, this will enforce us to take ug € Bf’ .
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Here we just point out what has to be modified to our previous arguments so as to handle
such data. Let us start with (3.25). We concentrate on the high frequency regime. First we
notice that

0 — RAO = —Ad.
Hence standard energy estimates ensure that
1AG; (D) 22 + K22 |AG; 13 12y < 1A0;(0) ]I 22 + 1A% | 1 12y
Taking advantage of (3.42), we thus get
(3.86) 221105l 2 + 2711011 13 12y < CN(27bj, dj, 270;)(0)]| 2

We also need more regularity for (b, d). This is given by (3.42) after multiplying by 27:
(3.87) 11(2%0;,27d;,60,)(t)l| 2 +/ 127765, 2% d;, 2%76;)|| .2 d7 < C||(2%05,27d;,0;)(0)] 2.
Arguing as in the proof of Proposition 3.1, we thus deduce that

t
181l oo g+t - pet2 =y + 1(dsw, )| oo a1y +/0 (IBll ges1+ prvas + 1 (ds w, 0)|| gsva-) dr

S KeCV(t) (“bo“éf+1’_méf+2’_ + H(do, U)O, GO)HBT-H’_

t
+/0 e_CV(T)(”B“Bf+1’_03f+2’_ -+ H(D, W, G)Héfﬂ,—) dT).

Starting from this inequality and following the computations of Subsection 3.3, it is easy to
get the result of Remark 2.1. Next, resorting to the first inequality of Proposition 5.1 with
s =1/2 and to nonlinear estimates, we get Remark 2.2.

4. THE NONCONDUCTING CASE

As pointed out in the introduction, in the case k = 0, it is easier to work with RE°.
The reason why is that the linearized equations for (u®, R°) are the same as those of the
classical barotropic Navier-Stokes equations (see next paragraph). Apart from this purely
technical point and the fact that one has to work with smoother data, the overall approach
for investigating the global existence and low Mach number issues is the same : first we
perform the change of variables

(4.88) (a,u, R)(t,x) = e(a®,u®, R°)(*vt,eve) and V(t,x) = eVe(2ut, eva),

so as to reduce the proof of existence to the case ¢ = v = 1, and next we take advantage of
dispersive properties of the acoustic wave equation, and of parabolic estimates to establish
the convergence to some suitable solution of the Boussinesq system with no heat conduction
(namely (1.11)).

4.1. Linear and paralinear estimates. If we decompose, as in the heat-conducting case,
the velocity field u into its (reduced) potential part d, and its divergence-free part w, then
the linearized system about 0 reads

&ga+Ad:0,
Lo Od — Ad — AR = 0,
(4.89) R+ Ad =0,

Orw — Aw = 0.
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As in the heat-conducting case, w just fulfills the heat equation. Next, we notice that (R, d)
satisfies the linearized equation for the compressible modes of the barotropic Navier-Stokes
equations. Hence, following the method of [4], we gather that for some universal constant C,

t

IRy d)O)l2 +22 [ IRy d)lpzdr < CURL YOz i <0,
t

127R;. d) ()] 2 + / |(27R;.,2%d)) |2 dr < CIN@ Ry, d)(O)l = i > 0.

Now, from the first and last equations of (4.89), we see that
a;j(t) — Rj(t) = a;(0) — Rj(0) forall t€RT.
Hence, taking advantage of the above estimate for R;, we get
max(1, 27)la; (6|2 < C (max(L,27)(a;(0), R; (0)) 2 + d;(0) | 2).

From those inequalities, arguing as in the case kK > 0, one may deduce a priori estimates for
the following paralinearized equations:

Bya + Ad + T,pa = A,
oyd + Tvkakd —Ad— AR =D,
O¢R + Ad + TvkakR =R,

dyw + Tvkakw — pAw =W,

(4.90)

where the source terms A, D, R, W and the vector field v are given.
More precisely, we have

Proposition 4.1. Let V(t) := fot IVv||oe dT. There exists a constant K depending only on
i and a universal constant C' such that for all s € R, the following inequality holds true:

t
0 R e w2y + 10l e g + /0 (I, w) | ggi2 + IRl g.+) dr

< KeCV() (H(%’RO)HBf“’ + H(do,wo)HBg1

t
# [ e OUAR g+ 1D g, ) )

4.2. The proof of global existence. Here, in the case ¢ = v = 1, we want to prove the
existence of a global solution (a,u,R) to (1.9) with

~ .1 .1 ~ .1 .5 - ~ .1 .1 Lsda T
a € C(ByNB3,), weC(B3NB3)NL (B31NB3,), R e (B3 NB3,)NL(Bf" NB{™ ).

For that, this is mainly a matter of proving a priori estimates in this space, taking for granted
the existence of a solution. Indeed, the a priori estimates that we are going to prove below
would be the same for the system truncated by means of the Friedrichs method (see e.g. [2],
Chap. 10 for the related case of the barotropic Navier-Stokes equation).

More precisely, we have to bound:

(4.91) X := [[(a, Rl Hll,

.11 1os Al s 9 HIRI s Lz
L>* (B3B3 ;) (B3 1NB3 ) LY(B3NB;3) LY(B2 'nBZ'")
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As we have in mind to apply Proposition 4.1 (twice: once with s = 3/2 and once with
s =17/2), we rewrite (1.9) as follows:

ora + Tukaka +Ad=A,
Od + Tukakd —Ad— AR =D,

(4.92) OR + Ad + Tu04R = R,
ow + T Opw — pAw =W,

where
A = T,oka—u-Va—adivu,
D = T,0kd— A"'div(u-Vu) — A div [1 j_ - (BAu + (A + 1) Vdiv u) — %] ,
R = TudR—u-VR —Rdivu — 8,V — div (Vu) + [2a|Dul? + A(divw)?],

a . < aV(R+V)

= T, — : — A -

w k0w — Plu - Vu) P[1+a(u u+ (A + p)Vdivu) Tra }

.1 7
According to Proposition 4.1, we thus have to bound A, R in Ll(Bi1 N 322,1) and D, W in

1L
L'(B3, N B3,). We shall assume throughout that |||« (R+ x %) 18 small.

. Recall that

b gt
51MBs1)

Bounds for ||A]| .
LY(B

A=-T) u" - adivu.

Using standard product laws for the paraproduct and remainder (see e.g. [2]), we get

4.93 T, < |IVa u ,
(493) Tl e SVl o,
4.94 T}, Ju* A% :
490 T,y SVl s
(4.95) ladival] 1 Sllall 1 lldivel] s
LY(B3, L>=(B3) Y(B3,
(4.96) ladivall 2 Sl g Idivall o 4llall g fldive]
Lt 322,1) 322,1 YB3, L>(B3,) Lt 322,1
Hence
(4.97) 1Al oy g Sllel ozl s g
L (BQIHBQI (BQIOBQI) (BQIOBQI)
Bounds for |D|| .1 s and |[[W] .1 s . We may rewrite D as follows:
Ll(BQQ,lmBg,l) L1(322,10322,1)
D:[Tuk,A_lai]akui_A_laiTékuiuk_A_ldiv 11 (ﬂAu+(5\+,&)Vdivu—V(R+V)) .
a

The first two terms of D may be treated as in (3.49): we get for any s > 0,
(4.98) [T A0 Oku" — AHOTY, i s S [V ull oo ] gy -
Next, classical composition and tame estimates yield for s > 0,

a
1+a

Aullgs | S lallz Aul g |+ [l Aullzoeflall 5



28 R. DANCHIN AND L. HE

.3
Hence, using the embedding B3, < L™, we easily get

(4.99) s Sall 15wl s e .
1+ CRN Le=(BENBZ) - LM (BiNB)
Finally, we have
a ~
4.100 ——V(R+V < V(R+V ,
4100 I VR D, 0 Sl ISR,
a ~
4.101 ——V(R+V 5 s [V(R+V 5
@100 IR D, e Sl s VRV, s
V(R+V 3 .
Flal, g IVRA DI,
So putting (4.98) to (4.101) together, we get
1PN, 2y a5 Sl H (.
(BQ lmBQ l) Ll( 21 B lmB )
(4.102)
tllal a5 9 IR 5 g HVVH "
Loo(BQ,lﬂle) LI(BQ,lﬂle) LI(BQ,lmB21 2,103 1

It is clear that W satisfies exactly the same inequality.

Bounds for ||R)| y . Recall that
L

Do

7
B 1032%1)

R = —TékRuk — Rdivu — 8,V — div (Vu) + [2i|Dul? + A(divw)?).
First we have for any s > 0,

k
1T ll5;, < IVRIlze lull 5

Hence
TI k < IR ’
T, 3 S IR, 4 uuum "
(4.103) Lk ' <
Tl g SR, gl s
Next, product estimates imply that
IRdivaull oy SR, g lull, g
LY(B34) L%(B3,) L*(B3))
(4.104) <
IRdiveul | 55 SIRE s H | el s IRI 2
B3y L(BZ, LI(B L'(B3) Lo (Bgy)
We also have
(4.105) e (Vall o SV Tl g 0P Tl
LY(BZ,) L>(BZ)) LY (B#)) Ll(B L (B3,)
(4.106) Ildiv (V)| 2 SV g HUH +IVI g el g
L1 (B3,) L>(Bg, LY(B3)) LI(B 1) Le(B3y)
And finally,
<
(4107) IVue Va1 S 19l 1Vl
(4.108) IVu@Vull |z S IVullpe eIVl | ()
L (32,1 2,1)
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Therefore, combining inequalities (4.103) to (4.108), and using embedding, we end up with

IR 3 .z Sl lull 3 5 +l0V] 3
L1(32210321) LI(B 3221) L (322103221) Lt 322103 1)
+||V 1%
(4.109) +HIVI wed ik, )”“HLoo(Bélmsil)JrH“” &, 3221)\\ HLOO(B F ek
+HIRI . lall o5y IR, g el g IR gl g
L°°(B 3221 L1(322,103221) 221 L2(322,1) L1(322,1) L°°(322,1)

Putting (4.97), (4.102) and (4.109) together, one may finally conclude that for some con-
stant K depending only on A and [i, we have

+ V|
LY

s e )X +]aV
B 1032%1)

X < K(Xx(0)+ X2 1% .
<K(XO+X+ (V] _ bt osl)

N ken

1.3
(BQ%lmBi »)
From this, we see that if X(0) and the terms pertaining to V are small enough, then

(4.110) X < 2K(X(0) IR )
L1(322,10322,1)

Going back to the original variables according to (4.88), we then get the global existence part
of Theorem 2.3, for any € > 0.
4.3. The proof of convergence. As in the case where £ > 0, we first show that (Qu, R?)
goes to 0, a consequence of Strichartz estimates, then establish that (Pu®,©%) goes to the
solution (v, ©) of the Boussinesq system (1.11).
4.3.1. Convergence to 0 for (Qu®, R%). It suffices to prove dispersion estimates in the case
¢ = 1. The change of variable (4.88) will provide us with decay estimates in the general case.
Now, the system for (Qu,R) reads

0,Qu+ VR = —0u-vu) — o 2 ) 4 @ V(/+R)|=H

u =—Q(u-Vu) — — =:
t 1 ta 1 +a 1
IR +divQu = =3,V — div (V 4+ R)u) — 2u|Dul* — (X + p)(divu)? =: Hy.

Therefore, Strichartz estimates imply that for all p € [2, 00),

4.111 , R 2.1 S v Ro)ll .1 Hy , H 1o
(4.111) QuR 2, 53, % H(Quo Ry -+ (B ),

1
So it is only a matter of bounding H; and Hy in L* (B3 1), which may be done by using standard
results of continuity in Besov spaces and the fact that Q is an homogeneous multiplier of

degree 0. More precisely, we have

1QGu-Vu)|| g Slull 3l )

gy~ ey sl
< (1
19( 755 Y0, S A+l s D, s
a
o) VV+R < la L (Vv s +[|[VRI s ),
lo(=v( >)||L1(21) lall g VY, ) FIVRI, o3 )
Jdiv ((V + Ry, g Sl g VR + el V4RI g
2 2 21) Lo 2 2,1

IVu@Vull |y Sl
2

I I
2 Lee (32,1)
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Therefore, if we set

Co :H(QOaRO)HB%

2,1

gl g +laV] ,
2

B, 351032%1 Lt 1322103 »
then plugging the above inequalities in (4.111) and using (4.110) leads to
[(Qu,R)|_ 2p 2.1 <KCp forall pe |2, 00).
LP=2(B,, ?)
.5
From (4.110), we also know that (Qu,R) is bounded by KCj in Ll(Bil). Hence using

interpolation exactly as in the case k > 0 leads to

H(Qu,R)Hp(B;I) <KCy forall p>2 and se€[-1/2+4/p,3/p].
Now, going back to the original variables, we gather that for € > 0, we have

(4.112) [[(Qus, RE)||_ 2 2.1 gKCSe%‘% if 2<p<oo,
LP=2(BP, 2)

(4.113) V%H(QuE,RE)Hp(BS < KCS(&V)%fs forall p>2 and se[-1/2+4/p,3/p].
P,
with Cf defined in the statement of Theorem 2.3.

4.3.2. Global ezistence of a solution to (1.11). Under the assumption that (2.17), the ex-
istence of a global solution (©,v) to (1.11) satisfying (2.18) is an easy modification of the
corresponding proof for the standard incompressible Navier-Stokes equations, combined with
the following a priori estimate for the transport equation (see e.g. [2], Chap. 3):

T
1ol . <leoll ., exp</ ol sdt>
L%O(Bil) B22,1 B3,

Indeed, using once again Proposition 5.2 and product estimates, we see that

U < lwoll r + O \VAY4
It 0 g S0l g s 1Ny IOV

"’ wlw
-
—

Hence if (2.17) is fulfilled then one may close the a priori estimates globally in time.

4.3.3. Convergence of (Pu®,©¢%). Let us first notice that (recall that ©° = a® — R — V®)
P<1+€a8v(V€+R€)> N P<GEV(V€+R€)> - 7D<a€ 1iiasV(V€+R€)>

= P(OV(VE+R)) - P<a€1jﬂ;asv<ve+7z€)>

Therefore the system for (99, v°) := (0 — ©, Pu — v) writes
D 00° + Puf - VIO® = —&° - VO — Quf - VO — ©°div Quf — (2u|Duf|* + A(divu®)?),
O — pAw® + P(v - Vo) + P(0v° - VPu®) = P(O°VV + ©°VIVE + ©°VR?)
—77<Qu VP +uf - VQue + 2% (Auf + aEV(Ve—i—Rs)))-

In contrast with the heat-conducting case, we do not know how to prove convergence globally
in time. This is due to the fact that some terms in the right-hand side of the equations
for (0%, &v°) decay to 0 only in L?-in time spaces and that §O° satisfies a mere transport
equation (hence the r.h.s. should be bounded in L!-in-time space if we want to get a time
independent bound for J0°%).
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We claim nevertheless that ©° — © in Lf;’c(Bs %) with s as in the previous step, and that
Pu® — v in

( loc(BS 1) N E?oc( .;,1)) + ( loc(BS 2) N Llloc( .;,1))'

Let us first examine #°. Denoting by K; the r.h.s. of the equation for ¢, standard estimates
for the transport equation ensure that, if s > —1/2 then we have for all ' > 0,

T

T
e € ) .
(4114)  |® ||L%O(B;;2)Sexp</ VPl d )(na@ g+ [ ||K1||B;;2dt)

Product laws give if, in addition, s > 1/2,

|65 VOlgs S &7l VO] 4.
? 21

|Qu - VO pe S [1Q]lp, uvefuBQ_l%,
£ el s < o 13
|©%div Quell s S lldiv Q| |F]]

1 .3 .1
For the last term of Ky, we use the fact that the product maps By £ x B2271 “in Bzf “if

0 < a < 1. Hence using the embedding B271 RS B;EQ with a = 3/p — s, we get

20D 2 + Aiv ) s S ]y [

I (7o
52 2@
2,1 2,1

Inserting those inequalities in (4.114) and keeping in mind that VPu¢ is uniformly bounded
3

in Ll(Bil), we get for any s € [-1 + %, %] N(3,00):

T
1007 ze 1352) < 19961 g2 +/ 1ol s MO 3 e
2

el . e € €
- / (10N 10+l 1l -0 )

,1

whence
1 -1 2 1 3
s Ta)\\@ougél H&fuig(s,s,,lﬁuﬂggﬂ + v (CHAWD)E (er)” + ev(wD)F).
In order to bound &°, we shall make use once again of the parabolic estimates given by
Proposition 5.2. The main difficulty here is that some terms of the r.h.s. Ky of the equation
for ®° cannot be bounded in global L!-in-time spaces. Hence we shall use the following

inequality which may be easily deduced from Proposition 5.2 (we do not track the dependency
with respect to p):

”(;UEHE%O(B;’EIwLBZ;Q)—i_Hév&Hi%(B;’l)-i-Ll (BS ) S H&) HBS 1 Bs 2+”K2HL2 Bs 2)+L (Bs 11).
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Now, from product estimates in Besov spaces, we get

,v&}e s Ss— < &}6 s s
||U HL%“(BPJI"‘BPJQ) ~ (H H 2%1)_}'HUH T(B2§1))|| HL2 B )JrL1 (B 1)’

€ € . . €
||5U VPU HL%—V(B;EI-FB;EQ) S ||V7Du H T 21 H(SU ||Loo(BS 1+Bs 2),
100V V][ 52 S IVVIL g 180%] geme,

, Bs1
10V VI3 (02, S ”GEHL«:(B VOV 2 (s
O VRE| 0, s < e° VRE s—
[O°TR < | HLOO(BM VR g3 500
|Que - VPu|l 1y gy S IvPel, 1251 HQu lzz.5:,)
luf - VQue| 1 o S L. ”VQUEHH (B33
T P, (BQI

and arguing as in the proof of (3.72),

V2
It A iy S leotl e 9%, (Bl)
< -1 € €
S @I e T s
L1
Finally, because BQ’1 B; 2,
155 e VVE+R) 22 o) S ||€a€\| o [ P ||V(V5+R€)||
L¥(B3, ) F(B31) (Bz 1)
“Hev)? 6H - H P HV€+R€H~2 EIe
T (BEV T (BQ,I) LT(BQ,I)

Therefore, putting together all those inequalities and using the estimates provided by the
previous steps we conclude that

T
”&Ja”LDo B +B 2) + 160l 72 2(By )+LE(BS ) S H(SUEHB;;H-B;;Q +/0 ”VVHB%”‘S@&HB;;Q dt
2 —1
+C§(||&’€||L2T(B;’1)+L;(B;I)+‘|5U€‘|i%o(3531+3532)+‘|V5V€||L§(B;31))+(C§) (1+v7"Cp)(ev)™.
If V_lCS is suitably small, we thus deduce that
T
1000 s 5+ 18 3 g gy < PO+ K [ IVIL g 19

with 8(e) = ||dvg ||Bs LB +C’0(HV6VEHL2 (B 1)+C06 ).

Therefore, plugging (4.115) in the above integral, and using Gronwall lemma, we get
@110) 18 ey < (10050 + A+ THIG0l Ly (18815057

2
€ € e 2—s N2k _2—s 23

1
xexp| K||Oo|| .1 (1+T2)|VV .3 >,
(Kleoly 1+THITV, s
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and
(4.117) 100 o0 sty o2y + 100N 22 (s yrns )
< 8l g1 g2 + Co UV gy + Cher ™)

1
#6195l + 1+ T3 00l3 (185154

3_g 1 3_g 3 _s
+C5(IVOVEl 7z ey + Che? )) + (C§)*(T2er™° + T2 2)>HVVHL1T(B§1)

1
K|© 14+T772)||IVV
comp(Kl@oll3 1+ THIVVI, s )

whenever s € [-1/2 4+ 4/p,3/p|] and s > 1/2. This ensures the convergence of (0%, Puf) to
(0©,v) with an explicit rate. [ |

5. APPENDIX

In this Appendix, we give some a priori estimates involving hybrid Besov spaces. Let us
start with product estimates.

Lemma 5.1. Suppose that p € [2,00] and 8 > 0. There exists a constant C' such that for all
a > 0, we have

19l geo- S I lggallgl g i B=1/2<s<3/p.
’ ’ 2,1

1follgspe S Iflggelol g-n o B-3/2<s5<3/p—1
2,1

Proof. We may assume that o = 1 making a change of variables if the case may be. In order
to prove the first inequality, it suffices to notice that for all o € R we have

(5.118)

|- lge- = Il go=1rp0 -
p,1 p,1 p,1

. N .
Now, it is well known (see e.g. [2]) that the usual product maps By x B22716 in B;Iﬁ

whenever 5 —3/2 < o0 <3/p and > 0. Therefore

I7olagse-o S Wl g smd Dol S U7 ol 5o

1

This implies the first inequality.
Proving the second inequality is rather similar: now we use the fact that
(5.119) - Mgss 2 M- N 4 ot
Decomposing f into low and high frequencies according to (2.12), we have
l h
fog=1rg+ 1"
Now, the aforementioned product law ensures that

l l h h
e e P L ooy A E I P

So taking advantage of (5.119) completes the proof of the second inequality. |

The following Strichartz estimates for the acoustic wave equation are the key to the proof
of convergence.
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Proposition 5.1. Let (¢, Qu) (with curl Qu = 0) satisfy the 8D acoustic wave equation
81&(14' \/EdIVQU = Fa
0, 9Qu + \/EVq =d.
Then for any o > 0, s € R and p € [2,00) the following estimates hold true
@ Q) 2 oz

Pt < C(H(qo, Quo)|| gy, + (£, G)”LI(BSJ))’
1@ QN 2, gregore) < O (11ta0, Quo)l s + N (F Ol )

Proof. The first inequality has been proved in [6]. In order to prove the second one, one just
has to decompose (g, Qu) into low and high frequencies, that is (¢, Qu) = (¢*, Quf)+(¢", QuM)
and apply the first inequality with s 41 (resp. s) to (¢, Qu’) (resp. (¢", Qu™)). |

Let us finally state maximal regularity estimates for the heat equation, in hybrid Besov
spaces.

Proposition 5.2. Let u be a solution to the heat equation

{ Ou — Au = f,

u|t:0 = Uup.
Then we have the following estimates for any o € R, a > 0, p € [1,00] and g > r:

L TR LA

lully oo S Toollgge + I oo

Proof. The first inequality is classical (see e.g. [2], Chap. 3). The second inequality may be
obtained from the first one after decomposing u, ug and f into low and high frequencies. B
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