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DIVERGENCE

Abstract. This note is dedicated to a few questions related to the divergence
equation which have been motivated by recent studies concerning the Neumann

problem for the Laplace equation or the (evolutionary) Stokes system in do-

mains of Rn. For simplicity, we focus on the classical Sobolev spaces framework
in bounded domains, but our results have natural and simple extensions to the

Besov spaces framework in more general domains.

1. Introduction. We would like to present some recent advances related to the
divergence operator, in connection with our new result in [4]. We are interested in
functionals generated by the divergence of a vector-field and in the solvability of
the divergence equation

div u = f in Ω, u = 0 at ∂Ω, (1)

where the function f satisfies the compatibility condition∫
Ω

f dx = 0. (2)

For simplicity, we here assume that Ω is a C2 bounded domain of Rn.
Solving (1) in Sobolev spaces W k

p (Ω) with k ≥ 0 is a classical issue whenever f
(together with enough derivatives) vanishes at the boundary ∂Ω of the domain (see
e.g. [8] and the references therein). Motivated by recent works in incompressible
fluid mechanics, we address two natural questions related to (1) which, to our
knowledge, have been overlooked in the literature.

First, we want to investigate the problem of the solvability of (1) in high regu-
larity if f does not vanish at ∂Ω, and in low regularity, namely if the right-hand
side of (1) belongs only to (W 1

p′(Ω))∗.
Second, we want to consider the case where the divergence operator is replaced

with a “twisted” or “curvilinear” divergence operator such as

divA = A : D (3)

where A stands for some given matrix-valued function.
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Note that as A = Id then div A = div . Basically, we shall show that if A
is measure preserving and close enough to the identity then the results for the
standard divergence equation (1) remain true for the twisted divergence equation

divA u = f in Ω, u = 0 at ∂Ω. (4)

Our investigations are motivated by the study of the inhomogeneous Navier-
Stokes equations

ρt + v · ∇ρ = 0 in Ω× (0, T ),
ρvt + ρv · ∇v − ν∆v +∇Q = 0 in Ω× (0, T ),
div v = 0 in Ω× (0, T ),
v = 0 on ∂Ω× (0, T ),
v|t=0 = v0, ρ|t=0 = ρ0 in Ω,

(5)

in various domains of Rn (see [3, 6, 7]). It turns out that solving this problem
for rough data involves the divergence equation in a setting where the trace of the
right-hand side of (1) or (4) need not be defined. Furthermore, in recent works
(see [5, 6]), we noticed that considering System (5) in the Lagrangian coordinates
may help to handle very general initial densities. However, the Lagrangian velocity
is no longer divergence-free for positive times: it satisfies (4) where A = (DX)−1

and X stands for the Lagrangian flow. Note in particular that incompressibility is
equivalent to detA ≡ 1 so that we will restrict ourselves to this case in what follows.

2. The divergence operator in low regularity. In order to investigate (1) in
low regularity, one has to find a proper meaning of div k as a distribution acting
on smooth functions up to the boundary. To be more specific, let us consider the
following Neumann problem:

∆u = div k in Ω,
∂u
∂~n = 0 at ∂Ω,

∫
Ω

u dx = 0. (6)

Suppose we are able to solve such a system in the case where k ∈ L2(Ω). Then we
expect ∇u to be in L2(Ω). This implies that

div (∇u− k) = 0 and ∇u− k ∈ L2(Ω).

The trace theorem entails that the normal part of the vector-field ∇u − k at the

boundary is well defined as a functional over the trace space W
1/2
2 (∂Ω). In other

words, denoting by W
−1/2
2 (∂Ω) the space of those functionals, and by ~n the outer

unitary normal vector to ∂Ω, we may write

~n · (∇u− k)|∂Ω ∈W−1/2
2 (∂Ω).

On the other hand, if Equation (6) is solvable for k ∈ L2(Ω) then we must have
~n · ∇u|∂Ω = 0, so

~n · k|∂Ω ∈W−1/2
2 (∂Ω).

However, the above condition does not make sense for k an arbitrary vector-field
with coefficients in L2(Ω). In short, there is no chance to solve system (6) in this
context.

This obstacle is classical and may be overcome in different ways (see e.g. [16]
and the references therein). In this section, we present the approach that has been
proposed in our recent work [4], in connection with the divergence equation. The
key idea is to “prescribe” the normal part of the vector-field in a case where it
should not make sense. This may be done by introducing a functional acting on
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smooth functions up to the boundary of Ω, which contains both the information
over the divergence of k and over some distribution at the boundary. Here is the
corresponding definition:

Definition 2.1. For any couple (k, ζ) of smooth functions with k ∈ C∞(Ω;Rn) and
ζ ∈ C∞(∂Ω;R) we define DIV [k, ζ] as the functional over C∞(Ω;R) such that1

DIV [k, ζ](φ) := −
∫

Ω

k · ∇φdx+

∫
∂Ω

ζφ dσ for φ ∈ C∞(Ω).

We aim at generalizing the above definition to Lebesgue spaces Lp(Ω), that is
the set of measurable functions over Ω with integrable p-th power. In passing, let
us also introduce the Sobolev space Wm

p (m ∈ N) which is the closure of smooth
functions (up to boundary) for the following norm:

‖u‖Wm
p (Ω) = ‖u‖Lp(Ω) +

∑
0<|α|≤m

‖Dαu‖Lp(Ω). (7)

The space W
−1/p
p (∂Ω) is the dual space to W

1/p
q (∂Ω) with 1/p = 1 − 1/q. The

latter space can be viewed as the trace space of functions from W 1
q (Ω), where the

norm is determined as follows:

‖u‖
W

1−1/q
q (∂Ω)

= inf
{
‖w‖W 1

q (Ω) : w ∈W 1
q (Ω) and w|∂Ω = u

}
· (8)

Thanks to the trace theorem and to the definition given in (8), it is obvious that
for all smooth functions φ, k and ζ, one has∣∣∣∣∫

Ω

DIV [k, ζ]φdx

∣∣∣∣ ≤ C(‖k‖Lp(Ω) + ‖ζ‖
W
−1/p
p (∂Ω)

)‖φ‖W 1
q (Ω). (9)

Therefore, arguing by density, Definition 2.1 naturally extends as follows:

Proposition 1. Let 1 < p, q < ∞ with 1/p + 1/q = 1, k ∈ Lp(Ω;Rn) and ζ ∈
W
−1/p
p (∂Ω;R). Then DIV [k, ζ] extends as the functional over W 1

q (Ω;R) such that∫
Ω

DIV [k, ζ]φdx = −
∫

Ω

k · ∇φdx+

∫
∂Ω

ζφ dσ for φ ∈W 1
q (Ω).

Remark 1. Note that in the above equality, ζ need not be integrable. It is under-
stood that ∫

∂Ω

ζ dσ := 〈ζ, 1〉
(W
−1/p
p (∂Ω),W

1/p
q (∂Ω))

. (10)

We shall keep this notation throughout the paper.

Definition 2.2. In all that follows, we denote by W−1
p (Ω) the set of functionals

DIV [k, ζ] with k ∈ Lp(Ω;Rn) and ζ ∈ W−1/p
p (∂Ω;R) satisfying the compatibility

condition ∫
∂Ω

ζ dσ = 0. (11)

Granted with the above formalism and definitions, the above Neumann prob-
lem (6) recasts in

DIV [∇u, 0] = DIV [k, 0] in D′(Ω). (12)

This setting yields the following relations on the traces

~n · (∇u− k) = 0 at ∂Ω.

1We will rather adopt the notation
∫
Ω DIV [k, ζ]φ dx := DIV [k, ζ](φ) in the rest of the paper.
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In this context, it is natural to generalize (6) as so:

DIV [∇u, ζ2] = DIV [k, ζ1] in D′(Ω) (13)

where ζ1 and ζ2 are given distributions over ∂Ω satisfying the compatibility condi-
tion (with the convention (10)):∫

∂Ω

(ζ1 − ζ2) dσ = 0. (14)

Under assumptions such as k ∈ L2(Ω) and ζ1, ζ2 ∈ W
−1/2
2 (∂Ω), solving (13)

amounts to finding u ∈W 1
2 (Ω) such that∫

Ω

∇u · ∇φdx−
∫
∂Ω

ζ2φdσ =

∫
Ω

k · ∇φdx−
∫
∂Ω

ζ1φdσ for all φ ∈W 1
2 (Ω).

This is of course equivalent to∫
Ω

∇u · ∇φdx =

∫
Ω

k · ∇φdx−
∫
∂Ω

(ζ1 − ζ2)φdσ, (15)

or to ∫
Ω

∇u · ∇φdx−
∫
∂Ω

(ζ2 − ζ1)φdσ =

∫
Ω

k · ∇φdx. (16)

Those latter two problems rewrite respectively

DIV [∇u, 0] = DIV [k, ζ1 − ζ2] in D′(Ω) (17)

and

DIV [∇u, ζ2 − ζ1] = DIV [k, 0] in D′(Ω). (18)

In any case, the distributional interpretation is that

∆u = div k in Ω and (∇u− k) · ~n = ζ2 − ζ1 on ∂Ω.

In the case of regular data (that is if k is smooth), then the normal trace of k at
the boundary is defined. Therefore decorrelating k and its “formal” normal trace
ζ1 is not relevant any longer: keeping (6) in mind, the only equation that has to be
considered is (13) with ζ2 = 0 and ζ1 = k · ~n.

The below result ends our considerations for systems (6) and (13).

Theorem 2.3. Let Ω be a C2 bounded domain. Let k ∈ L2(Ω) and ζ1, ζ2 ∈
W
−1/2
2 (∂Ω) satisfying the compatibility condition (14).
Then there exists a unique solution to (13) such that u ∈W 1

2 (Ω) and
∫

Ω
u dx = 0.

Moreover, the following estimate is valid:

‖u‖W 1
2 (Ω) ≤ C(‖k‖L2(Ω) + ‖ζ1 − ζ2‖W−1/2

2 (∂Ω)
). (19)

The proof of Theorem 2.3 follows directly from classical arguments based on
Definition 2.1 and Inequality (9).

3. The divergence equation in high regularity. The objective of this part is
to analyze the construction of a solution to the divergence equation

div u = f in Ω, u = 0 at ∂Ω. (20)

We are interested in the case where f is smooth as well as in the case where it is
merely a functional (that is f = DIV [k, ζ]). In particular, we want to show that
the corresponding solution operators coincide, a property that is of importance for
the analysis of (5). Our main result reads:
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Theorem 3.1. Let m ∈ {−1} ∪ N, p ∈ (1,∞) and Ω a bounded domain with
∂Ω ∈ Cmax{2,m}. There exists a linear operator Bm : W−1

p (Ω) → Lp(Ω) satisfying
the following properties:

• if f = DIV [k, ζ] ∈ W−1
p (Ω) then u := Bm(f) fulfills

DIV [u, 0] = DIV [k, ζ] in D′(Ω) (21)

and, in addition,

‖u‖Lp(Ω) ≤ C(‖k‖Lp(Ω) + ‖ζ‖
W
−1/p
p (∂Ω)

). (22)

• For all j ∈ {0, · · · ,m} and f ∈ W j
p (Ω) satisfying (2), the vector-field u :=

Bm(f) is in W j+1
p (Ω), fulfills (1) and

‖u‖W j+1
p (Ω) ≤ C‖f‖W j

p (Ω). (23)

The above result is a natural extension of the following well-known theorem
[1, 8, 14]:

Theorem 3.2. Let ∂Ω ∈ C2, m ∈ N and p ∈ (1,∞). Then there exists a linear
map B : W̄m

p (Ω)→ W̄m+1
p (Ω), where, for j ∈ N,

W̄ j
p (Ω) :=

{
f ∈W j

p (Ω) such that ∇kf |∂Ω = 0 for k = 0, · · · , j − 1
}
,

and the vector-field u := B[f ] fulfills (20) and

‖u‖Wm+1
p (Ω) ≤ C‖f‖Wm

p (Ω). (24)

The main improvement in Theorem 3.1 lies in the case of low regularity data
and on the fact that the trace of f at the boundary need not be zero. A similar
result has been proved in [10] (see Cor. 1.4) for the high-regularity case and by the
authors in [4] in the Besov spaces Bsp,q(Ω) (−1 + 1/p < s < 1/p) setting. However,
in those two works it does not appear clearly that high and low regularity estimates
hold true for the same solution map: we have to keep in mind that solutions to (1)
are not unique.

Proving Theorem 3.2 is based on an accurate analysis of the following integral
formula :

u(x) = B(f) :=

∫
Ω

f(y)
x− y
|x− y|n

∫ ∞
0

ω
(
x+ r

x− y
|x− y|

)
(|x− y|+ r)n−1drdy, (25)

where ω is a fixed smooth function with average 1 supported in a ball B(x0, R).
Equality (25) is known in the literature as the Bogovskĭı formula [1]. The result of
Bogovskĭı has been inspired by an idea of Sobolev [15]. It is well-known (see e.g.
[8]) that the above vector-field u fulfills the divergence equation (1) in Ω, provided
the domain is star-shaped with respect to the ball B(x0, R). The expression of (25)
guarantees that for smooth f supported in Ω the solution vanishes away from Ω.
Hence the boundary condition for u is satisfied immediately. Theorem 3.2 then
follows by density once suitable a priori estimates have been established. Let us
emphasize that arguing as so requires the function f to vanish at the boundary.

In the case of low regularity the formula should be modified. Formally, if one
performs an integration by parts in (25) in the case where f = div k, and set ζ = k·~n,
we obtain

u = Ik + Jζ, (26)
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where

Ik(x) = −
∫

Ω

k(y) · ∇y
[ x− y
|x− y|n

∫ ∞
0

ω
(
x+ r

x− y
|x− y|

)
(|x− y|+ r)n−1dr

]
dy, (27)

Jζ(x) =

∫
∂Ω

ζ(y)
x− y
|x− y|n

∫ ∞
0

ω
(
x+ r

x− y
|x− y|

)
(|x− y|+ r)n−1 dr dσy. (28)

Even if there is no correlation between k and ζ, these two integrals make sense
independently from one another if seen in the principal value meaning. Of course,
in the special case where the data are regular and ζ = k · ~n, we may write

Ik + J(k · ~n) = B(div k) (29)

so that we do get a solution to the initial divergence equation (1).

The main achievement of Formula (26) is that it keeps some marginal information
about the trace, not neglecting influence of data located in neighborhood of the
boundary and provides a solution to (21) in the star-shaped case. The case of more
general domains may be treated by a suitable decomposition as in [8]. This enabled
to get the following result (see [4]):

Theorem 3.3. Let f = DIV[k, ζ] be in W−1
p (Ω). There exists a linear operator

B−1 so that u := B−1(f) fulfills the (generalized) divergence equation (21) with the
estimate

‖u‖Lp(Ω) ≤ C(‖k‖Lp(Ω) + ‖ζ‖
W
−1/p
p (∂Ω)

).

In addition if div k ∈ Lp(Ω) and ζ = ~n · k at the boundary, then u = B[div k].

Remark 2. In the literature we can find some results concerning the divergence
equation in spaces with very low regularity (see [2, 9] and [10], Th. 4.1). However,
to our knowledge, questions concerning the meaning of boundary conditions have
not been discussed: the spaces (of negative regularity order) that have been used
in the aforementioned works have the property that any element can be extended
by zero onto Rn. In other words, we are allowed to put Rn in (25) instead of Ω.

Proof of Theorem 3.1. We omit the cases m ∈ {−1, 0} that have been treated in
Theorem 3.3 and go directly to the case m ≥ 1.

Let us first spend some time on the most natural approach (which, unfortunately,
seems to fail). We want to reduce the study to the case which is treated in Theorem
3.2. So it is enough to find a vector-field Emu in Wm+1

p (Ω) such that

∇kdivEmu = ∇kf at ∂Ω, for k = 0, · · · ,m− 1.

Of course Emu will depend on both m and f.

The issue becomes solvable whenever we are able to determine derivatives at the
boundary in terms of div u and its derivatives at ∂Ω. The conditions div u = f in
Ω and u = 0 at ∂Ω imply that the tangential derivatives of u vanish at ∂Ω and that

∂(u · ~n)

∂~n
= f at ∂Ω. (30)

However higher derivatives obtained that way depend on the regularity of the bound-
ary itself– see [18]. To get the general form of (30) corresponding to the case where

div u = f in Ω and u = g on ∂Ω,
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we look at a neighborhood of a point x0 ∈ ∂Ω. Taking a local coordinate sys-
tem given by an extension of boundary frame (~n, ~τ1, ..., ~τn−1) with coordinates
(s, t1, ..., tn−1) we obtain the following boundary relations

M · ∇(s,t1,...,tn−1)ũ = f̃ and ũ = g̃ at s = 0. (31)

Here M · ∇(s,t1,...,tn−1), ũ, f̃ , g̃ correspond to div x, u, f, g in the new coordinates
system. Of course the coefficients of the matrix M depend on the geometry of ∂Ω.
Furthermore, choosing the change of coordinates in such a way that the normal
vector is preserved, we are ensured that (31) yields

∂(u · ~n)

∂~n
is a linear combination of [f, g, gτ1 , ..., gτn−1

]. (32)

The coefficients of the linear combination depend only on those of the matrix M –
see [13, 18]. The rest of the components of ∇ku|∂Ω, which are not involved in the
constraint div u = f , are put to be zero.

So applying the existence theorem [17], Chap. 3, we are able to find Emu ∈
Wm+1
p (Ω) such that

∇kdivEmu|∂Ω = ∇kf |∂Ω for k = 0, · · · ,m− 1

and

‖Emu‖Wm+1
p (Ω) ≤ C‖f‖Wm

p (Ω). (33)

In conclusion, subtracting Em from f reduces the problem to that when f vanishes
at the boundary. Therefore, applying Theorem 3.2 provides a solution in Wm+1

p (Ω)
to (1). Unfortunately, this construction solves the problem only for the fixed highest
regularity: whether (22) and (23) (for j < m) are satisfied too, is unclear.

For the sake of simplicity, we focus now on the case m = 1 (which is the most
important for the applications that we have in mind) and assume in addition that Ω
is star-shaped with respect to some ball B(x0, R). The case of a general C2 bounded
domain may be achieved by means of classical decomposition techniques as in [4, 8].
To get W 2

p regularity we differentiate (25) once. We obtain for i = 1, · · · , n,

∂xiu(x) =

∫
Ω

f(y)∂xi

[
x− y
|x− y|n

∫ ∞
0

ω

(
x+ r

x− y
|x− y|

)
(|x− y|+ r)n−1dr

]
dy

= [K(∂yif)](x) + Lif(x)

with, for some suitable modification ω∗ of ω,

Kg(x) := −
∫

Ω

g(y)
x− y
|x− y|n

∫ ∞
0

ω∗
(
x, r

x− y
|x− y|

)
(|x− y|+ r)n−1drdy,

Lif(x) :=

∫
∂Ω

f(y)nyi
x− y
|x− y|n

∫ ∞
0

ω∗
(
x, r

x− y
|x− y|

)
(|x− y|+ r)n−1drdσy.

It is clear that K : Lp(Ω) → W 1
p (Ω) is a bounded map (see e.g. [4]). That Li

maps W
1−1/p
p (∂Ω) to W 1

p (Ω) is a consequence of Theorem 1.1 of [11]. In our case,
the assumption that Li(1) is a constant is not satisfied. However, by looking more
closely at the proof therein, page 192, in the case k = 0 and s = 1−1/p, we see that
it suffices to have the property that ∇Li(1) ∈ Lp(Ω). In our case, as the domain is
C2, we even have that Li(1) ∈ C1.

The general case m > 1 which is more technical, is not presented here. Basically,
we still have to start from formula (25) and to use the full Cm regularity of the
domain. Note that the higher regularity of the boundary is important to control
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operators Li. At the same time, as regards operator K, the C2 regularity (and
probably even less) suffices.

Remark 3. If we look at the regularity of ∂Ω then our approach is not optimal
(see [10]). However our main goal in the present note is to justify that the same
operator Bm provides estimates in any space W j+1

p (Ω) with j ∈ {−1, · · · ,m}. In
the applications that we have in mind (see the introduction), it is important to have
a solution operator providing both low and high regularity estimates.

4. The twisted divergence equation. The last part of this note concerns the res-
olution of the twisted divergence equation (4). As indicated above, our motivation
comes mainly from the study of incompressible flows in the Lagrangian coordinates
[5, 12], so that we restrict ourselves to the case where the matrix-valued function A
is associated with a measure preserving map, that is detA ≡ 1. Then the following
formula (see e.g. the appendix of [5]):

divA ξ = A : Dξ = div (Aξ) (34)

holds true for sufficiently smooth vector-fields ξ.

Let us now state our main result:

Theorem 4.1. Let A ∈ L∞(Ω;Rn × Rn) satisfy detA ≡ 1. Let m ≥ −1 be an
integer and p > 1, a real number. There exist two positive constants ε and C
depending only on m, p and Ω, and a linear map BA :W−1

p (Ω)→ Lp(Ω) such that
if

‖A− Id‖L∞(Ω) ≤ ε, (35)

then the following results are true:

• for any functional DIV [k, ζ] in W−1
p (Ω), the vector-field u := BA(DIV [k, ζ])

belongs to Lp(Ω), satisfies

DIV [Au, 0] = DIV [k, ζ] in Ω (36)

‖u‖Lp(Ω) ≤ C
(
‖k‖Lp(Ω) + ‖ζ‖

W
−1/p
p (∂Ω)

)
. (37)

• If moreover m ≥ 0 then for any f ∈ Lp(Ω;Rn) satisfying (2) the vector-field
u := BA(f) is a solution in W 1

p (Ω) to the twisted divergence equation (4), and

‖u‖W 1
p (Ω) ≤ C‖f‖Lp(Ω). (38)

• If in addition m ≥ 1, p > n/m and ∇A ∈ Wm−1
p (Ω) then u := BA(f) with

f ∈Wm
p (Ω) satisfying (2), fulfills

‖u‖Wm+1
p (Ω) ≤ C

(
‖f‖Wm

p (Ω) + ‖∇A‖
1

1−n/(pm)

Wm−1
p (Ω)

‖f‖Lp(Ω)

)
. (39)

Proof. Granted with Theorem 3.1, this is a mere application of the Banach fixed
point theorem. Let us introduce the linear map

T : Wm+1
p (Ω)→Wm+1

p (Ω) (40)

such that

T ξ̄ := Bm((Id−A) : Dξ̄ + f) if m ≥ 0,

T ξ̄ := B−1(DIV [((Id−A)ξ̄) + k), ζ]) if m = −1.

Let us first assume that m = −1. Then Theorem 3.1 ensures that

‖T ξ̄‖Lp(Ω) ≤ C
(
‖Id−A‖L∞(Ω)‖ξ̄‖Lp(Ω) + ‖k‖Lp(Ω) + ‖ζ‖

W
−1/p
p (Ω)

)
,
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whence, by virtue of (35),

‖T ξ̄‖Lp(Ω) ≤ Cε‖ξ̄‖Lp(Ω) + C
(
‖k‖Lp(Ω) + ‖ζ‖

W
−1/p
p (Ω)

)
. (41)

Next, let us look at the case m = 0. Then Theorem 3.1 yields

‖T ξ̄‖W 1
p (Ω) ≤ C

(
‖(Id−A) : ∇ξ̄‖Lp(Ω) + ‖f‖Lp(Ω)

)
≤ C

(
‖Id−A‖L∞(Ω)‖∇ξ̄‖Lp(Ω) + ‖f‖Lp(Ω)

)
,

whence, thanks to (35)

‖T ξ̄‖W 1
p (Ω) ≤ C

(
ε‖ξ̄‖W 1

p (Ω) + ‖f‖Lp(Ω)

)
. (42)

So putting (41) and (42) together, and choosing ε small enough, we get

‖T ξ̄‖Wm+1
p (Ω) ≤

1

2
‖ξ̄‖Wm+1

p (Ω) +

{
C‖f‖Wm

p (Ω) if m = 0,

C(‖k‖Lp(Ω) + ‖ζ‖
W
−1/p
p (∂Ω)

) if m = −1.

As the map T is linear, this implies that

‖T ξ̄1 − T ξ̄2‖Wm+1
p (Ω) ≤

1

2
‖ξ̄1 − ξ̄2‖Wm+1

p (Ω).

So we proved that T is a contraction, hence it has a unique fixed point ξ. This
fixed point obviously satisfies (4) (or (36)) and the desired estimates. The case
m ∈ {−1, 0} is done.

The case m ≥ 1 is slightly more involved. Firstly, according to Theorem 3.1,

‖T ξ̄‖Wm+1
p (Ω) ≤ C(‖(Id−A) : ∇ξ̄‖Wm

p (Ω) + ‖f‖Wm
p (Ω)). (43)

For bounding the first term of the right-hand side, we may use the following classical
tame estimate:

‖(Id−A) : ∇ξ̄‖Wm
p (Ω) ≤ ‖Id−A‖L∞(Ω)‖∇ξ̄‖Wm

p (Ω) + C‖∇ξ̄‖L∞(Ω)‖∇A‖Wm−1
p (Ω),

and the following interpolation inequality (recall that p > n/m):

‖∇ξ̄‖L∞(Ω) ≤ η‖∇ξ̄‖Wm
p (Ω) + Cη−

θ
1−θ ‖∇ξ̄‖Lp(Ω) with θ :=

n

pm
·

We end up with

‖T ξ̄‖Wm+1
p (Ω) ≤ C

(
ε‖ξ̄‖Wm+1

p (Ω)

+‖∇A‖Wm−1
p (Ω)

(
η‖∇ξ̄‖Wm

p (Ω) + η−
θ

1−θ ‖∇ξ̄‖Lp(Ω)

)
+ ‖f‖Wm

p (Ω)

)
.

Now, combining (42) with the above inequality yields for any M > 0:

‖T ξ̄‖Wm+1
p (Ω) +M‖T ξ̄‖W 1

p (Ω) ≤ C
(
ε(‖ξ̄‖Wm+1

p (Ω) +M‖ξ̄‖W 1
p (Ω))

+‖∇A‖Wm−1
p (Ω)

(
η‖∇ξ̄‖Wm

p (Ω) + η−
θ

1−θ ‖∇ξ̄‖Lp(Ω)

)
+ ‖f‖Wm

p (Ω) +M‖f‖Lp(Ω)

)
.

Let us take η = ε‖∇A‖−1

Wm−1
p (Ω)

and M = ε−1η−
θ

1−θ ‖∇A‖Wm−1
p (Ω). Then the above

inequality becomes (up to an irrelevant change of C):

‖T ξ̄‖Wm+1
p (Ω) +M‖T ξ̄‖W 1

p (Ω)

≤ C
(
ε(‖ξ̄‖Wm+1

p (Ω) +M‖ξ̄‖W 1
p (Ω)) + ‖f‖Wm

p (Ω) +M‖f‖Lp(Ω)

)
. (44)
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So it is now clear that if one takes ε small enough then the linear map T is strictly
contractive in the sense of the norm that is defined by the l.h.s. of (44). So one may
end the proof as in the case m ∈ {−1, 0}. Note that Inequality (44) yields (39).
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