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Abstract

We study the vortex location for minimizers of a Ginzburg-Landau energy with a discontinuous
constraint. The discontinuous constraint appears in the potential (a2 − |u|2)2. The function a is
piecewise constant: it takes the value 0 < b < 1 in small disjoint domains (called inclusions) and 1
otherwise. It is proved, under some assumptions on the smallness of the inclusions and on their inter-
distances, that the vortices of minimizers are trapped inside the inclusions. Moreover the asymptotic
location of the vortices inside an inclusion depends only on three parameters: the value b, the geometry
of the inclusion and the number of vortices inside the inclusion.

It is expected that, if an inclusion containing a unique vortex is a disk, then the asymptotic
location of the vortex is the center of the inclusion. This article is dedicated to the proof of this
expectation.
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1 The problem

The aim of this article is to improve a result of a previous work [Dos] by answering a problem left open:
Perspective (4) in [Dos] (Section 5 page 31).

We study a variant of the simplified Ginzburg-Landau energy

Eε(u) =
1

2

∫

Ω

|∇u|2 + 1

2ε2
(1− |u|2)2. (1)

Here Ω is a smooth bounded two-dimensional domain, u is a complex-valued function and ε is a positive
parameter. [The variant studied is presented in Formula (3)]

This Ginzburg-Landau type energy is a simplification of the full Ginzburg-Landau energy with mag-
netic field. The full Ginzburg-Landau energy was introduced by Ginzburg and Landau [GL50] in the
1950s as a phenomenological model to describe superconductivity. (see [Tin96])

In the energy Eε, the induced magnetic field is ignored and the application of an exterior field is
replaced by the use of a boundary condition for the functions u.

The simplified Ginzburg-Landau energy to model the state of a superconductor.

The mathematical study of Ginzburg-Landau type energies was the subject of a huge number of
publications since 1990. One of the main ingredients in the popularity of such models is probably the
celebrated monograph [BBH94].

In [BBH94], Bethuel, Brezis and Hélein considered the minimization of the energy Eε in the asymptotic
ε → 0. They assumed that Ω is simply connected 1 and they minimized Eε under a smooth S1-valued
Dirichlet boundary condition g ∈ C∞(∂Ω, S1) with a non zero degree d ∈ N∗.2 There, the Dirichlet
boundary condition is independent of ε. In the following we let H1

g = {u ∈ H1(Ω,C) | tr∂Ωu = g} where
H1(Ω,C) = W 1,2(Ω,C) is the usual Sobolev space of order 1 modeled on L2(Ω,C) and tr∂Ω stands for
the Trace Operator on ∂Ω.

Note that, by considering a minimizing sequence, we get easily that minimizers of Eε with Dirichlet
boundary condition always exist. Moreover, such minimizer uε is smooth and satisfies |uε| ≤ 1

Physical and relevant informations that may be understood via this model concern the vorticity defects
in the superconductor. Vorticity defects are areas in a superconductor where the superconductivity
phenomenon is destroyed. [SS07]

Namely, if the superconductor is an infinitely long cylinder S = Ω×R and if we apply a magnetic field
(with sufficiently large magnitude) parallel to S, then vorticity defects appear. The vorticity defects take
the form of small wires parallel to S [SS07]. A minimizer uε of Eε (with a boundary condition) allows to
describe the vorticity defects. Their cross sections are modeled in Ω by small neighborhoods of zeros of
uε. These cross sections may be seen as {|uε| ≤ ℓ} for ℓ ∈]0, 1[, say ℓ = 1/2.

By increasing the magnitude of the applied field above a first critical field, a first vorticity defect
appears. While the magnitude increases a second vorticity defect may be observed in the material, and
so on. We thus may obtain an arbitrary large number of vorticity defects. The simplified Ginzburg-
Landau energy (1) is essentially used to treat the case of a bounded number of vorticity defects (which
essentially correspond to small neighborhoods of the vortices of a minimizer, see Definition 1 & Remark
2.2 below). Namely, the asymptotic analysis is done (when ε → 0) with a bounded number of vorticity
defects. For studying unbounded number of vortices, the full Ginzburg-Landau is required.

In the context of the energy Eε defined by (1), the boundary condition acts as a high magnetic field
by creating vorticity defects for test functions and a fortiori for minimizers. Since deg∂Ω(g) 6= 0, for
u ∈ H1(Ω,C) s.t. tr∂Ωu = g, the set {x ∈ Ω | |u(x)| < 1/2} has a non zero two dimensional Hausdorff
measure.

A part of the main results of [BBH94] concerns quantization and location of the vorticity defects.

1For technical reasons, they assumed that Ω is star-shaped, this hypothesis was replaced by Ω is simply connected by
Struwe in [Str94].

2The degree (or winding number) of a map g ∈ C∞(∂Ω, S1), denoted by deg∂Ω(g), may be computed by the classical

formula deg∂Ω(g) :=
1

2π

∫
∂Ω

g ∧ ∂τg dτ where “∧” stands for the vectorial product in C, i.e. z1 ∧ z2 = Im(z1z2), z1, z2 ∈ C

and ∂τ is the tangential derivative. This degree coincides with the winding number when g is continuous [Bre06].
This formula may be extended by duality for a map g ∈ H1/2(∂Ω, S1) ([BGP91], Appendix).
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Theorem 1. [Bethuel-Brezis-Hélein] Let g ∈ C∞(∂Ω, S1) with degree d > 0 and let uε be a minimizer of
Eε in H1

g . Then we have

• There are ε0 > 0 and C > 0 s.t. for 0 < ε < ε0 uε has exactly d zeros xε1, ..., x
ε
d and {x ∈

Ω | |uε(x)| ≤ 1/2} ⊂ ∪iB(xεi , Cε);

[Here B(z, r) ⊂ R2 is the open ball of center z and radius r]

• Each zero is of degree 1: deg(uε, x
ε
i ) = 1 for all i = 1, ..., d 3 ;

• As ε→ 0, up to extraction of a subsequence, there exist d distinct points a1, ..., ad ∈ Ω s.t.

i) (up to relabeling of the points xεi ) we have xεi → ai,

ii) the set {a1, ..., ad} minimizes a renormalized energy Wg.

Definition 1. We say that the zeros of uε are vortices (for ε < ε0) by using the ad-hoc definition of a
vortex: a vortex of a continuous map u : Ω → C is an isolated zero of u with a non zero degree.

Remark 2. 1. The function uε represents (in this simplified model) the state of a superconductor
whose Ginzburg-Landau material parameter is κ = ε−1. In the asymptotic ε→ 0 we are considering
extreme type II superconductor.

2. The vorticity defects [i.e. the connected components of {x ∈ Ω | |uε(x)| ≤ 1/2}] may be seen as ball
centered at a vortex and with radius of order ε. The two first bullets in Theorem 1 correspond to
quantization results and the last bullet deals with the location of vorticity defects.

3. Although the Dirichlet boundary condition is not physically relevant, this mathematical artifact
creates the same quantized vortices as a magnetic field in type-II superconductors [BBH94]. In
particular, the degrees of the vortices correspond to the circulation of supercurrents around the
vorticity defects ([SS07]). Since all the degrees are equal to 1 we have vorticity defects with a
similar circulation of supercurrents.

Moreover for ε < ε0, the vortices xε1, ..., x
ε
d are subject of two repulsive effects (η > 0 is independent

of ε):

• |xεi − xεj | ≥ η for i, j = 1, ..., d, i 6= j [Coulomb repulsion],

• dist(xεi , ∂Ω) ≥ η for i = 1, ..., d [confinement].

4. The renormalized energy Wg(a1, ..., ad) ∈ R is defined for a1, ..., ad ∈ Ω with ai 6= aj for i 6= j by
the following formula:

Wg(a1, ..., ad) := lim
ρ→0



















inf
w∈H1(Ωρ,S

1)
tr∂Ωw=g

w(ai+ρeıθ)=Cstie
ıθ

1

2

∫

Ωρ

|∇w|2 − πd| ln ρ|



















(2)

where Ωρ = Ω\∪B(ai, ρ). Here we used the abuse of notation w(ai+ρe
ıθ) = tr∂B(ai,ρ)w(ai+ρe

ıθ).

It is clear that Wg depends on g. Note that we may replace the condition w(ai + ρeıθ) = Cstie
ıθ

by deg∂B(ai,ρ)(w) = 1 in Definition (2) of Wg.

The Pinned energy to model the state of a superconductor with impurities.

Some variants of this model has been treated in the mathematic literature [this list is not exhaustive]:

• Minimization of Eε with a Dirichlet boundary condition of modulus not equal to one and even
possibly vanishing [AS98b][AS04].

• Minimization of Eε with a degree type boundary conditions [BM06], [BMRS12] (The main issue is
the existence of minimizer/critical points).

3Since uε is continuous and because it has exactly d zeros, we may define deg(uε, xε
i ) := degCρ(x

ε
i
)(uε/|uε|) independently

of small ρ with Cρ(xε
i ) = {x ∈ C | |x− xε

i | = ρ}.

3



• Weighted energy ([BH95], [AS98a]) or pinned energy with a Dirichlet boundary condition ([LM99],
[DMM11], [Dos]).

• Extension to the dimension N ≥ 3 [San01] [BOS05].

• Non local version of the energy with a Dirichlet boundary condition [MS].

The main result of this article (Theorem 3 below) is connected with pinned energy in a 2D domain
in the asymptotic ε→ 0:

Eε(u) =
1

2

∫

Ω

|∇u|2 + 1

2ε2
(a2ε − |u|2)2. (3)

Here, the function aε : Ω → R∗
+ is called pinning term.

Various versions of pinning terms are considered in the literature. Note that if aε is in L∞(Ω, [0, 1]),
then minimizers of Eε w.r.t. a Dirichlet boundary condition g ∈ C∞(∂Ω, S1) always exist. Moreover,
there are in H2(Ω,C) (thus continuous) and if uε is a such minimizer, then it satisfies |uε| ≤ 1.

If aε ∈ L∞(Ω, [b, 1]) for some b ∈]0, 1[, then, the use of a pinning term in the modification of the poten-
tial part of Eε to get the energy Eε, may be easily interpreted in term of heterogeneity in a superconductor
[[Dos10]-Introduction]. In this context vorticity defects can be modeled by {x ∈ Ω | |uε(x)| ≤ b/2}.

It is clear that if the Dirichlet boundary condition has a non zero degree, then, letting uε be a
minimizer of Eε, the set {x ∈ Ω | |uε(x)| ≤ b/2} is not empty. Moreover, for small ε, the potential part
1

2ε2

∫

Ω
(a2ε − |u|2)2 of the energy Eε creates a strong penalty on |aε − |u||. The vorticity defects should

be located close to the minimal points of aε. This fact is called the pinning phenomenon: the vorticity
defects are attracted by the minima of aε . We want to study this phenomenon. In order to understand
the mechanism of this pinning, we focus in this article on pinning terms which are simple functions.

The function aε is a step function which takes only the value 1 and the value b ∈]0, 1[ (the main result
of this article is still true for pinning terms taking more values). More precisely:

aε : Ω → {1, b}

x 7→
{

b if x ∈ ∪IεB(zεi , ri(ε))

1 otherwise

, (4)

where Iε is a finite subset of N∗, B(zεi , ri(ε)) ⊂ Ω, ε≪ ri(ε) ≪ 1 and

max
i6=j

ri(ε) + rj(ε)

|zεi − zεj |
→
ε→0

0. (5)

From now on we omit the dependence on ε for ri: we write ri instead of ri(ε).
This kind of pinning terms are the (simplified) dilute ones. They are characterized by two properties:

1. The connected components of ωε := {x ∈ Ω | aε = b}, called inclusions, have a small diameter;

2. The inter distance between two inclusions is much larger than the diameter of each inclusion.

This pinned energy is used to model impurities in a superconductor (see [Kac09]). During the use
of a superconductor, an energy dissipation may be observed. It is a consequence of the motion of the
vorticity defects (see [LD97], [BS65]). This dissipation can be limited by confining the vorticity defects
in some portions of a superconductor (pinning of the vorticity defects). These portions are included in
the impurities. Hence, impurities in a superconductor allow to decrease the energy dissipation by pinning
the vorticity defects (see [Dev02]). Impurities act as traps for vorticity defects. Since we aim at limiting
the motion of the vorticity defects, the smaller the traps are, the better their efficiency should be.

The balls B(zεi , ri) represents the (small) impurities. The main questions related with vorticity defects
in the minimization of the pinned energy Eε are, as for the simplified energy Eε, about quantization and
location of the vorticity defects.

The quantization part takes the standard form: prove that (for small ε) a minimizer uε of Eε has
exactly d zeros and all with degree 1 (d vortices). Prove also that {x ∈ Ω | |uε(x)| ≤ b/2} is contained in
a small neighborhood of the vortices.

The location part concerning pinned energy maybe be done in three steps:

4



Step 1. Prove that vorticity defects are trapped by the inclusions. [pinning]

Step 2. Explain how the repartition of the vorticity defects is done between the connected components
of ωε. [macroscopic location]

Step 3. Explain the location of the vorticity defects inside a connected component of ωε ; this is the
microscopic location of the vorticity defects. [microscopic location]

The goal of this article is to provide a new information about Step 3. To illustrate our main result,
without loss of generality, we restrict our study to the case of a Dirichlet boundary condition of degree
one.

From Theorems 3&5 in [Dos] we have the following theorem.

Theorem 2. [MDS] Let Ω be a simply connected domain, let g ∈ C∞(∂Ω, S1) and let b ∈]0, 1[. Consider
a pinning term aε : Ω → {b; 1} as in (4)&(5).

Assume that

• deg∂Ω(g) = 1

• There exists η > 0 s.t. for small ε there is zεi satisfying ri = maxj rj and dist(zεi , ∂Ω) ≥ η.

Then there is ε0 > 0 s.t. for ε < ε0, a minimizer uε of Eε has a unique zero xε.
Moreover:

1. There exists an index iε s.t. the corresponding radius satisfies

riε = max
j
rj =: r0

and s.t. xε ∈ B(zεiε , r0). We write zε = zεiε .

2. There is C > 0 s.t. we have {x ∈ Ω | |uε(x)| ≤ b/2} ⊂ B(xε, Cε).

3. For a sequence εn ↓ 0, up to extraction of a subsequence, we have

xεn − zεn
r0(εn)

→
n→∞

x0 ∈ D.

4. The point x0 minimizes a renormalized energy Wb : D → R which depends only on b (and is in
particular independent of g).

Remark 3. In [Dos] this result is proved under the hypotheses:

(H.1) ri ∈ {λ(ε)δ(ε), ..., λ(ε)δ(ε)P } with P ∈ N
∗ independent of ε,

(H.2) λ(ε), δ(ε) →
ε→0

0 and with the technical condition: limε
| ln(λδ)|3
| ln ε| = 0,

(H.3) |zεi − zεj | ≥
ri + rj
λ

.

Theses hypotheses may be slightly relaxed. Namely:

• In [Dos], the inclusions are not necessarily discs. The pattern is given by a smooth simply connected
open set ω ⊂ D. The main results are obtained under the assumption that the pattern is unique:
all the inclusions are (small) copies of an unique ω ⊂ D.

We may easily extend the main results of [Dos] for a finite (and independent of ε) collection
{ω1, ..., ωN} of smooth and simply connected open set included in D.

Moreover we may consider b1, ...bN ∈]0, 1[ (independent of ε) and, for example, we may let aε ≡ bi
in the inclusions obtained from ωi.
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• Hypothesis (H.1) may be replaced by ri = λδi > 0 and
δi + δj
|zεi − zεj |

≤ C (with C independent of ε) as

long as λ →
ε→0

0, supi δi →
ε→0

0 and
maxi | ln(λδi)|3

| ln ε| →
ε→0

0.

• Hypothesis (H.2) seems to be more difficult to relax.

• Hypothesis (H.3) corresponds to the dilution of the inclusions:

if max
i6=j

ri + rj
|zεi − zεj |

→
ε→0

0, then we may take ri = λδi with λ =

√

max
i6=j

ri + rj
|zεi − zεj |

.

The goal of this article is to prove that the limiting microscopic location of the vortices is 0, i.e.,
x0 = 0. In order to do this we prove that 0 is the unique minimizer of Wb : D → R.

More precisely the main result of this article is the following

Theorem 3. For x ∈ D \ {0} we have Wb(x) > Wb(0).

This article answers positively to Perspective (4) in [Dos] (Section 5 page 31).

2 Expression of the renormalized energy Wb : D → R

In this section we obtain a nice form for Wb in the spirit of (2) for Wg. This expression is given in
(11) and (12). In this section the inclusions are disks but, without any modification, we may consider
inclusions which are small copies of a domain ω ⊂ D.

Once this is done, we then formulate a lemma [specific to circular inclusions] which directly implies
Theorem 3 (see Lemma 6). The plan of its proof is given at the end of this section.

In order to get an expression of Wb we estimate Eε(uε). This is essentially done by following the
strategy of Bethuel-Brezis-Hélein: uε as a modulus "close" to aε outside a small ball centered at the zero
xε & standard energy core estimates around xε.

The discontinuity of the pinning term creates an energetic noise in the problem because |uε| has to
be close to aε. This noise is essentially carried by |uε| and localized in a small layer around ∂ωε. It is
studied in [DMM11] when aε is periodic w.r.t. a δ × δ-grid (δ → 0).

In order to denoise the problem, a nice trick was introduced by Lassoued-Mironescu [LM99]. The
strategy consists first in letting Uε be the unique global minimizer of Eε with the Dirichlet boundary
condition identically equal to 1. Note that Uε depends only on Ω, aε and ε.

This special solution may be seen as a regularization of aε. For example, one may prove that Uε takes
its values in [b, 1] and that it is exponentially close to aε far away from ∂ωε (see Proposition 3 in [Dos]).
The energetic noise previously mentioned corresponds to the energetic cost of the abrupt transition of Uε

between values b and 1.

With the help of Uε we have the following decoupling: for all u ∈ H1
g

Eε(u) = Eε(Uε) + Fε(u/Uε)

where

Fε(v) =
1

2

∫

Ω

{

U2
ε |∇v|2 +

1

2ε2
U4
ε (1− |v|2)2

}

. (6)

Since tr∂ΩUε = 1 and 0 < b ≤ Uε ≤ 1, it is clear that uε is a minimizer of Eε in H1
g if and only if vε =

uε
Uε

is a minimizer of Fε in H1
g . The zeros (and their degrees) of a minimizer uε of Eε in H1

g are the same
than those of vε = uε/Uε. Therefore the study of the vorticity defects may be done via the minimization
problem of Fε.

Remark 4. • Here Eε(Uε) ∼
∑

i ri
ε

and infH1
g
Fε ∼ | ln ε| with

∑

i ri
ε

≫ | ln ε|.
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• The minimization of Fε in H1
g may be done by following the strategy developed in [BBH94]: a

minimizer vε is almost S1-valued "not too close" its zero xε & standard energy core estimates
around xε.

In order to obtain an expression of the renormalized energy Wb we divide Ω in three regions. For this
purpose we need the asymptotic (microscopic) location of xε inside the inclusion of ωε which contains xε.

We consider a sequence εn ↓ 0. From Theorem 2, up to pass to a subsequence, we have
xεn − zεn
r0(εn)

→
n→∞

x0 ∈ B(0, 1). For sake of the presentation, from now on we write ε instead of εn.

Let R(ε) > 1 be s.t. [recall that r0 = maxj rj ]

R(ε) =

√

dist [zε ; ωε \B(zε, r0)]

r0
(7)

From (5), we know that R(ε) → ∞ as ε → 0. We drop the dependence on ε by writing R instead of
R(ε).

For A ⊂ Ω an open set, we write

Fε(vε, A) :=
1

2

∫

A

{

U2
ε |∇vε|2 +

1

2ε2
U4
ε (1− |vε|2)2

}

.

We obtain easily

Fε(vε) = Fε

[

vε,Ω \B(zε, Rr0)
]

+ Fε

[

vε, B(zε, Rr0) \B(xε,
r0
R
)

]

+

+ Fε

[

vε, B(xε,
r0
R
)
]

.

A more complete presentation of this energetic study is done Appendix A.1.
With the help of [Dos] [by matching upper and lower bounds and Equation (4.30) in [Dos]], we get

Fε

[

vε, B(xε,
r0
R
)
]

= b2(π ln
br0
Rε

+ γ) + oε(1)

where γ is a universal constant defined in [BBH94] Lemma IX.1.
This estimate is the standard energy core estimate around a vortex (of degree one). It is not specific

to dilute pinning terms.

Once again, by matching upper and lower bounds, Proposition 18 in [Dos] and the estimate |vε| ≃ 1
in Ω \B(zεi , Rr0) (see Theorem 3.(3) in [Dos]), we have

Fε

[

vε,Ω \B(zεi , Rr0)
]

=Wg(z
ε
i ) + π| lnRr0|+ oε(1).

This estimate is specific to the dilute case. A sharp energetic estimate of Fε

[

vε,Ω \B(zεi , Rr0)
]

in non-

dilute cases is a problem still open (see Perspective (2) page 31 in [Dos]). Such energetic estimate deals
with homogenized (macroscopic) renormalized energy.

We now treat the remaining term. In order to get a nice form for the part Fε

[

vε, B(zε, Rr0) \B(xε, r0/R)
]

we rescall the inclusion B(zε, Rr0). Let Θ : C → C be the conformal mapping s.t. Θ(x) = (x− zε)/r0.
We denote D := B(zε, r0R) \B(xε, r0/R) and D̂ := Θ(D) = B(0, R) \B(x̂ε, 1/R) where x̂ε := Θ(xε).
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For the remaining term, by matching upper a lower bounds in [Dos], we have

Fε [vε,D] = inf
w∈H1(D,S1)

w(zε+r0Reıθ)=eıθ

w(xε+
r0
R eıθ)=Cst eıθ

1

2

∫

D
U2
ε |∇w|2 + oε(1) (8)

= inf
ŵ∈H1(D̂,S1)

ŵ(Reıθ)=eıθ

ŵ(x̂ε+R−1eıθ)=Cst eıθ

1

2

∫

D̂
a2|∇ŵ|2 + oε(1) (9)

= inf
ŵ∈H1[B(0,R)\B(x0,R−1),S1]

ŵ(Reıθ)=eıθ

ŵ(x0+R−1eıθ)=Cst eıθ

1

2

∫

B(0,R)\B(x0,R−1)

a2|∇ŵ|2 + oε(1) (10)

where a(x) =

{

b if x ∈ D

1 otherwise
.

For the convenience of the reader, the proofs of (8), (9) and (10) are postponed to Appendix.
Thus, for x0 ∈ D and R > 1 (sufficiently large to have B(x0, R

−1) ⊂ D) we consider in D(x0) :=
B(0, R) \ B(x0, R−1) the auxiliary minimization problem (with only x0 ∈ D, b ∈]0, 1[ and R > 1 as
parameters)

IR(x0) = inf







1

2

∫

D(x0)

a2|∇w|2
∣

∣

∣

∣

∣

∣

w ∈ H1
[

D(x0), S
1
]

w(Reıθ) = eıθ

w(x0 +R−1eıθ) = Cst eıθ,Cst ∈ S1







. (11)

It is easy to check that the infimum in (11) is achieved (see e.g. Proposition 10 [Dos]).
Moreover, it is direct to prove that IR(x0)− π(1 + b2) lnR is uniformly bounded when R → ∞. The

quantity IR(x0)− π(1 + b2) lnR corresponds to Wb(x0) plus a small error term. Here Wb : D → R is the
renormalized energy introduced in Theorem 2.

More precisely, when R → ∞ we have ([DM11])

IR(x0) = π(1 + b2) lnR+Wb(x0) + oR(1). (12)

Namely, with the previous estimates we obtain:

Fε(vε) = π ln
1

Rr0
+Wg(zε) + b2(π ln

br0
Rε

+ γ) + π(1 + b2) lnR+

+Wb(x0) + oε(1)

= π ln
1

r0
+Wg(zε) + b2(π ln

br0
ε

+ γ) +Wb(x0) + oε(1). (13)

Remark 5. • The renormalized energy (of the unit disc) Wb : D → R depends only on b. It provides
informations about the asymptotic microscopic location of the vortex (inside an inclusion). From
the expression of Wb given in [DM11] [Formula (91)] we may get obviously Estimate (12).

• Formulas (12)&(13) are still valid for inclusions whose geometries are given by a domain ω ⊂ D. In
this case, the microscopic renormalized energy depends also on ω.

• In (13), Wg(zε) gives information about the macroscopic location of the vortex xε: the position of
xε in Ω. Indeed, by Theorem 2, we know that the vortex of vε is in one of the largest inclusions
(those of size r0). The choice among the largest inclusions is done via the minimization of Wg (for
sufficiently small ε).

In order to prove Theorem 3, we first notice that Wb(0) = 0.
Our aim is to prove that for x ∈ D \ {0} we have Wb(x) > 0.
With (11), it is obvious that Wb(|x|) =Wb(x). Then, in order to compute Wb(x), we may restrict our

argument to |x| ∈ [0, 1[.
Theorem 3 is a direct consequence of the following lemma.

8



Lemma 6. For t ∈ [0, 1) we have

Wb(t) ≥ π
min{b2 ; 1− b2}

16
ln

1

1− t2
. (14)

It is clear that if Lemma 6 holds, then for x ∈ D we have

Wb(x) =Wb(|x|) ≥ π
min{b2 ; 1− b2}

16
ln

1

1− |x|2 > 0 =Wb(0).

Therefore Theorem 3 holds also.
From now on, we fix x = t ∈ D, t > 0. The rest of this article is dedicated to the proof of Estimate

(14).
We adopt the following plan:

• In Section 3 we formulate a stronger version of Lemma 6 [see Lemma 8 below]. This lemma is
obtained via two successive minimization problems. We first fix the trace on S1, h ∈ H1/2(S1, S1),
of the test functions. We consider two minimization problems where h is used in the boundary
conditions. Second, we minimize among all the possible traces h ∈ H1/2(S1, S1). [See Equality
(15)]

• In Sections 4 and 5, for fixed h ∈ H1/2(S1, S1), we establish lower bounds related with Problem
(11) in B(0, R) \ D and D \B(t, R−1) respectively. [See Lower bounds (18) and (25) respectively]

• In Section 6 we couple both previous lower bounds to get an estimate independent of h ∈ H1/2(S1, S1).
[See Estimates (45), (46) and (47)]

• We compute explicitly in term of t and b this new lower bound in Section 7 [see (49)] and finally
we conclude.

3 Reformulation of Problem (11)

Because the infimum in (11) is attained by a map w ∈ H1[B(0, R) \ B(t, R−1), S1], it is clear that we
have

IR(t) = inf
h∈H1/2(S1,S1)
deg

S1(h)=1























inf
w∈H1[B(0,R)\B(0,1),S1]

w(Reıθ)=eıθ

w(eıθ)=h(eıθ)

1

2

∫

B(0,R)\B(0,1)

|∇w|2 +

+ inf
w∈H1[B(0,1)\B(t,R−1),S1]

w(eıθ)=h(eıθ)

w(t+R−1eıθ)=Cst eıθ,Cst∈S
1

b2

2

∫

B(0,1)\B(t,R−1)

|∇w|2























. (15)

Remark 7. We may easily prove that each infimum in the right hand side (RHS in short) of (15) is
attained.

Thus, for h ∈ H1/2(S1, S1), it is natural to introduce

WR,t(h) := inf
w∈H1[B(0,R)\B(0,1),S1]

w(Reıθ)=eıθ

w(eıθ)=h(eıθ)

1

2

∫

B(0,R)\B(0,1)

|∇w|2 +

+ inf
w∈H1[Dt,R,S1]

w(eıθ)=h(eıθ)

w(t+R−1eıθ)=Cst eıθ,Cst∈S
1

b2

2

∫

Dt,R

|∇w|2 − π(1 + b2)| lnR|, (16)

9



where Dt,R := B(0, 1) \B(t, R−1).
From (15) and (16) we immediately deduce

Wb(t) + oR(1) = IR(t)− IR(0) = IR(t)− π(1 + b2)| lnR|
= inf

h∈H1/2(S1,S1)
deg

S1 (h)=1

WR,t(h). (17)

From Equality (17), Lemma 6 is a direct consequence of:

Lemma 8. There is R0 > 0 (depending only on t and b) s.t. for R > R0 and h ∈ H1/2(S1, S1) we have

WR,t(h) ≥ π
min{b2 ; 1− b2}

16
ln

1

1− t2
.

The rest of this article is dedicated to the proof of this lemma.

Remark 9. Lemma 8 implies Lemma 6. Which in turn implies Theorem 3.

4 Lower bound for the first term of the RHS of (15)

We fix t > 0, and consider a function h ∈ H1/2(S1, S1) s.t. degS1(h) = 1 and a real R > 1 which will go
to infinity. We denote r = R−1.

We estimate the first term in the RHS of (16).

Notations.

• The notation oR(1) means a quantity depending on R which tends to 0 when R tends to +∞.

• The notation O[f(R)] means a quantity g(R) depending on R s.t.
g(R)

f(R)
is bounded (independently

of R) when R > 1.

• For ρ > ρ′ > 0, we let Rρ,ρ′ = B(0, ρ) \B(0, ρ′).

• We fix a dephasing of h, i.e., we fix ϕ0 ∈ H1/2(S1,R) s.t. h(eıθ) = eı[θ+ϕ0(e
ıθ)].

• Let Ψ be the conformal mapping

Ψ : RR,1 → R1,r

x 7→ 1

x

.

This section is devoted to the proof of the following inequality:

inf
w∈H1(RR,1,S

1)

w(Reıθ)=eıθ

w(eıθ)=h(eıθ)

1

2

∫

RR,1

|∇w|2 ≥ π lnR+ |ϕ0|2H1/2 . (18)

Here |ϕ0|2H1/2 =
1

2

∫

B(0,1)

|∇ϕharm
0 |2 with ϕharm

0 which is the harmonic extension of ϕ0 in B(0, 1).

Note that a map w ∈ H1(RR,1, S
1) may be written w(ρeıθ) = eı[θ+ϕ(ρeıθ)] with ϕ ∈ H1(RR,1,R) and

1 < ρ < R. Note that ϕ is not unique but we may freeze this non uniqueness by using the dephasing ϕ0:

• The boundary condition trS1w = h = eı(θ+ϕ0) implies that we may choose ϕ ∈ H1(RR,1,R) s.t.

trS1ϕ = ϕ0. (19)

• From the condition tr∂B(0,R)w = eıθ we get that

tr∂B(0,R)ϕ = 2kπ with k ∈ Z. (20)
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With an integration by parts [using that ∂νθ = 0 on ∂(RR,1)&∆θ = 0] we obtain for w = eı(θ+ϕ)

satisfying (19) and (20):

1

2

∫

RR,1

|∇w|2 =
1

2

∫

RR,1

|∇θ|2 + 2∇θ · ∇ϕ+ |∇ϕ|2

=
1

2

∫

RR,1

|∇θ|2 + 1

2

∫

RR,1

|∇ϕ|2

= π lnR+
1

2

∫

RR,1

|∇ϕ|2.

Therefore, in order to get (18), it suffices to prove that for ϕ ∈ H1(RR,1,R) satisfying (19) and (20) we
have

1

2

∫

RR,1

|∇ϕ|2 ≥ |ϕ0|2H1/2 . (21)

In order to prove (21), we let ϕ−
0 ∈ H1/2(S1,R) be defined by ϕ−

0 (e
ıθ) = ϕ0(e

−ıθ). It is straight forward
to prove that |ϕ−

0 |2H1/2 = |ϕ0|2H1/2 .

It follows from the definition of ϕ−
0 that [note that r = R−1 and Ψ is defined above]

ϕ̃ ∈







ψ ∈ H1(R1,r,R)

∣

∣

∣

∣

∣

∣

ψ = ϕ−
0 sur S1

∃k ∈ Z tq
ψ = 2kπ sur ∂B(0, r)







⇐⇒ ϕ̃ ◦Ψ ∈
{

ϕ ∈ H1(RR,1,R) |(19) and (20) hold
}

.

For ϕ̃ ∈ H1(R1,r,R) s.t. tr∂B(0,r)ϕ̃ = 2kπ (k ∈ Z), we fill the hole B(0, r) by letting ϕ̃ ∈

H1(B(0, 1),R) be s.t. ϕ̃ =

{

ϕ̃ in R1,r

2kπ in B(0, r)
.

Finally, for ϕ ∈ H1(RR,1,R) satisfying (19) and (20), letting ϕ̃ = ϕ ◦ Ψ−1, we have [by conformal
invariance]

1

2

∫

RR,1

|∇ϕ|2 =
1

2

∫

R1,r

|∇ϕ̃|2. (22)

We deduce from |∇ϕ̃| = 0 in B(0, r), that

1

2

∫

R1,r

|∇ϕ̃|2 =
1

2

∫

B(0,1)

|∇ϕ̃|2. (23)

We let u ∈ H1(B(0, 1),R) be the harmonic extension of ϕ−
0 in B(0, 1). It suffices to see that ϕ̃ ∈

H1(B(0, 1),R) with trS1 ϕ̃ = ϕ−
0 in order to obtain, by the use of the Dirichlet Principle, that

1

2

∫

B(0,1)

|∇ϕ̃|2 ≥ 1

2

∫

B(0,1)

|∇u|2

=: |ϕ−
0 |2H1/2 = |ϕ0|2H1/2 . (24)

Therefore, by combining (22), (23) and (24) we deduce that (21) holds and thus (18) is valid.

5 Lower bound for the second term of the RHS of (15)

The aim of this section is to establish that

inf
w∈H1[B(0,1)\B(t,r),S1]

w(t+reıθ)=Cst eıθ

w(eıθ)=h(eıθ)

1

2

∫

B(0,1)\B(t,r)

|∇w|2 ≥ π| ln r̃|+ |ϕ̃0|2H1/2 − Cr (25)
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where ϕ̃0 ∈ H1/2(S1, S1) is defined below [see (38)] and C is a constant depending only on t.
We first replace the annular type domain B(0, 1) \B(t, r) by a ring R1,r̃.

Let Φ : B(0, 1) \B(t, r) → R1,r̃ be a conformal representation s.t. Φ(S1) = S1.
It is obvious that Φ and r̃ depend (only) on R and t. The following result is standard.

Lemma 10. 1. The map Φ is a Möbius and we may take Φ to be the following function

Φ(z) =
z − α

αz − 1
with α ∈ [0, 1[.

We immediately obtain that for Z = Φ(z), where z ∈ B(0, 1) \B(t, r) and Z ∈ B(0, 1) \B(0, r̃), we
have z = Φ(Z).

2. We have

α =
1 + t2 − r2 −

√

(1 + t2 − r2)2 − 4t2

2t
= t+O(r2) (26)

and
r̃ = Φ(t− r) =

r

1− t2
[1 +O(r)]. (27)

For x ∈ B(0, 1) \B(t, r) we have Φ(x) 6= 0 and we then may define

θ̃(x) := argument(Φ(x)).

Here θ̃(x) is the main determination of the argument of Φ(x): θ̃(x) ∈]− π, π].
In this section we work first on ∂B(0, r̃) and we use θ̃ as a variable. Namely, we first compute estimates

for θ − θ̃ (see (29)) and then we prove (25).

We are going to study the dephasing function (w.r.t the variable θ̃) θ − θ̃ where θ ∈] − π, π] is s.t.

t+ reıθ = Φ
[

r̃eıθ̃
]

.

It is not difficult to see that, since t+ reıθ = Φ(r̃eıθ̃), we have on ∂B(0, r̃).

eıθ =
1

r

[

r̃eıθ̃ − α

αr̃eıθ̃ − 1
− t

]

= eıθ̃
r̃

r

1− tα

αr̃eıθ̃ − 1
+

t− α

r(αr̃eıθ̃ − 1)

= −eıθ̃
r̃

r
(1− tα) +

αr̃eıθ̃

αr̃eıθ̃ − 1

r̃

r
(1− tα) +

t− α

r(αr̃eıθ̃ − 1)

[Estimates (26)&(27)] = −eıθ̃ +
1

αr̃eıθ̃ − 1

[

O(r)e2ıθ̃ +O(r)eıθ̃ +O(r)
]

.

Remark 11. In the last estimate, the notations "O(r)" stand for complex numbers whose moduli are
bounded by Cr where C is a constant depending only on t.

Therefore we get for the dephasing θ − θ̃ on ∂B(0, r̃):

eı(θ−θ̃) = −1 +
1

αr̃eıθ̃ − 1

[

O(r)eıθ̃ +O(r) +O(r)e−ıθ̃
]

. (28)

It follows that, since θ, θ̃ ∈]− π, π], there exists k ∈ {−1; 1} s.t.

{

|θ − θ̃ − kπ| ≤ Cr

| d
dθ̃
(θ − θ̃)| ≤ Cr

with C depending only on t. (29)

By letting
φR : B(0, r̃) → R

ρeıθ̃ 7→ ρ

r̃
[θ(r̃eıθ̃)− θ̃]− ρ− r̃

r̃
kπ

, (30)
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we get with the help of (29) that

inf
φ∈H1(B(0,r̃),R)

φ=θ−θ̃ on ∂B(0,r̃)

1

2

∫

B(0,r̃)

|∇φ|2 ≤ 1

2

∫

B(0,r̃)

|∇φR|2 ≤ Cr (31)

with C depending only on t.
For a map w ∈ H1[B(0, 1) \B(t, r), S1] we consider the following boundary conditions

trS1w = h, (32)

w(t+ reıθ) = Cst eıθ. (33)

And, letting h̃ := h ◦ Φ−1, for a map w̃ ∈ H1(R1,r̃, S
1) we focus on the boundary conditions

trS1w̃ = h̃, (34)

w̃ ◦ Φ(t+ reıθ) = Cst eıθ. (35)

It is easy to check that

w ∈ H1[B(0, 1) \B(t, r), S1] satisfies (32)&(33)

⇐⇒ w̃ = w ◦ Φ−1 ∈ H1(R1,r̃, S
1) satisfies (34)&(35).

We may rewrite (35) as

w̃(r̃eıθ̃) = Cst eıθ̃eı(θ−θ̃). (36)

Consider w ∈ H1[B(0, 1) \B(t, r), S1] s.t. (32)&(33) hold. Let w̃ = w ◦ Φ−1 [then (34)&(36) hold for
w̃].

By conformal invariance,

1

2

∫

B(0,1)\B(t,r)

|∇w|2 =
1

2

∫

R1,r̃

|∇w̃|2. (37)

Let us fix a dephasing of h̃, i.e. fix ϕ̃0 ∈ H1/2(S1,R) s.t.

h̃(eıθ̃) = e
ı
[

θ̃+ϕ̃0(e
ıθ̃)

]

. (38)

We write w̃ = eı(θ̃+ϕ̃) with ϕ̃ ∈ H1(R1,r̃,R) s.t.

{

trS1ϕ̃ = ϕ̃0

ϕ̃(r̃eıθ̃) = Cst + (θ − θ̃)
. (39)

The second equality comes from (36).
An integration by part [and also ∂ν θ̃ = 0 on ∂(R1,r̃) & ∆θ̃ = 0 in R1,r̃] yields

1

2

∫

R1,r̃

|∇w̃|2 =
1

2

∫

R1,r̃

|∇θ̃|2 + |∇ϕ̃|2

= π| ln r̃|+ 1

2

∫

R1,r̃

|∇ϕ̃|2. (40)

Thus, from (37) and (40), in order to get (25), it suffices to prove that if ϕ̃ ∈ H1(R1,r̃,R) satisfies (39),
then we have

1

2

∫

B(0,1)\B(t,r)

|∇ϕ̃|2 ≥ |ϕ̃0|2H1/2 − Cr (41)

where C is a constant depending only on t.
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Let us focus on the proof of (41) and we let

ϕ̃ =

{

ϕ̃ in R1,r̃

φR +Cst in B(0, r̃)
.

Here "Cst" is s.t. ϕ̃ ∈ H1(B(0, 1),R) and φR is defined in (30).
On the one hand we have [with (31)]

1

2

∫

R1,r̃

|∇ϕ̃|2 ≥ 1

2

∫

B(0,1)

|∇ϕ̃|2 − Cr (42)

where C is a constant depending only on t.
On the other hand, the equality trS1ϕ̃ = ϕ̃0 and the Dirichlet Principle ensure that

1

2

∫

B(0,1)

|∇ϕ̃|2 ≥ |ϕ̃0|2H1/2 . (43)

Combining (42) with (43) we finally get (41). Thus (25) holds.

6 Coupling of both previous lower bounds

We recall that

• Φ : B(0, 1) \B(t, r) → B(0, 1) \B(0, r̃) =: R1,r̃ is a conformal representation.

• θ̃(x) = argument[Φ(x)] for x ∈ B(0, 1) \B(t, r) with θ̃ ∈]− π, π].

• We fixed h ∈ H1/2(S1, S1) and we denoted h̃ = h ◦ Φ−1.

• We fixed two dephasings ϕ0, ϕ̃0 ∈ H1/2(S1,R) s.t.

h(eıθ) = eı[θ+ϕ0(e
ıθ)] and h̃(eıθ̃) = eı[θ̃+ϕ̃0(e

ıθ̃)].

With the help of (16), (18) and (25) we have

WR,t(h) ≥ −πb2 ln(r̃R) + |ϕ0|2H1/2 + b2|ϕ̃0|2H1/2 − Cr (44)

where C is a constant depending only on t.
Note that from (27) we have r̃R = 1

1−t2 + oR(1). Therefore, from (44), we have [with, in the following
the "oR(1)" which depend only on t]

WR,t(h) ≥ −πb2 ln(r̃R) + |ϕ0|2H1/2 + b2|ϕ̃0|2H1/2 − Cr

≥ −πb2 ln 1

1− t2
+ |ϕ0|2H1/2 + b2|ϕ̃0|2H1/2 − oR(1)

= −πb2 ln 1

1− t2
+ b2(|ϕ0|2H1/2 + |ϕ̃0|2H1/2)

+ (1− b2)|ϕ0|2H1/2 − oR(1). (45)

The goal of this section [see (47) below] is to get a lower bound independent of h for

H :=







|ϕ0|2H1/2 + |ϕ̃0|2H1/2 if |ϕ0|H1/2 > 3−1|ϕ̃0|H1/2

8

9
|ϕ̃0|2H1/2 if |ϕ0|H1/2 ≤ 3−1|ϕ̃0|H1/2

.

Note that we have:

b2(|ϕ0|2H1/2 + |ϕ̃0|2H1/2) + (1− b2)|ϕ0|2H1/2 ≥ b2H +min

{

(1 − b2)H

10
;
b2H

8

}

≥ b2H +
H min

{

1− b2 ; b2
}

10
. (46)
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In order to couple the previous lower bounds we claim that, since for eıθ ∈ S1 we have h(eıθ) =
h̃ ◦ Φ(eıθ), the following equality holds on S

1

eı(θ+ϕ0) = eı(θ̃+ϕ̃0◦Φ).

This infers that on S1 we have
eı[(θ−θ̃)−(ϕ̃0◦Φ−ϕ0)] = 1.

We write (θ − θ̃)|S1 := trS1(θ − θ̃). Since (θ − θ̃)|S1 − (ϕ̃0 ◦ Φ− ϕ0) ∈ H1/2(S1, 2πZ), there is k ∈ Z s.t.

ϕ̃0 ◦ Φ− ϕ0 = (θ − θ̃)|S1 + 2kπ.

It follows that
|ϕ̃0 ◦ Φ− ϕ0|2H1/2 = |(θ − θ̃)|S1 |2H1/2 .

Thus, if |ϕ0|H1/2 > 3−1|ϕ̃0|H1/2 , then we have

|ϕ0|2H1/2 + |ϕ̃0|2H1/2 ≥ 1

2
|(θ − θ̃)|S1 |2H1/2 .

Note that the previous estimate always holds, but we use it only when |ϕ0|H1/2 > 3−1|ϕ̃0|H1/2 .
Otherwise, if |ϕ0|H1/2 ≤ 3−1|ϕ̃0|H1/2 , then we have

8

9
|ϕ̃0|2H1/2 ≥ 1

2
|(θ − θ̃)|S1 |2H1/2 .

Therefore, by combining both previous estimates with the definition of H , we get

H ≥ 1

2
|(θ − θ̃)|S1 |2H1/2 . (47)

7 Computation of |(θ − θ̃)|S1|2H1/2 and epilog

Let us compute |(θ − θ̃)|S1 |2H1/2 in order to deduce from (47) a nice lower bound for H (see (49)).
More precisely we prove that [recall that from Equality (26) we have α ∈ [0, 1[]

|(θ − θ̃)|S1 |2H1/2 :=
1

2

∫

B(0,1)

|∇(θ − θ̃)harm|S1 |2 = 2π ln
1

1− α2
. (48)

Here, (θ − θ̃)harm|S1 is the harmonic extension of (θ − θ̃)|S1 in B(0, 1).

Estimate (48), with the help of (47), implies

H ≥ π ln
1

1− t2
+ oR(1) (49)

where oR(1) depends only on t (and consequently it is independent of h).
In order to establish (48), we use the following formula based on the Fourier decomposition of a map

f ∈ H1/2(S1,R): if f ∈ H1/2(S1,R) is s.t. f(eıθ) =
∑

Z
cne

ınθ then

|f |2H1/2 = π
∑

n∈Z

|n||cn|2.

In order to establish (48), we find the Fourier expansion series of (θ − θ̃)|S1(e
ıθ). To this aim, we

observe that d
dθ (e

ıθ̃) is the Poisson Kernel for the unit disk.

It is not difficult to see that, since Φ(eıθ) =
eıθ − α

αeıθ − 1
= eıθ̃, we have

d

dθ
(eıθ̃(e

ıθ)) = ıeıθ̃(e
ıθ) d

dθ

[

θ̃(eıθ)
]

=
d

dθ

[

eıθ − α

αeıθ − 1

]

= ıeıθ
α2 − 1

(αeıθ − 1)2

= ıeıθ̃(e
ıθ) 1− α2

|αeıθ − 1|2

= ıeıθ̃(e
ıθ) 1− α2

1− 2α cos(θ) + α2
.
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From these estimates we get:

d

dθ

[

θ̃(eıθ)
]

=
1− α2

1− 2α cos(θ) + α2
=

∑

n∈Z

α|n|eınθ.

Then
d

dθ

[

θ̃(eıθ)− θ
]

=
∑

n∈Z∗

α|n|eınθ.

Thus

θ̃(eıθ)− θ =
∑

n∈Z∗

α|n|

ın
eınθ +Cst.

Consequently

|(θ − θ̃)|S1 |2H1/2 = 2π
∑

n≥1

α2n

n
= 2π ln

1

1− α2
.

Which proves (48).

We are now able to prove Lemma 8.
From (45) (with, in the following the "oR(1)" which depend only on t)

WR,t(h) ≥ −πb2 ln 1

1− t2
+ b2(|ϕ0|2H1/2 + |ϕ̃0|2H1/2) +

+ (1 − b2)|ϕ0|2H1/2 + oR(1)

[Est. (46)] ≥ −πb2 ln 1

1− t2
+ b2H +

Hmin
{

1− b2 ; b2
}

10
+ oR(1)

[Est. (49)] ≥ π
min

{

1− b2 ; b2
}

10
ln

1

1− t2
+ oR(1).

Since WR,t(h) ≥ π
min

{

1− b2 ; b2
}

10
ln

1

1− t2
+ oR(1) (with oR(1) which depends only on t), there is

R0 > 1 depending only on t and b s.t. for R > R0 we have

WR,t(h) ≥ π
min

{

1− b2 ; b2
}

16
ln

1

1− t2
.

This last estimate concludes the proof of Lemma 8.

A Proofs of (8), (9) and (10)

Since the arguments used in this appendix do not use the circular geometry of the inclusions, we assume,
in this appendix, that the inclusions are small copies of a smooth simply connected open set s.t. ω ⊂ D

and s.t. 0 ∈ ω.
Therefore the pinning term aε has the following form:

aε : Ω → {1, b}

x 7→
{

b if x ∈ ∪Iε {zεi + ri · ω}
1 otherwise

.

Here ε≪ ri ≪ 1 and the dilute condition (5) is satisfied. We assume that letting r0 = max ri we have

lim
ε→0

| ln r0|3
| ln ε| = 0. (50)

Recall that, for sufficiently small ε, a minimizer vε of Fε in H1
g has a unique zero xε. Moreover there

is iε ∈ Iε s.t. letting zε be s.t. zε := zεiε , we have riε = r0 and xε ∈ zε + r0 · ω.
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We denote D := B(zε, r0R) \B(xε, r0/R) where R is defined in (7).
We are going to prove in this appendix the validity of (8), (9) and (10).
The main ingredient in the proof is the estimate [See Theorem 3.(3) in [Dos]]

|vε| ≥ 1− C

√

| ln r0|
ln ε

in Ω \B(xε, r0/R). (51)

A.1 Preliminary energetic analysis

A.1.1 Global upper bound

We have the following upper bound:

Fε(vε) ≤ π lnRr0 +Wg(zε) + inf
w∈H1(D,S1)

w(zε+r0Reıθ)=eıθ

w(xε+r0R
−1eıθ)=Cst eıθ

1

2

∫

D
U2
ε |∇w|2

+b2(π ln
br0
Rε

+ γ) + oε(1). (52)

This estimate is obtained with the test function

v0 =















wRr0 in Ω \B(zε, Rr0)

Cst1 wD in D
Cst2 u0 in B(xε,

r0
R
)

where

• The function wRr0 is a minimizer of
1

2

∫

Ω\B(zε,Rr0)

|∇w|2 among the maps w ∈ H1(Ω\B(zε, Rr0), S
1)

satisfying tr∂Ωw = g and w(zε +Rr0e
ıθ) = Cst eıθ.

From Formula (15) in [CM96] we have

Fε

[

wRr0 ,Ω \B(zε, Rr0)
]

=
1

2

∫

Ω\B(zε,Rr0)

U2
ε |∇wRr0 |2

≤ π| lnRr0|+Wg(zε) + oε(1).

• The function wD is a minimizer for
1

2

∫

D
U2
ε |∇w|2 among the maps w ∈ H1(D, S1) satisfying the

conditions w(zε + r0Re
ıθ) = eıθ and w(xε + r0R

−1eıθ) = Cst eıθ.

• The function u0 is a minimizer for Eε/b[u,B(xε, R
−1r0)] [where Eε is defined in (1)] among maps

u ∈ H1(B(xε, R
−1r0),C) with the boundary condition u(xε +R−1r0e

ıθ) = eıθ.

From Lemma IX.1 in [BBH94] and since Uε = b2 + Vε with ‖Vε‖L∞ = O(ε4) [see Proposition 3 in
[Dos]], we have

Fε(u0, B(xε, R
−1r0)) = b2(π ln

br0
Rε

+ γ) + oε(1).

• The constants Cst1 and Cst2 are s.t. v0 ∈ H1(Ω,C).

A.1.2 Some lower bounds

Arguing as in the proof of Proposition 18 in [Dos] we get

Fε

[

vε,Ω \B(zε, Rr0)
] (51)

≥ 1

2

∫

Ω\B(zε,Rr0)

U2
ε

∣

∣

∣

∣

∇ vε
|vε|

∣

∣

∣

∣

2

− oε(1)





Same argument than
in the proof of

Prop. 18 in [Dos]



 ≥ inf
w∈H1[Ω\B(zε

i ,Rr0),S
1)]

tr∂Ωw=g

1

2

∫

Ω\B(zε,Rr0)

|∇w|2 − oε(1)

[Lemma 2 in [CM96]] = Wg(z
ε
i ) + π| lnRr0| − oε(1). (53)
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From Estimate (4.30) in [Dos] we get easily

Fε

[

vε, B(xε,
r0
R
)
]

= b2(π ln
br0
Rε

+ γ) + oε(1). (54)

By combining (52), (53) and (54) we have

Fε [vε,D] ≤ inf
w∈H1(D,S1)

w(zε+r0Reıθ)=eıθ

w(xε+r0R
−1eıθ)=Cst eıθ

1

2

∫

D
U2
ε |∇w|2 + oε(1).

On the other hand, since |vε| ≥ 1− C

√

| ln r0|
ln ε

in D, we get easily that

Fε [vε,D] ≥ 1

2

∫

D
U2
ε

∣

∣

∣

∣

∇ vε
|vε|

∣

∣

∣

∣

2

+ oε(1)

≥ inf
w∈H1(D,S1)

deg∂B(zε,r0R)(w)=1

1

2

∫

D
U2
ε |∇w|2 + oε(1).

We let Ûε(x̂) = Uε(zε + r0x̂) for x̂ ∈ B(0, R). For w ∈ H1(D,C), by conformal invariance we have

1

2

∫

D
U2
ε |∇w|2 =

1

2

∫

D̂
Û2
ε |∇ŵ|2

with ŵ(x̂) = w(zε + r0x̂) and D̂ := B(0, R) \B(x̂ε, r) where x̂ε =
xε − zε
r0

.

Therefore, in order to get (8), it suffices to prove:

inf
ŵ∈H1(D̂,S1)

ŵ(Reıθ)=eıθ

ŵ(x̂ε+R−1eıθ)=Cst eıθ

1

2

∫

D̂
Û2
ε |∇ŵ|2 = inf

ŵ∈H1(D̂,S1)
deg∂B(0,R)(ŵ)=1

1

2

∫

D̂
Û2
ε |∇ŵ|2 + oε(1). (55)

A.2 Auxiliary problems and the proof of (10)

Estimate (10) is a direct consequence of Proposition 1 below. Moreover with the help of this proposition
we may prove (8)&(9) (see in the next section).

In the following we drop the "hat" for the maps: write w instead of ŵ.

Notations.

• We fix a sequence (xn)n ⊂ ω s.t. xn → x0 ∈ ω;

• We fix two sequences Rn = R ↑ ∞ and rn = r ↓ 0 s.t. r < 1 < R (we are not necessarily in the case
r = R−1).

• For ρ1 > ρ2 > 0 and x ∈ C we write

Dρ1,ρ2(x) = B(0, ρ1) \B(x, ρ2) and Rρ1,ρ2(x) = B(x, ρ1) \B(x, ρ2).

For α ∈ L∞(C, [b2, 1]) and for x0 ∈ ω (with sufficiently large n s.t. B(x0, r) ⊂ ω), consider the following
minimization problems

µα(DR,r(x0)) = inf
w∈H1(DR,r(x0),S

1)
deg∂B(0,R)(w)=1

1

2

∫

DR,r(x0)

α|∇w|2

18



and

µDir
α (DR,r(x0)) = inf

w∈H1(DR,r(x0),S
1)

w(Reıθ)=eıθ

w(x0+reıθ)=Cst eıθ

1

2

∫

DR,r(x0)

α|∇w|2.

In this appendix, α is either the function identically equal to one (denoted by 1I), or the function Û2
ε

or α : C → {1, b2}, x 7→ α(x) =

{

b2 if x ∈ ωα

1 otherwise
with ωα "close to" ω.

Note that if B(x0, c) ⊂ ω for some x0 ∈ ω and 0 < c < 1, then there exists rc > 0 s.t. for r ≤ rc we
have

µDir
a2 (DR,r(x0)) ≤ π lnR+ b2π| ln r|+ C0(c). (56)

Here C0(c) is a constant depending on c; it may be considered decreasing w.r.t. c ∈]0, 1[.

In the context of a sequence (xn)n ⊂ ω s.t. xn → x0 ∈ ω, from (56), there is C̃0 s.t. for sufficiently
large n we have the uniform estimate

µDir
a2 (DR,r(xn)) ≤ π lnR+ b2π| ln r|+ C̃0. (57)

To get Estimate (56), we fix a smooth map g̃ ∈ C∞(∂ω, S1) s.t. deg∂ω(g̃) = 1 and we write Wω
g̃ (·) the

renormalized energy of Bethuel-Brezis-Hélein defined Formula (2) for Ω := ω and g := g̃.
We first note that from Theorem 6 in [CM96], we have that Wω

g̃ : ω → R is a smooth function.
Therefore for c > 0, there is C1(c) > 0 s.t. Wω

g̃ (x) ≤ C1(c) if B(x, c) ⊂ ω.
Moreover if we have dist(x0, ∂ω) ≥ c, then there exists rc > 0 (depending only on c, ω and g̃) s.t. for

0 < r < rc we have the existence of a map wr ∈ H1(ω\B(x0, r), S
1) s.t. tr∂ωwr = g̃, wr(x0+re

ıθ) = Cst eıθ

and s.t.
1

2

∫

ω\B(x0,r)

|∇wr|2 ≤ π ln r +Wω
g̃ (x0) + 1. (58)

This estimate is obtained from Estimate (15) in [CM96].

The upper bound (56) is obtained with the following test function

w(x) =















x

|x| if x ∈ RR,1(0)

w0(x) if x ∈ D \ ω
wr(x) if x ∈ ω \B(x0, r)

where

• w0 ∈ H1(D \ ω, S1) is a map independent of r s.t. tr∂(D\ω)(w
0) =

{

eıθ on S1

g̃ on ∂ω
;

• wr is given by (58).

It is standard to get that
1

2

∫

RR,1(0)

∣

∣

∣

∣

∇ x

|x|

∣

∣

∣

∣

2

= π lnR.

Thus, for r < rc, Estimate (56) holds.
The main result of this section is the following proposition.

Proposition 1. 1. For sufficiently large n, letting y = x0 or y = xn, we have

0 ≤ µDir
a2 (DR,r(y))− µa2(DR,r(y)) ≤

C

min{| ln r|; lnR}

where the constant C is independent of n.

2. When n→ ∞ we have µa2(DR,r(xn))− µa2(DR,r(x0)) = on(1)
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Proof. We prove the first assertion. Let y = x0 or y = xn and let w be a minimal map for µa2(DR,r(y))
[it is standard to prove that such map exists]. We are going to construct a map w [see (70)] s.t., for a
suitable constant Cst, Cstw is a test function for the problem µDir

a2 (DR,r(y)) and s.t.

1

2

∫

DR,r(y)

α|∇w|2 ≤ µa2(DR,r(y)) +
C

min{| ln r|; lnR} (59)

where the constant C is independent of n.

Since µa2(DR,r(y)) ≤ µDir
a2 (DR,r(y)), if (59) holds, then the first assertion of Proposition 1 holds also.

In order to construct the map w, we first choose two good circles. This is done by getting two upper
bounds [see (63)&(64) below].

We let c < 10−2dist(x0, ∂ω) and n sufficiently large s.t. |xn − x0| < c and s.t. r < c. In particular we
have B(y, c) ⊂ ω with y = x0 or y = xn.

Recall that for ρ1 > ρ2 > 0 and x ∈ C, we denote Rρ1,ρ2(x) := B(x, ρ1) \B(x, ρ2).
We switch to polar coordinates in RR,1(0) and in Rc,r(y) by writing

• in RR,1(0): w(ρ, θ) := w(ρeıθ), ρ ∈]1, R[, θ ∈ [0, 2π];

• in Rc,r(y): w(ρ, θ) := w(y + ρeıθ), ρ ∈]r, c[, θ ∈ [0, 2π].

Let us define for ρ ∈]r, c[∪]1, R[ the circle Cρ :=

{

∂B(0, ρ) if ρ > 1

∂B(y, ρ) if ρ < c
.

Our first observation is that, since the map w is of degree 1 on Cρ for ρ ∈]r, c[∪]1, R[, then we have

1

2π

∫ 2π

0

w∧∂θw = 1 (here we used the formula of the degree given in Footnote 2 page 2). Thus we obtain

1 ≤
(

1

2π

∫ 2π

0

|∂θw(ρ, θ)|
)2

≤ 1

2π

∫ 2π

0

|∂θw(ρ, θ)|2. (60)

Consequently, by using polar coordinates we get easily
∣

∣

∣

∣

∣

∣

∣

∣

∣

1

2

∫

R
R,R2/3(0)∪R

R1/3,1
(0)

|∇w|2 ≥ 2π lnR1/3

1

2

∫

R
R2/3,R1/3(0)

|∇w|2 ≥ π lnR1/3
(61)

and
∣

∣

∣

∣

∣

∣

∣

∣

∣

1

2

∫

R
c,r1/3

(y)∪R
r2/3,r

(y)

|∇w|2 ≥ π
(

ln c+ 2| ln r1/3|
)

1

2

∫

R
r1/3,r2/3

(y)

|∇w|2 ≥ π| ln r1/3|
. (62)

Therefore, from (57), (61) and (62), we get

1

2

∫

R
R2/3,R1/3(0)

|∇w|2 ≤ π lnR1/3 + C2 (63)

and
1

2

∫

R
r1/3,r2/3

(y)

|∇w|2 ≤ π| ln r1/3|+ C2 (64)

where C2 > 0 is independent of n.
From (63) and (64), and arguing by contradiction, it is easy to get the existence of R̃ ∈]R1/3, R2/3[

and r̃ ∈]r2/3, r1/3[ s.t.
1

2

∫ 2π

0

|∂θw(R̃, θ)|2 ≤ π +
C2

lnR1/3
(65)
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and
1

2

∫ 2π

0

|∂θw(r̃, θ)|2 ≤ π +
C2

| ln r1/3| . (66)

We write w(R̃, θ) = eı[θ+ϕ(R̃,θ)] and w(r̃, θ) = eı[θ+ϕ(r̃,θ)].

Since for ρ ∈ {r̃, R̃} we have

∫ 2π

0

∂θϕ(ρ, θ) dθ = 0 and |∂θw| = |1 + ∂θϕ(ρ, θ)|, Estimates (65)&(66)

may be rewritten in term of ϕ:
1

2

∫ 2π

0

|∂θϕ(R̃, θ)|2 ≤ C2

lnR1/3
(67)

and
1

2

∫ 2π

0

|∂θϕ(r̃, θ)|2 ≤ C2

| ln r1/3| . (68)

Note that:

• from Estimates (67)&(68), we get that the maps ϕ(R̃, ·),ϕ(r̃, ·) : [0, 2π] → R are continuous;

• for ρ ∈ {R̃, r̃} and θ0 ∈ [0, 2π] we have

|ϕ(ρ, θ0)− ϕ(ρ, 0)|2 =

∣

∣

∣

∣

∣

∫ θ0

0

∂θϕ(ρ, θ) dθ

∣

∣

∣

∣

∣

2

≤ 2π

∫ 2π

0

|∂θϕ(ρ, θ)|2 dθ. (69)

We now construct the map w by letting

w(x) =











eı(θ+φ1(x)) if x = ρeıθ ∈ RR,R̃(0)

w(x) if x ∈ DR̃,r̃(y)

eı(θ+φ2(x)) if x = y + ρeıθ ∈ Rr̃,r(y)

; (70)

where

φ1(ρ, θ) = ϕ(R̃, 0) +
R̃

ρ

R− ρ

R− R̃

[

ϕ(R̃, θ)− ϕ(R̃, 0)
]

for R̃ < ρ < R

and

φ2(ρ, θ) = ϕ(r̃, 0) +
ρ− r

r̃ − r
[ϕ(r̃, θ)− ϕ(r̃, 0)] for r < ρ < r̃.

From direct computations and with the help of (67),(68) and (69) we get easily that

1

2

∫

RR,R̃(0)

|∇φ1|2 +
1

2

∫

Rr̃,r(y)

|∇φ2|2 ≤ C3 max
ρ∈{r̃,R̃}

1

2

∫ 2π

0

|∂θϕ(ρ, θ)|2

≤ C

min{| ln r|; lnR}
where C3, C > 0 are independent of n.

Now, it is straightforward to see that

µDir
a2 (DR,r(y)) ≤ 1

2

∫

DR,r(y)

α|∇w|2

[Definition of w] ≤ 1

2

∫

DR̃,r̃(y)

α|∇w|2 + π ln
R

R̃
+ b2π ln

r̃

r
+

C

min{| ln r|; lnR}

[Est. (60)] ≤ 1

2

∫

DR,r(y)

α|∇w|2 + C

min{| ln r|; lnR}

[by minimality of w] ≤ µa2(DR,r(y)) +
C

min{| ln r|; lnR} ,

which is exactly (59).

We now prove the second assertion. Let η := |xn − x0| and assume that η > 0 (if η = 0, then there is
nothing to prove).

Let us consider:
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• w1 a minimizing map for µDir
a2 (DR,max{r,√η}(xn));

• w2 a minimizer for µDir
a2

(

D̃
)

with D̃ := B(xn,max{r,√η}) \B(x0,min{r, η2}).
We have by conformal invariance that

µDir
a2

(

D̃
)

= b2µDir
1I

[

D \B
(

x0 − xn
max{r,√η} ,

min{r, η2}
max{r,√η}

)

]

[(15) in [CM96]] = b2
[

π ln
max{r,√η}
min{r, η2} +WD

eıθ

(

x0 − xn
max{r,√η}

)

+ on(1)

]

= b2π ln
max{r,√η}
min{r, η2} + on(1). (71)

Here we used the continuity of WD

eıθ(·), the renormalized energy of Bethuel-Brezis-Hélein defined

Formula (2) for Ω := D and g(eıθ) := eıθ, combined with WD

eıθ (0) = 0 &
x0 − xn

max{r,√η} → 0.

Let w : DR,min{r,η2}(x0) → S1 be s.t.

w(x) =

{

w1(x) if x ∈ DR,max{r,√η}(xn)

Cstw2(x) if x ∈ B(xn,max{r,√η}) \B(x0,min{r, η2})
.

On the one hand, since the map w is of degree one, we have

µa2(DR,r(x0)) + b2π ln
r

min{r, η2} ≤
∫

DR,min{r,η2}(x0)

a2|∇w|2.

Therefore:

µa2(DR,r(x0)) ≤
∫

DR,min{r,η2}(x0)

a2|∇w|2 − b2π ln
r

min{r, η2}
[

by the definitions of
w1&w2 and (71)

]

≤ µDir
a2 (DR,max{r,√η}(xn)) + b2π ln

max{r,√η}
r

+ on(1)

[Proposition 1.1] ≤ µa2(DR,max{r,√η}(xn)) + b2π ln
max{r,√η}

r
+ on(1)

[Estimate (60)] ≤ µa2(DR,r(xn)) + on(1).

Following the same strategy, we may reverse the role of x0 an xn. Therefore, the second assertion
holds.

A.3 Proofs of (8) and (9)

In this subsection, we turn to the case where R is defined in (7) and r = R−1.
We are now able to prove that Estimates (9) and (55) hold. Recall that we consider a sequence εn ↓ 0

s.t. x̂εn → x0. We drop the extra-subscript n by writing ε instead εn.

Let two functions α+ and α− be s.t. α± =

{

b2 in (1 ±√
ε) · ω

1 otherwise
. It is easy to see that α+ ≤ a2 ≤ α−.

Moreover from Proposition 3 in [Dos] we have the existence of Vε ∈ L∞(C,R) s.t.

α+ − Vε ≤ Û2
ε ≤ α− + Vε and ‖Vε‖L∞ ≤ Cε4.

Therefore we get easily that

µDir
α+ (DR,r(x̂ε))− oε(1) ≤ µDir

Û2
ε
(DR,r(x̂ε)) ≤ µDir

α− (DR,r(x̂ε)) + oε(1) (72)

and
µα+(DR,r(x̂ε))− oε(1) ≤ µ

Û2
ε
(DR,r(x̂ε)) ≤ µα−(DR,r(x̂ε)) + oε(1). (73)
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Therefore, it suffices to prove that

{

µDir
α± (DR,r(x̂ε))− µDir

a2 (DR,r(x̂ε)) = oε(1)

µα±(DR,r(x̂ε))− µa2(DR,r(x̂ε)) = oε(1)
(74)

to get Estimate (55) as a direct consequence of Proposition 1.1.
We prove that µα+(DR,r(x̂ε)) − µa2(DR,r(x̂ε)) = oε(1), the same estimate with α− instead of α+ or

with Dirichlet boundary condition is obtained in a similar way.
Let w be a minimizer for µα+(DR,r(x̂ε)).

Let us define w̃ ∈ H1

[

DR/(1+
√
ε),r/(1+

√
ε)

(

x̂ε
1 +

√
ε

)

, S1
]

be s.t. w̃(x̃) = w[(1 +
√
ε)x̃].

It is easy to see that

µa2(DR,r(x̂ε)) ≥ µα+(DR,r(x̂ε))

=
1

2

∫

DR,r(x̂ε)

α+|∇w|2

=
1

2

∫

DR/(1+
√

ε),r/(1+
√

ε)(
x̂ε

1+
√

ε
)

a2|∇w̃|2

≥ µa2

[

DR/(1+
√
ε),r

(

x̂ε
1 +

√
ε

)]

[Proposition 1.1&2] ≥ µDir
a2 (DR/(1+

√
ε),r(x0)) + oε(1)

[

by extending with eıθ

the maps in RR,R/(1+
√
ε)(0)

]

≥ µDir
a2 (DR,r(x0)) + oε(1)

[Proposition 1.1&2] ≥ µa2(DR,r(x̂ε)) + oε(1).

Therefore µa2(DR,r(x̂ε)) = µα+(DR,r(x̂ε)) + oε(1). The same argument leads to µa2(DR,r(x̂ε)) =
µα−(DR,r(x̂ε)) + oε(1) and µDir

a2 (DR,r(x̂ε)) = µDir
α± (DR,r(x̂ε)) + oε(1). Therefore (74) holds.

And, by using (72)&(73), we get that the same inequality holds with Û2
ε instead of α±. Thus (9)

&(55) hold. Consequently (8) is valid.
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