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E-mail: arnaud.gloter@univ-evry.fr

We study the problem of the efficient estimation of the jumps for stochastic processes. We assume
that the stochastic jump process (Xt)t∈[0,1] is observed discretely, with a sampling step of size
1/n. In the spirit of Hajek’s convolution theorem, we show some lower bounds for the estimation
error of the sequence of the jumps (∆XTk )k. As an intermediate result, we prove a LAMN
property, with rate

√

n, when the marks of the underlying jump component are deterministic.
We deduce then a convolution theorem, with an explicit asymptotic minimal variance, in the
case where the marks of the jump component are random. To prove that this lower bound is
optimal, we show that a threshold estimator of the sequence of jumps (∆XTk )k based on the
discrete observations, reaches the minimal variance of the previous convolution theorem.

Keywords: convolution theorem; Itô process; LAMN property

1. Introduction

The statistical study of stochastic processes with jumps, from high frequency data, has
been the subject of many recent works. A major issue is to determine if the jump part
is relevant to model the observed phenomenon. Especially, for modelling of asset prices,
the assessment of the part due to the jumps in the price is an important question.
This has been addressed in several works, either by considering multi-power variations
[6, 7, 11] or by truncation methods (see [19, 20]). Another issue is to test statistically if
the stochastic process has continuous paths. The question has been addressed in many
works (see [1, 2, 4]) and is crucial to the hedging of options. A clearly related question is
to determine the degree of activity of the jump component of the process. Estimators of
the Blumenthal–Getoor index of the Lévy measure of the process are proposed in several
papers [3, 8, 23].
In that context, the main statistical difficulty comes from the fact that one observes

a discrete sampling of the process, and consequently, the exact values of the jumps are
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unobserved. As a matter of fact, a lot of statistical procedures rely on the estimation of
a functional of the jumps. In [13], Jacod considers the estimation, from a high frequency
sampling, of the functional of the jumps

∑

0≤s≤1,∆Xs 6=0

f(∆Xs) =
∑

k

f(∆XTk
)

for a smooth function f vanishing at zero (see Theorems 2.11 and 2.12 in [13] for precise
assumptions). In particular, he studies the difference between the unobserved quantity∑

0≤s≤1 f(∆Xs) and the observed one
∑n−1

i=0 f(X(i+1)/n −Xi/n). When X is a semi-
martingale, it is shown that the difference between the two quantities goes to zero with
rate

√
n. Rescaled by this rate, the difference is asymptotically distributed as

∑

k

f ′(∆XTk
)[σTk−

√
UkN

−
k + σTk

√
1−UkN

+
k ], (1.1)

where the variables Uk are uniform variables on [0,1] and N−
k , N+

k are standard Gaussian
variables. The quantity σTk− (resp., σTk

) is the local volatility of the semi martingale X
before (resp., after) the jump at time Tk. This result serves as the basis for studying the
statistical procedures developed in [4, 15].
However, the problem of the efficiency of these methods seems to have never been

addressed. Motivated by these facts, we discuss, in this paper, the notion of efficiency to
estimate the jumps from the discrete sampling (Xi/n)0≤i≤n.
Let us stress, that the meaning of efficiency is not straightforward here. Indeed, we

are not dealing with a standard parametric statistical problem, and it is not clear which
quantity can stand for the Fisher’s information. In this paper, we restrict ourself to
processes X solutions of

Xt = x0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

a(s,Xs) dWs +
∑

Tk≤t

c(XTk−,Λk),

where we assume that the number of jumps on [0,1], denoted by K , is finite. We note
J = (∆XT1 , . . . ,∆XTK ) the vector of jumps, and Λ = (Λ1, . . . ,ΛK) the random marks.
The notion of efficiency will be stated in this context as a convolution result in Theorem
2.1. More precisely, we prove that for any estimator J̃n such that the error

√
n(J̃n − J)

converges in law to some variable Z , the law of Z is a convolution between the law of
the vector

[a(Tk,XTk−)
√
UkN

−
k + a(Tk,XTk

)
√

1−UkN
+
k ]k=1,...,K

and some other law. Contrarily to the standard convolution theorem, we do not need the
usual regularity assumption on the estimator. The explanation is that we are not estimat-
ing a deterministic (unknown) parameter, but we estimate some random (unobserved)
variable J .
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The proof of this convolution result relies on the study of a preliminary parametric
model: we consider the parametric model where the values of the marks Λ are consid-
ered as an unknown deterministic parameter λ ∈RK . The resulting model is a stochastic
differential equation with jumps, whose coefficients depend on this parameter λ. We es-
tablish then in Theorem 3.1, that this statistical experiment satisfies the LAMN property,
with rate

√
n and some explicit Fisher’s information matrix I(λ).

By Hajek’s theorem, it is well known that the LAMN property implies a convolution
theorem for any regular estimator of the parameter λ (see [17, 22]). However, our context
differs from the usual Hajek’s convolution theorem on at least two points. First, the
parameter λ is randomized and second the target of the estimator J = (c(XTk−,Λk))k
depends both on the randomized parameter and on some unobserved quantities XTk−.
As a result, the connection between the minimal law of the convolution theorem and the
Fisher’s information of the parametric model is not straightforward. The proof of the
convolution theorem, when c(XTk−,Λk) = c(Λk) does not depend on XTk−, is simpler
and is given in Theorem 5.1.
Remark that it is certainly possible to state a general result about the connection

between the LAMN property and convolution theorems for the estimation of unobserved
random quantities. The proof of the Proposition 5.2 is a step in this direction. However,
giving such general results is beyond the scope of the paper.
The outline of the paper is as follows. In Section 2, we state a convolution theorem,

which establishes an asymptotic lower bound for the asymptotic error of any estimator
of the jumps. The LAMN property is enounced in Section 3. In Section 4, we show that
the threshold estimator, introduced by Mancini (see [19, 20]), reaches the lower bound
of Theorem 2.1. This proves that this lower bound is optimal. The proofs of these results
are postponed to the Section 5.

2. Convolution theorem

2.1. Notation

Consider (Xt)t∈[0,1] an adapted c.à.d.l.à.g., one dimensional, stochastic process defined
on some filtered probability space (Ω,F , (Ft)t∈[0,1],P). We assume that the sample paths
of X almost surely admit a finite number of jumps. We denote by K the random number
of jumps on [0,1] and 0< T1 < · · ·< TK < 1 the instants of these jumps. We assume that
the process X is a solution of the stochastic differential equation with jumps

Xt = x0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

a(s,Xs) dWs +
∑

Tk≤t

c(XTk−,Λk), (2.1)

where W is a standard (Ft)t Brownian motion. The vector of marks (Λk)k is random.
The Brownian motion, the jump times and the marks are independent.
We will note J = (Jk)k≥1 the sequence of the jumps of the process, defined by Jk =

c(XTk−,Λk) =∆XTk
, for 1≤ k ≤K and Jk = 0, for k >K .
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Remark that if Tk−Tk−1 is exponentially distributed, the jumps times are arrival times
of a Poisson process. Then, if the marks (Λk)k are i.i.d. variables, the process

∑
Tk≤tΛk

is a compound Poisson process. In this particular case, the equation (2.1) becomes a
standard SDE with jumps based on a random Poisson measure with finite intensity.
It is convenient to assume that the process is realized on the canonical product space

of the Brownian part and the jumps parts Ω = Ω1 × Ω2, P = P1 ⊗ P2. More precisely,
we note (Ω1,F1,P1) = (C([0,1]),B,W), the space of continuous functions endowed with
the Wiener measure on the Borelian sigma-field and (F1

t )t∈[0,1] the filtration generated

by the canonical process. We introduce (Ω2,F2,P2) = (RN ×RN,B(R)⊗N ⊗B(R)⊗N,P2),
where P2 is the law of two independent sequences of random variables (Tk)k≥1, (Λk)k≥1.
We assume that, P2-almost surely, the sequence (Tk)k≥1 is nondecreasing and such K =
Card{k,Tk ≤ 1} is finite. Then, ((Wt)t∈[0,1], (Tk)k≥1, (Λk)k≥1) are the canonical variables
on Ω. We assume that (Ft)t is the right continuous, completed, filtration based on (F1

t ×
F2)t and F =F1.
In order to describe the asymptotic law of any estimator of the jumps, we need some

additional notation. Following [13], we introduce an extension of our initial probability
space. We consider an auxiliary probability space (Ω′,F ′,P′) which contains U = (Uk)k≥1

a sequence of independent variables with uniform law on [0,1], and N− = (N−
k )k≥1,

N+ = (N+
k )k≥1 two sequences of independent variables with standard Gaussian law. All

these variables are mutually independent. We extend the initial probability space by

setting Ω̃ = Ω×Ω′, F̃ =F ⊗F ′, P̃= P⊗ P′, F̃t =Ft ⊗F ′.

2.2. Main result

We need some more assumptions on the process. Especially, to avoid cumbersome nota-
tion we will first assume in the next subsection that the number of jumps is deterministic.
We will show in Section 2.2.2 that this is not a real restriction, since we can reformulate
our result by conditioning on the number of jumps K .

2.2.1. Deterministic number of jumps

Since the number of jumps K is deterministic, the probability space Ω introduced in
Section 2.1 is simplified accordingly: Ω = Ω1 × Ω2, Ω1 = C([0,1]) and Ω2 = R

K × R
K .

The space Ω̃ = Ω×Ω′ with Ω′ =R
3K extends the initial space with the sequences N− =

(N−
k )1≤k≤K , N+ = (N+

k )1≤k≤K , U = (Uk)1≤k≤K .

H0 (Law of the jump times). The number of jumps K is deterministic and the law
of T = (T1, . . . , TK) is absolutely continuous with respect to the Lebesgue measure. We
note fT its density.
H1 (Smoothness assumption). The functions (t, x) 7→ a(t, x) and (t, x) 7→ b(t, x) are

C1,2 on [0,1]×R. We note a′ and b′ their derivatives with respect to x and we assume
that a′ and b′ are C1,2 on [0,1]×R. Moreover, the functions a, b, and their derivatives
are uniformly bounded.
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The function (x, θ) 7→ c(x, θ) is C2,1 on R×R, with bounded derivatives. We note c′ its
derivative with respect to x and ċ its derivative with respect to θ. We assume moreover
that ċ is C1,1 with bounded derivatives.
H2 (Non-degeneracy assumption). We assume that there exist two constants a and a

such that

∀(t, x) ∈ [0,1]×R 0< a≤ a(t, x)≤ a;

∀(x, θ) ∈R×R |1 + c′(x, θ)| ≥ a.

H3 (“Randomness” of the jump sizes). The law of Λ= (Λ1, . . . ,ΛK) is absolutely con-
tinuous with respect to the Lebesgue measure and we note fΛ its density. We assume
also

∀(x, θ) ∈R×R ċ(x, θ) 6= 0.

Let us comment on these assumptions. First, the assumption that the vector of jump
times admits a density, hypothesis H0, is crucial to prove the convergence in law of the
fractional part of (nTk)k to the vector of uniform laws (Uk)k. In order to find a lower
bound, we need to deal with a kind of regular model, this explains the assumption H1.
Moreover, it is clear that if the diffusion coefficient a is equal to zero, one will expect
a rate of convergence for the estimation of the jumps faster than

√
n. In that case, the

LAMN property will not be satisfied with rate
√
n. This clarifies why we assume a strictly

positive lower bound on a.
Remark that the non-degeneracy of |1+c′(x, θ)| is a standard assumption which implies

that the equation (2.1) admits a flow. The assumption H3 is more specifically related to
our statistical problem. We want to prove a lower bound for the estimation of the random
jump sizes. Indeed, if these quantities do not exhibit enough randomness, it could be
possible to estimate them with a rate faster than

√
n. For instance, the condition H3

excludes that the jump sizes do not depend on the underlying random marks.
We can now state our main result. We recall that

J = (Jk)1≤k≤K = (c(XTk−,Λk))1≤k≤K = (∆XTk
)1≤k≤K ∈R

K

is the sequence of the jumps of the process.
We will call (J̃n)n≥1 a sequence of estimators if for each n, J̃n ∈RK is a measurable

function of the observations (Xi/n)i=0,...,n.

Theorem 2.1. Assume H0–H3. Let J̃n be any sequence of estimators such that

√
n(J̃n − J)

n→∞−−−−→
law

Z̃ (2.2)

for some variable Z̃. Then, the law of Z̃ is necessarily a convolution:

Z̃
law
= (

√
Uka(Tk,XTk−)N

−
k +

√
1−Uka(Tk,XTk

)N+
k )k + R̃, (2.3)
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where conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k), the random vector R̃ is independent of

(N−
k ,N+

k )k.

We will say that an estimator J̃n of the jumps is efficient if the asymptotic distribution
of

√
n(J̃n−J) is equal in law to (

√
Uka(Tk,XTk−)N

−
k +

√
1−Uka(Tk,XTk

)N+
k )k (which

corresponds to R̃= 0).
It is well known that in parametric models, the Hajek’s convolution theorem usually

requires a regularity assumption on the estimator (see [12, 22]). Here, our theorem does
not require any assumption on the estimator, apart its convergence with rate

√
n. This

comes from the fact that the target J of the estimator is random, yielding to some ad-
ditional regularity properties, compared with the usual parametric setting (see a related
situation in Jeganathan [16]).

Remark 2.1. We can observe that

(
√
Uka(Tk,XTk−)N

−
k +

√
1−Uka(Tk,XTk

)N+
k )k

law
= (Iopt)

−1/2
N,

where Iopt is the diagonal random matrix of size K ×K , defined on the extended prob-
ability space Ω̃, with diagonal entries:

Ioptk = [Uka(Tk,XTk−)
2 + (1−Uk)a(Tk,XTk

)2]
−1

for k = 1, . . . ,K. (2.4)

Conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k), the vector N is a standard Gaussian vector on
RK and consequently N is independent of Iopt.

Remark 2.2. The Theorem 2.1 states, in particular, that any estimator of the jumps
with rate

√
n must have an asymptotic conditional variance greater than (Iopt)−1.

Let us stress that if the rate of convergence is faster than
√
n, then (2.2) is still true

with Z̃ = 0 and consequently the Theorem 2.1 proves that a convergence faster than
√
n

is impossible.

Now if instead estimating J , we estimate a function of the vector of jumps, we can
prove in a similar way the following result. For the sake of shortness, we will omit the
proof of the following proposition.

Proposition 2.1. Assume H0–H3. Let F be a C1 function from R
K to R and let F̃n be

any sequence of estimators of F (J) such that

√
n(F̃n −F (J))

n→∞−−−−→
law

Z̃F (2.5)

for some variable Z̃F . Then, the law of Z̃F is necessarily a convolution:

Z̃F
law
=

K∑

k=1

∂F

∂xk
(J)(

√
Uka(Tk,XTk−)N

−
k +

√
1−Uka(Tk,XTk

)N+
k ) + R̃F , (2.6)
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where, conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k), the real random variable R̃F is indepen-

dent of (N−
k ,N+

k )k.

Remark 2.3. From the results of Jacod (Theorems 2.11 and 2.12 in [13]), we deduce
that the lower bound of Proposition 2.1 is optimal, and that the estimators of [13] are
efficient.

2.2.2. Random number of jumps

If the number of jumps is random, we need to modify some assumptions accordingly.

H̃0. We note K = card{k|Tk ∈ [0,1]}. Conditionally on K the law of the vector of jump
times T = (T1, . . . , TK) admits a density.

H̃3. Conditionally on K , the law of (Λ1, . . . ,ΛK) is absolutely continuous with respect
to the Lebesgue measure. We assume also ∀(x, θ) ∈R×R ċ(x, θ) 6= 0.

We can extend Theorem 2.1.

Corollary 2.1. Assume H̃0, H1, H2 and H̃3. Let J̃n be any sequence of estimators with
values in RN such that

√
n(J̃n − J)

n→∞−−−−→
law

Z̃

for some variable Z̃. Then, the law of Z̃ admits the decomposition:

Z̃
law
= ([

√
Uka(Tk,XTk−)N

−
k +

√
1−Uka(Tk,XTk

)N+
k ]1{1≤k≤K})k + R̃,

where conditionally on (K, (Tk)1≤k≤K , (Λk)1≤k≤K , (Wt)t∈[0,1], (Uk)1≤k≤K) the random

vector of the K first components of R̃ is independent of (N−
k ,N+

k )1≤k≤K .

In Section 3, we consider a parametric model related to the process (2.1), and enounce
the associated LAMN property. This is the key step before proving Theorem 2.1 and
Corollary 2.1. Remark that, directly considering the values of the jumps size as the
parameter, is not the right choice. The reason is that the jump sizes are not independent
of the Brownian motion (Wt)t. Instead, we prefer to consider the values of the marks Λ
as the statistical parameter.

3. LAMN property in an associated parametric model

We focus on the parametric model where the values of the marks Λ are considered as
the unknown (deterministic) parameters, and K is deterministic. This is the crucial step
before proving our convolution theorem.
More precisely, our aim is to obtain the LAMN property for the parametric model

Xλ
t = x0 +

∫ t

0

b(s,Xλ
s ) ds+

∫ t

0

a(s,Xλ
s ) dWs +

K∑

k=1

c(Xλ
Tk−, λk)1t≥Tk

, (3.1)
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where the parameter λ= (λ1, . . . , λK) ∈RK . We note T = (T1, . . . , TK) the vector of jump
times such that 0 < T1 < · · · < TK < 1. Let us remark that, under the assumption H0,
the solutions of (3.1) might be defined on the probability space Ω1 ×RK endowed with
the product of the Wiener measure and the law of the jumps times. But, to avoid new
notation, we can assume that, for all λ ∈ R

K , the process (Xλ
t )t∈[0,1] is defined on the

space (Ω,F ,P) of Section 2.
In this model, we assume that we observe both the regular discretization (Xλ

i/n)1≤i≤n

of the process solution of (3.1) on the time interval [0,1] and the jump times vector T .
The observation of T leads to a more tractable computation of the likelihood. This is
not restrictive to add some observations to the statistical experiment, since our aim is
to derive an asymptotic lower bound. Under H0 and H1, the law of the observations
(T, (Xλ

i/n)1≤i≤n) admits a density pn,λ. We note pn,λ,T the density of (Xλ
i/n)1≤i≤n con-

ditionally on T . For h= (h1, . . . , hK) ∈R
K we introduce the log-likelihood ratio:

Zn(λ,λ+ h/
√
n,T,x1, . . . , xn) = log

pn,λ+h/
√
n

pn,λ
(T,x1, . . . , xn). (3.2)

Theorem 3.1. Assume H0, H1 and H2. Then, the statistical experiment (pn,λ)λ∈RK

satisfies a LAMN property. For λ ∈RK , h ∈RK we have:

Zn(λ,λ+ h/
√
n,T,Xλ

1/n, . . . ,X
λ
1 )

(3.3)

=

K∑

k=1

hkIn(λ)
1/2
k Nn(λ)k −

1

2

K∑

k=1

h2
kIn(λ)k + opn,λ(1),

where In(λ) is a diagonal random matrix and Nn(λ) are random vectors in RK such that

(In(λ),Nn(λ))
n→∞−−−−→
law

(I(λ),N)

with:

I(λ)k =
ċ(Xλ

Tk−, λk)
2

a2(Tk,Xλ
Tk−)[1 + c′(Xλ

Tk−, λk)]2Uk + a2(Tk,Xλ
Tk− + c(Xλ

Tk−, λk))(1−Uk)
,

(3.4)
where U = (U1, . . . , UK) is a vector of independent uniform laws on [0,1] such that U , T
and (Wt)t∈[0,1] are independent, and conditionally on (U,T, (Wt)t∈[0,1]), N is a standard
Gaussian vector in RK .

Actually, we can complete the statement of the theorem by giving explicit expressions
for In(λ) and Nn(λ):

In(λ)k =
ċ(Xλ

ik/n
, λk)

2

nDn,λk,k(Xλ
ik/n

)
,
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Nn(λ)k =

√
n(Xλ

(ik+1)/n −Xλ
ik/n

− c(Xλ
ik/n

, λk))√
nDn,λk,k(Xλ

ik/n
)

,

Dn,λk,k(Xλ
ik/n

) = a2
(
ik
n
,Xλ

ik/n

)
(1 + c′(Xλ

ik/n
, λk))

2

(
Tk −

ik
n

)

+ a2
(
ik
n
,Xλ

ik/n
+ c(Xλ

ik/n
, λk)

)(
ik +1

n
− Tk

)
,

where ik is the integer part of nTk.

Remark 3.1. We remark that from a direct application of Hajek’s theorem (see Van
der Vaart [22], Corollary 9.9, page 132), any regular estimator of λ has an asymptotic
conditional variance greater than I(λ)−1. Here, an estimator of λ is a measurable func-
tion of (T, (Xλ

i/n)1≤i≤n), and so we deduce that, a fortiori, any measurable function of

(Xλ
i/n)1≤i≤n satisfies the same asymptotic lower bound.

4. Efficient estimator of the jumps

We use the notation of Section 2.1 and since we just propose an estimator of the jumps,
we can weaken the assumptions of the previous sections.

A1 (Smoothness assumption). The functions a : [0,1]× R → R, b : [0,1]× R→ R and
c :R2 →R are continuous.
A2 (Identifiability of the jumps). We have almost surely: c(XTk−,Λk) 6= 0,∀k ∈

{1, . . . ,K}.
This last condition ensures that the jump times of X are exactly the times Tk.
Recall that J = (Jk)k≥1 is the sequence of jumps of X (on [0,1]): we set Jk =∆XTk

=
XTk

−XTk− for k ≤K and we define Jk = 0 for k >K .
We construct an estimator of J following the threshold estimation method proposed

by Mancini [19, 20].
Let (un)n be a sequence of positive numbers tending to 0. We set în1 = inf{0≤ i≤ n−1:

|X(i+1)/n−Xi/n| ≥ un} with the convention inf∅=+∞. We recursively define for k ≥ 2,

înk = inf {̂ink−1 < i≤ n− 1: |X(i+1)/n −Xi/n| ≥ un}. (4.1)

We set K̂n = sup{k ≥ 1: înk <∞} the number of increments of the jump diffusion exceed-
ing the threshold un. We then define for k ≥ 1,

Ĵn
k =

{
Xînk+1/n −Xînk/n

, if k ≤ K̂n,

0, if k > K̂n.
(4.2)

The sequence (Ĵn)n is an estimator of the vector of jumps J , and (K̂n)n estimates the
number of jumps.
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Proposition 4.1. Let us assume H̃0, A1, A2 and un ∼ n−̟ with ̟ ∈ (0,1/2). Then,
we have almost surely,

K̂n =K for n large enough

if k ≤K Ĵn
k

n→∞−−−−→Jk =∆XTk
,

if k >K Ĵn
k = 0 for n large enough.

The consistency result concerning the estimator K̂n is a special case of Mancini ([20],
Theorem 1) and the jump sizes (Jk)k were consistently estimated in Mancini [19] with
exactly the same estimator but when the observation time goes to infinity.
We now describe the asymptotic law of the error between Ĵn and J . Note that Theorem

3 in [20] gives the asymptotic distribution of the estimator of the sum of the jumps
assuming that the diffusion coefficient a is independent of the Brownian process W and
the jump part, this is the reason why the uniform laws do not appear in the asymptotic
law. The situation is completely different here, since the diffusion coefficient a depends
on the process X , and is more related to Jacod’s results (see [13]).

Theorem 4.1. Let us assume H̃0, A1, A2 and un ∼ n−̟ with ̟ ∈ (0,1/2). Then√
n(Ĵn − J) converges in law to Z = (Zk)k≥1 where the limit can be described on the

extended space Ω̃ by:

Zk =
√
Uka(Tk,XTk−)N

−
k +

√
1−Uka(Tk,XTk

)N+
k for k ≤K,

Zk = 0 for k >K.

Moreover the convergence is stable with respect to the sigma-field F . Let us precise that,

here, the convergence in law of the infinite dimensional vector
√
n(Ĵn − J) means the

convergence of any finite dimensional marginals.

Remark 4.1. The Theorem 4.1 shows that the error for the estimation of the jump
∆XTk

is asymptotically conditionally Gaussian and that the estimator Ĵn is efficient. In
particular, the conditional variance on (T,Λ,K, (Wt)t∈[0,1], (Uk)k) of the error is equal
to the lower bound (Iopt)−1 = Uka(Tk,XTk−)

2 + (1− Uk)a(Tk,XTk
)2, and consequently

this lower bound is optimal.

5. Proof section

We divide the proofs into three sections.
We first prove the LAMN property of the parametric model in Section 5.1. Then, the

convolution result is established in Section 5.2. Finally, the Section 5.3 is devoted to the
proof of the convergence and normality of the estimator Ĵn.
We first state a lemma which will be useful in the next sections.
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Lemma 5.1. Let K0 ∈ N \ {0} and consider T = (T1, . . . , TK0) a random variable on
[0,1]K0 with density fT . For k = 1, . . . ,K0, we note ik = [nTk] the integer part of nTk.
Let (Wt)t∈[0,1] be a standard Brownian motion independent of T .
Then, we have the convergence in law of the variables

(
T,

(
n

(
Tk −

ik
n

))

k

, (
√
n(WTk

−Wik/n))k, (
√
n(W(ik+1)/n −WTk

))k, (Wt)t∈[0,1]

)

to

(T, (Uk)k, (
√
UkN

−
k )k, (

√
1−UkN

+
k )k, (Wt)t∈[0,1]),

where U = (U1, . . . , UK0) is a vector of independent uniform laws on [0,1], N− = (N−
1 , . . . ,

N−
K0

) and N+ = (N+
1 , . . . ,N+

K0
) are independent standard Gaussian vectors such that T ,

U , N−, N+ and (Wt)t are independent.

Proof. The convergence of the vector

(T, (
√
n(WTk

−Wik/n))k, (
√
n(W(ik+1)/n −WTk

))k, (Wt)t∈[0,1])

is a direct consequence of Lemma 6.2 in [14] (see also Lemma 5.8 in [13]) and following this
proof (which is simpler in our case), there is no difficulty to add the variables (n(Tk− ik

n ))k
in the vector. �

5.1. LAMN property: Proof of Theorem 3.1

We use the framework of Section 3 and we introduce some more notation. For k =
1, . . . ,K , we note ik = [nTk] the integer part of nTk and for t ∈ [ik/n, (ik+1)/n], we note

(Xθ,k
t ) the process solution of the following jump-diffusion equation with only one jump

at time Tk:

Xθ,k
t =X0 +

∫ t

0

b(s,Xθ,k
s ) ds+

∫ t

0

a(s,Xθ,k
s )dWs + c(Xθ,k

Tk−, θ)1t≥Tk
. (5.1)

Under H1 and H2 and conditionally on T , this process admits a strictly positive condi-
tional density, which is C1 with respect to θ. We will note pθ,T ( ikn , ik+1

n , x, y) the density

of Xθ,k
(ik+1)/n conditionally on T and Xθ,k

ik/n
= x and ṗθ,T ( ikn , ik+1

n , x, y) its derivative with

respect to θ.
We observe that the log-likelihood ratio Zn only involves the transition densities of

Xλ on a time interval where a jump occurs. This transition is pθ,T ( ikn , ik+1
n , x, y) if there

is exactly one jump in the corresponding interval. Then, one can easily see that the
following decomposition holds for Zn:

Zn

(
λ,λ+

h√
n
,T,x1, . . . , xn

)
1Tn(T )
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=

K∑

k=1

ln
pλk+hk/

√
n,T

pλk,T

(
ik
n
,
ik + 1

n
,xik , xik+1

)
1Tn(T ) (5.2)

=

K∑

k=1

∫ λk+hk/
√
n

λk

ṗθ,T

pθ,T

(
ik
n
,
ik + 1

n
,xik , xik+1

)
dθ1Tn(T ),

where 1Tn(T ) is the indicator function that there is at most one jump in each time interval
[i/n, (i+ 1)/n) for i= 0, . . . , n− 1.
We have now to study the asymptotic behaviour of (5.2). This is divided into several

lemmas. The Lemmas 5.2–5.4 give an expansion for the score function, with an uni-

form control in θ. We deduce then an explicit expansion for
∫ λk+hk/

√
n

λk

ṗθ,T

pθ,T (
ik
n , ik+1

n ,

xik , xik+1) dθ in Lemma 5.5, and conclude by passing through the limit in Lemma 5.6.

We begin with a representation of ṗθ,T

pθ,T (
ik
n , ik+1

n , x, y) as a conditional expectation, us-

ing Malliavin calculus. We refer to Nualart [21] for a detailed presentation of Malliavin
calculus. The Malliavin calculus techniques to derive LAMN properties have been intro-
duced by Gobet [10] in the case of multi-dimensional diffusion processes and then used
by Gloter and Gobet [9] for integrated diffusions.
In all what follows, we will denote by Cp a constant (independent on n, k and θ) which

value may change from line to line.

Lemma 5.2. Assuming H1 and H2, we have ∀(x, y) ∈R2:

ṗθ,T

pθ,T

(
ik
n
,
ik + 1

n
,x, y

)
=Ex,T,k(δ(Pn,θ,k)|Xθ,k

(ik+1)/n = y),

where Ex,T,k is the conditional expectation on T and Xθ,k
ik/n

= x, δ is the Malliavin di-

vergence operator and Pn,θ,k is the process given on [ ikn , ik+1
n ] by

Pn,θ,k
s =

(Y θ,k
Tk

Y θ,k
s )−1(1 + c′(Xθ,k

Tk−, θ)1s≤Tk
)a(s,Xθ,k

s )ċ(Xθ,k
Tk−, θ)∫ (ik+1)/n

ik/n
(Y θ,k

u )−2a2(u,Xθ,k
u )(1 + c′(Xθ,k

Tk−, θ)1u≤Tk
)2 du

,

where (Y θ,k
t )t is the process solution of

Y θ,k
t = 1+

∫ t

0

b′(s,Xθ,k
s )Y θ,k

s ds+

∫ t

0

a′(s,Xθ,k
s )Y θ,k

s dWs. (5.3)

We remark that under H1, the process (Y θ,k
t )t and its inverse satisfy ∀p≥ 1,

(
E
(

sup
0≤t≤1

|Y θ,k
t |p

))1/p

≤Cp,
(
E
(

sup
0≤t≤1

|Y θ,k
t |−p

))1/p

≤Cp. (5.4)

Proof. The proof of Lemma 5.2 is based on Malliavin calculus on the time interval
[ik/n, (ik+1)/n], conditionally on T and (Wt)t≤ik/n. We first observe that under H1 and
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H2, the process (Xθ,k
t ) solution of (5.1) admits a derivative with respect to θ that we

will denote by (Ẋθ,k
t ) (see, e.g., Kunita [18] since this problem is similar to the derivative

with respect to the initial condition). Moreover (Xθ,k
t ) and (Ẋθ,k

t ) belong, respectively,
to the Malliavin spaces D2,p and D1,p, ∀p ≥ 1. Now, let ϕ be a smooth function with
compact support, we have:

∂

∂θ
Ex,T,kϕ(Xθ,k

(ik+1)/n) =Ex,T,kϕ′(Xθ,k
(ik+1)/n)Ẋ

θ,k
(ik+1)/n.

Using the integration by part formula (see Nualart [21], Proposition 2.1.4, page 100), we
can write

Ex,T,kϕ′(Xθ,k
(ik+1)/n)Ẋ

θ,k
(ik+1)/n =Ex,T,kϕ(Xθ,k

(ik+1)/n)H(Xθ,k
(ik+1)/n, Ẋ

θ,k
(ik+1)/n),

where the weight H can be expressed in terms of the Malliavin derivative of Xθ,k
(ik+1)/n,

the inverse of its Malliavin variance–covariance matrix and the divergence operator as
follows:

H(Xθ,k
(ik+1)/n, Ẋ

θ,k
(ik+1)/n) = δ(Ẋθ,k

(ik+1)/nγ
θ,kDXθ,k

(ik+1)/n),

where

γθ,k =

(∫ (ik+1)/n

ik/n

(DuX
θ,k
(ik+1)/n)

2
du

)−1

. (5.5)

On the other hand, from Lebesgue derivative theorem, we have:

∂

∂θ
Ex,T,kϕ(Xθ,k

(ik+1)/n) =

∫
ϕ(y)ṗθ,T

(
ik
n
,
ik + 1

n
,x, y

)
dy,

this leads to the following representation

ṗθ,T
(
ik
n
,
ik + 1

n
,x, y

)

=Ex,T,k(δ(Ẋθ,k
(ik+1)/nγ

θ,kDXθ,k
(ik+1)/n)|X

θ,k
(ik+1)/n = y)pθ,T

(
ik
n
,
ik + 1

n
,x, y

)
.

It remains to give a more tractable expression of Ẋθ,k
(ik+1)/nγ

θ,kDXθ,k
(ik+1)/n. We first ob-

serve that:

Ẋθ,k
(ik+1)/n = ċ(Xθ,k

Tk−, θ) +

∫ (ik+1)/n

Tk

b′(u,Xθ,k
u )Ẋθ,k

u du

+

∫ (ik+1)/n

Tk

a′(u,Xθ,k
u )Ẋθ,k

u dWu
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and consequently

Ẋθ,k
(ik+1)/n = Y θ,k

(ik+1)/n(Y
θ,k
Tk

)
−1

ċ(Xθ,k
Tk−, θ), (5.6)

where (Y θ,k
t ) is solution of (5.3). Turning to the Malliavin derivative of Xθ,k

(ik+1)/n, we

first observe that DXθ,k
(ik+1)/n ∈ L2([ik/n, (ik + 1)/n]) and so we just have to explicit

DsX
θ,k
(ik+1)/n for s 6= Tk. Assuming first that Tk < s≤ (ik +1)/n, we have for u ∈ [s, (ik +

1)/n]:

DsX
θ,k
u = a(s,Xθ,k

s ) +

∫ u

s

b′(v,Xθ,k
v )DsX

θ,k
v dv+

∫ u

s

a′(v,Xθ,k
v )DsX

θ,k
v dWv

and then DsX
θ,k
u = Y θ,k

u (Y θ,k
s )−1a(s,Xθ,k

s ).
Now, if ik/n≤ s < Tk, we have for u≥ s

DsX
θ,k
u = a(s,Xθ,k

s ) + c′(Xθ,k
Tk−, θ)DsX

θ,k
Tk−1u≥Tk

+

∫ u

s

b′(v,Xθ,k
v )DsX

θ,k
v dv +

∫ u

s

a′(v,Xθ,k
v )DsX

θ,k
v dWv,

and we deduce that DsX
θ,k
u = Y θ,k

u (1 + c′(Xθ,k
Tk−, θ)1u≥Tk

)(Y θ,k
s )−1a(s,Xθ,k

s ).
It follows that:

DsX
θ,k
(ik+1)/n = Y θ,k

(ik+1)/n(1 + c′(Xθ,k
Tk−, θ)1s≤Tk

)(Y θ,k
s )

−1
a(s,Xθ,k

s ). (5.7)

From (5.6) and (5.7), we obtain

Ẋθ,k
(ik+1)/nγ

θ,kDsX
θ,k
(ik+1)/n =

(Y θ,k
Tk

Y θ,k
s )−1(1 + c′(Xθ,k

Tk−, θ)1s≤Tk
)a(s,Xθ,k

s )ċ(Xθ,k
Tk−, θ)∫ (ik+1)/n

ik/n
(Y θ,k

u )−2a2(u,Xθ,k
u )(1 + c′(Xθ,k

Tk−, θ)1u≤Tk
)2 du

(5.8)
= Pn,θ,k

s ,

and the Lemma 5.2 is proved. �

In the next lemma, we explicit the conditional expectation appearing in the decompo-

sition of ṗθ,T

pθ,T (
ik
n , ik+1

n , x, y).

Lemma 5.3. Assuming H1 and H2, we have

Ex,T,k(δ(Pn,θ,k)|Xθ,k
(ik+1)/n = y) =

(y− x− c(x, θ))ċ(x, θ)

Dn,θ,k(x)
(5.9)

+Ex,T,k(Qn,θ,k|Xθ,k
(ik+1)/n = y)
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with

Dn,θ,k(x) = a2
(
ik
n
,x

)
(1 + c′(x, θ))

2

(
Tk −

ik
n

)

(5.10)

+ a2
(
ik
n
,x+ c(x, θ)

)(
ik +1

n
− Tk

)

and where Qn,θ,k satisfies

∀p≥ 1 (Ex,T,k|Qn,θ,k|p)1/p ≤Cp

for a constant Cp independent of x,n and θ.

The first term in the right-hand side of (5.9) is the main term and we will prove later
that the contribution of the conditional expectation of Qn,θ,k is negligible.

Proof. We first give an approximation of the process Pn,θ,k which depends on the po-
sition of s with respect to the jump time Tk. We have:

Pn,θ,k
s =

(
(1 + c′(Xθ,k

ik/n
, θ))a

(
ik
n
,Xθ,k

ik/n

)
1[ik/n,Tk](s)

+ a

(
ik
n
,Xθ,k

ik/n
+ c(Xθ,k

ik/n
, θ)

)
1(Tk,(ik+1)/n](s)

)
ċ(Xθ,k

ik/n
, θ)

(5.11)
/Dn,θ,k(Xθ,k

ik/n
)

+Un,θ,k
s ,

where Dn,θ,k(Xθ,k
ik/n

) is defined by (5.10) and Un,θ,k
s is a remainder term. We deduce then

that

δ(Pn,θ,k) =

(
(1 + c′(Xθ,k

ik/n
, θ))a

(
ik
n
,Xθ,k

ik/n

)
(WTk

−Wik/n)

+ a

(
ik
n
,Xθ,k

ik/n
+ c(Xθ,k

ik/n
, θ)

)
(W(ik+1)/n −WTk

)

)
ċ(Xθ,k

ik/n
, θ)

(5.12)
/Dn,θ,k(Xθ,k

ik/n
)

+ δ(Un,θ,k).

Now, we can approximate Xθ,k
(ik+1)/n in the following way:

Xθ,k
(ik+1)/n =Xθ,k

ik/n
+ c(Xθ,k

Tk−, θ) + a

(
ik
n
,Xθ,k

ik/n

)
(WTk

−Wik/n)

+ a

(
ik
n
,Xθ,k

ik/n
+ c(Xθ,k

ik/n
, θ)

)
(W(ik+1)/n −WTk

) +Rn,θ,k
1 ,
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but observing that

c(Xθ,k
Tk−, θ) = c(Xθ,k

ik/n
, θ) + c′(Xθ,k

ik/n
, θ)a

(
ik
n
,Xθ,k

ik/n

)
(WTk

−Wik/n) +Rn,θ,k
2 ,

we finally obtain

Xθ,k
(ik+1)/n =Xθ,k

ik/n
+ c(Xθ,k

ik/n
, θ) + (1+ c′(Xθ,k

ik/n
, θ))a

(
ik
n
,Xθ,k

ik/n

)
(WTk

−Wik/n)

(5.13)

+ a

(
ik
n
,Xθ,k

ik/n
+ c(Xθ,k

ik/n
, θ)

)
(W(ik+1)/n −WTk

) +Rn,θ,k

with Rn,θ,k =Rn,θ,k
1 +Rn,θ,k

2 .
Putting together (5.12) and (5.13), this yields

δ(Pn,θ,k) =
(Xθ,k

(ik+1)/n −Xθ,k
ik/n

− c(Xθ,k
ik/n

, θ))ċ(Xθ,k
ik/n

, θ)

Dn,θ,k(Xθ,k
ik/n

)
(5.14)

−Rn,θ,k
ċ(Xθ,k

ik/n
, θ)

Dn,θ,k(Xθ,k
ik/n

)
+ δ(Un,θ,k).

Letting Qn,θ,k be the random variable defined by

Qn,θ,k = δ(Un,θ,k)−Rn,θ,k
ċ(Xθ,k

ik/n
, θ)

Dn,θ,k(Xθ,k
ik/n

)
, (5.15)

where Un,θ,k and Rn,θ,k are, respectively, defined by (5.11) and (5.13), we deduce easily
the first part of Lemma 5.3. It remains to bound Ex,T,k|Qn,θ,k|p, ∀p≥ 1.
We remark that from H1 and H2

0≤
|ċ(Xθ,k

ik/n
, θ)|

Dn,θ,k(Xθ,k
ik/n

)
≤ nC (5.16)

for a constant C independent on n, k and θ. Moreover, we have

(
E sup

ik/n≤s≤Tk−
|Xθ,k

s −Xθ,k
ik/n

|p
)1/p

≤ Cp√
n

and

(5.17)(
E sup

Tk≤s≤(ik+1)/n

|Xθ,k
s −Xθ,k

Tk
|p
)1/p

≤ Cp√
n
.

So, one can easily deduce that, assuming H1,

(Ex,T,k|Rn,θ,k|p)1/p ≤Cp/n,
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and combining this with (5.16), we derive

Ex,T,k

(
|Rn,θ,k|

|ċ(Xθ,k
ik/n

, θ)|
Dn,θ,k(Xθ,k

ik/n
)

)p

≤Cp.

Turning to δ(Un,θ,k), we first recall that, from the continuity property of the divergence
operator (see Nualart [21], Proposition 1.5.8, page 80), we have

(Ex,T,k|δ(Un,θ,k)|p)1/p ≤Cp(‖Un,θ,k‖p + ‖DUn,θ,k‖p), (5.18)

where

‖Un,θ,k‖pp = Ex,T,k

(∫ (ik+1)/n

ik/n

|Un,θ,k
s |2 ds

)p/2

, (5.19)

‖DUn,θ,k‖pp = Ex,T,k

(∫ (ik+1)/n

ik/n

∫ (ik+1)/n

ik/n

|DvU
n,θ,k
s |2 dsdv

)p/2

. (5.20)

To bound Un,θ,k, we first observe that from (5.19)

‖Un,θ,k‖pp ≤
(
1

n

)p/2

Ex,T,k sup
ik/n≤s≤(ik+1)/n

|Un,θ,k
s |p,

so we just have to prove

(
Ex,T,k sup

ik/n≤s≤(ik+1)/n

|Un,θ,k
s |p

)1/p

≤Cp

√
n. (5.21)

The error term Un,θ,k is defined by (5.11) as the difference between P θ,n,k
s , given in (5.8),

and an explicit ratio:

Un,θ,k
s =

(1+ c′(Xθ,k
Tk−, θ)1s≤Tk

)a(s,Xθ,k
s )ċ(Xθ,k

Tk−, θ)

Y θ,k
Tk

Y θ,k
s

∫ (ik+1)/n

ik/n
(Y θ,k

u )−2a2(u,Xθ,k
u )(1 + c′(Xθ,k

Tk−, θ)1u≤Tk
)2 du

−
(
(1 + c′(Xθ,k

ik/n
, θ))a

(
ik
n
,Xθ,k

ik/n

)
1[ik/n,Tk](s)

+ a

(
ik
n
,Xθ,k

ik/n
+ c(Xθ,k

ik/n
, θ)

)
1(Tk,(ik+1)/n](s)

)
ċ(Xθ,k

ik/n
, θ)

/Dn,θ,k(Xθ,k
ik/n

).

Since ċ and c′ are bounded, we see easily from (5.17) that the difference between the
numerators is of order 1/

√
n. Now, we remark that

(
E sup

ik/n≤s,u≤(ik+1)/n

|Y θ,k
Tk

Y θ,k
s (Y θ,k

u )
−2 − 1|p

)1/p

≤ Cp√
n
, (5.22)



18 E. Clément, S. Delattre and A. Gloter

and that, using the non-degeneracy assumption H2

∫ (ik+1)/n

ik/n

(Y θ,k
u )

−2
a2(u,Xθ,k

u )(1 + c′(Xθ,k
Tk−, θ)1u≤Tk

)
2
du

(5.23)

≥ a2min(1, a2)

n supik/n≤u≤(ik+1)/n(Y
θ,k
u )2

.

So, combining (5.4), (5.16), (5.22) and (5.23), we obtain

(
E sup

s

∣∣∣∣
1

Y θ,k
Tk

Y θ,k
s

∫ (ik+1)/n

ik/n
(Y θ,k

u )−2a2(u,Xθ,k
u )(1 + c′(Xθ,k

Tk−, θ)1u≤Tk
)2 du

− 1

Dn,θ,k(Xθ,k
ik/n

)

∣∣∣∣
p)1/p

≤Cp

√
n.

This proves (5.21) and consequently

‖Un,θ,k‖p ≤Cp. (5.24)

It remains to bound the Malliavin derivative of Un,θ,k. From (5.11) and (5.8), we have
for v ∈ [ik/n, (ik + 1)/n]

DvU
n,θ,k
s =DvP

n,θ,k
s =Dv(Ẋ

θ,k
(ik+1)/nγ

θ,kDsX
θ,k
(ik+1)/n).

Under H1, the Malliavin derivatives of Ẋθ,k
(ik+1)/n and DsX

θ,k
(ik+1)/n are bounded in Lp.

Turning to the inverse of the Malliavin variance–covariance matrix γθ,k, given by (5.5),
we have

γθ,k =
1

∫ (ik+1)/n

ik/n
(Y θ,k

(ik+1)/n)
2(Y θ,k

u )−2a2(u,Xθ,k
u )(1 + c′(Xθ,k

Tk−, θ)1u≤Tk
)2 du

and from (5.4) and (5.23), it is easy to see that

(Ex,T,k|γθ,k|p)1/p ≤ nCp and
(5.25)(

Ex,T,k sup
ik/n≤v≤(ik+1)/n

|Dvγ
θ,k|p

)1/p

≤ nCp.

Putting this together, we obtain

(
Ex,T,k sup

ik/n≤s,v≤(ik+1)/n

|DvU
n,θ,k
s |p

)1/p

≤ nCp
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and then

‖DUn,θ,k‖p ≤Cp. (5.26)

From (5.18), (5.24) and (5.26), we deduce

(Ex,T,k|δ(Un,θ,k)|p)1/p ≤Cp,

and the Lemma 5.3 is proved. �

The bound on Qn,θ,k given in Lemma 5.3 is not sufficient, since to obtain the
LAMN property, we have to compute the conditional expectation with x =Xλ

ik/n
and

y =Xλ
(ik+1)/n. So we complete the Lemma 5.3 with the following bound.

Lemma 5.4. With the assumptions and notations of Lemma 5.3, we have for θ such
that |θ− λk| ≤C/

√
n

Ex,T,k|Ex,T,k(Qn,θ,k|Xθ,k
(ik+1)/n =Xλ

(ik+1)/n)| ≤C′,

where the constant C′ is independent of x,n and θ.

Proof. We first remark that

Ex,T,k|Ex,T,k(Qn,θ,k|Xθ,k
(ik+1)/n =Xλ

(ik+1)/n)|
(5.27)

≤Ex,T,k|Qn,θ,k|p
λk,T

pθ,T

(
ik
n
,
ik + 1

n
,x,Xθ,k

(ik+1)/n

)
.

From Hölder’s inequality and Lemma 5.3, we obtain for p > 1, q > 1 such that
1/p+ 1/q = 1,

Ex,T,k|Ex,T,k(Qn,θ,k|Xθ,k
(ik+1)/n =Xλ

(ik+1)/n)|
(5.28)

≤Cp

(
Ex,T,k

(
pλk,T

pθ,T

(
ik
n
,
ik +1

n
,x,Xθ,k

(ik+1)/n

))q)1/q

,

and the result of Lemma 5.4 reduces to prove that there exists q0 > 1 such that

Ex,T,k

(
pλk,T

pθ,T

(
ik
n
,
ik + 1

n
,x,Xθ,k

(ik+1)/n

))q0

≤C, (5.29)

where C is independent of n, x and θ. We can write:

Ex,T,k

(
pλk,T

pθ,T

(
ik
n
,
ik + 1

n
,x,Xθ,k

(ik+1)/n

))q0

(5.30)

=

∫
pλk,T

(
ik
n
,
ik + 1

n
,x, y

)q0

pθ,T
(
ik
n
,
ik +1

n
,x, y

)1−q0

dy,
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and we can express the transition pθ,T ( ikn , ik+1
n , x, y) by decomposing it in terms on the

transitions of a diffusion without jump on the time intervals ( ikn , Tk) and (Tk,
ik+1
n )

pθ,T
(
ik
n
,
ik + 1

n
,x, y

)
=

∫
pθ,T

(
ik
n
,Tk, x, z

)
pθ,T

(
Tk,

ik + 1

n
, z + c(z, θ), y

)
dz. (5.31)

Now, assuming H1 and H2, we have the following classical estimates of the transition
probabilities of a diffusion process (see Azencott [5], page 478), for some constants C1, C2:

C1G

(
x, a2

(
Tk −

ik
n

)
, z

)
≤ pθ,T

(
ik
n
,Tk, x, z

)
≤C2G

(
x, a2

(
Tk −

ik
n

)
, z

)
,

C1G

(
z + c(z, θ), a2

(
ik + 1

n
− Tk

)
, y

)
≤ pθ,T

(
Tk,

ik + 1

n
, z + c(z, θ), y

)

≤ C2G

(
z + c(z, θ), a2

(
ik + 1

n
− Tk

)
, y

)
,

where G(m,σ2, y) denotes the density of the Gaussian law with mean m and variance
σ2. To simplify the notation, we note σ−

k,n = Tk − ik
n and σ+

k,n = ik+1
n −Tk. Plugging this

in (5.31), we obtain

pθ,T
(
ik
n
,
ik +1

n
,x, y

)
≥C1

∫
G(x, a2σ−

k,n, z)G(z + c(z, θ), a2σ+
k,n, y)dz := I1. (5.32)

We get analogously,

pλk,T

(
ik
n
,
ik +1

n
,x, y

)
≤C2

∫
G(x, a2σ−

k,n, z)G(z + c(z, λk), a
2σ+

k,n, y)dz := I2. (5.33)

Observe that, in order to bound (5.30), we have to compute an upper bound for pλk,T

and a lower bound for pθ,T , since 1− q0 < 0.
Our aim now is to give more tractable bounds for the transition density pθ,T . For this,

we make the following change of variables in the integrals I1 and I2 defined in (5.33) and
(5.32). We put u= ϕ(z) = z + c(z, θ)− x− c(x, θ). We observe that ϕ(x) = 0. Moreover,
from H1 and H2, ϕ is invertible and its derivative satisfies, for some constant c0:

0< a≤ |ϕ′(z)| ≤ c0

and consequently

1

c0
|z| ≤ |ϕ−1(z)− ϕ−1(0)| ≤ 1

a
|z|.

So we obtain, for some constant C1

I1 ≥ C1

∫
G(0, a2σ−

k,n, ϕ
−1(u)−ϕ−1(0))G(u+ x+ c(x, θ), a2σ+

k,n, y)du
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≥ C1

∫
G(0, a4σ−

k,n, u)G(x+ c(x, θ), a2σ+
k,n, y− u) du (5.34)

= C1G(x+ c(x, θ), a4σ−
k,n + a2σ+

k,n, y).

Proceeding similarly,

I2 ≤C2G(x+ c(x,λk), c
2
0a

2σ−
k,n + a2σ+

k,n, y). (5.35)

Turning back to (5.30), it follows that

Ex,T,k

(
pλk,T

pθ,T

(
ik
n
,
ik +1

n
,x,Xθ,k

(ik+1)/n

))q0

(5.36)

≤C

∫
Gq0(x+ c(x,λk), σ

1
k,n, y)G

1−q0(x+ c(x, θ), σ2
k,n, y)dy,

where σ1
k,n = c20a

2σ−
k,n + a2σ+

k,n and σ2
k,n = a4σ−

k,n + a2σ+
k,n. Since σ−

k,n + σ+
k,n = 1/n, we

check that σ1
k,n and σ2

k,n are both lower and upper bound by some constants over n.
Moreover, we have

σ1
k,n − σ2

k,n = (c20a
2 − a4)σ−

k,n + (a2 − a2)σ+
k,n

with c20 > a2 and a2 > a2, so 0< σ2
k,n/σ

1
k,n < 1.

Turning back to the right-hand side term of (5.36), we have to bound

∫
e−q0(y−x−c(x,λk))

2/(2σ1
k,n)

(2πσ1
k,n)

q0/2

e−(1−q0)(y−x−c(x,θ))2/(2σ2
k,n)

(2πσ2
k,n)

(1−q0)/2
dy

with 1 < q0. First we observe that this integral is finite if q0/σ
1
k,n + (1 − q0)/σ

2
k,n > 0,

that is 1< q0 < σ1
k,n/(σ

1
k,n − σ2

k,n). This choice of q0 is possible since 0< σ2
k,n/σ

1
k,n < 1.

After some calculus, we get

∫
e−q0(y−x−c(x,λk))

2/(2σ1
k,n)

(2πσ1
k,n)

q0/2

e−(1−q0)(y−x−c(x,θ))2/(2σ2
k,n)

(2πσ2
k,n)

(1−q0)/2
dy

=

√
2π/(q0/σ1

k,n + (1− q0)/σ2
k,n)

(2πσ1
k,n)

q0/2(2πσ2
k,n)

(1−q0)/2
e+cn(c(x,θ)−c(x,λk))

2/2

with

cn =

(
q0(q0 − 1)

σ1
k,nσ

2
k,n

)/(
q0
σ1
k,n

+
(1− q0)

σ2
k,n

)
> 0.
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Recalling that σ1
k,n and σ2

k,n are of order 1/n, we observe that cn is bounded by some

constant times n and assuming that |θ− λk| ≤C/
√
n, we finally obtain

Ex,T,k

(
pλk,T

pθ,T

(
ik
n
,
ik + 1

n
,x,Xθ,k

(ik+1)/n

))q0

≤C′

for a constant C′ independent on x, n and θ and the Lemma 5.4 is proved. �

Lemma 5.5. Assuming H1 and H2, we have:

∫ λk+hk/
√
n

λk

ṗθ,T

pθ,T

(
ik
n
,
ik + 1

n
,Xλ

ik/n
,Xλ

(ik+1)/n

)
dθ

= hk

√
n(Xλ

(ik+1)/n −Xλ
ik/n

− c(Xλ
ik/n

, λk))ċ(X
λ
ik/n

, λk)

nDn,λk,k(Xλ
ik/n

)
− h2

k

2

ċ(Xλ
ik/n

, λk)
2

nDn,λk,k(Xλ
ik/n

)
+ opn,λ(1).

Proof. We deduce easily from Lemmas 5.2 and 5.3 that

∫ λk+hk/
√
n

λk

ṗθ,T

pθ,T

(
ik
n
,
ik + 1

n
,x, y

)
dθ

=

∫ λk+hk/
√
n

λk

(y− x− c(x, θ))ċ(x, θ)

Dn,θ,k(x)
dθ

+

∫ λk+hk/
√
n

λk

Ex,T,k(Qn,θ,k|Xθ,k
(ik+1)/n = y) dθ

with (x, y) = (Xλ
(ik+1)/n,X

λ
ik/n

). From Lemma 5.4, the second term on the right-hand
side of the preceding equation tends to zero in probability. Now, from a Taylor expansion
of c, we have the approximation for θ ∈ [λk, λk + hk/

√
n]

(y− x− c(x, θ))ċ(x, θ)

Dn,θ,k(x)
=

(y− x− c(x,λk)− (θ− λk)ċ(x,λk))ċ(x,λk)

Dn,λk,k(x)
(5.37)

+ εn,θ,λk(x, y).

From H1, and using (5.16), we have ∀θ ∈ [λk, λk + hk/
√
n]

∣∣∣∣
ċ(x, θ)

Dn,θ,k(x)
− ċ(x,λk)

Dn,λk,k(x)

∣∣∣∣≤C
√
n, (5.38)

where C does not depend on x. So we deduce that ∀θ ∈ [λk, λk + hk/
√
n]

|εn,θ,λk(x, y)| ≤C(1 +
√
n|y− x− c(x,λk)|)
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for a constant C independent on x and y. Consequently, it follows that

∫ λk+hk/
√
n

λk

εn,θ,λk(Xλ
ik/n

,Xλ
(ik+1)/n)dθ

goes to zero in probability as n goes to infinity, and the thesis follows. �

Lemma 5.6. Let us assume H0–H2. Let In(λ) be the diagonal matrix of size K ×K,
and Nn(λ) be the random vector of size K, defined by the entries,

In(λ)k =
ċ(Xλ

ik/n
, λk)

2

nDn,λk,k(Xλ
ik/n

)
, Nn(λ)k =

√
n(Xλ

(ik+1)/n −Xλ
ik/n

− c(Xλ
ik/n

, λk))√
nDn,λk,k(Xλ

ik/n
)

.

(5.39)
Then, we have,

(In(λ),Nn(λ))
n→∞−−−−→
law

(I(λ),N)

with I(λ) the diagonal matrix,

I(λ)k =
ċ(Xλ

Tk−, λk)
2

a2(Tk,Xλ
Tk−)[1 + c′(Xλ

Tk−, λk)]2Uk + a2(Tk,Xλ
Tk− + c(Xλ

Tk−, λk))(1−Uk)
,

and U = (U1, . . . , UK) is a vector of independent uniform laws on [0,1] such that U , T
and (Wt)t∈[0,1] are independent, and conditionally on (U,T, (Wt)t∈[0,1]), N is a standard
Gaussian vector in R

K .

Proof. We just have to prove the convergence in law of the couple

(nDn,λk,k(Xλ
ik/n

),
√
n(Xλ

(ik+1)/n −Xλ
ik/n

− c(Xλ
ik/n

, λk))).

We have from (5.10)

Dn,λk,k(Xλ
ik/n

) = a2
(
ik
n
,Xλ

ik/n

)
(1 + c′(Xλ

ik/n
, λk))

2

(
Tk −

ik
n

)

+ a2
(
ik
n
,x+ c(Xλ

ik/n
, λk)

)(
ik + 1

n
− Tk

)

and from (5.13)

Xλ
(ik+1)/n =Xλ

ik/n
+ c(Xλ

ik/n
, λk) + (1 + c′(Xλ

ik/n
, λk))a

(
ik
n
,Xλ

ik/n

)
(WTk

−Wik/n)

+ a

(
ik
n
,Xλ

ik/n
+ c(Xλ

ik/n
, λk)

)
(W(ik+1)/n −WTk

) +Rn,λ,k,

where Rn,λ,k is bounded in Lp by C/n (see the proof of Lemma 5.3). So as a straight-
forward consequence of Lemma 5.1, we obtain that (nDn,λk,k(Xλ

ik/n
),
√
n(Xλ

(ik+1)/n −
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Xλ
ik/n

− c(Xλ
ik/n

, λk))) converges in law to

(Dλk,k(Xλ
Tk−),

(1 + c′(Xλ
Tk−, λk))a(Tk,X

λ
Tk−)

√
UkN

−
k + a(Tk,X

λ
Tk− + c(Xλ

Tk−, λk))
√
1−UkN

+
k )

with

Dλk,k(Xλ
Tk−) = a2(Tk,X

λ
Tk−)[1+ c′(Xλ

Tk−, λk)]
2
Uk+a2(Tk,X

λ
Tk−+ c(Xλ

Tk−, λk))(1−Uk).

This gives the result of Lemma 5.6. �

As noticed earlier, the proof of Theorem 3.1 follows from the decomposition (5.2) with

P(T ∈ Tn) n→∞−−−−→ 1, and Lemmas 5.5 and 5.6.

5.2. Proof of the convolution theorem

In this section, we prove the Theorem 2.1 and some related results.
We recall the framework described in Section 2.
(Ω,F ,P) is the canonical product space, on which are defined the independent variables

(Wt)t∈[0,1], T = (T1, . . . , TK), Λ = (Λ1, . . . ,ΛK). The probability P is the simple product
of the corresponding probabilities. From this simple disintegration of the measure P as a
product, we can introduce Pλ the probability P conditional on Λ = λ ∈RK . The processX
is solution of (2.1), and we may assume that for any λ ∈RK the law ofX under Pλ is equal

to the law of Xλ solution of (3.1). We recall that Ω̃ is the extension of Ω which contains
the uniform variables U1, . . . , UK , and the Gaussian variables, N−

1 , . . . ,N−
K , N+

1 , . . . ,N+
K .

With these notations, the LAMN expansion of Theorem 3.1 writes,

Zn(λ,λ+ h/
√
n,T,X1/n, . . . ,X1)

(5.40)

=

K∑

k=1

hkIn(λ)
1/2
k Nn(λ)k −

1

2

K∑

k=1

h2
kIn(λ)k +oPλ(1)

with

In(λ)k =
ċ(Xik/n, λk)

2

nDn,λk,k(Xik/n)
,

(5.41)

Nn(λ)k =

√
n(X(ik+1)/n −Xik/n − c(Xik/n, λk))√

nDn,λk,k(Xik/n)
,

Dn,λk,k(Xik/n) = a2
(
ik
n
,Xik/n

)
(1 + c′(Xik/n, λk))

2

(
Tk −

ik
n

)

+ a2
(
ik
n
,Xik/n + c(Xik/n, λk)

)(
ik +1

n
− Tk

)
.
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The Theorem 3.1 states the convergence in law of (In(λ),Nn(λ)) to (I(λ),N) under Pλ.
Actually, from the proof of Lemma 5.6, we get the following convergence result under P.

Proposition 5.1. Assuming H0–H2, we have the convergence

((nTk − ik)k, (
√
n(WTk

−Wik/n))k, (
√
n(W(ik+1)/n −WTk

))k, In(Λ),Nn(Λ))
(5.42)

n→∞−−−−→
law

((Uk)k, (
√
UkN

−
k )k, (

√
1−UkN

+
k )k, I(Λ),N(Λ)),

where N(Λ) is distributed as a standard Gaussian variable in R
K . Moreover this conver-

gence is stable with respect to F , and the last two limit variables can be represented on
the extended space Ω̃ as,

I(Λ)k =
ċ(XTk−,Λk)

2

a2(Tk,XTk−)(1 + c′(XTk−,Λk))2Uk + a2(Tk,XTk
)(1−Uk)

, (5.43)

N(Λ)k =
a(Tk,XTk−)(1 + c′(XTk−,Λk))

√
UkN

−
k + a(Tk,XTk

)
√
1−UkN

+
k

[a2(Tk,XTk−)(1 + c′(XTk−,Λk))2Uk + a2(Tk,XTk
)(1−Uk)]1/2

. (5.44)

Remark that the matrix I(Λ) is not equal to the matrix Iopt appearing in the statement
of the convolution Theorem 2.1. Comparing the expression (2.4) of Iopt with the expres-
sion (3.4) of I(λ), we see that in the parametric case, the information is proportional to
(ċ(XTk−, λk))

2. This is quite natural. If instead of estimating the “mark” λk we estimate
the jump, equal to c(XTk−, λk) in the parametric model, we can expect that the effect
of (ċ(XTk−, λk))

2 vanishes (by a simple first order expansion of the error of estimation).
This gives some insight on why ċ(XTk−,Λk)

2 disappears in the expression of Iopt.
On the other hand, it is not immediate why the expression of the parametric informa-

tion involves the quantity c′(XTk−, λk), which is not present in the expression of Iopt.
We will see that it is due to the fact that the value of the jump c(XTk−, λk) depends on
the unobserved quantity XTk− and thus is not a simple functional of the parameter λk.
If c does not depend on X , the situation is simpler and the proof of Theorem 2.1 is

much easier. For this reason, in the next section we prove the convolution theorem in this
easier setting. The general proof is given in Section 5.2.3 and some intermediate results
are stated in Section 5.2.2.

5.2.1. Proof of Theorem 2.1 when c(x, θ) = c(θ)

We start with a simple lemma.

Lemma 5.7. Assume H0–H2 then for all λ,h ∈R
K ,

In

(
λ+

h√
n

)
− In(λ)

n→∞−−−−→ 0 in Pλ probability,

Nn

(
λ+

h√
n

)
−Nn(λ) + In(λ)

1/2h
n→∞−−−−→ 0 in Pλ probability.
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Proof. This follows easily from the expressions (5.41). �

Assume that J̃n is a sequence of estimators (based on (Xi/n)i=0,...,n) such that

√
n(J̃n − J)

n→∞−−−−→ Z̃

in law under P.
Then, the Theorem 2.1 is an immediate consequence of the following result.

Theorem 5.1. Assume H0–H3 and that c(x, θ) = c(θ). Denote Ċ(Λ) the diagonal matrix
of size K ×K such that Ċ(Λ)k = ċ(Λk).
Then, we have the decomposition for all n,

√
n(J̃n − J) = Ċ(Λ)In(Λ)

−1/2Nn(Λ) +Rn (5.45)

for (Rn)n a sequence of random variables with values in RK .
Along a subsequence (n) we have the convergence in law,

(Ċ(Λ)In(Λ)
−1/2Nn(Λ),Rn)

(n)→∞−−−−→ (Ċ(Λ)I(Λ)−1/2N(Λ),R) = ((Iopt)
−1/2

N,R), (5.46)

where N =N(Λ) is Gaussian, and R is independent of N conditionally on Iopt.

In particular, we have Z̃ = lim(n)

√
n(J̃n − J) = (Iopt)−1/2N +R.

Proof. We set Rn =
√
n(J̃n − J)− Ċ(Λ)In(Λ)

−1/2Nn(Λ) and define,

Rn(λ) =
√
n(J̃n − c(λk)k)− Ċ(λ)In(λ)

−1/2Nn(λ), (5.47)

so that Rn =Rn(Λ). Since J̃n is a measurable function of the (Xi/n)i, J = (c(Λk))k and

Ċ(Λ) are measurable functions of the marks, and from the expression (5.41), we deduce
that Rn = fn((Xi/n)i, T,Λ) for some Borelian function fn.
Using Lemma 5.7 and the expression (5.47), we easily get:

Rn

(
λ+

h√
n

)
−Rn(λ)

n→∞−−−−→0 in Pλ probability for any λ,h ∈RK .

Remark now that by Proposition 5.1 and the convergence of
√
n(J̃n − J), we get that

(Rn)n is a tight sequence of variables.
Hence, we can apply Proposition 5.2 below. We deduce that

(In(Λ),Nn(Λ),Rn)
n→∞−−−−→
law

(I(Λ),N(Λ),R),

where the limit can be represented on an extension Ω̃ × RK of the space Ω̃, and the
convergence is stable with respect to (T,Λ, (Wt)t∈[0,1]). On this extension, the variable
R is independent of N(Λ) conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k). This implies (5.46),
and thus the theorem. �
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Proposition 5.2. Assume H0–H3. Let Rn = fn((Xi/n)i, T,Λ)) ∈ RK where (fn)n is a
sequence of Borelian functions. Set Rn(λ) = fn((Xi/n)i, T, λ), and assume:

• Rn(λ+ h√
n
)−Rn(λ)

n→∞−−−−→ 0, in Pλ probability for any λ,h ∈RK ,

• the sequence (Rn)n is tight.

Then, one has the convergence in law, along a subsequence,

((nTk − ik)k, (
√
n(WTk

−Wik/n))k, (
√
n(W(ik+1)/n −WTk

))k, In(Λ),Nn(Λ),Rn)
(5.48)

(n)→∞−−−−→
law

((Uk)k, (
√
UkN

−
k )k, (

√
1−UkN

+
k )k, I(Λ),N(Λ),R).

The limit can be represented on a extension Ω̃×RK of the space Ω̃. On this space, the
variable R is independent of N(Λ) conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k). Moreover
the convergence (5.48) is stable with respect to (T,Λ, (Wt)t∈[0,1]).

Proof. Consider the joint law of the random variables,

(
T,Λ, (Wt)t∈[0,1], (nTk − ik)k=1,...,K ,

(
(WTk

−Wik/n)√
Tk − ik/n

)

k=1,...,K

,

(5.49)(
(W(ik+1)/n −WTk

)√
(ik + 1)/n− Tk

)

k=1,...,K

, In(Λ),Nn(Λ),Rn

)

defined on the corresponding canonical product space, endowed with the usual product
topology. From the assumption, all the components of this vector are tight, and thus
the joint law is tight. Along some subsequence, it converges in law to some limit, and
thus (5.48) holds true. The stability of the convergence with respect to T,Λ, (Wt)t∈[0,1]

is immediate. Remark that from Proposition 5.1, the law of the limit

(T,Λ, (Wt)t∈[0,1], (Uk)k=1,...,K , (N−
k )k=1,...,K , (N+

k )k=1,...,K , I(Λ),N(Λ),R)

is known, apart for the last component R. It can be clearly represented on an extension
Ω̃×RK of Ω̃.
To determine some information on the law of R, we use techniques inspired from the

proof of convolution theorems in [17].
Consider the following set of random variables defined on the space Ω,





G= g(Xs1 , . . . ,Xsr ) with r ≥ 1 and (s1, . . . , sr) ∈ [0,1]r,

Gn = g(X[ns1]/n, . . . ,X[nsr]/n),

κ= k(T1, . . . , TK),

Ln = l(nT1 − i1, . . . , nTK − iK),

M =m(Λ1, . . . ,ΛK),

(5.50)

where g, k, l, m are bounded continuous functions.
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For (µ1, µ2) ∈R2K we set

ϕn(µ1, µ2) = E[eiµ1·Rneiµ2·Nn(Λ)GnκLnM ].

Clearly Gn →G in probability, and from the convergence, along a subsequence, of (5.49),
it is simple to show

ϕn(µ1, µ2)
(n)→∞−−−−→E[eiµ1·Reiµ2·N(Λ)Gκl(U1, . . . , UK)M ]. (5.51)

By conditioning on the variable Λ, whose law admits a density, we have

ϕn(µ1, µ2) =

∫

RK

E
λ[eiµ1·Rn(λ)eiµ2·Nn(λ)GnκLnm(λ)]fΛ(λ) dλ.

For h ∈RK , we make a simple change of variable in the integral,

ϕn(µ1, µ2)

=

∫

RK

E
λ+h/

√
n[eiµ1·Rn(λ+h/

√
n)eiµ2·Nn(λ+h/

√
n)GnκLn]m(λ+ h/

√
n)fΛ(λ+ h/

√
n) dλ.

Now the translation is a continuous operator in L1(R) and by assumption λ 7→m(λ)fΛ(λ)
is integrable. Thus, we easily deduce,

ϕn(µ1, µ2) =

∫

RK

E
λ+h/

√
n[eiµ1·Rn(λ+h/

√
n)eiµ2·Nn(λ+h/

√
n)GnκLn]m(λ)fΛ(λ) dλ+ o(1).

From the assumptions, we know the expansion Rn(λ+h/
√
n) =Rn(λ)+oPλ(1), and from

Lemma 5.7, we have the expansion Nn(λ+ h√
n
) =Nn(λ)− In(λ)

1/2h+ oPλ(1). In these

expansions, all the random variables are only depending on ((Xi/n)i, T ). But, from the

LAMN property, we know that the measures Pλ and Pλ+h/
√
n, restricted to ((Xi/n)i, T ),

are contiguous. Hence, in these expansions, one can replace oPλ(1) with o
Pλ+h/

√
n(1).

Then, using dominated convergence theorem, one can get

ϕn(µ1, µ2) =

∫

RK

E
λ+h/

√
n[eiµ1·Rn(λ)eiµ2·(Nn(λ)−In(λ)1/2h)GnκLn]m(λ)fΛ(λ) dλ+ o(1).

Remark that the random variables appearing in the inner expectation only depend

on the observations ((Xi/n)i, T ), and thus the likelihood ratio p
n,λ+h/

√
n

pn,λ (T, (Xi/n)i) =

exp(Zn(λ,λ+ h/
√
n,T, (Xi/n)i) might be used to change the measure,

ϕn(µ1, µ2) =

∫

RK

E
λ[eiµ1·Rn(λ)eiµ2·(Nn(λ)−In(λ)

1/2h)eZn(λ,λ+h/
√
n,T,(Xi/n)i)GnκLn]

(5.52)
×m(λ)fΛ(λ) dλ+o(1).
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We deduce,

ϕn(µ1, µ2) =E[eiµ1·Rneiµ2·(Nn(Λ)−In(Λ)1/2h)eZn(Λ,Λ+h/
√
n,T,(Xi/n)i)GnκLnM ] + o(1).

But from the LAMN expansion (5.40), one can easily get

Zn(Λ,Λ+ h/
√
n,T, (Xi/n)i) = h∗In(Λ)

1/2Nn(Λ)− 1
2h

∗In(Λ)h+ oP(1),

where h∗ is the transpose of the vector h. Hence, using the convergence in law of (5.49),
and uniform integrability of the sequence Zn(Λ,Λ+h/

√
n,T, (Xi/n)i), it can be seen that

ϕn(µ1, µ2)
(5.53)

(n)→∞−−−−→E[eiµ1·Reiµ2·(N(Λ)−I(Λ)1/2h)eh
∗I(Λ)1/2N(Λ)−h∗I(Λ)h/2Gκl(U1, . . . , UK)M ].

Comparing the expressions (5.51) and (5.53), it comes ∀µ1, µ2, h,

E[eiµ1·Reiµ2·N(Λ)Gκl(U1, . . . , UK)M ]

=E[eiµ1·Reiµ2·(N(Λ)−I(Λ)1/2h)eh
∗I(Λ)1/2N(Λ)−h∗I(Λ)h/2Gκl(U1, . . . , UK)M ].

We deduce that ∀µ1, µ2, h, the two following conditional expectations are almost surely
equal,

E[eiµ1·Reiµ2·N(Λ)|X,T, (Uk)k,Λ]

=E[eiµ1·Reiµ2·(N(Λ)−I(Λ)1/2h)eh
∗I(Λ)1/2N(Λ)−h∗I(Λ)h/2|X,T, (Uk)k,Λ].

But from continuity and analyticity arguments, it can be seen that this equality holds,
almost surely, for any µ1 ∈RK , µ2 ∈RK , h ∈CK .
Hence, we can set h=−iI(Λ)−1/2µ2 in the above relation, and find

E[eiµ1·Reiµ2·N(Λ)|X,T, (Uk)k,Λ] =E[eiµ1·R|X,T, (Uk)k,Λ]e
−µ∗

2µ2/2.

This precisely states that, conditionally on (X,T, (Uk)k,Λ), the random variables R and
N(Λ) are independent. The proposition is proved after remarking that the Brownian
motion (Wt)t can be recovered as a measurable functional of X,T,Λ. �

5.2.2. Intermediate results

The assumption c(x, θ) = c(θ) is crucial for the proof of Theorem 5.1. Indeed if c depends
on the jump-diffusion, then Jk = c(XTk−, λk), and instead of (5.47), we have

Rn(λ) =
√
n(J̃n − c(XTk−, λk)k)− Ċ(X,λ)In(λ)

−1/2Nn(λ),

where Ċ(X,λ) = diag(ċ(XTk−, λk)k). This quantity depends on XTk− which is unob-
served. However, the assumption that Rn(λ) is only function of ((Xi/n)i, T ) is essential
in the Proposition 5.2 (at the step just before equation (5.52)).
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But if instead of Rn(λ) we consider

Robs
n (λ) =

√
n(J̃n − c(Xik/n, λk)k)− Ċobs

n (λ)In(λ)
−1/2Nn(λ),

where Ċobs
n (λ) = diag(ċ(Xik/n, λk)k), then, the Proposition 5.2 can be applied, and we

can prove the following modification of Theorem 5.1.

Theorem 5.2. Let J̃n be any sequence of estimators such that

√
n(J̃n − (c(Xik/n,Λk))k)

(n)→∞−−−−→
law

Z

for some variable Z. Then, the law of Z is necessarily a convolution,

Z
law
= Ċ(X,Λ)I(Λ)−1/2N(Λ) +R,

where N(Λ) is a standard Gaussian vector independent of Ċ(X,Λ)−2I(Λ), and R is
some random variable independent of N(Λ) conditionally on Ċ(X,Λ)−2I(Λ). A simple
expression for the entries of the diagonal matrix Ċ(X,Λ)−2I(Λ) is

Ik = [Uka(Tk,XTk−)
2(1 + c′(Tk,XTk−))

2

(5.54)
+ (1−Uk)a(Tk,XTk

)2]
−1

for k = 1, . . . ,K.

Actually, to prove the convolution theorem when the coefficient c(x, θ) depends on x,
we need a strengthened version of the Proposition 5.2. Indeed, we will show that the
variable R, in the statement of Proposition 5.2, is independent of N conditionally on any
variable that can be obtained as a limit of the observations. This yields some additional
knowledge on the dependence between the variable R and the other variables.

Proposition 5.3. Let us make the same assumptions as in Proposition 5.2. Assume
furthermore that there exist a continuous function Ψ with values in RK and (An)n a
sequence of random variables depending on the observations (T, (Xi/n)i), such that

An −Ψ((nTk − ik)k, (
√
n(WTk

−Wik/n))k, (
√
n(W(ik+1)/n −WTk

))k)

n→∞−−−−→0 in P probability.

Then, in the description of the limit (5.48), the variable R is independent of N(Λ) con-
ditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k) and Ψ((Uk)k, (

√
UkN

−
k )k, ((

√
1−UkN

+
k )k).

Proof. The proof is a slight modification of the proof of Proposition 5.2. We simply add
to the list of random variables (5.50), the new one Sn = s(An), with s being any continu-
ous bounded function. Accordingly, we set ϕn(µ1, µ2) = E[eiµ1·Rneiµ2·Nn(Λ)SnGnKLnM ].
Then, the proof follows the same lines as the proof of Proposition 5.2. �



Asymptotic lower bounds in estimating jumps 31

5.2.3. Proof of Theorem 2.1. The general case

We prove the Theorem 2.1 in the general situation where c(x, θ) depends on x.
As seen in the previous section, a difficulty comes from the fact that the target of

the estimator J = (∆XTk
)k = (c(XTk−,Λk))k depends on the unobserved value XTk−.

We introduce Jn = (c(Xik/n,Λk))k, and with simple computations, one can write the

following expansion, for any sequence of estimators J̃n,

√
n(J̃n

k − Jk) =
√
n(J̃n

k − Jn
k )− c′(Xik/n,Λk)

√
n(XTk− −Xik/n) + oP(1).

If
√
n(J̃n

k − Jn
k ) is tight we can use Theorem 5.2 and deduce, lim(n)

√
n(J̃n

k − Jk) = Z̃k =

Ċ(X,Λ)I(Λ)
−1/2
k N(Λ)k − c′(XTk−,Λk)a(Tk,XTk−)

√
UkN

−
k + Rk. After a few algebra,

involving the expressions (5.43)–(5.44), it could be seen that this reduces to the algebric
relation (2.3), with N being some standard normal variable. However by this method, we
cannot deduce the conditional independence of R with N . Indeed, only the conditional
independence of R with N(Λ) is known, and we have no information about the joint law
of R and N−.
To solve this problem, we consider two new statistical experiments where we add the

observation of the jump-diffusion just before (or just after) the jump. We first state the
LAMN properties for these new experiments. We omit the proof, which is similar to the
proof of Theorem 3.1.

Proposition 5.4 (LAMN property adding the observations before the jumps).

Assume H0, H1 and H2. Denote (pn,λ,aug−
) the density on Rn+2K of the augmented

vector of observations Oaug−
= ((Xi/n)i, (Tk)k, (XTk−)k) under P

λ. For λ ∈R
K , h ∈R

K ,

define the log-likelihood ratio Zaug−
n (λ,λ+ h/

√
n,Oaug−

) = ln p
n,λ+h/

√
n,aug− (Oaug− )

pn,λ,aug− (Oaug− )
.

We have the expansion:

Zn(λ,λ+ h/
√
n,Oaug−

) =

K∑

k=1

hkI
aug−

n (λ)
1/2
k Naug−

n (λ)k

(5.55)

− 1

2

K∑

k=1

h2
kI

aug−

n (λ)k + oPλ(1),

where

Iaug
−

n (λ)k =
ċ(XTk−, λk)

2

nDn,λk,k,aug−(XTk−)
,

Naug−

n (λ)k =

√
n(X(ik+1)/n −XTk− − c(XTk−, λk))√

nDn,λk,k,aug−(XTk−)
, (5.56)

Dn,λk,k,aug
−
(XTk−) = a2(Tk,XTk− + c(XTk−, λk))

(
ik +1

n
− Tk

)
.
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Moreover,

(Iaug
−

n (λ),Naug−

n (λ))
n→∞−−−−→
law

(Iaug
−
(λ),Naug−

),

where Iaug
−
(λ) is the diagonal information matrix whose entries are

Iaug
−
(λ)k =

ċ(XTk−, λk)
2

a2(Tk,XTk
)(1−Uk)

and Naug− is a standard Gaussian vector in RK .

Proposition 5.5 (LAMN property adding the observations after the jumps).

Assume H0, H1 and H2. Denote (pn,λ,aug+

) the density on Rn+2K of the augmented

vector of observations Oaug+

= ((Xi/n)i, (Tk)k, (XTk
)k) under Pλ. For λ ∈ RK , h ∈RK ,

define the log-likelihood ratio Zaug+

n (λ,λ+ h/
√
n,Oaug+

) = ln p
n,λ+h/

√
n,aug+ (Oaug+ )

pn,λ,aug+ (Oaug+ )
.

We have the expansion:

Zn(λ,λ+ h/
√
n,Oaug+) =

K∑

k=1

hkI
aug+

n (λ)
1/2
k Naug+

n (λ)k

(5.57)

− 1

2

K∑

k=1

h2
kI

aug+

n (λ)k +oPλ(1),

where

Iaug
+

n (λ)k =
ċ(Xik/n, λk)

2

nDn,λk,k,aug+(Xik/n)
,

Naug+

n (λ)k =

√
n(XTk

−Xik/n − c(Xik/n, λk))√
nDn,λk,k,aug+(Xik/n)

, (5.58)

Dn,λk,k,aug
+

(Xik/n) = a2
(
ik
n
,Xik/n

)
(1 + c′(Xik/n, λk))

2

(
Tk −

ik
n

)
.

Moreover,

(Iaug
+

n (λ),Naug+

n (λ))
n→∞−−−−→
law

(Iaug
+

(λ),Naug+

),

where Iaug
+

(λ) is the diagonal information matrix whose entries are

Iaug
+

(λ)k =
ċ(XTk−, λk)

2

a2(Tk,XTk−)(1 + c′(XTk−, λk))2Uk

and Naug+ is a standard Gaussian vector in RK .
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We now deduce convolution results from these LAMN properties.

Proposition 5.6. Let J̃n be a sequence of estimator based on the observations of (Xi/n)i

and denote Jn = (c(Xik/n,Λ))k. Suppose that the sequence
√
n(J̃n − Jn) is tight and

define Raug−
n and Raug+

n by the following expansions

√
n(J̃n − Jn) = Ċobs

n (Λ)Iaug
−

n (Λ)−1/2Naug−

n (Λ) +Raug−

n , (5.59)
√
n(J̃n − Jn) = Ċobs

n (Λ)Iaug
+

n (Λ)−1/2Naug+

n (Λ) +Raug+

n , (5.60)

where Iaug
−

n (Λ) (resp., Iaug
+

n (Λ)) is the diagonal matrix with entries (Iaug
−

n (Λ)k) (resp.,

(Iaug
+

n (Λ)k)) and Ċobs
n (Λ) is diagonal with entries ċ(Xik/n,Λk).

Then, we have the convergence in law

[
√
n(X(ik+1)/n −XTk− − c(XTk−,Λk))k,

√
n(XTk

−Xik/n − c(Xik/n,Λk))k,R
aug−

n ,Raug+

n ]
(5.61)

(n)→∞−−−−→ [(a(Tk,XTk
)
√

1−UkN
+
k )k,

(a(Tk,XTk−)(1 + c′(XTk−,Λk))
√
UkN

−
k )k,R

aug− ,Raug+ ].

This convergence holds jointly with (5.42) and the limit variables can be represented on

an extension of Ω̃. On this space, one has, ∀k ∈ {1, . . . ,K},

Raug+

k = Raug−

k − a(Tk,XTk−)(1 + c′(XTk−,Λk))
√
UkN

−
k

(5.62)
+ a(Tk,XTk

)
√
1−UkN

+
k .

Moreover, conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k, (N
−
k )k), the variable Raug−

is inde-

pendent of (N+
k )k. In a symmetric way, conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k, (N

+
k )k),

the variable Raug+

is independent of (N−
k )k.

Proof. From the definition of the variables Raug−
n and Raug+

n given by equations (5.59)
and (5.60), we deduce immediately the relations

√
n(J̃n − Jn) = [

√
n(X(ik+1)/n −XTk− − c(XTk−,Λk))]k +Raug−

n + oP(1), (5.63)

√
n(J̃n − Jn) = [

√
n(XTk

−Xik/n − c(Xik/n,Λk))]k +Raug+

n . (5.64)

By a tightness argument the joint convergence, along a subsequence, of (5.42) and
(5.61) is clear. The relation (5.62) is a consequence of the equality between the quantities
(5.63) and (5.64).
Now, we can deduce, from the LAMN property (Proposition 5.4), a result analogous to

Proposition 5.2. Hence Raug−
is independent of the limit of Naug−

n (Λ), conditionally on
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(T,Λ, (Wt)t∈[0,1], (Uk)k). Moreover, remark that in the experiment Oaug−
, the sequence

of variables

An =

√
n(XTk− −Xik/n)

a(Tk,Xik/n)

is observed. But An −√
n(WTk− −Wik/n) converges to zero in P-probability. Showing a

result analogous to Proposition 5.3, we deduce that Raug−
is independent of the limit of

Naug−
n (Λ), conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k, (

√
UkN

−
k )k). This shows immediately

thatRaug−
is independent of (N+

k ) conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k, (N
−
k )k), since

the sigma-fields generated by the two vectors are the same.
The conditional independence between Raug+ and (N−

k )k is obtained in a symmetric
way: one uses the LAMN property of Proposition 5.5, and the fact that the sequence

A′
n =

√
n(X(ik+1)/n −XTk

)

a(Tk,XTk
)

is observed in the experiment based on Oaug+

. �

Finally, we are able to prove Theorem 2.1.

Proof of Theorem 2.1. First, we write

√
n(J̃n

k − Jk) =
√
n(J̃n

k − Jn
k )−

√
n(Jk − Jn

k )
(5.65)

=
√
n(J̃n

k − Jn
k )− c′(Xik/n,Λk)

√
n(XTk− −Xik/n) + oP(1).

But the sequence
√
n(J̃n − Jn) is tight, and we can apply Proposition 5.6. Using (5.63),

(5.61), and (5.65) we deduce

√
n(J̃n

k−Jk)
n→∞−−−−→
law

−a(Tk,XTk−)c
′(XTk−,Λk)

√
UkN

−
k +a(Tk,XTk

)
√
1−UkN

+
k +Raug−

k .

We write the last equation as

√
n(J̃n

k − Jk)
n→∞−−−−→
law

a(Tk,XTk−)
√
UkN

−
k + a(Tk,XTk

)
√
1−UkN

+
k + R̃k,

where R̃k =Raug−

k − (a(Tk,XTk−)(1 + c′(XTk−,Λk))
√
UkN

−
k ). Using Proposition 5.6, we

deduce that R̃ is independent of N+ conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k, (N
−
k )k).

From (5.62), we have R̃k = Raug+

k − (a(Tk,XTk
)
√
1−UkN

+
k )k and we deduce that R̃

is independent of N− conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k, (N
+
k )k).

Remarking thatN− andN+ are independent conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k),

we deduce that R̃ is independent of (N−,N+) conditionally on (T,Λ, (Wt)t∈[0,1], (Uk)k).
The theorem is proved. �
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Proof of Corollary 2.1. We introduce the conditional probability P̂K0 =
1{K=K0}
P(K=K0)

P

for any K0 ∈ N such that P(K =K0)> 0. For any K0 ≥ 0, the sequence
√
n(J̃n − J) is

tight (for the product topology on RN) under P̂K0 . So, on a subsequence, one has the

convergence in law
√
n(J̃n − J)

P̂
K0−−−−→
law

Z̃K0 , moreover the subsequence may be chosen

independent of K0 from a diagonal extraction argument.
Fix K0 ≥ 1, under the probability P̂K0 , the assumptions H0–H3 are satisfied and we

can apply Theorem 2.1 to the K0 first components of the vector Z̃K0 . The corollary

follows from the decomposition of the law of Z̃
law
=

∑
K0≥0 1{K=K0}Z̃

K0 . �

5.3. Study of the estimator Ĵ
n: Proofs of Proposition 4.1 and

Theorem 4.1

Proof of Proposition 4.1. For k ∈ {1, . . . ,K}, let us note ik the integer such that
ik/n≤ Tk < (ik +1)/n. We set I = {i1, . . . , iK} and consider a variable which counts the
number of false discovery of a jump by the estimator,

En =

n−1∑

i=0

1|X(i+1)/n−Xi/n|≥un
1i/∈I . (5.66)

For M > 0, we define ΩM as the event ΩM = {sups∈[0,1][|b(s,Xs)|+ |a(s,Xs)|]≤M}.
We have

P({En ≥ 1} ∩ΩM )

≤ E[En1ΩM ]

=

n−1∑

i=0

E[1|X(i+1)/n−Xi/n|≥un
1i/∈I1ΩM ] (5.67)

≤
n−1∑

i=0

P

[{∣∣∣∣
∫ (i+1)/n

i/n

a(s,Xs) dWs +

∫ (i+1)/n

i/n

b(s,Xs) ds

∣∣∣∣≥ un

}
∩ΩM

]

≤
n−1∑

i=0

P

[{∣∣∣∣
∫ (i+1)/n

i/n

a(s,Xs) dWs

∣∣∣∣≥ un − M

n

}
∩ΩM

]
.

With aM = (a ∧M) ∨ (−M) one has, using Markov and Burkholder–Davis–Gundy in-
equalities:

P

[{∣∣∣∣
∫ (i+1)/n

i/n

a(s,Xs) dWs

∣∣∣∣≥ un − M

n

}
∩ΩM

]

≤ P

[∣∣∣∣
∫ (i+1)/n

i/n

aM (s,Xs) dWs

∣∣∣∣≥ un − M

n

]
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(5.68)

≤Cp

(
un − M

n

)−p

n−p/2 ∀p > 0

=Cpn
p(̟−1/2) ∀p > 0.

Since ̟ < 1/2, we get, from (5.67) and (5.68) by choosing p large enough,
∑

n≥1 P({En ≥
1} ∩ ΩM ) < ∞, and by Borel Cantelli’s lemma we deduce that P(

⋂
n≥1

⋃
p≥n({Ep ≥

1} ∩ ΩM )) = 0. It immediately implies P((
⋂

n≥1

⋃
p≥n{Ep ≥ 1}) ∩ ΩM ) = 0 and since⋃

M≥1ΩM = Ω, we easily deduce that almost surely, there exists n, such that ∀p ≥ n,
Ep = 0. Recalling the definitions (4.1) and (5.66), we conclude that almost surely, if n is

large enough, {în1 , . . . , înK̂n
} ⊂ I and, as a consequence, K̂n ≤K .

Now, remark that we have almost surely the convergence, for all k ≤K ,

X(ik+1)/n −Xik/n
n→∞−−−−→XTk

−XTk− = c(XTk−,Λk). (5.69)

From the assumption A2, we have c(XTk−,Λk) 6= 0 and using that un → 0, we deduce
that for n large enough, I ⊂ {în1 , . . . , înK̂n

}.
As a consequence, we have shown that,

almost surely, for n large enough K̂n =K and înk = ik ∀k ≤K. (5.70)

Eventually, the proposition follows from (4.2), (5.69) and (5.70). �

Proof of Theorem 4.1. We use the notation introduced in the proof of Proposition
4.1: for k ∈ {1, . . . ,K}, we have ik/n ≤ Tk < (ik + 1)/n. Let us define for 1 ≤ k ≤ K ,
Gn

k =X(ik+1)/n −Xik/n −∆XTk
and Gn

k = 0 for k > K . Using (4.2) and (5.70), we see

that, almost surely, for n large enough, we have Ĵn − J =Gn. Hence, it is sufficient to
study the limit in law of

√
nGn.

Consider any K0 ∈N such that P(K =K0)> 0 and define P̂K0 =
1{K=K0}
P(K=K0)

P, the condi-

tional probability. Actually, we will prove the convergence of
√
nGn conditionally on the

event {K =K0}, to the law of Z conditional on {K =K0}, which is sufficient to prove
the theorem.
For k >K0 we have Gn

k = 0, hence we focus only on the components Gn
k with k ≤K0.

Define Ω̂n = {X has at most one jump on each interval of size 1/n}. We have

lim
n→∞

P̂
K0(Ω̂n) = 1.

On Ω̂n, the following decomposition holds true P̂K0 almost surely, for any k ≤K0,

√
nGn

k = a(ik/n,Xik/n)α
−
k,n + a(Tk,XTk

)α+
k,n + en,k,

where

α−
k,n =

√
n(WTk

−Wik/n), α+
k,n =

√
n(W(ik+1)/n −WTk

),
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en,k =
√
n

∫ Tk

ik/n

(a(s,Xs)− a(ik/n,Xik/n)) dWs (5.71)

+
√
n

∫ (ik+1)/n

Tk

(a(s,Xs)− a(Tk,XTk
)) dWs +

√
n

∫ (ik+1)/n

ik/n

b(s,Xs) ds.

First, we show that en,k converges to zero in P̂K0 probability as n→∞. Using A1, the
ordinary integral converges almost surely to zero. It remains to see that the two stochastic
integrals converge to zero.
Using that the jumps times are F0-measurable, we can write the stochastic integral

√
n

∫ Tk

ik/n

(a(s,Xs)− a(ik/n,Xik/n)) dWs

as a local martingale increment

∫ 1

0

√
n1[ik/n,Tk](s)(a(s,Xs)− a(ik/n,Xik/n)) dWs.

The bracket of this local martingale is

∫ Tk

ik/n

n(a(s,Xs)− a(ik/n,Xik/n))
2
ds,

which converges to zero almost surely, using the right continuity of the process X . We

deduce that
√
n
∫ Tk

ik/n
(a(s,Xs)− a(ik/n,Xik/n)) dWs converge to zero in probability. We

proceed in the same way to prove that
√
n
∫ (ik+1)/n

Tk
(a(s,Xs)− a(Tk,XTk

)) dWs
n→∞−−−−→ 0

in probability. This yields to the relation,

√
nGn

k = a(ik/n,Xik/n)α
−
k,n + a(Tk,XTk

)α+
k,n + o

P̂K0
(1) for k ≤K0.

Using H̃0, and the independence between (Wt)t∈[0,1] and T under P̂
K0 , we can apply

Lemma 5.1. We get the convergence in law, under P̂K0 ,

((Tk)k=1,...,K0 , (α
−
k,n)k=1,...,K0

, (α+
k,n)k=1,...,K0

, (Wt)t∈[0,1])

n→∞−−−−→ ((Tk)k=1,...,K0 , (
√
UkN

−
k )k=1,...,K0

, (
√
1−UkN

+
k )k=1,...,K0

, (Wt)t∈[0,1]).

Since the marks (Λk)k, the Brownian motion, and the jump times are independent, we

have that, under P̂K0 , (α−
k,n, α

+
k,n)k≤K0 converges in law to (

√
UkN

−
k ,

√
1−UkN

+
k )k≤K0

stably with respect to the sigma-field generated by (Wt)t∈[0,1], (Tk)k and (Λk)k. The limit

can be represented on the extended space Ω̃ endowed with the probability P̃ conditional
on K =K0.
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But the process X is measurable with respect to F1, and we deduce the stable conver-
gence,

√
nGn

k = a(ik/n,Xik/n)α
−
k,n + a(Tk,XTk

)α+
k,n

n→∞−−−−→ a(Tk,XTk−)
√
UkN

−
k + a(Tk,XTk

)
√

1−UkN
+
k

for k = 1, . . . ,K0, under P̂
K0 .

By simple computations, this implies the convergence of (
√
nGn

k )k under P, and the
theorem is proved. �
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tiques. I. In Seminar on Probability, XVIII. Lecture Notes in Math. 1059 402–498.
Berlin: Springer. MR0770974

[6] Barndorff-Nielsen, O.E. and Shephard, N. (2006). Econometrics of testing for jumps
in financial economics using bipower variation. J. Financial Econometrics 4 1–30.

[7] Barndorff-Nielsen, O.E., Shephard, N. and Winkel, M. (2006). Limit theorems for
multipower variation in the presence of jumps. Stochastic Process. Appl. 116 796–806.
MR2218336

[8] Cont, R. and Mancini, C. (2011). Nonparametric tests for pathwise properties of semi-
martingales. Bernoulli 17 781–813. MR2787615

[9] Gloter, A. and Gobet, E. (2008). LAMN property for hidden processes: The case of
integrated diffusions. Ann. Inst. Henri Poincaré Probab. Stat. 44 104–128. MR2451573
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[18] Kunita, H. (1997). Stochastic Flows and Stochastic Differential Equations. Cambridge
Studies in Advanced Mathematics 24. Cambridge: Cambridge Univ. Press. Reprint
of the 1990 original. MR1472487

[19] Mancini, C. (2004). Estimation of the characteristics of the jumps of a general Poisson-
diffusion model. Scand. Actuar. J. 1 42–52. MR2045358

[20] Mancini, C. (2009). Non-parametric threshold estimation for models with stochastic dif-
fusion coefficient and jumps. Scand. J. Stat. 36 270–296. MR2528985

[21] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Probability and
Its Applications (New York). Berlin: Springer. MR2200233

[22] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and
Probabilistic Mathematics 3. Cambridge: Cambridge Univ. Press. MR1652247

[23] Woerner, J.H.C. (2006). Power and multipower variation: Inference for high frequency
data. In Stochastic Finance 343–364. New York: Springer. MR2230770

Received February 2012 and revised September 2012

http://www.ams.org/mathscinet-getitem?mr=0620321
http://www.ams.org/mathscinet-getitem?mr=2394762
http://www.ams.org/mathscinet-getitem?mr=1617049
http://www.ams.org/mathscinet-getitem?mr=2676944
http://www.ams.org/mathscinet-getitem?mr=0656266
http://www.ams.org/mathscinet-getitem?mr=0688800
http://www.ams.org/mathscinet-getitem?mr=1472487
http://www.ams.org/mathscinet-getitem?mr=2045358
http://www.ams.org/mathscinet-getitem?mr=2528985
http://www.ams.org/mathscinet-getitem?mr=2200233
http://www.ams.org/mathscinet-getitem?mr=1652247
http://www.ams.org/mathscinet-getitem?mr=2230770

	1 Introduction
	2 Convolution theorem
	2.1 Notation
	2.2 Main result
	2.2.1 Deterministic number of jumps
	2.2.2 Random number of jumps


	3 LAMN property in an associated parametric model
	4 Efficient estimator of the jumps
	5 Proof section
	5.1 LAMN property: Proof of Theorem 3.1
	5.2 Proof of the convolution theorem
	5.2.1 Proof of Theorem 2.1 when c(x,theta)=c(theta)
	5.2.2 Intermediate results
	5.2.3 Proof of Theorem 2.1. The general case

	5.3 Study of the estimator J n: Proofs of Proposition 4.1 and Theorem 4.1

	Acknowledgements
	References

