
HAL Id: hal-00795398
https://hal.science/hal-00795398v1

Submitted on 23 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Operational framework based on modeling languages to
support product repository implementation.

Muriel Pinel, Christian Braesch, Laurent Tabourot, Aline Berger

To cite this version:
Muriel Pinel, Christian Braesch, Laurent Tabourot, Aline Berger. Operational framework based on
modeling languages to support product repository implementation.. 9th International Conference on
Product Lifecycle Management (PLM), Jul 2012, Montreal, QC, Canada. pp.257-266, �10.1007/978-
3-642-35758-9_22�. �hal-00795398�

https://hal.science/hal-00795398v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Operational framework based on modeling languages to
support product repository implementation

Muriel Pinel1, Christian Braesch1, Laurent Tabourot1, and Aline Berger2

1 SYMME, University of Savoy, Annecy, France

{muriel.pinel,christian.braesch,laurent.tabourot}@univ-savoie.fr

2 THESAME, Annecy, France

ab@thesame-innovation.com

Abstract. Embracing Product Lifecycle Management approach involves in-
tegrating a product repository in the company information system. From cus-
tomer's needs to disposal stage, several product representations exist. The prod-
uct repository purpose is to secure consistency of one product representation
with the others. This paper presents an operational modeling framework that
supports product repository implementation. In order to ensure consistency, this
framework identifies correspondences between entities of languages (“trade”
languages and standard languages). The presented concepts are illustrated with
correspondences between language entities of product designed and product
planned to be built Bills of Materials.

Keywords: Product Lifecycle Management (PLM), Bill Of Materials (BOM),
Model Driven Engineering (MDE)

1 Introduction

From customer's requirements to recycling or disposal stage, every product gets
through several maturity stages: product and process designs, manufacturing, use,
support, retire, etc. Each stage of the product lifecycle uses a “trade” product repre-
sentation that meets specific stage objectives and needs.

For example, several Bills Of Materials (BOM) represent the product structure.
Product design department defines “the product designed BOM”. This BOM meets
the functional specifications. This BOM is composed of functional assemblies, com-
ponents and “is composed of” relationships. Basing on this BOM, process design
department defines “the product planned to be built BOM”. This BOM meets the
manufacturing, purchasing and workshop managing needs. This BOM is composed of
purchased components and assemblies, manufactured components and assemblies
and “is made of” relationships. These two Bills Of Materials are product structures
but theirs nodes and relationships do not refer to the same concepts.

Thus, numerous and various product representations exist throughout the product
lifecycle. This multiplicity can be root of functional inconsistencies among stages.
The purpose of this paper is to present an operational modeling framework that sup-
ports product repository implementation. This framework helps in translating a repre-
sentation described in a language into a representation described in an other language.
This framework also helps in verifying that several representations describe the same
product.

Industrial context is described in the first part (§2) in order to highlight the impor-
tance of consistency among product representations. These representations are man-
aged into information system and are built basing on software models. Several meth-
ods exist to define software models. Information systems engineering methods and
enterprise modeling results are first presented in the second part (§3). Then, an over-
view of product repository modeling approaches shows that existing methods are
based on unified languages. These languages are difficult to implement in an extended
enterprise context. So, a modeling framework is needed to manage correspondences
between entities of several languages. The third part (§4) presents the ambivalence
paradigm and a modeling framework. This framework is illustrated through corre-
spondences between language entities of product designed and product planned to be
built BOM.

2 Context and identified problems

Companies are facing a changing environment. PLM is one of the solutions adopted
to meet new requirements and challenges.

2.1 Product Lifecycle Management

Environmental changes lead enterprises to define a PLM strategic approach based on
existing PLM ideas, concepts ands tools. The PLM concept is recent and several defi-
nitions exist. According to different authors [1-5], PLM can be identified as a product
repository with a set of functions used to manage information related to products.
PLM’s goal is to provide relevant information to stakeholders in each stage of the
product lifecycle.

Every stage of the lifecycle takes part in the transformation of an idea into a physi-
cal product that can be used, maintained and recycled. The product lifecycle can be
divided in two periods. First, the product only exists as a theoretical concept (product
design, process design, etc.). Then, the product exists as a physical object (manufac-
turing, maintain, etc.). During the first period, each stage defines a theoretical repre-
sentation of a more and more mature product. For example, the process design stage
defines the “product planned to be built BOM” based on the “product designed
BOM” . During the second period, one stage uses the requirements of representations
provided by previous stages as input to manufacture or to modify the physical prod-
uct. In order to meet traceability requirements, this stage may also record physical
product properties into a representation. For example, the manufacturing stage builds

a physical product based on the “product planned to be built BOM”. The“product
built BOM” can also be recorded.

Thus, the relationship between two lifecycle stages is a “Supplier - Customer” rela-
tionship. Every stage transforms input representation into its own product representa-
tion (theoretical or record). This new representation is described in the specific world
of discourse of the stage. We refer to this world of discourse as the “trade language”
of the stage and we define the “product repository” as the set of product representa-
tions used throughout the product lifecycle.

The following figure illustrates possible distortions among product representations.

What is requested What is understood What is designed
What is planned

to be built
What is built

Fig. 1. Example of requirements distortions among the product representations

This figure identifies two categories of distortions.
The first category of distortion is related to the “Supplier - Customer” relationship

between two stages. The “Supplier” provides the “Customer” a representation de-
scribed in its specific “trade language”. Before any transformation, the “Customer”
has to translate the representation into requirements described in its own “trade lan-
guage”. Among the root causes of distortions, a first problem is identified (illustrated
on the left in Figure 2): how can we ensure that the requirements described in the
“trade language” (world of discourse) of one stage are well interpreted by the follow-
ing stage which has another “trade language”?

Customer

What is understood

Supplier

What is requested

interpretation

stage "N+1"

transformer
world of discourse
stage "N"

world of discourse
stage "N+1"

world of discourse
stage "N"

a representation

What is designed

a representation

What is designed

a representation

What is planned
to be built

a representation

What is planned
to be built

world of discourse
stage "N+1"

a representation

What is requested

a representation

What is requested

Fig. 2. Two distortion categories

The second category of distortion is related to the “transformation” of a representa-
tion. When a representation is built, new requirements are set out and a specific world

of discourse is used. A second issue is identified (illustrated on the right in Figure 2):
how can we ensure that two product representations with specific requirements de-
scribed in two different “trade languages” (worlds of discourse) represent the same
finished product? that is to say: how can we ensure consistency among product repre-
sentations described in several “trade languages”?

Thus, product repository has to provide mechanisms able to address these two is-
sues.

2.2 Product repository models

A model represents a given aspect of a system (a product for example) and it is built
with an intended goal [6-7]. Models are written using elements of an expression lan-
guage. Symbols and syntax (organization of the symbols) of this language are repre-
sented in a metamodel [8]. The product repository objective is to provide users with
product models suited to their specific needs. Products representations are defined by
assigning values to model features; we call them instances.

In a company, all products representations of one stage are based on the same
“trade model”. Figure 3 illustrates interactions between metamodel, language, model
and instance. A product representation (instance) is built with the “trade language”
elements of a product repository “model”.

trade language

model of the enterprise
product repository

instance of the model of the
enterprise product repository

Elements Of

Conforms to

metamodel

Representation Of

Conforms to

Fig. 3. Interactions between metamodel, language, model and instance (adapted from [8])

As a result, consistency among representations (instances) depends on consistency
among product repository models. The second problem can be completed as follows:
how can we ensure consistency among product repository models?

3 Information systems engineering or enterprise modeling?

Product repository models definition is based on methods of information systems
engineering and on results of enterprise modeling. First, existing means to ensure
interoperability among product repository models are presented. Then, an overview of
existing methods for product repository modeling is given.

3.1 Information systems engineering and enterprise modeling

Product repository objective is to manage information related to products (cf. §2).
Thus, product repository is an information system component of the company. Vari-
ous time-tested methods of information systems engineering have been defined [9].
Most of these methods propose models adapted to a class of problems by integrating
functional, structural and behavioral aspects of a field of study.
Identified problems in this paper relate to consistency among models, so Model
Driven Engineering (MDE) [8], [10], [11] is particularly interesting. Models are more
and more numerous and complex. MDE formalizes models and transformation rules.
MDE objectives are to get a better understanding of the information system and to
capitalize information system design knowledge. To do so, transformations between
two models are done using model transformation language (ATL, ATLAS Transfor-
mation Language, for example) rather than programming language (Java for exam-
ple). Therefore, MDE provide us a well-suited structure to address identified prob-
lems.

For each product lifecycle stage, one product repository model is defined in order
to meet the stakeholder needs. Interactions among the product repository models can
be defined basing on results of enterprise modeling [12]. Three major trends exist to
ensure interoperability among models [13]. Firstly, specific enterprise architecture
frameworks (for example, GERAM, Zachman, etc.) define relationships among mod-
els. Secondly, standards (for example, ISA95, STEP, etc.) define precisely concepts
used in different models and ensure their interoperability. Thirdly, unified modeling
languages for enterprise as UEML (Unified Enterprise Modeling Language) represent
a company through different facets.

Standards are appropriate for exchanging data among the stakeholders involved in
the product lifecycle in an extended enterprise context [14]. So, taking them into ac-
count in the modeling framework is essential.

3.2 Existing approaches of product repository modeling

Various methods exist to define product repository models of a company. Some
methods use existing enterprise architecture frameworks (Zacham [15]) and some
methods adapt existing frameworks to specific PLM needs (adaptation of GERAM
framework [16]). Others define their own modeling framework to meet specific PLM
objectives [17] [18]. Only one proposal [16] refers to a standard.

S. Zina [19] identifies two major ways to match several product representations,
multi-views and multi-model approaches. Existing models [2], [16], [17], [18], [20],
[21], [22] are multi-views approaches. These models provide a unified language to
different “trades”. As a result, a “trade language” is a restriction of the unified lan-
guage. Every stakeholder builds his own product representation with symbols and
syntax available for him. However, in an extended enterprise context, product repre-
sentations are spread among organizations. For example, a company defines the func-
tional and “as designed” product representations. Its supplier defines the "as planned
to be built" representation and records properties of physical products. In this context,

the adoption of a single unified language by all stakeholders working on a product is
difficult. Moreover, unification involves the integration of all particularities in a
"common mold" and this can cause ambiguities. For example, the word “item” can be
used to describe an organ of the product designed, a raw material and a spare part.
This can be source of confusion: when someone uses the word “item”, what is he
talking about?

So, firstly, unified models have limitations and drawbacks to support collaboration
among stakeholders from several trades. Secondly, proposed unified models do not
use standards that ensure interoperability into the extended enterprise. Thus, the next
paragraph presents an appropriate framework to address these issues.

4 Modeling framework for the product repository

Product repository aggregates several trade models. Existing unified languages have
limitations. In this paragraph, a modeling framework based on the ambivalence
paradigm is presented to address the identified issues (cf. § 2). First, the paradigm and
the framework are introduced. Then, their use is illustrated through the example of
two trade product Bills Of Materials.

4.1 The ambivalence paradigm and the modeling framework

Ambivalence is the state of existing in two ways without ambiguity or opposition.
The ambivalence paradigm considers that a representation can have several
interpretations (problem 1). This paradigm considers also that an object can have
several representations (problem 2).

Identifying correspondences among entities of “trade languages” avoid
interpretation ambiguities (problem 1). These correspondences prevent also
contradictions among product representations (problem 2).

Two ways exist to define correspondences between entities of two languages. In
the first way, an interpreter translates a representation built in the source language
into a representation built in the target language. In this case, every stakeholder takes
only into account his own language. The interpreter masters source and target
languages. In the second way, the translation is provided by a common language. In
this case, every stakeholder translates his representations into the common language.

Modeling framework must be able to manage these two ways. Indeed, the
framework has to ensure transformation between several stage models.
Correspondences between entities of two “trade languages” have to be managed. In an
extended enterprise context, common languages are used for exchanging data. So, the
framework has to be able to manage correspondences between “trade language” and
common language entities.

In order to build this framework, the first step is to identify the entities of the
languages and the “trade” rules of consistency. These “trade” rules are specific to the
company. Rules can be generic, for example: a component of the product planned to
be built BOM can not be in a state “released” if the corresponding component into the

product designed BOM is not in the state “released”. Rules can be also very specific
to the company’s products. The second step is to identify correspondences between
languages, that is to say correspondences between vocabularies, syntaxes and
semantics. The third step is to formalize metamodels of the “trade” and common
languages. The entities of the metamodels must be choosen in order to be able to
implement the identified “trade” rules into the Information System. The fourth step is
to formalize correspondences into transformation rules between metamodels (cf.
Figure 4). Finally, the framework is done and it can be used. The formalization of
transformation rules among metamodels helps in translating a “trade model” into
another “trade model”.

language A

Model A of the enterprise
product repository

metamodel A

language X

Model X of the enterprise
product repository

metamodel X

correspondences

transformation
model

« Trade A » « X » : other trade or standard

Fig. 4. Operational framework based on modeling languages

Using the same approach, formalization of transformation rules between models helps
in translating a “trade representation” into another “trade representation”. This
formalization also helps in verifying that several representations describe the same
product.

The framework is specific to each company. It can be implemented with a feder-
erated architecture. Relationships between different Information System softwares
(PDM, ERP…) can be done througth a MDE plateform as Eclipse [23]. Eclipse can
be used to transform one product representation created with a software “A” into an
other product representation able to be used by a software “B” or into a “standard”
STEP representation [23]. On this platform, XML (Extensible Markup Language) is
the format used for import and export and ATL is the language used to define the
transformation rules.

4.2 An example: correspondences between language entities of two BOM

In the introduction, two “trade” ways to describe a product structure were presented.
The first one was the “product designed BOM”. This BOM meets functional needs
and it is composed of functional assemblies, standard components and components.
This product definition is usually managed into a PDM (Product Data Management)
software. The second one was the “product planned to be built BOM”. This BOM
meets manufacturing, purchasing and workshop managing needs and it is composed

of purchased components and assemblies, manufactured components and assemblies
(in semi-finished or finished states) and raw materials. This product definition is usu-
ally managed into an ERP (Enterprise Resource Planning) software.

Correspondences to avoid ambiguities (problem 1). To avoid ambiguity into the
product repository, synonymies and polysemies among symbols of two trade lan-
guages have to be eliminated. Using a specific symbol (vocabulary) for each specific
concept avoids confusion. For example, a functional assembly and a manufactured
assembly do not have the same semantic. Specifying the symbol “assembly” adding
the qualifiers “functional” and “manufactured” avoids confusion. Adapting ERP
software data model is difficult. So specific symbols different from ERP ones have to
be implemented into PDM software data model.

Correspondences to avoid contradictions between requirements (problem 2). The
“product designed BOM” and the “product planned to be built BOM” have to repre-
sent the same finish product. Thus, correspondences have to be defined between or-
gans, hierarchic relationships and quantities. These correspondences are used in two
ways. The first one is to support the process design. For example, associations be-
tween generic “product designed” and generic “process and associate product planned
to be built” can be done. This support can be implemented creating specific rules into
tools as MPM (Manufacturing Process Management) software. The second one is to
verify that the new built representation does not have any contradiction with the exist-
ing product representations. This verification can be done reworking and comparing
BOM structures with specific algorithms. The transformations rules can be based on
vocabulary, on semantic and on syntax of the languages. Possible associations (and
associated cardinalities) between entities of the language describe rules based on syn-
tax. Syntax rules can also be described literally.

Examples of transformation rules. The first example concerns “support” correspon-
dences between organs based on vocabulary: every standard component of the “prod-
uct designed BOM” corresponds to a purchased component into the “ product
planned to be built BOM” . An import program can create BOM into ERP database
basing on a PDM export file. In such a case, identified rule can be implemented into
the import program.

The second example concerns “support” correspondences between hierarchic rela-
tionships and quantities based on syntax rules described literally. In this example, the
“ product planned to be built BOM” is defined using a copy of the “ product de-
signed BOM” and reworking it. One transformation rule can be: in the “product
planned to be built BOM”, if a relationship with a quantity q of component X is re-
moved, others relationships must be created or modified to ensure that this quantity q
of component X is preserved. This rule can be implemented into a MPM software for
example.

The third example concerns “verification” correspondences between hierarchic re-
lationships and quantities based on syntaxic rules described literally: if there are n

times the elementary component X in the “product designed BOM”, there must be n
times this elementary component X in the “ product planned to be built BOM”.

5 Conclusions and future work

Embracing Product Lifecycle Management approach involves integrating a product
repository in the information system. This repository manages consistency among
product representations used during the product lifecycle. Identifying and implement-
ing consistency «trade» rules ensure this consistency. A modeling framework based
on ambivalence paradigm and on model driven engineering (MDE) has been defined.
Recent works [23-24] show that MDE approach seems to be a key factor to ensure
product representations interoperability.

MDE provides mechanisms to implement consistency “trade” rules for vocabulary
and syntax among several “trade languages”. To complete the framework, our work is
now focused on formalization of semantic relationships among “trade languages” by
using ontologies and conceptual graphs.

Acknowledgements. The authors would like to thank Thesame, the French
Competitiveness Cluster “Arve Industries Haute-Savoie Mont-Blanc” and the General
Councils of Savoie and Haute-Savoie for supporting this research.

References

1. Stark, J.: Product Lifecycle Management: 21st century paradigm for product realisation.
Springer (2005)

2. Sudarsan, R., Fenves, S. J., Sriram, R. D., Wang, F.: A product information modeling
framework for product lifecycle management. Computer-Aided Design. 37, 1399-1411
(2005)

3. Ameri, F., Dutta, D.: Product Lifecycle Management: Closing the Knowledge Loops.
Computer-Aided Design & Applications. 2, 577-590 (2005)

4. Terzi, S., Ball, P.D., Bouras, A., Dutta, D., Garetti, M., Gurumoorthy, B., Han, S., Kiritsis,
D.: A new point of view on Product Lifecycle Management. In: Proceedings of the 5th In-
ternational Conference on Product Lifecycle Management PLM'08, pp. 497–528 (2008)

5. Saaksvuori, A., Immonen, A.: Product Lifecycle Management, 3rd Edition. Springer
(2008)

6. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the Large and Modeling
in the Small. In: Aßmann, U., Aksit, M., Rensink, A. (Eds.) MDAFA 2003/2004. LNCS,
vol. 3599, pp. 33–46. Springer, Verlag Berlin Heidelberg (2005)

7. Bézivin, J., Gerbé, O.: Towards a Precise Definition of the OMG/MDA Framework. In:
Proceedings of the 16th Annual International Conference on Automated Software Engi-
neering, San Diego, pp. 273-280 (2001)

8. Favre, J.M.: Towards a Basic Theory to Model Model Driven Engineering. In: Workshop
on Software Model Engineering, joint event with UML2004, Lisboa (2004)

9. Cauvet, C., Rosenthal-Saboux, C.: Ingénierie des systèmes d’information. Ed. Hermès in
french (2001)

10. Caplat, G., Sourouille, J.L.: Considerations about Model Mapping. In: Workshop in Soft-
ware Model Engineering, San Francisco (2003)

11. OMG: MDA Guide Version 1.0.1. Available at http://www.omg.org/cgi-
bin/doc?omg/03-06-01 (2003)

12. Bernus, P., Nemes, L., Schmidt, G.: Handbook on enterprise Architecture, International
Handbooks on Information Systems. Springer (2003)

13. Vallespir, B., Braesch, C., Chapurlat, V., Cretani, D.: L’intégration en modélisation
d’entreprise: les chemins d’UEML. In: Proceedings of the 4th International Conference on
Modeling, Optimization & SIMulation, pp. 140-145, Toulouse in french (2003)

14. Rachuri, S., Subrahmanian, E., Bouras, A., Fenves, S., Foufou, S., Sriram, R.: Information
sharing and exchange in the context of product lifecycle management: Role of standards.
Computer-Aided Design. 40(7), 789–800 (2008)

15. Bacha, R., Yannou, B.: New Approach for Building an Integrated Information System for
Manufacturing Engineering Departments. In: Proceedings of MIM2000: IFAC Symposium
on Manufacturing, Modeling, Management and Supervision, Patras (2000)

16. Le Duigou, J., Bernard, A., Perry, N.: Framework for Product Lifecycle Management inte-
gration in Small and Medium Enterprises Networks. Computer-Aided Design and Applica-
tions. 8, 531-544 (2011)

17. Gzara, L., Rieu, D., Tollenaere, M.: Product information systems engineering: an approach
for building product models by reuse of patterns. Robotics and Computer Integrated Manu-
facturing. 19, 239-261 (2003)

18. Terzi, S., Cassina, J., Panetto, H. : Development of a metamodel to foster interoperability
along the product lifecycle traceability. In: Proceedings of the 1st Conference on Interop-
erability of Enterprise Software and Applications (ESA 2005), Geneva (2005)

19. Zina, S., Lombard, M., Lossent, L., Henriot, C.: Generic Modeling and Configuration
Management in Product Lifecycle Management. International Journal of Computers,
Communications & Control. I, 126-138 (2006)

20. Noël, F., Roucoules, L.: The PPO design model with respect to digital enterprise technolo-
gies among product life cycle. International Journal of Computer Integrated Manufactur-
ing. 21, 139-145 (2008)

21. Labrousse, M., Bernard, A.: FBS-PPRE, an Enterprise Knowledge Lifecycle Model. In:
Bernard, A., Tichkiewitch, S.: Methods and tools for effective knowledge life-cycle-
Management. 2, pp. 285-305. Springer (2008)

22. Matsokis, A., Kiritsis, D.: An ontology-based approach for Product Lifecycle Manage-
ment. Computers in Industry. 61, 787-797 (2010)

23. Iraqi-Houssaini M., Kleiner, M., Roucoules, L.: Model-Based (Mechanical) Product De-
sign. In: Whittle, J., Clark, T., Kühne T. (eds.) Models 2011. LNCS, vol. 6981, pp. 548–
562. Springer,Verlag Berlin Heidelberg (2011)

24. Moalla, N., Chettaoui, H., Ouzrout, Y., Noël, F., Bouras, A.: Model-Driven Architecture to
enhance interoperability between product applications. Proceedings of the PLM-SP4, pp.
380-392 (2008)

