
THE EMERGENCE OF COHERENT WAVE GROUPS IN DEEP-WATER

RANDOM SEA

CLAUDIO VIOTTI, DENYS DUTYKH∗, JOHN M. DUDLEY, AND FRÉDÉRIC DIAS

Abstract. Extreme surface waves in deep-water long-crested sea are often interpreted

as a manifestation in real world of the so-called breathing solitons of the focusing nonlin-

ear Schrödinger equation. While the spontaneous emergence of such coherent structures

from nonlinear wave dynamics was demonstrated to take place in fiber optics systems, the

same point remains far more controversial in the hydrodynamic case. With the aim to shed

further light on this matter, the emergence of breather-like coherent wave groups in long-

crested random sea is here investigated by means of high-resolution spectral simulations of

the fully nonlinear two-dimensional Euler equations. The primary focus of our study is to

parametrize the structure of random wave fields with respect to the Benjamin–Feir index,

which is a nondimensional measure of the energy localization in Fourier space. This choice

is motivated by previous results, showing that extreme-wave activity in long-crested sea

is highly sensitive to such parameter, which is varied here by changing both the char-

acteristic spectral bandwidth and the average wave steepness. It is found that coherent

wave groups, closely matching realizations of Kuznetsov–Ma breathers in Euler dynam-

ics, develop within wave fields characterized by sufficiently narrow-banded spectra. The

characteristic spatial and temporal scales of wave group dynamics, and the correspond-

ing occurrence of extreme events, are quantified and discussed by mean of space-time

autocorrelations of the surface elevation envelope and extreme events statistics.
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1. Introduction

Surface waves of outstandingly high amplitude, often referred to as “rogue waves”, can
occur spontaneously in the ocean. Nowadays the existence of such extreme events is a well
documented fact [5, 21, 22], and there is widespread awareness that rogue waves represent
a concrete hazard for ships and marine structures [1]. At the same time, however, rogue
waves remain poorly understood phenomena despite the intense research efforts carried
by the scientific community, thereby representing an open and intriguing subject of study.
The term “rogue wave” is often used quite generically in referring to extreme waves caused
by different mechanisms and even pertaining to different physical natures. In the case of
oceanic surface waves, specific factors such as bottom bathymetry, currents or wind, can
trigger the formation of extreme events in different ways (see the review papers by Kharif

& Pelinovsky [16] and Dysthe et al. [8]). Moreover, analogous rogue wave phenomena
also belong to the realm of nonlinear optics [11, 17, 18]. In this study we shall focus
on extreme waves caused by the self-focussing mechanism of surface waves in deep water,
furthermore, we narrow our study to the case of two spatial dimensions (i.e., infinitely
long-crested waves).

Several reduced mathematical models have been developed for the study of deep-water
gravity waves. Among them, the nonlinear Schrödinger (NLS) equation is perhaps the
most successful in describing the two-dimensional energy self-focussing mechanism. Such
mechanism is the primary candidate for explaining the spontaneous formation of extreme
waves “out of nowhere”, and arises from the interplay between nonlinearity and disper-
sion. Several exact solutions are known for the NLS equation. In particular, the so-called
breathing solitons, or “breathers”, have for long been regarded as analytical models of
rogue waves [9, 13, 26]. We remark that such mathematical framework has proven effective
in the optics context: recently, Kibler et al. [18] have provided the first experimental
evidence that extreme fluctuations in fiber-optics systems are associated with formation
of NLS breathers, while Genty et al. [11] have shown that breathers interactions are
effective in describing the nonlinear processes leading to optical rogue waves.

In order to assess the realm of validity of breather dynamics in the context of deep water
free-surface waves, different authors have explored the survival of such structures under
Euler dynamics, both in numerical computations [13] and, more recently, in wave-tank
experiments [3, 2]. Altogether, such studies have shown that breathers are quite robust
even in the realm of fully nonlinear hydrodynamic waves, at least for relatively small wave
steepness and sufficiently short time scales. In the most part of previous investigations,
however, breathers were created within the background wave field by mean of properly de-
vised setups, and little is known about their likelihood to emerge spontaneously in random
sea states. Remarkably, this important aspect of the problem has been addressed only in a
few instances [24, 23, 30] and limited to the framework of the NLS equation. We also note
that, in order to shed light on the structures embedded in a random sea, it is necessary
to follow the evolution of wave groups over large spatial and temporal scales jointly. As
also other authors remark [27], this represents a challenging task for laboratory and field
investigations, whereby less information is available in regard to this particular aspect of
extreme-wave dynamics.
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In regard to the study of random sea states, several investigations have focused on
collecting statistics of extreme wave events. Also in this case results are available from
both laboratory experiments [25, 29] and numerical simulations [15, 33, 12, 28, 32, 36].
A central finding of such studies consists of the intensification of extreme wave activity
for high values of the Benjamin–Feir index (see § 2.1), i.e., when the power spectrum
of the surface elevation is sharply peaked around the fundamental wavenumber. Other
recent studies [34] suggest that mechanisms may exist in the ocean capable of leading
to narrow-banded spectra, therefore making this kind of regime of potential interest for
oceanic waves. Narrow-banded spectra correspond to slowly modulated wave fields in
physical space, in this condition modulational (or Benjamin–Feir, or side-band) instability
arises and develops until a nonlinear saturation is attained [33, 32]. As a result of such an
instability, the spectral band-width broadens, and the associated value of the Benjamin–
Feir index decreases below its critical value. This fact, together with observations of high
wave amplifications occurring during the disruption of uniform wave trains undergoing
Benjamin–Feir instability [6], underpins the idea that a connection exists between rogue
waves and Benjamin–Feir instability. Different authors [33, 37, 32] have suggested that
rogue waves are a result of such transient evolution.

If extreme waves are to be considered a consequence of breathing modes embedded in
a random background [25], then the increased probability of extreme waves for narrow-
banded spectra should reflect into a stronger presence of organized structures within the
wave field. This is the main point under investigation in this paper, which is organized
as follows. In §2 we describe the mathematical setup of our study, including governing
equations and initial conditions. In §3 we present and discuss our main numerical results,
we have organized this section into a first part, §3.1, which is focused on the description
of the physical structure of the wave field, and a second part, §3.2, which contains global
statistics related to extreme wave events, and §3.3, which addresses the effect of wave
steepness.

2. Governing equations and numerical simulations

We perform direct numerical simulations of the free-surface Euler equations in two spatial
coordinates (x, y) and time t. We employ periodic boundary conditions in the horizontal
(x) direction. By assuming irrotational flow, and neglecting surface tension effects, the free
surface η(x, t) and the velocity potential φ(x, y, t) are governed by the system

ηt = −φxηx + φy,

φt = −
1

2
(φx

2 + φy
2) − gη,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

at y = η(x, t)

∇2φ = 0, for −∞ < y < η(x, t)

(2.1)

where g is the gravity acceleration. (The fluid density is assumed here to be unitary without
loss of generality.) Under the deep water approximation the potential φ must satisfy the
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boundary condition

lim
y→−∞

∣∇φ∣ = 0.

The numerical scheme we employ for solving the system (2.1) is a high-order spectral
method introduced by Dyachenko et al. [7], which is based on the conformal transforma-
tion that maps the time-dependent flow domain into the lower-half complex plane. We do
not report here the equations resulting from the conformal mapping (these can be found,
e.g., in Choi & Camassa [4] or Milewski et al. [19]). In the following two sections we
describe in detail the initial conditions employed in this study. The values set for the main
numerical parameters are reported in § 3.

2.1. Random initial data

In this set of simulations we initialize the Fourier coefficients of η and φ as

η̂k = [2P0(k)]1/2eikϕk , φ̂k = ickη̂k,

with k = 2πn/L, n = 0,1, . . . N . The function P0(k) is the prescribed potential-energy power
spectrum and the ϕk’s are independent, uniformly distributed random phase taking values
in the interval [0,2π]. We link the potential at the free surface to the surface displacement

using the phase velocity, ck =
√
g/k, as for linear traveling waves. This choice determines

an overall propagation speed for the random wave field, and implies an initial equipartition
of the total energy of the wave field in potential and kinetic energy. Such equipartition
remains substantially preserved during the ensuing time evolution. We use the Gaussian
initial spectrum

P0(k) = P0√
2πσ0

exp [−1
2
(k − k0

σ0

)2] , (2.2)

which depends on the parameters P0, k0 and σ0, respectively the total (initial) potential
energy, peak wavenumber and spectral width.

Another important parameter characterizing the spectrum of the surface elevation at a
fixed time, P (k, t), is the Benjamin–Feir index, BFI(t). Following Janssen [15], we define
this parameter as

BFI =
√
2s
kw
σw

, (2.3)

with spectral width and characteristic wavenumber respectively given by

σw =
∫ +∞

0

(k − kw)2Pdk

∫ +∞

0

Pdk
, kw =

∫ +∞

0

kPdk

∫ +∞

0

Pdk
,

and wave steepness s = kwηrms, where

ηrms ≡ ⟨η2⟩1/2 = 2 ⟨∫ +∞

0

Pdk⟩1/2 .
The above definition holds for general spectral shapes, therefore it is suitable for time-
evolving spectra. Initially, we have clearly that kw ≃ k0, which essentially remains true for
all times, and σw ≃ σ0, which on the contrary does not hold during time evolution. Note
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that when the spatial spectrum is considered, as opposed to the temporal spectrum P (ω)
(more suitable for experimental measurements), the corresponding value of BFI converts
to roughly one half of its temporal counterpart. This simply follows from the fact that

dk/dω ≃ 2/√k0
g
for k close to k0, according to the linear dispersion relation ω =

√
gk.

Since BFI is time-dependent, we distinguish between two ways of defining its character-
istic value. We consider the initial value

BFI0 = BFI(0),
and the time-average value

⟨BFI⟩ = lim
T→+∞

1

T ∫
T

0

BFI(t)dt.
When BFI0 is above a critical value (about 0.5) the two above definitions differ significantly,
as a result of Benjamin–Feir instability.

3. Results

We set the parameters of the initial spectrum (2.2) in such a way to span a range of
values of BFI0, while keeping the wave steepness s constant. We employ a domain size, L,
much larger that the typical wave length λ0 = 2π/k0, but also larger than the scale of the
initial modulation, which is significantly larger than λ0 for small values of σ0. Namely, we
set L = 124π up to L = 512π for the highest values of BFI0 considered. The effective number
of Fourier modes we use is N = 214 up to N = 216 after dealiasing, which corresponds to a
maximum wave number equal to 256k0. This resolution was always sufficient to represent
the power spectrum up to decay below machine precision. Hereinafter, spatial and temporal
units shall be normalized on k0 and

√
gk0 respectively.

The largest domain considered here, L = 512π, contains about 128 waves (in a crest-to-
crest count), while the largest wave tanks employed in recent experimental studies [25, 28]
allow to accommodate about 60 waves (for the wavelength employed). In the typical
experimental setup, however, waves are generated on one side of the tank by a wave-
maker, so that the effective spatial extension corresponding to a time signal recorded
at a fixed location in space is given by Le = cgTe, where Te is the entire duration of the
experiment. The length scale Le is the proper analogue of the domain size in our numerical
simulations. On the other hand, the effective time scale observed in experiments, in terms
of the observable evolution of individual wave groups, is set by the time a wave group takes
to propagate from the wave-maker to the opposite end of the tank. This time scale is the
analogue of our final simulation time T . The experiments by Onorato et al. [25], and
similarly those by Shemer et al. [28], are effectively equivalent to a numerical simulation
with L ≈ 2300 and T ≈ 550, hence they contain a larger spatial sample but a much smaller
amount of time evolution.

To begin with, we can observe the qualitative features of the time evolution of the wave
field from random initial data in the visualizations reported in Figure 1 (left panels). In
these pictures we report the wave envelope evolution for different values of BFI0. The wave
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envelope, denoted as ξ(x, t), is defined by [14]

ξ =
√
η2 + η̃2,

where η̃ is the Hilbert transform of η:

η̃(x, t) = ∫ ∞

−∞

η(x′, t)
x − x′

dx′.

The envelope is a natural mean to identify wave groups within a general two-dimensional

wave field [14], indeed in the frame of reference traveling at the group velocity, cg = 1

2

√
g/k0

a first visual inspection (Figure 1) may not reveal any overall propagation direction of wave
groups. The sequence of visualizations reported in Figure 1 shows the strong dependence
of the physical scales on the initial spectral distribution. In particular, large amplitude
events appear progressively more organized in long-lived coherent structures as BFI0 in-
creases. The fully developed coherent structures (shown also later, more prominently, in
Figure 3) closely resemble analogous visualizations by Genty et al. [11] of simulated
breather dynamics in a class of generalized NLS equations. Note that very large events
(ξ ≳ 4ηrms, say) are present in all four cases reported in Figure 1, even though this detail is
perhaps harder to appreciate in the uppermost panel (a). The trend described can be in-
terpreted qualitatively within the framework of the NLS equation. Indeed, upon rescaling
variables in the dimensional NLS equation as

A′(x′, t′) = sk0A(x
ℓ
,
t

τ
) ,

where A is the customary dependent variable (the complex envelope), ℓ is the characteris-
tic spatial scale of the initial data, and τ ≡ (k0ℓ)2/ω0, one obtains a non dimensional NLS
equation in which the Benjamin–Feir index, given by sk0ℓ, appears as the coefficient of
the nonlinear term (the other coefficients being constants). This motivates the generally
adopted interpretation of such parameter as a measure of the relative strength of nonlinear-
ity versus linear dispersion, the second appearing to be responsible for depleting coherent
structures.

3.1. Autocorrelations

In order to quantify the characteristic spatial and temporal scales of wave groups we
employ the envelope space-time autocorrelation function:

Cxt(∆x,∆t) ≡ ⟨ξ̃(X, t)ξ̃(X +∆x, t +∆t)⟩⟨ξ̃2⟩ , (3.1)

where ξ̃ ≡ ξ − ⟨ξ⟩. According to the customary definition of autocorrelation functions, Cxt

is here normalized on the variance ⟨ξ̃2⟩, whereby Cxt(0,0) = 1. Also in this case we work
in the traveling frame of reference X = x − cgt. Autocorrelation functions are used as a
mean to extract the dominant scales and morphological features of random fields. We
also mention the use of two-point two-time statistics in the study of random sea based on
statistical models [10]. The statistical averaging understood in the above definition includes
spatial, temporal and ensemble (i.e., over several independent realizations of the same run)
averaging. It should be noted that time averaging relies on the verified assumption that
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Figure 1. Time evolution of the wave envelope, ξ, from Euler numerical simula-
tions (left panels) and corresponding space-time autocorrelation func-

tions, Cxt, (right panels) for increasing values of BFI. Values of the
BFI are: (a-b) 0.123, (c-d) 0.216, (e-f) 0.348, (g-h) 0.500. All four
cases share the same wave steepness, s = 0.04. Spatial and temporal

units are normalized using k0 and
√
gk0 respectively.
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Figure 2. Spatial (a) and temporal (b) autocorrelation scales versus BFI0
from Euler numerical simulations. Dashed lines reference power-law
trends.

a statistically steady state is effectively attained over the time scales considered after a
faster initial transient.

The autocorrelation functions computed are reported in Figure 1 (right column) next
to the corresponding field visualizations, in order to show how the emergence of coherent
patterns in (x, t) space reflects in the development of long-range autocorrelations. Note
how, beside the evident change of the scale of Cxt, more subtle details exhibit variation
across the different cases. In particular, the autocorrelation functions are not symmetric
with respect to ∆x, but show a preferential direction which is tilted with respect to the
vertical axis in the (∆x,∆t) space. This fact denotes a non-zero mean drift velocity of the
wave groups in addition to the linear group velocity, which is an nonlinear effect (cf. §3.3).
It is interesting to observe how such an orientation inverts from the first to the last case.
In the last case (panels (g) and (h)) the mean drift velocity is smaller than cg (roughly
by one order of magnitude), yet clearly visible in the autocorrelation function. Note that
leftward orientation in the (∆x,∆t) plane translates into rightward-oriented structures in
the (x, t) plane.

Characteristic scales can be defined using the correlation function in a number of ways.

Here we define the length scale, ℓ
(p)
ξ , and the life-time scale, τ

(p)
ξ , as

ℓ
(p)
ξ =∆x

(p)
+ −∆x

(p)
− , τ

(p)
ξ = A(p)/ℓξ, (0 < p < 1)

where ∆x
(p)
± denotes either the positive or negative intersections between the Cxt = p level

set and the horizontal (∆t = 0) axis (i.e., Cxt(∆x
(p)
± ,0) = 0), while A(p) is the area in the

∆x - ∆t plane enclosed within the same level set Cxt = p.
The dilation of space-time correlation scales with respect to BFI0 is summarized in

Figure 2. Different values of the parameter p are considered, in order to verify that the
overall trend is not strongly affected by this specific choice. The results show that the
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Figure 3. Coherent structures emerging in the time evolution of the wave enve-
lope, ξ, from Euler numerical simulations at moderate (a) and high

(b) value of the Benjamin–Feir index (BFI0 = 0.216 and BFI0 = 1.333,
respectively). Spatial and temporal units are normalized using k0 and√
gk0 respectively.

growth of the spatial correlation length is milder that the corresponding growth of time

correlation scale. In particular, ℓ
(p)
ξ follows a growth trend that is slower than linear, while

τ
(p)
ξ grows at a rate closer to a quadratic power law. Note that the spatial time scale
settles on a constant value once BFI0 ≈ 1, whereas the temporal correlation scale continues
to increase within the whole range considered. This fact is consistent with the observation
that further increments of the BFI, beyond a critical value, result in a stronger ordering of
the distribution of coherent structures, as can be appreciated from Figure 3. We further
stress that the observed variation of correlation scales does not follow from any simple
scaling analysis that can be derived in the framework of the NLS equation.

For the purpose to illustrate the similarity between the coherent structures shown in
Figure 3 we next show a numerical simulation initialized using a time-periodic Kuznetsov–
Ma breather solutions of the NLS equation. In terms of the complex envelope, A, which
modulates a monochromatic carrier wave of wavenumber k0, such solution in dimensional
form reads as

A(x′, t′) = a0 cos(Ωt′ − 2iϕ) − coshϕ cosh px′

cosΩt′ − coshϕ cosh px′
e2it

′

, (3.2)

where
x′ =
√
2a0k2

0
x, t′ = −1

4
ω0k

2

0
a2
0
t,

Ω = 2 sinh 2ϕ, ω0 =
√
gk0,

and 0 < ϕ < +∞ is a non dimensional parameter. In the limit ϕ → 0 the Kuznetsov–Ma
breather approaches the so-called Peregrine soliton [13, 17], i.e., a single-pulse event in
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Figure 4. Time evolution of the wave envelope, ξ, from Euler numerical simula-
tions for Kuznetsov–Ma breather initial condition. The period of the
breather is 2π/Ω = 1200. Spatial and temporal units are normalized

using k0 and
√
gk0 respectively.

both space and time. In order to implement the above formula as an initial condition
for the Euler simulations the surface displacement and the potential at the surface are
reconstructed as

η0 = A(x′,0)eik0x + c.c., φ0 = −i
ω0

k0
A(x′,0)eik0x + c.c.

While formula (3.2) is not an exact solution for the Euler equations, the breather structure
is able to survive over a long time scale, as shown in Figure 4. The comparison between
Figures 3 and 4, observing amplitude and typical scales, shows how NSL breathers can
effectively be thought of as analytical models for the coherent structures that emerge
spontaneously from random initial data.

3.2. Extreme-event statistics

We present here further results aimed to illustrate how extreme-event statistics modify
along with the change of structure of the wave field discussed in the previous section.
Figure 5 contains the probability density functions (PDFs) of the wave envelope ξ for
different values of BFI0. Consistently with previous results [25], we find that PDFs develop
heavy tails as the value of BFI increases. As shown in the same picture, in the cases with
the largest BFI values such tails are significantly underpredicted by the canonical first-
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Figure 5. PDFs of the wave envelope, ξ, corresponding to the four cases re-

ported in figure 1. Euler numerical simulations (symbols), Tayfun
distribution (dashed lines) and Rayleigh distribution (dotted lines).

and second-order statistical models given by the Rayleigh and Tayfun [35] distributions
respectively.

In Figure 6 we report the kurtosis, κ, of the surface elevation as a function of the
Benjamin–Feir index. We recall that the customary definition of such a quantity is

κ ≡
⟨η4⟩⟨η2⟩2 − 3.

The two displayed data sets represent the same values of κ plotted as a function of the
initial and time-averaged values of BFI respectively. The plot shows that both κ and ⟨BFI⟩
reach a limit with respect to BFI0. Even for subcritical initial conditions, the instantaneous
value of BFI decreases during the initial stage of time evolution. The analytic prediction
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Figure 6. (a) Steady-state value of the Benjamin–Feir index, ⟨BFI⟩, versus the

initial value, BFI0, from numerical simulations. (b) Kurtosis of the
surface elevation versus the BFI. The values of κ computed from
numerical simulations are plotted both as a function of the initial (◇)
and long-time average (○) value of the BFI, respectively denoted by
BFI0 and ⟨BFI⟩. The analytical prediction by Mori & Janssen [20] is
also reported (dashed line).

obtained by Mori & Janssen [20] is also included in the picture. (The factor in Mori

& Janssen formula has been adjusted to account for the fact that we are considering the
spatial, as opposed to temporal, spectrum.) Such a prediction is based on the assumption
that the power spectrum is Gaussian and narrow-banded, and that the Fourier coefficients
are uncorrelated in phase. Even though the assumption of a narrow-banded spectrum is
clearly not legitimate at the lowest value of BFI0, where some discrepancy is therefore to
be expected, we find reasonable agreement between the analytical formula and the results
of numerical computations at moderate values of BFI. On the other hand, the analytical
estimate fails to capture the final steep growth of κ in the regime corresponding to very
narrow-banded spectra. Such a result appears then to be a consequence of the independent-
phase assumption, which is expected to be unrealistic in those regimes characterized by a
strong concentration of coherent structures as shown by previous studies [31, 32].

3.3. Effect of wave steepness

All results presented so far are obtained for the constant value of average wave steepness
s = 0.04. Understanding the effect of wave steepness is clearly a goal of primary importance,
especially from the perspective of reproducing realistic oceanic conditions. Numerical sim-
ulations based on the potential flow formulation, however, are limited by the increasingly
frequent occurrence of wave breaking and sharp-crested wave profiles occurring in very
steep wave fields. In this section we attempt to assess the effect of s on the main statistical
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Figure 7. As figure 1, for the following parameters: (a-b) s = 0.03, BFI = 0.375;
(c-d) s = 0.05, BFI = 0.625. Dashed red curves in panels (b) and (d)
connect the local maxima of Cxt along ∆x for different values of ∆t.

quantities within the intrinsic limitations of the present mathematical formulation of the
wave problem.

The value s = 0.04 was found to be the highest steepness allowing to span the entire range
of interest of BFI values while retaining satisfactory numerical accuracy. As it was shown
in the previous sections, high values of the Benjamin–Feir index enhance the occurrence of
highly steep waves, i.e., the effective degree of nonlinearity present in the flow. For those
cases characterized by the highest values of such parameter, any further increase of s was
seen to give rise to a critical deterioration of the numerical accuracy. The simulation of
steeper wave fields was found to be feasible only for moderate values of BFI0 and up to
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Figure 8. Spatial (a) and temporal (b) autocorrelation scales versus s from Euler

numerical simulations.
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Figure 9. (a) Steady-state value of the Benjamin–Feir index, ⟨BFI⟩, versus the
initial value, BFI0, for s = 0.03,0.04,0.05 and constant initial spectral

bandwidth σw = 0.113. (b) Kurtosis of the surface elevation versus
s, for the same numerical simulations. Repeated data for the same
values of s correspond to different numerical simulations, of which red

(×) symbols identify the mean value.

s = 0.05. In order to better assess the dependence of wave statistics with respect to s, we
consider also a case of a lower steepness s = 0.03.

Typical wave field realizations for the above values of s are reported in Figure 7. Beside
the expected difference in the characteristic wave amplitude (note the different scales on
the colorbars) we note two additional effects, which are also detected by the autocorrelation
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functions reported in the same figure. First, the steepness is seen to reduce the typical time
scale of the structures present in the field, as predicted by a scaling analysis of the NLS
equation. Since BFI0 increases with s, this result represents an inverse trend with respect
to the results of the previous section, hence showing an aspect of the flow not correlated
to the Benjamin–Feir index per se. Second, the mean drift speed of wave groups, already
commented on in §3.1, appears to be enhanced for stronger nonlinearity. This is clearly
visible in the field snapshots and detected by the corresponding autocorrelation function,
which is visibly tilted in panel (d). The dashed curves connecting the maxima of Cxt

along ∆x for different values of ∆t, superimposed on the same plots, help to identify a
characteristic slope. The reduction of the correlation length and time scales for increasing
values of s, extracted from the same set of numerical runs considered in this section is
summarized in figure 8.

Global statistics, analogue to those reported in Figure 6, are reported in Figure 9 for
different values of s and constant spectral bandwidth σw. The steady-state value of the
Benjamin–Feir index, BFI0, is seen to settle on a subcritical value (≈ 0.4) which is only
marginally affected by the value of s. In this regard, varying the value of BFI0 by changing
either s or σw does not seem to introduce any consistent difference. (Note that the run
with s = 0.03 corresponds to a subcritical Benjamin–Feir index.)

On the other hand, the effect of s on the kurtosis of the surface elevation, κ, reported in
Figure 9 appears to be stronger. Each value of κ is computed from datasets resulting from
individual numerical runs (characterized by L = 256π and T = 8000). This illustrates how
the statistical convergence deteriorates for larger steepness, as shown by the much more
scattered data distribution obtained for s = 0.05. Despite the difficult convergence of this
statistics, the trend represented by the averaged data (× symbols) suggests a consistent
increase of κ in going from s = 0.04 to s = 0.05. In regard to the frequency of extreme
events, BFI seems to represent a quite robust indicator.

4. Conclusions

We have presented numerical simulations of the free-surface Euler equations in deep
water, with the aim to provide a joint space-time description of the coherent structures
that develop in the wave field, in a setup that compares to previous experimental studies
[25, 28, 3, 2]. The main parameter considered in this study is the Benjamin–Feir index.
We have varied such parameter by changing the spectral bandwidth while keeping the
steepness constant and vice versa, even though in the latter case we have encountered
more severe limitations.

The main question addressed in this study is whether the above structures can emerge
spontaneously in random sea states; it is important to clarify this point before assuming
confidently that coherent wave group dynamics (i.e. breathers, in the framework of the
NLS equation) is the major cause of the extreme waves that occur more frequently for high
values of the Benjamin–Feir index [9, 25].

We observe from our numerical runs that long-lived coherent wave groups develop pro-
gressively by increasing BFI0. For a sufficiently high BFI0, coherent structures become
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the dominant feature of the wave field. In terms of surface elevation, the maximum ampli-
tude and the physical scales of such structures are consistent with those of Kuznetsov–Ma
breathers. We also find sparse yet well-defined breather-like structures for moderate values
of BFI0 (≈ 0.2), see Figure 3. At a closer look, however, the coherent structures found in
this case appear to be contained in the initial condition itself, and not to be the result of a
self-generating process. It is interesting to note, nonetheless, that even low-BFI wave fields
can support—even though they probably cannot generate—coherent long-lived structures.

The development of the coherent wave groups visualized in figure 1 is reflected by the
space-time correlation functions, which provide a quantitative measure of the associated
spatial and temporal scales. For constant steepness, different growth trends with respect to
BFI have been observed for the space and time scales respectively. Namely, the spatial scale
was seen to dilate much slower than the temporal scale. Both quantities do not follow any
simple scaling trend. When s is increased, on the other hand, the trend reverses, showing
that stronger nonlinearity reduces both spatial and time scales.

For those cases characterized by a supercritical BFI0, the structure of the wave field
persists after BFI(t) has settled on a subcritical value. This observation stands at odds
with the idea that rogue waves are a transitional feature of the wave field associated with
developing Benjamin–Feir instability. This particular aspect was mostly hinted by experi-
mental data, but it is better clarified by numerical simulations, as the effective time span
observable in laboratory experiments is limited by the length of the wave tank. Tran-
sient effects are hardly removed, as pointed out by Slunyaev & Sergeeva [32], even in
state-of-the-art facilities (cf. § 3).
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