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THE EMERGENCE OF COHERENT WAVE GROUPS IN DEEP-WATER

RANDOM SEA

CLAUDIO VIOTTI, DENYS DUTYKH∗, JOHN M. DUDLEY, AND FRÉDÉRIC DIAS

Abstract. Extreme surface waves in deep-water long-crested sea are often interpreted

as a manifestation in real world of the so-called breathing solitons of the focusing nonlin-

ear Schrödinger equation. While the spontaneous emergence of such coherent structures

from nonlinear wave dynamics was demonstrated to take place in fiber optics systems,

the same point remains far more controversial in the hydrodynamic case. With the aim

to shed further light on this matter, the emergence of breather-like coherent wave groups

in long-crested random sea is here investigated by means of high-resolution spectral sim-

ulations of the fully nonlinear two-dimensional Euler equations. Our study is focused

on parametrizing the structure of random wave fields with respect to the Benjamin–Feir

index, which is a nondimensional measure of the energy localization in Fourier space.

This choice is motivated by previous results, showing that extreme-wave activity in long-

crested sea is highly sensitive to this parameter. It is found that coherent wave groups do

develop within wave fields characterized by sufficiently narrow-banded spectra, and that

such coherent structures closely match realizations of Kuznetsov–Ma breathes in Euler

dynamics. The characteristic spatial and temporal scales of wave group dynamics, and

the corresponding occurrence of extreme events, are quantified and discussed by mean of

space-time autocorrelations of the surface elevation envelope and extreme events statistics.
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1. Introduction

Surface waves of outstandingly high amplitude, often referred to as “rogue waves”, can
occur spontaneously in the ocean. Nowadays the existence of such extreme events is a well
documented fact [5, 19, 20], and there is widespread awareness that rogue waves represent
a concrete hazard for ships and marine structures [1]. At the same time, however, rogue
waves remain poorly understood phenomena despite the intense research efforts carried
by the scientific community, thereby representing an open and intriguing subject of study.
The term “rogue wave” is often used quite generically in referring to extreme waves caused
by different mechanisms and even pertaining to different physical natures. In the case of
oceanic surface waves, specific factors such as bottom bathymetry, currents or wind, can
trigger the formation of extreme events in different ways (see the review papers by Kharif

& Pelinovsky [15] and Dysthe et al. [8]). But analogue rogue wave phenomena also
belong to the realm of nonlinear optics [10, 16]. In this study we shall focus on extreme
waves caused by the self-focussing mechanism of surface waves in deep water, furthermore,
we narrow our study to the case of two spatial dimensions (i.e., infinitely long-crested
waves).

Several reduced mathematical models have been developed for the study of deep-water
gravity waves. Among them, the nonlinear Schrödinger (NLS) equation is perhaps the
most successful in describing the two-dimensional energy self-focussing mechanism. Such
mechanism is the primary candidate for explaining the spontaneous formation of extreme
waves “out of nowhere”, and arises from the interplay between nonlinearity and disper-
sion. Several exact solutions are known for the NLS equation. In particular, the so-called
breathing solitons, or “breathers”, have for long been regarded as analytical models of
rogue waves [9, 12, 23]. We remark that such mathematical framework has proven effective
in the optics context: recently, Kibler et al. [16] have provided the first experimental
evidence that extreme fluctuations in fiber-optics systems are associated with formation
of NLS breathers, while Genty et al. [10] have shown that breathers interactions are
effective in describing the nonlinear processes leading to optical rogue waves.

In order to assess the realm of validity of breather dynamics in the context of deep water
free-surface waves, different authors have explored the survival of such structures under
Euler dynamics, both in numerical computations [12] and, more recently, in wave-tank
experiments [3, 2]. Altogether, such studies have shown that breathers are quite robust
even in the realm of fully nonlinear hydrodynamic waves, at least for relatively small wave
steepness and sufficiently short time scales. In the most part of previous investigations,
however, breathers were created within the background wave field by mean of properly de-
vised setups, and little is known about their likelihood to emerge spontaneously in random
sea states. Remarkably, this important aspect of the problem has been addressed only in a
few instances [21, 27] and limited to the framework of the NLS equation. We further note
that in order to shed light on the existence of breather-like coherent structures in random
sea it is necessary to follow the evolution of wave groups for long time. As also other au-
thors remark [24], this represents a challenging task for laboratory and field investigations,
whereby less information is available in regard to this particular aspect of extreme-wave
dynamics.
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In regard to the study of random sea states, several investigations have focused on
collecting statistics of extreme wave events. Also in this case results are available from
both laboratory experiments [22, 26] and numerical simulations [14, 30, 11, 25, 29, 33].
A central finding of such studies consists of the intensification of extreme wave activity
for high values of the Benjamin–Feir index (see § 2.1), i.e., when the power spectrum
of the surface elevation is sharply peaked around the fundamental wavenumber. Other
recent studies [31] suggest that mechanisms may exist in the ocean capable of leading
to narrow-banded spectra, therefore making this kind of regime of potential interest for
oceanic waves. Narrow-banded spectra correspond to slowly modulated wave fields in
physical space, in this condition modulational (or Benjamin–Feir, or side-band) instability
arises and develops until a nonlinear saturation is attained [30, 29]. As a result of such an
instability, the spectral band-width broadens, and the associated value of the Benjamin–
Feir index decreases below its critical value. This fact, together with observations of high
wave amplifications occurring during the disruption of uniform wave trains undergoing
Benjamin–Feir instability [6], underpins the idea that a connection exists between rogue
waves and Benjamin–Feir instability. Different authors [30, 34, 29] have suggested that
rogue waves are a result of such transient evolution.

If extreme waves are the result of breathing modes [22] forming within the wave field,
then the increased probability of extreme waves for narrow-banded spectra should reflect
into a stronger organization of the wave field in coherent structures. This is the main
point under investigation in this paper, which is organized as follows. In §2 we describe
the mathematical setup of our study, including governing equations and initial conditions.
In §3 we present and discuss our main numerical results, we have organized this section
into a first part, §3.1, which is focused on the description of the physical structure of the
wave field, and a second part, §3.2, which contains global statistics related to extreme wave
events.

2. Governing equations and numerical simulations

We perform direct numerical simulations of the free-surface Euler equations in two spatial
coordinates (x, y) and time t. We employ periodic boundary conditions in the horizontal
(x) direction. By assuming irrotational flow, and neglecting surface tension effects, the free
surface η(x, t) and the velocity potential φ(x, y, t) are governed by the system

ηt = −φxηx + φy,

φt = −
1

2
(φx

2 + φy
2) − gη,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

at y = η(x, t)

∇2φ = 0, for −∞ < y < η(x, t)

(2.1)

where g is the gravity acceleration. (The fluid density is assumed here to be unitary without
loss of generality.) Under the deep water approximation the potential φ must satisfy the
boundary condition

lim
y→−∞

∣∇φ∣ = 0.
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The numerical scheme we employ for solving the system (2.1) is a high-order spectral
method introduced by Dyachenko et al. [7], which is based on the conformal transforma-
tion that maps the time-dependent flow domain into the lower-half complex plane. We do
not report here the equations resulting from the conformal mapping (these can be found,
e.g., in Choi & Camassa [4] or Milewski et al. [17]). In the following two sections we
describe in detail the initial conditions employed in this study. The values set for the main
numerical parameters are reported in § 3.

2.1. Random initial data

In this set of simulations we initialize the Fourier coefficients of η and φ as

η̂k = [2P0(k)]1/2eikϕk , φ̂k = ickη̂k,

with k = 2πn/L, n = 0,1, . . . N . The function P0(k) is the prescribed potential-energy power
spectrum and the ϕk’s are independent, uniformly distributed random phase taking values
in the interval [0,2π]. We link the potential at the free surface to the surface displacement

using the phase velocity, ck =
√
g/k, as for linear traveling waves. This choice determines

an overall propagation speed for the random wave field, and implies an initial equipartition
of the total energy of the wave field in potential and kinetic energy. Such equipartition
remains substantially preserved during the ensuing time evolution. We use the Gaussian
initial spectrum

P0(k) = P0√
2πσ0

exp [−1
2
(k − k0

σ0

)2] , (2.2)

which depends on the parameters P0, k0 and σ0, respectively the total (initial) potential
energy, peak wavenumber and spectral width.

Another important parameter characterizing the spectrum of the surface elevation at a
fixed time, P (k, t), is the Benjamin–Feir index, BFI(t). Following Janssen [14], we define
this parameter as

BFI =
√
2s
kw
σw

, (2.3)

with spectral width and characteristic wavenumber respectively given by

σw =
∫ +∞

0

(k − kw)2Pdk

∫ +∞

0

Pdk
, kw =

∫ +∞

0

kPdk

∫ +∞

0

Pdk
,

and wave steepness s = kwηrms, where

ηrms ≡ ⟨η2⟩1/2 = 2 ⟨∫ +∞

0

Pdk⟩1/2 .
The above definition holds for general spectral shapes, therefore it is suitable for time-
evolving spectra. Initially, we have clearly that kw ≃ k0, which essentially remains true for
all times, and σw ≃ σ0, which on the contrary is broken during the time evolution of the
spectral band. Note that when the spatial spectrum is considered, as opposed to the tem-
poral spectrum P (ω) (more suitable for experimental measurements), the corresponding
value of BFI converts to roughly one half of its temporal counterpart. This simply follows
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from the fact that dk/dω ≃ 2/√gk0 for k close to k0, according to the linear dispersion
relation ω =

√
gk.

Since BFI is time-dependent, we distinguish between two ways of defining its character-
istic value. We consider the initial value

BFI0 = BFI(0),
and the time-average value

⟨BFI⟩ = lim
T→+∞

1

T ∫
T

0

BFI(t)dt.
When BFI0 is above a critical value (about 0.5) the two above definitions differ significantly,
as a result of Benjamin–Feir instability.

2.2. Breather initial data

The second type of simulation that we present is initialized using the breather type
solutions of the NLS equation. In particular, we consider the family of Kuznetsov–Ma
time-periodic solutions, which in terms of surface displacement envelope reads

A(x′, t′) = a0 cos(Ωt′ − 2iϕ) − coshϕ cosh px′

cosΩt′ − coshϕ cosh px′
e2it

′

, (2.4)

where

x′ =
√
2a0k

2

0
x, t′ = −1

4
ω0k

2

0
a2
0
t, Ω = 2 sinh 2ϕ.

Furthermore, k0 and ω0 =
√
gk0 are the wavenumber and frequency of the carrier wave,

and 0 < ϕ < +∞ is a non dimensional parameter. In the limit ϕ→ 0 the time period, 2π/Ω,
diverges to infinity, and the Kuznetsov–Ma breather approaches the so-called Peregrine
soliton [12], i.e., a single-pulse event in both space and time. In the above formula arbitrary
dimensional units are understood.

In order to implement the above formula as an initial condition for the Euler simulations
the surface displacement and the potential at the surface are reconstructed as

η0 = A(x′,0)eik0x + c.c., φ0 = −i
ω0

k0
A(x′,0)eik0x + c.c.

While formula (2.4) is not an exact solution for the Euler equations, the breather structure
is able to survive for long time (see Figure 6).

3. Results

We set the parameters of the initial spectrum (2.2) in such a way to span a range of
values of BFI0, while keeping the wave steepness s constant. We employ a domain size, L,
much larger that the typical wave length λ0 = 2π/k0, but also larger than the scale of the
initial modulation, which is significantly larger than λ0 for small values of σ0. Namely, we
set L = 124π up to L = 512π for the highest values of BFI0 considered. The effective number
of Fourier modes we use is N = 214 up to N = 216 after dealiasing, which corresponds to a
maximum wave numbers equal to 256k0. This resolution was always sufficient to represent
the power spectrum up to decay below machine precision.
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Our largest domain, L = 512π, contains about 128 waves (in a crest-to-crest count),
while the largest wave tanks employed in recent experimental studies [22, 26] allow to
accommodate about 60 waves (for the wavelength employed). In the typical experimental
setup, however, waves are generated on one side of the tank by a wave-maker, so that the
effective spatial extension corresponding to a time signal recorded at a fixed location in
space is given by Le = cgTe, where Te is the entire duration of the experiment. The length
scale Le is the proper analogue of the domain size in our numerical simulations. On the
other hand, the effective time scale observed in experiments, in terms of the observable
evolution of individual wave groups, is set by the time a wave group takes to propagate
from the wave-maker to the opposite end of the tank. This time scale is the analogue of
our final simulation time T . The experiments by Onorato et al. [22], and similarly those
by Shemer et al. [26], are effectively equivalent to a numerical simulation with L ≈ 2300
and T ≈ 550, hence they contain a larger spatial sample but a much smaller amount of
time evolution.

To begin with, we can observe the qualitative features of the time evolution of the wave
field from random initial data in the visualizations reported in Figures 1, 2 (left panels).
In these pictures we report the wave envelope evolution for different values of BFI0. The
wave envelope, denoted as ξ(x, t), is defined by [13]

ξ =
√
η2 + η̃2,

where η̃ is the Hilbert transform of η:

η̃(x, t) = ∫ ∞

−∞

η(x′, t)
x − x′

dx′.

The envelope is a natural mean to identify wave groups within a general two-dimensional

wave field [13], indeed in the frame of reference traveling at the group velocity, cg = 1

2

√
g/k0

a first visual inspection (Figures 1, 2) may not reveal any overall propagation direction
of wave groups. The sequence of visualizations reported in Figures 1, 2 shows the strong
dependence of the physical scales on the initial spectral distribution. In particular, large
amplitude events appear progressively more organized in long-lived coherent structures as
BFI0 increases. The fully developed coherent structures (shown also later, more promi-
nently, in Figure 7) closely resemble analogous visualizations by Genty et al. [10] of sim-
ulated breather dynamics in a class of generalized NLS equations. Note that very large
events (ξ ≳ 4ηrms, say) are present in all four cases reported in Figures 1, 2, even though
this detail is perhaps harder to appreciate in the uppermost panel (a). The trend described
can be interpreted qualitatively within the framework of the NLS equation. Indeed, upon
rescaling variables in the dimensional NLS equation as

A′(x′, t′) = sk0A(x
ℓ
,
t

τ
) ,

where A is the customary dependent variable (the complex envelope), ℓ is the characteris-
tic spatial scale of the initial data, and τ ≡ (k0ℓ)2/ω0, one obtains a non dimensional NLS
equation in which the Benjamin–Feir index, given by sk0ℓ, appears as the coefficient of
the nonlinear term (the other coefficients being constants). This motivates the generally
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adopted interpretation of such parameter as a measure of the relative strength of nonlin-
earity versus linear dispersion. The second effect appears to be responsible for depleting
coherent structures.

3.1. Autocorrelations

In order to quantify the characteristic spatial and temporal scales of wave groups we
employ the envelope autocorrelation function:

Cxt(∆x,∆t) ≡ ⟨ξ̃(X, t)ξ̃(X +∆x, t +∆t)⟩
⟨ξ̃2⟩ , (3.1)

where ξ̃ ≡ ξ−⟨ξ⟩. According to the customary definition of autocorrelation functions, Cxt is

here normalized on the variance ⟨ξ̃2⟩, whereby Cxt(0,0) = 1. Also in this case we work in the
traveling frame of reference X = x − cgt. Autocorrelation functions are commonly used in
many fields, e.g., turbulence, as a mean to extract the dominant scales in a random process.
The statistical averaging understood in the above definition includes spatial, temporal and
ensemble (i.e., over several independent realizations of the same run) averaging. It should
be noted that time averaging relies on the verification that a statistically steady state is
effectively attained, at least over the time scale considered, after a short initial transient.

The autocorrelation functions computed are reported in Figures 1, 2 (right column) next
to the corresponding field visualizations, in order to show how the emergence of coherent
patterns in (x, t) space reflects in the development of long-range autocorrelations. Note
how, beside the evident change of the scale of Cxt, more subtle details exhibit variation
across the different cases. In particular, the autocorrelation functions are not symmetric
with respect to ∆x, but show a preferential direction which is tilted with respect to the
vertical axis in the (∆x,∆t) space. This fact denotes a non-zero mean drift velocity of the
wave groups which adds onto the linear group velocity, which is an effect of nonlinearity.
It is interesting to observe how such an orientation inverts from the first to the last case.
In the last case (panels (g) and (h)) the mean drift velocity is smaller than cg (roughly
by one order of magnitude), yet clearly visible in the autocorrelation function. Note that
leftward orientation in the (∆x,∆t) plane translates into rightward-oriented structures in
the (x, t) plane.

Characteristic scales can be defined using the correlation function in a number of ways.

Here we define the length scale, ℓ
(p)
ξ , and the life-time scale, τ

(p)
ξ , as

ℓ
(p)
ξ =∆x+p −∆x−p , τ

(p)
ξ = A(p)/ℓξ, (0 < p < 1)

where ∆x
(p)
± denotes either the positive or negative intersections between the Cxt = p level

set and the horizontal (∆t = 0) axis (i.e., Cxt(∆x
(p)
± ,0) = 0), while A(p) is the area in the

∆x - ∆t plane enclosed within the same level set Cxt = p.
The dilation of space-time correlation scales with respect to BFI0 value is summarized

in Figure 3. Different values of the parameter p are considered, in order to verify that
the overall trend is not strongly affected by this specific choice. The results show that the
growth of the spatial correlation length is milder that the corresponding growth of time

correlation scale. In particular, ℓ
(p)
ξ

follows a growth trend that is slower than linear, while
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τ
(p)
ξ grows at a rate closer to a quadratic power law. Note that the spatial time scale
settles on a constant value once BFI0 ≈ 1, whereas the temporal correlation scale continues
to increase within the whole range considered. This fact is consistent with the observation
that further increments of the BFI, beyond a critical value, result in a stronger ordering of
the distribution of coherent structures. as can be appreciated from Figure 7. We further
stress that the observed variation of correlation scales does not follow from any simple
scaling analysis that can be derived in the framework of the NLS equation.

3.2. Extreme-events statistics

We present here some further results aimed to illustrate how extreme-events statistics
modify along with the change of structure of the wave field just discussed. Figure 5 contains
the probability density functions (PDFs) of the wave envelope, ξ, for different values of
BFI0. Consistently with previous results [22], PDFs develop heavy tails as the value of BFI
increases. As shown in the same picture, such tails are dramatically underpredicted by the
canonical first- and second-order statistical models for water waves, i.e., the Rayleigh and
Tayfun [32] distributions respectively, in the cases with the largest BFI values.

In Figure 4 we report the kurtosis, κ, of the surface elevation as a function of the
Benjamin–Feir index. We recall that the customary definition of such a quantity is

κ ≡
⟨η4⟩⟨η2⟩2 − 3.

The two data sets displayed represent the same values of κ plotted as a function of the initial
and time-averaged values of BFI respectively. The plot shows that both κ and ⟨BFI⟩ reach
a limit with respect to the BFI0. Even for subcritical initial conditions, BFI(t) decreases
during the initial stage of time evolution. The analytic prediction obtained by Mori &
Janssen [18], also included in the picture. (The factor in Mori & Janssen formula has
been adjusted to account for the fact that we are considering the spatial, as opposed to
temporal, Fourier spectrum.) Such a prediction is based on the assumption that the power
spectrum is Gaussian and narrow-banded, and that the phases of Fourier coefficients are
uncorrelated. Even though the assumption of a narrow-banded spectrum is clearly not
legitimate at the lowest value of BFI0, where some discrepancy is therefore to be expected,
we find reasonable agreement between the analytical formula and the results of numerical
computations at moderate values of BFI. On the other hand, the analytical estimate
fails to capture the final steep growth of κ in the regime corresponding to very narrow-
banded spectra. Such a result appears then to be a consequence of the independent-phase
assumption, which is expected to be unrealistic in those regimes characterized by a strong
concentration of coherent structures, as shown in previous studies [28, 29].
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Figure 1. Time evolution of the wave envelope, ξ, from Euler numerical
simulations (left panels) and corresponding space-time autocorre-
lation functions, Cxt, (right panels) for increasing values of BFI.
Values of the BFI are: (a-b) 0.123, (c-d) 0.216. All cases share
the same wave steepness, s = 0.04. Spatial and temporal units
are normalized using k0 and

√
gk0 respectively.
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Figure 2. Time evolution of the wave envelope, ξ, from Euler numerical
simulations (left panels) and corresponding space-time autocorre-
lation functions, Cxt, (right panels) for increasing values of BFI.
Values of the BFI are: (e-f) 0.348, (g-h) 0.500. All cases share
the same wave steepness, s = 0.04. Spatial and temporal units
are normalized using k0 and

√
gk0 respectively.
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Figure 3. Spatial (a) and temporal (b) autocorrelation scales versus BFI0
from Euler numerical simulations. Dashed lines reference power-
law trends.
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Figure 4. (a) Steady-state value of the Benjamin–Feir index, ⟨BFI⟩, versus
the initial value, BFI0, from numerical simulations. (b) Kurtosis
of the surface elevation versus the BFI. The values of κ computed
from numerical simulations are plotted both as a function of the
initial (◇) and long-time average (○) value of the BFI, respectively
denoted by BFI0 and ⟨BFI⟩. The analytical prediction by Mori &
Janssen [18] is also reported (dashed line).
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Figure 5. PDFs of the wave envelope, ξ, corresponding to the four cases
reported in Figures 1, 2. Euler numerical simulations (symbols),
Tayfun distribution (dashed lines) and Rayleigh distribution (dot-
ted lines).
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Figure 7. Coherent structures emerging in the time evolution of the wave
envelope, ξ, from Euler numerical simulations at moderate (a)
and high (b) value of the Benjamin–Feir index (BFI0 = 0.216
and BFI0 = 1.333, respectively). Spatial and temporal units are
normalized using k0 and

√
gk0 respectively.
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4. Conclusions

We have presented numerical simulations of the free-surface Euler equations in deep
water, with the aim to illustrate the development of coherent structures in the wave field as
the initial value of the Benjamin–Feir index, BFI0, increases. The main question addressed
in this study is whether such structures can emerge spontaneously in random sea states;
it is important to clarify this point before assuming confidently that coherent wave group
dynamics (i.e. breathers, in the framework of the NLS equation) is the major cause of
the extreme waves that occur with relative frequency for high values of the Benjamin–Feir
index [9, 22].

We observe from our numerical runs that long-lived coherent wave groups develop pro-
gressively by increasing BFI0. For a sufficiently high BFI0, coherent structures become the
dominant feature of the wave field. In terms of surface elevation, the maximum amplitude
and the physical scales of such structures are consistent with those of Kuznetsov–Ma NLS
breathers. We also find sparse yet well-defined breather-like structures for moderate values
of BFI0 (≈ 0.2), see Figure 7. At a closer look, however, the coherent structures found in
this case appear to be contained in the initial condition itself, and not to be the result of
a self-generating process. It is interesting to note, nonetheless, that even low-BFI wave
fields can support — even though they probably cannot generate — coherent long-lived
structures.

The development of the coherent wave groups visualized in Figures 1, 2 is reflected by the
space-time correlation functions, which provide a quantitative measure of the associated
spatial and temporal scales. Different growth trends with respect to the BFI have been
observed for the space and time scales respectively. Namely, the spatial scale dilates much
more slowly than the temporal scale. Both quantities do not follow any simple scaling
trend.

For those cases characterized by a supercritical initial BFI, the structure of the wave
field persists after the BFI has settled on a subcritical value. This observation stands at
odds with the idea that rogue waves are a transitional feature of the wave field associated
with developing Benjamin–Feir instability. This particular aspect was mostly hinted by
experimental data, but it is better clarified by numerical simulations, because the effective
time span observable in laboratory experiments is limited by the length of the wave tank.
Transient effects are hardly removed, as pointed out by Slunyaev & Sergeeva [29], even
in state-of-the-art facilities (cf. § 3).
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Département d’Optique P.M. Duffieux, Université de Franche-Comté, Institut FEMTO-
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