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Community Detection in Random Networks

Ery Arias-Castro1 and Nicolas Verzelen2

We formalize the problem of detecting a community in a network into testing whether in a given
(random) graph there is a subgraph that is unusually dense. We observe an undirected and un-
weighted graph on N nodes. Under the null hypothesis, the graph is a realization of an Erdös-Rényi
graph with probability p0. Under the (composite) alternative, there is a subgraph of n nodes where
the probability of connection is p1 > p0. We derive a detection lower bound for detecting such a
subgraph in terms of N,n, p0, p1 and exhibit a test that achieves that lower bound. We do this both
when p0 is known and unknown. We also consider the problem of testing in polynomial-time. As
an aside, we consider the problem of detecting a clique, which is intimately related to the planted
clique problem. Our focus in this paper is in the quasi-normal regime where np0 is either bounded
away from zero, or tends to zero slowly.

Keywords: community detection, detecting a dense subgraph, minimax hypothesis testing, Erdös-
Rényi random graph, scan statistic, planted clique problem, sparse eigenvalue problem.

Dedicated to the memory of Yuri I. Ingster

1 Introduction

In recent years, the problem of detecting communities in networks has received a large amount of at-
tention, with important applications in the social and biological sciences, among others (Fortunato,
2010). The vast majority of this expansive literature focuses on developing realistic models of
(random) networks (Albert and Barabási, 2002; Barabási and Albert, 1999), on designing meth-
ods for extracting communities from such networks (Girvan and Newman, 2002; Newman, 2006;
Reichardt and Bornholdt, 2006) and on fitting models to network data (Bickel et al., 2011).

The underlying model is that of graph G = (E ,V), where E is the set of edges and V is
the set of nodes. For example, in a social network, a node would represent an individual and
an edge between two nodes would symbolize a friendship or kinship of some sort shared by
these two individuals. In the literature just mentioned, almost all the methodology has con-
centrated on devising graph partitioning methods, with the end goal of clustering the nodes in
V into groups with strong inner-connectivity and weak inter-connectivity (Bickel and Chen, 2009;
Lancichinetti and Fortunato, 2009; Newman and Girvan, 2004).

In this euphoria, perhaps the most basic problem of actually detecting the presence of a com-
munity in an otherwise homogeneous network has been overlooked. From a practical standpoint,
this sort of problem could arise in a dynamic setting where a network is growing over time and
monitored for clustering. From a mathematical perspective, probing the limits of detection (i.e.,
hypothesis testing) often offers insight into what is possible in terms of extraction (i.e., estimation).

Many existing community extraction methods can be turned into community detection proce-
dures. For example, one could decide that a community is present in the network if the modularity
of Newman and Girvan (2004) exceeds a given threshold. To set this threshold, one needs to de-
fine a null model. Newman and Girvan (2004) implicitly assume a random graph conditional on
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the node degrees. Here, we make the simplest assumption that the null model is an Erdös-Rényi
random graph (Bollobás, 2001).

In this context, we also touch on another line of work, that of detecting a clique in a random
graph — the so-called Planted (or Hidden) Clique Problem (Alon et al., 1998; Dekel et al., 2011;
Feige and Ron, 2010). Although the emphasis there is to find the detection performance of compu-
tationally tractable algorithms, we mostly ignore computational consideration and simply establish
the absolute detection limits of any algorithm whatsoever.

1.1 The framework

We address a stylized community detection problem, where the task is to detect the presence
of clustering in the network and is formalized as a hypothesis testing problem. We observe an
undirected graph G = (E ,V) with N := |V| nodes. Without loss of generality, we take V = [N ] :=
{1, . . . , N}. The corresponding adjacency matrix is denoted W ∈ {0, 1}N×N , where Wi,j = 1 if,
and only if, (i, j) ∈ E , meaning there is an edge between nodes i, j ∈ V. Note that W is symmetric,
and we assume that Wii = 0 for all i. Under the null hypothesis, the graph G is a realization of
G(N, p0), the Erdös-Rényi random graph on N nodes with probability of connection p0 ∈ (0, 1);
equivalently, the upper diagonal entries of W are independent and identically distributed with
P(Wi,j = 1) = p0 for any i 6= j. Under the alternative, there is a subset of nodes indexed by S ⊂ V
such that P(Wi,j = 1) = p1 for any i, j ∈ S with i 6= j, with everything else the same. We assume
that p1 > p0, implying that the connectivity is stronger between nodes in S. When p1 = 1, the
subgraph with node set S is a clique. The subset S is not known, although in most of the paper
we assume that its size n := |S| is known.

We study detectability in this framework in asymptotic regimes where n,N → ∞, and p0, p1
may also change; all these parameters are assumed to be functions of N . A test T is a function
that takes W as input and returns T = 1 to claim there is a community in the network, and T = 0
otherwise. The (worst-case) risk of a test T is defined as

γN (T ) = P0(T = 1) + max
|S|=n

PS(T = 0),

where P0 is the distribution under the null and PS is the distribution under the alternative where
S indexes the community. We say that a sequence of tests (TN ) for a sequence of problems (WN )
is asymptotically powerful (resp. powerless) if γN (TN ) → 0 (resp. → 1). Practically speaking, a
sequence of tests is asymptotically powerless if it does not perform substantially better than any
guessing that ignores the adjacency matrix W . We will often speak of a test being powerful or
powerless when in fact referring to a sequence of tests and its asymptotic power properties.

1.2 Closely related work

We take the beaten path, following the standard approach in statistics for analyzing such composite
hypothesis testing problems, in particular, the work of Ingster (1997) and others (Donoho and Jin,
2004; Hall and Jin, 2010; Ingster and Suslina, 2002) on the detection of a sparse (normal) mean
vector. Most closely related to our work is that of Butucea and Ingster (2011). Specializing their
results to our setting, they derive lower bounds and upper bounds for the same detection problem
when the graph is directed and the probability of connection under the null (denoted p0) is fixed,
which is a situation where the graph is extremely dense. Their work leaves out the interesting
regime where p0 → 0, which leads to a null model that is much more sparse.
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1.3 Main Contribution

Our main contribution in this paper is to derive a sharp detection boundary for the problem of
detecting a community in a network as described above. We focus here on the quasi-normal regime3

where np0 is either bounded away from zero, or tends to zero slowly, specifically,

log

(
1 ∨ 1

np0

)
= o

[
log

(
N

n

)]
. (1)

On the one hand, we derive an information theoretic bound that applies to all tests, meaning
conditions under which all tests are powerless. On the other hand, we display a test that basically
achieves the best performance possible. The test is the combination of the two natural tests that
arise in Butucea and Ingster (2011) and much of the work in that field (Arias-Castro et al., 2011;
Ingster et al., 2010):

• Total degree test. This test rejects when the total number of edges is unusually large. This is
global in nature in that it cannot be directly turned into a method for extraction.

• Scan (or maximum modularity) test. This test amounts to turning modularity into a test
statistic by rejecting when its maximum value is unusually large. It is strictly speaking the
generalized likelihood ratio test under our framework.

We also consider the situation, common in practice, where p0 is unknown. Interestingly, the
detection boundary becomes larger than in the former setting when n is moderately sparse. We
derive the corresponding lower bound in this situation and design a test that achieves this bound.
The test is again the combination of the two tests:

• Degree variance test. This test is based on the differences between two estimates for the
degree variance, an analysis of variance of sorts. (Note that the total degree test cannot be
calibrated without knowledge of p0.)

• Scan test. This test can be calibrated in various ways when p0 is unknown, for example by
estimation of p0 based on the whole graph, or by permutation. We study the former.

Finally, we consider various polynomial-time algorithms, the main one being a convex relaxation
of the scan test based on a sparse eigenvalue problem formulation. Our inspiration there comes
from the recent work of Berthet and Rigollet (2012). We discuss the discrepancy between the
performances of the scan test and the relaxed scan test and compare it with other polynomial-time
tests.

We summarize our findings in Tables 1 and 2, where

R =

√
n(p1 − p0)√
p0(1− p0)

is (up to
√

n/2 factor) the SNR for detecting the dense subgraph when it is known.

3The quasi-Poisson regime where np0 → 0 polynomially fast is qualitatively different and necessitates different

proof arguments. This is beyond the scope of this paper and will appear somewhere else.
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Table 1: Detection boundary and near-optimal algorithms. For any sequence a and b going to
infinity, a ≪ b (resp. a ≫ b) means that there exists ǫ > 0 arbitrarily small such that a ≤ b1−ǫ

(resp. a ≥ b1+ǫ)

p0 known p0 unknown

n ≪ N2/3 n ≫ N2/3 n ≪ N3/4 n ≫ N3/4

p0 ≫ log(N/n)
n R > 2

√
log(N/n) R > N/n3/2 R > 2

√
log(N/n) R > N3/4/n

p0 ≪ log(N/n)
n R > 2 log(N/n)

√

np0 log
(

log(N/n)
np0

) R > N/n3/2 R > 2 log(N/n)
√

np0 log
(

log(N/n)
np0

) R > N3/4/n

Scan test Tot. Deg. test Scan test Deg. Var. test

Table 2: Polynomial time algorithms

p0 known p0 unknown

n ≪

√
N n ≫

√
N n ≪

√
N n ≫

√
N

R > 2
√
N logN R > N/n3/2 R > 2

√
N logN R > N3/4/n

Relax. Scan test Tot. Deg. test Relax. Scan test Deg. Var. test

1.4 Finding a clique

We start the paper by addressing the problem of detecting the presence of a large clique in the
graph, and treat it separately, as it is an interesting case in its own right. It is simpler and allows
us to focus on the regime where n/ logN → ∞ in the rest of the paper. We establish a lower bound
and prove that the following (obvious) test achieves that bound:

• Clique number test. This tests rejects when the size of the clique number of the graph is
unusually large. It can be calibrated without knowledge of p0, for example by permutation,
but we do not know of a polynomial-time algorithm that comes even close.

1.5 Content

In Section 2, we consider the problem of detecting the presence of a large clique and analyze
the clique number test. In Section 3, we consider the more general problem of detecting a densely
connected subgraph and analyze the total degree test and the scan test. The more realistic situation
of unknown p0 is handled in Section 4. In Section 5.2, we investigate polynomial-time tests. We then
discuss our results and the outlook in Section 6. The technical proofs are postponed to Section 7.

1.6 General assumptions and notation

We assume throughout that N → ∞ and the other parameters n, p0, p1 (and more) are allowed
to change with N , unless specified otherwise. This dependency is left implicit. In particular, we
assume that n/N → 0, emphasizing the situation where the community to be detected is small
compared to the size of the whole network. (When n is of the same order as N , the total degree
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test is basically optimal.) We assume that p0 is bounded away from 1, which is the most interesting
case by far, and that N2p0 → ∞, the latter implying that the number of edges in the network
(under the null) is not bounded. We also hypothesize that either p1 = 1 or n → ∞ with n2p1 → ∞,
there is a non-vanishing chance that the community does not contain any edges, precluding any
test to be powerful.

We use standard notation such as an ∼ bn when an/bn → 1; an = o(bn) when an/bn → 0;
an = O(bn) when an/bn is bounded; an ≍ bn when an = O(bn) and bn = O(an); an ≺ bn when
there exists a positive constant C such that an ≤ Cbn and an ≻ bn when there exists a positive
constant C such that an ≥ Cbn. For an integer n let n(2) = n(n − 1)/2. For two distributions L1

and L2 on the real line, let L1 ∗ L2 denote their convolution, which is the distribution of the sum
two independent random variables X1 ∼ L1 and X2 ∼ L2.

Because of its importance in describing the tails of the binomial distribution, the following
function — which is the relative entropy or Kullback-Leibler divergence of Bern(q) to Bern(p) —
will appear in our results:

Hp(q) = q log

(
q

p

)
+ (1− q) log

(
1− q

1− p

)
, p, q ∈ (0, 1). (2)

2 Detecting a large clique in a random graph

We start with specializing the setting to that of detecting a large clique, meaning we consider the
special case where p1 = 1. In this section, n is not necessarily increasing with N .

2.1 Lower bound

We establish the detection boundary, giving sufficient conditions for the problem to be too hard
for any test, meaning that all tests are asymptotically powerless.

Theorem 1. All tests are asymptotically powerless if
(
N

n

)
p

n(n−1)
2

0 → ∞. (3)

The result is, in fact, very intuitive. Condition (3) implies that, with high probability under
the null, the clique number is at least n, which is the size of the implanted clique under the
alternative. This is a classical result in random graph theory, and finer results are known — see
(Bollobás, 2001, Chap. 11). The arguments underlying Theorem 1 are, however, based on studying
the likelihood ratio test when a uniform prior is assumed on the implanted clique S, which is the
standard approach in detection settings; see (Lehmann and Romano, 2005, Ch. 8). In this specific
setting, the second moment method — which consists in showing that the variance of the likelihood
ratio tends to 0 — suffices.

2.2 The clique number test

Computational considerations aside, the most natural test for detecting the presence of a clique is
the clique number test defined in the Introduction. We obtain the following.

Proposition 1. The clique number test is powerful if
(
N

n

)
p

n(n−1)
2

0 → 0. (4)
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The proof is entirely based on the fact that, when (4) holds, the clique number under the null
is at most n − 1 with high probability (Bollobás, 2001, Th. 11.6), while it is at least n under the
alternative. (Thus the proof is omitted.) We conclude that the clique number test is seen to achieve
the detection boundary established in Theorem 1.

3 Detecting a dense subgraph in a random graph

We now consider the more general setting of detecting a dense subgraph in a random graph.
We start with an information bound that applies to all tests, regardless of their computational
requirements. We then study the total degree test and the scan test, showing that the test that
combines them with a simple Bonferroni correction is essentially optimal.

3.1 Lower bound

When assuming infinite computational power, what is left is the purely statistical challenge of
detecting the subgraph. For simplicity, we assume that n is not too small, specifically,

n

logN
→ ∞, (5)

though our result below partially extends to this, particularly when p1 is constant. As usual, a
minimax lower bound is derived by choosing a prior over the composite alternative. Assuming
that p0 and p1 are known, because of symmetry, the uniform prior over the community S is least
favorable, so that we consider testing

H0 : G ∼ G(N, p0) versus H̄1 : G ∼ G(N, p0;n, p1), (6)

where the latter is the model where the community S is chosen uniformly at random among subset
of nodes of size n, and then for i 6= j, P(Wi,j = 1) = p1 if i, j ∈ S, while P(Wi,j = 1) = p0 otherwise.
For this simple versus simple testing problem, the likelihood ratio test is optimal, which is what
we examine to derive the following lower bound. Remember the entropy function defined in (2).

Theorem 2. Assuming (5) and (1) hold, all tests are asymptotically powerless if

p1 − p0√
p0

n2

N
→ 0, (7)

and

lim sup
nH(p1)

2 log(N/n)
< 1. (8)

Conditions (7) and (8) have their equivalent in the work of Butucea and Ingster (2011). That
said, (8) is more complex here because of the different behaviors of the entropy function according
to whether p1/p0 is small or large — corresponding to the difference between large deviations and
moderate deviations of the binomial distribution. Only in the case where p1/p0 → 1 is the normal
approximation to the binomial in effect.

To better appreciate (8), note that it is equivalent to

lim sup
(p1 − p0)

2

4p0(1− p0)

n

log(N/n)
< 1, when

np0
log(N/n)

→ ∞; (9)
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and

lim sup
p1

2(1− p0)

n

log(N/n)
log

(
log(N/n)

np0

)
< 1, when

np0
log(N/n)

→ 0. (10)

In (9), np0 is larger and only the moderate deviations of the binomial distribution are involved,
while in (10), np0 is smaller and the large deviations come into play.

Theorem 2 happens to be sharp because, as we show next, the test that combines the total
degree test and the scan test is asymptotically powerful when the conditions (7) and (8) are —
roughly speaking — reversed.

3.2 The total degree test

The total degree test rejects for large values of

W :=
∑

1≤i<j≤N

Wi,j. (11)

The resulting test is exceedingly simple to analyze, since

W ∼ Bin(N (2) − n(2), p0) ∗ Bin(n(2), p1). (12)

Proposition 2. The total degree tests is powerful if

p1 − p0√
p0

n2

N
→ ∞. (13)

It is equally straightforward to show that the total degree has risk strictly less than one —
meaning has some non-negligible power — when the same ratio tends to a positive and finite
constant, while it is asymptotically powerless when that ratio tends to zero.

3.3 The scan test

The scan test is another name for the generalized likelihood ratio test, and corresponds to the test
that is based on the maximum modularity. It is particularly simple when p0 is known, as it rejects
for large values of

W ∗
[n] := max

|S|=n
WS , WS :=

∑

i,j∈S,i<j

Wi,j. (14)

Unlike the total degree (11), the scan statistic (14) has an intricate distribution as the partial
sums WS are not independent. Nevertheless, the union bound and standard tail bounds for the
binomial distribution lead to the following result.

Proposition 3. The scan test is powerful if

lim inf
nH(p1)

2 log(N/n)
> 1. (15)

3.4 The combined test

Having studied these two tests individually, we are now in a position to consider them together, by
which we mean a simple Bonferroni combination which rejects when either of the two tests rejects.
Looking back at our lower bound and the performance bounds we established for these tests, we
come to the following conclusion. When the limit in (7) is infinite — yielding (13) — then the total
degree test is asymptotically powerful by Proposition 2. When the limit inferior in (8) exceeds one
— yielding (15) — then the scan test is asymptotically powerful by Proposition 3.
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3.5 Adaptation to unknown n

The scan statistic in (14) requires knowledge of n. When this is unknown, the common procedure
is to combine the scan tests at all different sizes n using a simple Bonferroni correction. This is
done in (Butucea and Ingster, 2011), with the conclusion that the resulting test is essentially as
powerful as the individual tests. It is straightforward to see that, here too, the tail bound used in
the proof of Proposition 3 allows for enough room to scan over all subgraphs of all sizes.

4 When p0 is unknown: the fixed expected total degree model

Although it leads to interesting mathematics, the setting where p0 is known is, for the most part,
impractical. In this section, we evaluate how not knowing p0 changes the difficulty of the problem.
In fact, it makes the problem strictly more difficult in the denser regime.

There are (at least) two ways of formalizing the situation where p0 is unknown. In the first
option, we still consider the exact same hypothesis testing problem, but maximize the risk over
relevant subsets of p0’s and p1’s, since now even the null hypothesis is composite. In the second
option — which is the one we detail — for a given pair of probabilities 0 < p′0 ≤ p1 < 1, we consider
testing

H0 : G ∼ G(N, p0) versus H̄
′
1 : G ∼ G(N, p′0;n, p1), p0 := p′0 + (p1 − p′0)

n(2)

N (2)
. (16)

Note that, in this setting, we still assume that p0, p1, n are known to the statistician. By design,
the graph has the same expected total degree under the null and under the alternative hypotheses,
that is we have

E0(W ) = N (2)p0 + n(2)(1− p0) = E
′
S(W ), ∀S : |S| = n,

where P
′
S and E

′
S denote the probability distribution and corresponding expectation under the

model where, for any i 6= j, P(Wi,j = 1) = p1 if i, j ∈ S, while P(Wi,j = 1) = p′0 otherwise.

The risk of a test T for this problem is defined as

γ′N (T ) = P0(T = 1) + max
|S|=n

P
′
S(T = 0) .

We say that the a sequence of tests (TN ) is asymptotically powerful for the problem with fixed
expected total degree (resp. powerless) if γ′N (TN ) → 0 (resp. γ′N (TN ) → 1).

We first compute the detection boundary for this problem and then exhibit some tests achieving
this detection boundary. Interestingly, these tests do not require the knowledge of p0 and p1, or
even n, so that they can be used in the original setting (6) when these parameters are unknown.

4.1 Lower bound

Theorem 3. Assuming (5) holds and that

log

(
1 ∨ 1

np′0

)
= o

[
log

(
N

n

)]
, (17)

all tests are asymptotically powerless for the problem (16) if

p1 − p′0√
p′0

n3/2

N3/4
→ 0 (18)
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and

lim sup
nHp′0

(p1)

2 log(N/n)
< 1. (19)

Comparing with Theorem 2, where p0 is assumed to be known, the condition (18) is substantially
weaker than the corresponding condition (7), while we shall see in the proof that (19) is comparable
to (8). That said, when n2 < N , the entropy condition (8) is a stronger requirement than either
(7) or (18), implying that the setting where p0 is known and the setting where unknown are
asymptotically as difficult in that case.

4.2 Degree variance test

By construction, the total degree W has the same expectation under the null and under the al-
ternative in the testing problem with fixed expected total degree — and same variance also up to
second order — making it difficult to see how to fruitfully use this statistic in this context.

We design instead a test based on comparing the two estimators for the node degree variance,
not unlike an analysis of variance. Let

Wi· =
∑

j 6=i

Wi,j (20)

denote the degree of node i in the whole network. The first estimate is simply the maximum
likelihood estimator under the null

V1 = (N − 1)
N (2)

N (2) − 1
p̂0(1 − p̂0), p̂0 :=

W

N (2)
.

The second estimator is some sort of sample variance, modified to account for the fact that the Wi·
are not independent

V2 =
1

N − 2

N∑

i=1

(Wi· − (N − 1)p̂0)
2 .

Both estimators are unbiased for the degree variance under the null, meaning, E0 V1 = E0 V2 =
(N − 1)p0(1 − p0). Under the alternative, V2 tends to be larger than V1, leading to a test that
rejects for large values of

V ∗ :=
V√
Np̂0

, V := V2 − V1. (21)

Proposition 4. Assume that p0 ≻ 1/N . The degree variance test is asymptotically powerful under
fixed expected total degree if

(p1 − p′0)
2

p′0

n3

N3/2
→ ∞ (22)

The test based on V ∗ achieves the part (18) of the detection boundary. We note that computing
V ∗ does not require knowledge of p0, p1 or n, and in fact, its calibration can be done without any
knowledge of these parameters via a form of parametric bootstrap, as we do for the scan test below.

4.3 The scan test

When p0 is not available a priori, we have at least three options:
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• Estimate p0. We replace p0 with its maximum likelihood estimator under the null, i.e.,
p̂0 = W/N (2), and then compare the magnitude of the observed scan statistic (14) with what
one would get under a random graph model with probability of connection equal to p̂0.

• Generalized likelihood ratio test. We simply implement the actual generalized likelihood ratio
test (Kulldorff, 1997), which rejects for large values of

max
|S|=n

[
n(2)h(p̂1,S) + (N (2) − n(2))h(p̂0,S)−N (2)h(p̂0)

]
,

where h(p) := p log p+ (1− p) log(1− p), p̂0 as above, and

p̂1,S :=
WS

n(2)
, p̂0,S :=

W −WS

N (2) − n(2)
,

which are the maximum likelihood estimates of p1 and p0 for a given subset S.

• Calibration by permutation. We compare the observed value of the scan statistic to simulated
values obtained by generating a random graph with either the same number of edges — which
leads to a calibration very similar to the first option — or the same degree distribution —
which is the basis for in the modularity function of Newman and Girvan (2004).

We focus on the first option.

Proposition 5. Assume that lim inf p0N
2/n > 1. The scan test calibrated by estimation of p0 is

asymptotically powerful for fixed expected total degree if

lim inf
nH(p1)

2 log(N/n)
> 1 . (23)

Hence, the scan test calibrated by estimation of p0 achieves the entropy condition (8) without
requiring the knowledge of p0 or p1. We mention that adaptation to unknown n may be achieved
as described in Section 3.5.

4.4 Combined test and full adaptation to unknown p0

A combination of the degree variance test and of the scan test calibrated by estimation of p0 is seen
to achieve the detection boundary established in Theorem 3, without requiring knowledge of p0 or
p1, or even n.

5 Testing in polynomial-time

While computing the total degree (11) or the degree variance statistic (21) can be done in linear time
in the size of the network, i.e., in O(N2) time, computing the scan statistic (14) is combinatorial in
nature and there is no known polynomial-time algorithm to compute it. To see this, note that the
ability to compute (14) in polynomial-time implies the ability to compute the size of the largest
clique in the graph, since this is equal to

max{n : W ∗
[n] = n(2)} ,

and computing the size of the largest clique in a general graph in known to be NP-hard (Karp,
1972), and even hard to approximate (Zuckerman, 2006).

A question of particular importance in modern times is determining the tradeoff between sta-
tistical performance and computational complexity. At the most basic level, this boils down to
answering the following question: What can be done in polynomial-time?
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5.1 Convex relaxation scan test

We now suggest a convex relaxation to the problem of computing the scan statistic. To do so,
we follow the footsteps of Berthet and Rigollet (2012), who consider the problem of detecting
a sparse principal component based on a sample from a multivariate Gaussian distribution in
dimension N . Assuming the sparse component has at most n nonzero entries, they show that a
near-optimal procedure is based on the largest eigenvalue of any n-by-n submatrix of the sample
covariance matrix. Computing this statistic is NP-hard, so they resort to the convex relaxation of
d’Aspremont et al. (2007), which they also study. We apply their procedure to W

2.

Formally, for a positive semidefinite matrix B ∈ R
N×N and 1 ≤ n ≤ N , define

λmax
n (B) = max

|S|=n
λmax(BS) ,

whereBS denotes the principal submatrix of B indexed by S ⊂ {1, . . . , N} and λmax(B) the largest
eigenvalue of B. d’Aspremont et al. (2007) relaxed this to

SDPn(B) = max
Z

Trace(BZ), subject to Z � 0, Trace(Z) = 1, |Z|1 ≤ n ,

where the maximum is over positive semidefinite matrices Z = (Zst) ∈ R
N×N and |Z|1 =

∑
s,t |Zst|.

We consider the relaxed scan test, which rejects for large values of

SDPn(W
2) . (24)

When p0 is known, we simply calibrate the procedure by Monte Carlo simulations, effectively
generating W 1, . . . ,WB i.i.d. from G(N, p0) and computing SDPn(W

2
b) for each b = 1, . . . , B, and

estimating the p-value by the fraction of b’s such that SDPn(W
2
b) ≥ SDPn(W

2). Typically B is a
large number, and below we consider the asymptote where B = ∞.

When p0 is unknown, we estimate p0 as we did for the scan test in Proposition 5, and then
calibrate the statistic by Monte Carlo, effectively using a form of parametric bootstrap.

In either case, we have the following.

Proposition 6. Assume that (1) holds and n ≤ N1/2−t for some t > 0. Then, the relaxed scan
test is powerful if

lim inf
n√

N log(N)

(p1 − p0)
2

p0
> 2 . (25)

To gain some insights on the relative performance of the scan test and the relaxed scan test, let
us assume that n2 ≪ N , and np0 ≫ log(N/n). Applying Proposition 3 (or Proposition 5) in this
setting, we find that the scan test is asymptotically powerful when

(p1 − p0)
2

p0
≻ log(N/n)

n
.

Thus, comparing with (25), we lose a factor
√

N/ log(N) when using the relaxed version. In the
denser regime where n2 ≫ N log(N), the total degree test and degree variance test both have
stronger theoretical guarantees established in Proposition 2 and Proposition 4 respectively. Below
we explain why the

√
N/ log(N) loss is not unexpected.
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Optimality

The problem H0 : G ∼ G(N, 1/2) versus H1 : G ∼ G(N, 1/2;n, 1) is called the Planted (or Hidden)
Clique Problem (Feige and Ron, 2010) and has become one of the most emblematic statistical
problems where computational constraints seem to substantially affect the difficulty of the problem.
Recent advances in compressed sensing and matrix completion have shown that computationally
tractable algorithms can achieve the absolute information bounds (up to constants) in most cases. In
contrast, in the Planted (or Hidden) Clique Problem there is no known polynomial-time algorithm
that can detect a clique of size n = o(

√
N) (Dekel et al., 2011), while the clique test can detect a

clique of size n ≍ logN , as shown in Proposition 1. In fact, the problem is provably hard in some
computational models, such as monotone circuits (Feldman et al., 2012; Rossman, 2010). We refer
to Berthet and Rigollet (2012) for a thorough discussion.

More generally, we may want to characterize the sequences (n,N, p0, p1) for which there are
asymptotically powerful tests running in polynomial time. In our findings, the only situation where
we found this to be true was in the dense regime, where the total degree test is both powerful in
the large-sample limit and computable in polynomial time. (Replace this with the degree variance
test when p0 is unknown.)

5.2 Other polynomial-time tests

5.2.1 The maximum degree test

Perhaps the first computationally-feasible test that comes to mind in the sparse regime is the test
based on the maximum degree

max
i=1,...,N

Wi· , (26)

where Wi· is the degree of node i in the graph, defined in (20).

Proposition 7. The maximal degree test is asymptotically powerful if p0 ≫ log(N)/N and

lim inf
n2

N log(N)

(p1 − p0)
2

p0(1− p0)
> 2 .

Under condition (1), the maximal degree test is asymptotically powerless if lim sup log(n)/ log(N) <
1 and

n2

N log(N)

(p1 − p0)
2

p0(1− p0)
→ 0 (27)

Comparing with Propositions 2 and 6, we observe that the maximum degree test is either less
powerful than the relaxed scan test (when n ≤ N1/2−t for any t > 0) or less powerful that the
total degree test (when n ≫

√
N/ log(N)). For unknown p0, the maximum degree test is also less

powerful than the degree variance test.

5.2.2 Densest subgraph test

Another possible avenue for designing computationally tractable tests for the problem at hand lies
in algorithms for finding dense subgraphs of a given size. We follow (Khuller and Saha, 2009),
where the reader will find appropriate references and additional results. Define the density of a
subgraph S ⊂ V as

h(S) =
|ES |
|S| , where ES = {(i, j) ∈ S2 : Wi,j = 1} .
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Finding S ⊂ V that maximizes h(S) may be done in polynomial-time.

Proposition 8. Assume that p0 ≫ log(N)/N .

1. Under the null hypothesis, maxS h(S) ∼P0 h(V) ∼ Np0/2 and this maximum is achieved at
subsets S satisfying |S| ∼ N .

2. The densest subgraph test is powerful if lim inf np1
Np0

> 1.

3. Assume that np1
Np0

→ 0. Under the alternative hypothesis, maxS h(S) ∼PS
h(V) ∼PS

Np0/2
and this maximum is achieved at subsets S satisfying |S| ∼ N .

The condition lim inf np1
Np0

> 1 is stronger than what we have obtained for the relaxed scan

test (25) in the sparser case (n ≤ N1/2−t for any t > 0) and than what we have obtained for
the total degree test (13) and the degree variance test (22) in the less sparse case (n ≫

√
N). If

np1/Np0 → 0, then the densest subgraph statistic seems to behave like the total degree statistic
and we therefore expect similar performances although we have no proof of this statement.

In order to improve the power, we would like to restrict our attention to subgraphs of size n
(assumed known for now) and use max|S|=n h(S). Computing this, however, is NP-hard, and there
is no known polynomial-time approximation within a constant factor. Nevertheless, the following
variant statistic max|S|≥n h(S) can be approximated within a constant factor in polynomial-time.
However, the power of the resulting test is not improved. Since the statistic max|S|≥n h(S) may
only be approximated within a constant factor, the resulting test is powerful only if np1 ≥ CNp0
where C is positive constant that depends on this approximation factor.

6 Discussion

With this paper, we have established the fundamental statistical (information theoretic) difficulty
of detecting a community in a network, modeled as the detection of an unusually dense subgraph
within an Erdös-Rényi random graph, in the quasi-normal regime where np0 is not too small as
made explicit in (1). The quasi-Poisson regime, where np0 is smaller, requires different arguments
and the application of somewhat different tests, and this will be detailed in a separate paper under
preparation.

For the time being, in the quasi-normal regime, we learned the following. In the moderately
sparse setting — n ≫ N2/3) for known p0 and n ≫ N3/4 for unknown p0 — this detection boundary
is achieved by polynomial-time tests. In the sparser setting, there is a large discrepancy between
the information theoretic boundaries and performances of known polynomial tests, which in view
of the Planted Clique Problem, is not surprising.

It is of great interest to study this optimal detection boundary, this time under computational
constraints, a theme of contemporary importance in statistics, machine learning and computer
science. This promisingly rich line of research is well beyond the scope of the present paper.

7 Proofs

7.1 Auxiliary results

The following is Chernoff’s bound for the binomial distribution. Remember the definition of H in
(2).
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Lemma 1 (Chernoff’s bound). For any positive integer n, any q, p0 ∈ (0, 1), we have

P (Bin(n, p0) ≥ qn) ≤ exp (−nH(q)) . (28)

A consequence of Chernoff’s bound is Bernstein’s inequality for the binomial distribution.

Lemma 2 (Bernstein’s inequality). For positive integer n, any p0 ∈ (0, 1) and any x > 0, we have

P [Bin(n, p0) ≥ np0 + x] ≤ exp

[
− x2

2[np0(1− p0) + x/3]

]
.

We will need the following basic properties of the entropy function.

Lemma 3. For p0 ∈ (0, 1), H(q) is convex in q ∈ [0, 1]. Moreover,

Hp(q) =





(q−p)2

2p(1−p) +O
( (q−p)3

p2

)
, q

p → 1;

p
(
r log r − r + 1

)
, q

p → r ∈ (1,∞), p → 0;

q log
( q
p

)
+O(q), q

p → ∞.

(29)

We will also use the following upper bound on the binomial coefficients.

Lemma 4. For any integers 1 ≤ k ≤ n,

k log(n/k) ≤ log

(
n

k

)
≤ k log(ne/k), (30)

where e = exp(1).

The next result bounds the hypergeometric distribution with the corresponding binomial dis-
tribution. Let Hyp(N,m,n) denotes the hypergeometric distribution counting the number of red
balls in n draws from an urn containing m red balls out of N .

Lemma 5. Hyp(N,m,n) is stochastically smaller than Bin(n,m/(N −m)).

Proof. Suppose the balls are picked one by one without replacement. At each stage, the probability
of selecting a red ball is smaller than m/(N −m). The result follows.

7.2 Proof of Theorem 1

Following standard lines, we start by reducing the composite alternative to a simple alternative by
considering the uniform prior π on subsets S ⊂ [N ] := {1, . . . , N} of size |S| = n. The resulting
likelihood ratio is

L =
#{S ⊂ [N ] : |S| = n,WS = n(2)}

(N
n

)
p
n(n−1)/2
0

, (31)

which is the observed number of cliques of size n divided by the expected number under the null.
The risk of any test for the original problem is well-known to be bounded from below by the

risk of the likelihood ratio test {L > 1} for this ‘averaged’ problem, which is equal to

γL := P0(L > 1) + E0(L{L ≤ 1}).

Therefore, it suffices to show that γL → 1. Here we use arguably the simplest method, a second
moment argument, which is based on the fact that

γL = 1− E0 |L− 1| ≥ 1−
√
Var0(L),
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by the Cauchy-Schwarz inequality, so that it is enough to prove that Var0(L) → 0. We do so by
showing that E0(L

2) ≤ 1 + o(1).
Note that

L = p−n(2)

0 π
[
WS = n(2)

]
,

where π[·] denotes the expectation with respect to π. Hence, by Fubini’s theorem, we have

E0 L
2 = π⊗2

[
p−2n(2)

0 P0(WS1 = WS2 = n(2))
]
= π⊗2

[
p
−K(K−1)/2
0

]
,

where K := |S1∩S2|. Indeed, the event {WS1 = WS2 = n(2)} means that all edges between pairs of
nodes in S1 exist, and similarly for S2, and there are a total of n(n− 1) +K(K − 1)/2 such edges.

Before going further, note that (3) and (30) imply that

log(N/n) − (n− 1)

2
log(1/p0) → ∞. (32)

In particular, this means that n ≤ 3 logN , eventually, and therefore

n2

N
= O((logN)2/N) → 0. (33)

Since K ∼ Hyp(N,n, n), by Lemma 5, K is stochastically bounded by Bin(n, ρ), where ρ :=
n/(N − n). Hence, with and Lemma 1, we have

P(K ≥ k) ≤ P(Hyp(N,n, n) ≥ k)

≤ P(Bin(n, ρ) ≥ k)

≤ exp (−nHρ(k/n)) . (34)

Now, using Lemma 3 and (33), for k ≥ 2 we get

nHρ(k/n) = k log(k/(nρ)) +O(k) = k log(kN/n2) +O(k).

Hence,

π⊗2
[
p
−K(K−1)/2
0

]
= P0(K ≤ 1) +

n∑

k=2

exp

(
k(k − 1)

2
log(1/p0)− nHρ(k/n)

)

≤ 1 +

n∑

k=2

exp

(
k

[
(k − 1)

2
log(1/p0)− log(kN/n2) +O(1)

])
. (35)

For a > 0 fixed, the function x → ax− log x is decreasing on (0, 1/a) and increasing on (1/a,∞).
Therefore,

(k − 1)

2
log(1/p0)− log(kN/n2) ≤ −ω,

where

ω := min

(
log(N/n2)− 1

2
log(1/p0), log(N/n)− n− 1

2
log(1/p0)

)
.

By (32), the second term in the maximum tends to ∞. This also the case of the first term, since

log(N/n2)− 1

2
log(1/p0) = log(N/n)− n− 1

2
log(1/p0) +

n

2
log(1/p0)− log n,
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with the second difference bounded from below. Hence, ω → ∞. Hence, the sum in (35) is bounded
by

n∑

k=2

exp (k[ω +O(1)]) ≤ e−ω/2

1− e−ω/2
→ 0,

eventually.
Hence we showed that E0(L

2) ≤ 1 + o(1) and the proof of Theorem 1 is complete.

7.3 Proof of Theorem 2

We assume that (1), (7) and (8) hold. We reduce the composite alternative to a simple alternative
by considering the uniform prior π on subsets S ⊂ [N ] := {1, . . . , N} of size |S| = n. The resulting
likelihood ratio is

L(A) =

(
N

n

)−1 ∑

|S|=n

LS(A) = π
[
LS(A)

]
, (36)

where π[·] is the expectation with respect to S ∼ π, A = (Wi,j : 1 ≤ i < j ≤ N) and

LS := exp(θWS − Λ(θ)n(2)), (37)

with

θ := θp1 , θq := log

(
q(1− p0)

p0(1− q)

)
(38)

and
Λ(θ) := log(1− p0 + p0e

θ),

which is the moment generating function of Bern(p0).
Still leaving p0 implicit, let Hp0(q) be short for H(q). It is well-known that H is the Fenchel-

Legendre transform of Λ; more specifically, for q ∈ (p0, 1),

H(q) = sup
θ≥0

[qθ − Λ(θ)] = qθq − Λ(θq). (39)

The second moment argument used in Section 7.2 is also applicable here, though it does not yield
sharp bounds. In Case 1 below (see Subsection 7.3.3), which is the regime where the moderate
deviations of the binomial come into play, this method leads to a requirement that the limit superior
in (8) be bounded by 1/2 instead of 1. And, worse than that, in Case 3 below, which is the regime
where the large deviations of the binomial are involved, it does not provide any useful bound
whatsoever.

Fortunately, a finer approach was suggested by Ingster (1997). The refinement is based on
bounding the first and second moments of a truncated likelihood ratio. Here we follow Butucea and Ingster
(2011). They work with the following truncated likelihood

L̃ =

(
N

n

)−1 ∑

|S|=n

1ΓS
LS .

where the events ΓS will be specified below. We note Γ =
⋂

|S|=n ΓS . Using the triangle inequality,

the fact that L̃ ≤ L and the Cauchy-Schwarz inequality, we have the following upper bound:

E0 |L− 1| ≤ E0 |L̃− 1|+ E0(L− L̃)

≤
√

E0[L̃2]− 1 + 2(1− E0[L̃]) + (1− E0[L̃]) ,
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so that γL → 1 when E0[L̃
2] → 1 and E0[L̃] → 1. Note that contrary to Butucea and Ingster (2011),

we do not require that P0(Γ) → 1. More precisely, we shall prove that (1, 1) is an accumulation
point of any subsequence of (E0 L̃,E0[L̃

2]). Adopting this approach allows us to assume that p1/p0
converges to r ∈ [1,∞], p21/p0 converges to r2 ∈ [0,∞] and that

nH(p1)

2 log(N/n)
< 1− η0, (40)

for some η0 ∈ (0, 1) fixed. Notice that (5) and (8) imply that H(p1) → 0, which by Lemma 3 forces
either p1/p0 → 1 or p1 → 0; in any case, p1 is bounded away from 1 this time.

In what follows, we provide the general arguments while the proof of the technical results
(Lemmas 6-8) is postponed to the end of the section. To show these technical results, we divide
the analysis depending on the behaviour of p1/p0

p1
p0

→





r = 1, (41)

r ∈ (1,∞), (42)

r = ∞. (43)

In regime (41), the moderate deviations of the binomial distribution dominate and these are asymp-
totically equivalent to normal (Gaussian) deviations; in particular, it is in this setting (with p0
constant) that Butucea and Ingster (2011) successfully reduce the binary setting to the normal
setting. In regime (43), the large deviations of the binomial distribution dominate, which are not
alike the normal deviations and lead to a completely different regime. Regime (42) is intermediary
and requires special treatment.

First, we need some notations to introduce ΓS. Define the numbers

k∗ =


1 + 2

log(N/n)

log
(
1 + (p1−p0)2

p0(1−p0)

)


 ∧ n , (44)

kmin =


1 + 2

log
(
Nk∗
n2

)
− log

{
log
(

n
log(N/n)

)
∧ log(N/n)

}

log
(
1 + (p1−p0)2

p0(1−p0)

)


 ∧ n . (45)

The exact expression of kmin will be useful for bounding the second moment of L̃. For the time
being, we only need to have in mind the properties summarized in the following lemma.

Lemma 6. We have kmin → ∞, kmin ∼ k∗, and log(n/kmin) = o [log(N/n)].

We define ΓS as follows

ΓS :=

n⋂

k=⌊kmin⌋+1

{WT ≤ wk, ∀T ⊂ S such that |T | = k} , (46)

where wk := qkk
(2), with

(k − 1)

2
H(qk) = log(N/k) + 2 . (47)

This construction is possible by the following lemma, which serves as a definition.

Lemma 7. For any integer k between kmin + 1 and n, there exists a unique qk ∈ (p0, 1) such that

(k − 1)

2
H(qk) = log(N/k) + 2 .

Moreover, qk satisfies θqk ≤ 2θ.
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7.3.1 First truncated moment

We first prove that E0 L̃ → 1. By Fubini’s theorem, we have

E0 L̃ = π
[
E0[LS1ΓS

]
]
= π

[
PS(ΓS)

]
= PS(ΓS),

where S is any fixed subset of size n in {1, . . . , N} and this last inequality is by the fact that PS(ΓS)
does not depend on S by symmetry. By the union bound, Chernoff’s bound (28) and (30),

1− PS(ΓS) ≤
n∑

k=⌊kmin⌋+1

∑

T⊂S,|T |=k

PS(WT > qkk
(2))

≤
n∑

k=⌊kmin⌋+1

(
n

k

)
P
(
Bin(k(2), p1) > qkk

(2)
)

≤
n∑

k=⌊kmin⌋+1

exp

[
k

(
log(ne/k)− (k − 1)

2
Hp1(qk)

)]
.

We then conclude that 1− PS(ΓS) = o(1) using the following result.

Lemma 8. We have

min
k=⌊kmin⌋+1,...,n

(
k − 1

2
Hp1(qk)− log

(n
k

))
→ ∞ . (48)

7.3.2 Second truncated moment

We now prove that E0 L̃
2 ≤ 1+o(1), which with E0 L̃ → 1 shows that Var0(L̃) → 0. Let S1, S2

iid∼ π
and define K = |S1 ∩ S2|. By Fubini’s theorem, we have

E0 L̃
2 = ES1,S2 E0

(
LS1LS21ΓS1

1ΓS2

)

= π⊗2
[
E0

(
exp

(
θ(WS1 +WS2)− 2Λ(θ)n(2)

)
1ΓS1

∩ΓS2

) ]
.

Define

WS×T =
1

2

∑

i∈S,j∈T
Wi,j ,

and note that WS = WS×S. We use the decomposition

WS1 +WS2 = WS1×(S1\S2) +WS2×(S2\S1) + 2WS1∩S2 , (49)

the fact that

ΓS1 ∩ ΓS2 ⊂ {WS1∩S2 ≤ wK} ,

and the independence of the random variables on the RHS of (49), to get

E0

(
exp

(
θ(WS1 +WS2)− 2Λ(θ)n(2)

)
1ΓS1

∩ΓS2

)
≤ I · II · III ,

where

I := E0 exp

(
θWS1×(S1\S2) −

Λ(θ)

2
(n−K)(n+K − 1)

)
= 1 ,
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II := E0 exp

(
θWS2×(S2\S1) −

Λ(θ)

2
(n−K)(n+K − 1)

)
= 1 ,

III := E0

(
exp

(
2θWS1∩S2 − 2Λ(θ)K(2)

) 1{WS1∩S2
≤wK}

)
.

The first two equalities are due to the fact that the likelihood integrates to one.
To bound III, we follow Butucea and Ingster (2011), with a twist. When K ≤ kmin, we will use

the obvious bound:

III ≤ E0 exp
(
2θWS1∩S2 − 2Λ(θ)K(2)

)
= exp

(
∆K(2)

)
,

where

∆ := Λ(2θ)− 2Λ(θ) = log

(
1 +

(p1 − p0)
2

p0(1 − p0)

)
. (50)

When K > kmin, we use a different bound. For any ξ ∈ (0, 2θ), we have

III ≤ E0

[
exp

(
ξWS1∩S2 + (2θ − ξ)wK − 2Λ(θ)K(2)

)
{WS1∩S2 ≤ wK}

]

≤ E0 exp
[
ξWS1∩S2 + (2θ − ξ)wK − 2Λ(θ)K(2)

]
,

so that
III ≤ exp

(
∆KK(2)

)
,

where
∆k := min

ξ∈[0,2θ]
Λ(ξ) + (2θ − ξ)qk − 2Λ(θ) . (51)

By the variational definition of the entropy (39), the minimum of Λ(ξ) + (2θ − ξ)qk − 2Λ(θ) over ξ
in R

+ is achieved at ξ = θqk , and we know from Lemma 7 that θqk ≤ 2θ. Hence, we have

∆k = −H(qk) + 2θqk − 2Λ(θ)

= −2Hp1(qk) +H(qk) , (52)

Following our tracks, we have

E0 L̃
2 ≤ E

[1{K≤kmin} exp
(
∆K(2)

)]
+ E

[1{K>kmin} exp
(
∆KK(2)

)]
,

where the expectation is with respect to π⊗2.
Let b be an integer sequence such that b → ∞ so slowly that

(p1 − p0)√
p0

bn2

N
→ 0, (53)

which is possible because of (7). Recall that ρ = n/(N − n) and define k0 = ⌈bnρ⌉. We divide the
expectation into two parts: K ≤ k0 and k0 + 1 ≤ K ≤ n. When k0 = 1, we simply have

E

[1{K≤k0} exp
(
∆K(2)

)]
= P(K ≤ 1) ≤ 1 .

When k0 ≥ 2, we use the expression (50) of ∆ to derive

E

[1{K≤k0} exp
(
∆K(2)

)]
≤ exp

[
∆k20

]

≤ exp

[
O(1)

(p1 − p0)
2

p0(1− p0)

b2n2

N2

]
= 1 + o(1)
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because of (53).
When k0 +1 ≤ K ≤ ⌊kmin⌋, we use the bound (34) and the identity (1− x) log(1− x) ≥ −x, to

get

E

[1{k0+1≤K≤⌊kmin⌋} exp
(
∆K(2)

)]
≤

⌊kmin⌋∑

k=k0+1

exp

[
∆
k(k − 1)

2
− nHρ

(
k

n

)]

≤
⌊kmin⌋∑

k=k0+1

exp

[
k

(
∆
k − 1

2
− log

(
k

nρ

)
+ 1

)]

For a > 0 fixed, the function f(x) = ax− log x is decreasing on (0, 1/a) and increasing on (1/a,∞).
Therefore, for k0 + 1 ≤ k ≤ n,

∆
k − 1

2
− log

(
k

nρ

)
≤ −ω ,

where

ω := min

[
log b−∆

k0 − 1

2
, log

(
kmin

nρ

)
−∆

kmin − 1

2

]
.

From what we did previously, we know that ∆(k0−1) = o(1), so that the first term in the maximum
tends to ∞. Therefore, it suffices to look at the second term in the maximum. In fact, kmin has
been precisely defined in (45) to make this second term diverge. Indeed, by (45) and (50), we have

∆
kmin − 1

2
≤ log

(
Nk∗

n2

)
− log log

[
n

log(N/n)

]
.

By Lemma 6 and since ρ ≍ n/N = o(1), we get log(kmin/(nρ))− log
(
Nk∗

n2

)
= o(1). Consequently,

log

(
kmin

nρ

)
−∆

kmin − 1

2
≥ log log

[
n

log(N/n)

]
+ o(1) → ∞ ,

because of (5).
When K > kmin, we have

E

[1{K>kmin} exp
(
∆KK(2)

)]
≤

n∑

k=⌊kmin⌋+1

exp

[
k

(
∆k

k − 1

2
− log

(
k

nρ

)
+ 1

)]
.

Now, using (52), we have

∆k
k − 1

2
− log

(
k

nρ

)
=

k − 1

2
[−2Hp1(qk) +H(qk)]− log

(
N

k

)
+ 2 log

(n
k

)
+ o(1) ,

which goes to −∞ uniformly over all k between ⌊kmin⌋ + 1 and n by the definition (47) of qk and
by the control of Hp1(qk) from Lemma 8. Hence, the sum above tends to zero.

This concludes the proof that E0 L̃
2 ≤ 1 + o(1).

7.3.3 Proof of Lemma 6

We only need to prove that k∗ → ∞ and that log(n/k∗) = o [log(N/n)] since

log

{
log

(
n

log(N/n)

)
∧ log(N/n)

}
= o(log(N/n)) .
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We divide the analysis into three cases depending on the behaviour of p1/p0.

CASE 1: p1/p0 → 1. Then, Lemma 3 tells us log
(
1 + (p1−p0)2

p0(1−p0)

)
∼ 2H(p1), so that

k∗ ≻ log(N/n)

H(p1)
∧ n ≻ n ,

since H(p1) < 2(1− η0) log(N/n)/n by (40). Hence k∗ → ∞ and log(n/k∗) = O(1).

CASE 2: p1/p0 → r with r ∈ (1,∞). Since H(p1) goes to 0, this enforces p0 → 0. Using Lemma 3
and (40), we derive that

p0 [r log(r)− r + 1] ≺ log(N/n)/n .

Hence, log(N/n)/p0 ≻ n. Going back to the definition of k∗, we derive that

k∗ ≻
[
1 +

log(N/n)

p0(r − 1)2

]
∧ n ≻ n .

CASE 3: p1/p0 → ∞. Again, we have p0 → 0. By Lemma 3 and (40),

p1 log

(
p1
p0

)
≺ log(N/n)

n
. (54)

Hence,

log

(
p1
p0

)
≺ log [log(N/n)/(np0)] = o[log(N/n)],

where the last part comes from (1). Hence,

k∗ ≻ log(N/n)

log(p1/p0)
→ ∞ .

Since (54) also implies that p1 ≺ log(N/n)/n, we have

n

k∗
≺ n log(1 + p21/p0)

log(N/n)
∨ 1 ≺ np21

log(N/n)p0
∨ 1 ≺ log(N/n)

np0
∨ 1 ,

so that log(n/k∗) ≤ log [log(N/n)/(np0)] ∨ 0 +O(1) = o[log(N/n)] by (1).

7.3.4 Proof of Lemma 7

Define q̃ by the equation

q̃

1− q̃
=

p21(1− p0)

p0(1− p1)2
, (55)

which implies θq̃ = 2θ. Because H is strictly increasing and continuous on (p0, q̃), to prove the
existence of qk it suffices to show that

kmin − 1

2
H(q̃) ≥ log(N/kmin) + 2 .

As in the proof of the previous lemma, we consider different cases depending on the convergence
of p1/p0 and of p21/p0. In all cases, except the last one, we show that

k∗H(q̃) ≥ 2(1 + ε) log(N/n),
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for some fixed ε > 0, which suffices by Lemma 6. If k∗ < n, so that k∗ ≥ 2
∆ log(N/n) (with ∆

defined in (50)). If k∗ = n and kmin < n, we have k∗ ≥ 2
∆ log(N/n)(1 + o(1)). Hence, it is enough

the prove that

H(q̃) ≥ (1 + ε)∆, for some fixed ε > 0.

The last case, Case 3(c) below — which corresponds to p0 = o(log(N/n)/n) and log(n) =
o(log(N)) — requires a more delicate treatment.

CASE 1: p1/p0 → 1. By the definition of q̃, we have q̃−p0 = (p1−p0)
[
1 + p1(1−p1)

p0−2p0p1+p21

]
∼ 2(p1−p0)

and Lemma 3 tells us that

H(q̃) ∼ 2(p1 − p0)
2

p0(1− p0)
≥ 2∆ .

CASE 2: p1/p0 → r with r ∈ (1,∞). Note that this forces p1 → 0. Here (55) implies that q̃/p0 ∼
(p1/p0)

2, so that H(q̃) ∼ p0
(
r2 log(r2)− r2 + 1

)
by Lemma 3. At the same time, ∆ ∼ p0(r − 1)2,

so that
H(q̃)

∆
∼ r2 log(r2)− r2 + 1

(r − 1)2
= 1 +

2r (r log(r)− r + 1)

(r − 1)2
> 1 .

CASE 3(a): p1/p0 → ∞ and p21/p0 → 0. We have q̃/p0 ∼ (p1/p0)
2 → ∞, implying that H(q̃) ∼

q̃ log(q̃/p0) ∼ 2(p21/p0) log(p1/p0) by Lemma 3. Also, ∆ ∼ log(1 + p21/p0) ∼
p21
p0
. Hence, H(q̃) ≫ ∆.

CASE 3(b): p1/p0 → ∞ and p21/p0 → r2 ∈ (0,∞). Here q̃ → 1/(1 + r2), so that q̃/p0 → ∞,
implying that H(q̃) ∼ q̃ log(q̃/p0) ≍ log(1/p0) → ∞. Also, ∆ → log(1 + r2). Hence, H(q̃) ≫ ∆.

CASE 3(c): p21/p0 → ∞. By Definition (44) of k∗, this implies k∗ < n. By definition of q̃, we
have q̃ = 1− o(1), so that H(q̃) ∼ log(1/p0). On the other hand, ∆ ∼ log(p21/p0). Therefore,

H(q̃)

∆
∼ log(1/p0)

log(p21/p0)
=

1

1− log(p21)
log(p0)

,

so that we are done if log(p1)/ log(p0) is bounded away from 0. When log(p1)/ log(p0) = o(1), we
need to work a little harder and perform a second order analysis. From the definition of q̃, we
derive 1− q̃ ≤ p0

p21
, so that

H(q̃) ≥ H(1− p0
p21

) = (1− p0
p21

) log(
1− p0

p21

p0
) +

p0
p21

log(

p0
p21

1− p0
) = (1− p0

p21
) log(

1

p0
) + o(1).

Hence,

H(q̃)

∆
− 1 ≥

log(1/p21)− p0
p21

log(1/p0)− o(1)

log
(
p21
p0

)
+ o(1)

≥ 2 log(1/p1)

log(1/p0)



1− p0 log(p0)

p21 log(p
2
1)

+ o(1)

1− 2 log(p1)
log(p0)

+ o(1)




= (2 + o(1))
log(1/p1)

log(1/p0)
.
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since p21/p0 → ∞. We use this lower bound to get

kmin − 1

2
H(q̃) ≥

[
log (N/k∗)− 2 log (n/k∗)− log log(n/ log(N/n))

]H(q̃)

∆

≥
[
log(N/kmin) + 2

]
×
[
1− 2 + o(1) + 2 log(n/k∗) + log log(n/ log(N/n))

log(N/n)

]

×
[
1 + (2 + o(1))

log(1/p1)

log(1/p0)

]
,

where we used Lemma 6 in the second inequality. In order to conclude, because of (5), it suffices
to show that

log(n/k∗) + log log(n/ log(N/n))

log(N/n)
≪ log(1/p1)

log(1/p0)
. (56)

The bound (54), coupled with p1 ≫
√
p0, implies that 2 log log(N/n)− log(n)+ log(1/(np0)) → ∞.

This, together with (1), forces log(n) = o [log(N/n)]. Hence,

log(1/p0)

log(N/n)
=

log(n) + log(1/(np0))

log(N/n)
= o(1) .

It remains to show that
log(n/k∗) + log log(n/ log(N/n))

log(1/p1)
= O(1).

By definition of k∗

log(n/k∗) ≤ log(n/ log(N/n)) + log(∆) ≤ log(n/ log(N/n)) + log log(p21/p0),

so that, because of (5) and (54), we have

log(n/k∗) + log log(n/ log(N/n))

log(1/p1)
≺ log(n/ log(N/n)) + log log(p21/p0) + log log(n/ log(N/n))

log(n/ log(N/n)) + log log(p1/p0)

= O(1) .

7.3.5 Proof of Lemma 8

We first note that, by the entropy bound (40) involving p1, the definition of qk Lemma 7, definition
of q̃ in (55), and the fact that H(q) is strictly increasing over q > p0, we have

p1 ≤ qk ≤ q̃, ∀k ≤ n . (57)

CASE 1: p1/p0 → 1. In the proof of Lemma 7 (Case 1), we have shown that q̃ defined in (55)
satisfies q̃ ∼ p0. By (57), we then get qk ∼ p0 ∼ p1. Then using Lemma 3 and the bound on the
entropy (40), we get

(qk − p0)
2

(p1 − p0)2
∼ H(qk)

H(p1)
≥ n

(1− η0)k
≥ 1

1− η0
. (58)

Hence, we may lower bound Hp1(qk)as follows:

Hp1(qk) ∼
(qk − p1)

2

2p1(1− p1)
∼ (qk − p0)

2

2p0(1− p0)

(
1− p1 − p0

qk − p0

)2

≻ H(qk)[1−
√

1− η0]
2 ,
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which allows us to conclude that

(k − 1)

2
Hp1(qk) ≻

(k − 1)

2
H(qk) ≻ log(N/n) ≫ log

(n
k

)
∨ 1 ,

where the last inequality follows from Lemma 6 and the fact that k ≥ kmin.

CASE 2: p1/p0 → r ∈ (1,∞). As in the proof of Lemma 7 (Case 2), we have p1 → 0. In the
proof of Lemma 7 (Case 1), we have shown that q̃/p0 → r2 and that q̃ → 0. By (57), we can use
the second asymptotic expression of the entropies in Lemma 3. The inequalities in (58) still hold,
giving

1

1− η0
≤ H(qk)

H(p1)
∼

qk
p0

log
(
qk
p0

)
− qk

p0
+ 1

r log(r)− r + 1
=

f(qk/p0)

f(r)
, (59)

where f(x) := x log(x)−x+1. Since f is convex and satisfies f ′(x) = log(x), we have f(x)−f(r) ≤
(x− r) log(x) for x ≥ r ≥ 1. Taking x = qk/p0 and using (59), we derive that

log

(
qk
p0

)(
qk
p0

− r

)
≥ f(r)

(
f(qk/p0)

f(r)
− 1

)
≥ f(r)η0

1− η0
(1 + o(1)) ≥ f(r)η0 ,

eventually. As a consequence, qk/p0 is also lower bounded away from r. Thus, log(qk/p1)/ log(qk/p0)
is bounded away from 0 by a constant that only depends on r and η0. We then derive,

log

(
qk
p1

)(
qk
p1

− 1

)
≻ log

(
qk
p0

)(
qk
p0

− r

)
. (60)

Now, for the entropy Hp1(qk), by Lemma 3 we have

Hp1(qk) ≻ (qk − p1)
2

p1
∧ qk log

(
qk
p1

)

= p1

[(
qk
p1

− 1

)2

∧ qk
p1

log

(
qk
p1

)]
≥ p1

(
qk
p1

− 1

)
log

(
qk
p1

)

as log(1 + x) ≤ x. Since H(p1) ∼ p0f(r), we get by (59) and (60)

Hp1(qk) ≻ rH(p1)

f(r)

(
qk
p1

− 1

)
log

(
qk
p1

)

≻ H(qk)

f(qk/p0)

(
qk
p0

− r

)
log

(
qk
p0

)

≻ H(qk)

≻ 1

k
log(N/n) ,

where the third line follows from the fact that the qk/p0 is lower bounded away from r and that
f(x) ∼ x log(x) when x → ∞. Thus,

k − 1

2
Hp1(qk) ≻ log(N/n) ≫ log(n/k) ∨ 1 ,

as before.
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CASE 3: p1/p0 → ∞. As in the proof of Lemma 7 (Case 2), we have p1 → 0. We start as in the
two previous cases, again using Lemma 3 to get the asymptotic expressions of the entropies. By
(57), qk/p0 ≥ p1/p0 → ∞, so that

n

(1− η0)(k − 1)
≤ H(qk)

H(p1)
∼ qk

p1

log(qk/p0)

log(p1/p0)
∼ qk

p1

[
1 +

log(qk/p1)

log(p1/p0)

]
(61)

It follows that qk
p1
(1 + log(qk/p1)

log(p1/p0)
) ≥ (1 − η0)

−1. Since log(p1/p0) → ∞, we derive that qk/p1 ≥
(1− η0/2)

−1 for n large enough. Since p1 ≤ qk ≤ q̃, we have qk/p1 ≤ q̃/p1 ≤ p1/p0. It follows that
log(qk/p1)/ log(p1/p0) ≤ 1, and therefore qk/p1 ≥ (1 + o(1)) n

2k by (61). We conclude that

qk
p1

≥
[
n

2k
∨ 1

1− η0/2

]
(1 + o(1)) . (62)

Turning to the entropy Hp1(qk), we have Hp1(qk) ≥ qk log(qk/p1) − qk + (1 − qk)p1. Using
Lemma 7 and Lemma 3, we get

k − 1

2
Hp1(qk) ≥

Hp1(qk)

Hp0(qk)
log

(
N

k

)
≥

log
(
qk
p1

)
− 1 + p1

qk
− p1

log
(
qk
p0

) log

(
N

n

)
(1 + o(1)) .

We explaing above that qk/p1 ≤ q̃/p1 ≤ p1/p0, so that qk/p0 ≤ (p1/p0)
2, implying log(qk/p0) ≤

2 log(p1/p0). Applying (62), we get

k − 1

2
Hp1(qk) ≻

log(N/n)

log(p1/p0)
[log(n/k) ∨ 1] ,

We saw in the proof of Lemma 6 (Case 3) that log(p1/p0) = o[log(N/n)], so we conclude that

k − 1

2
Hp1(qk) ≫ log(n/k) ∨ 1 .

7.4 Proof of Theorem 3

We start with a couple of lemmas.

Lemma 9. Under conditions (17), (18) and (19), we have

lim sup
nHp0(p1)

2 log(N/n)
< 1 ,

(p1 − p0)
2

p0

n3

N3/2
→ 0 . (63)

As in the proof of Theorem 2, for n large enough, we may assume that there exists η0 > 0 such
that

nHp0(p1)

2 log(N/n)
= 1− η0 . (64)

Lemma 10. Under conditions (17) and (64), we have

n2

N

(p1 − p0)
2

p0
= o(1) .
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We consider the likelihood ratio under the uniform prior:

L′ =

(
N

n

)−1 ∑

|S|=n

L′
S = π

[
L′
S

]
, (65)

and
L′
S := exp

[
θp1WS − Λ(θp1)n

(2) + θp′0(W −WS)− (N (2) − n(2))Λ(θp′0)
]
. (66)

As in the proof of Theorem 2, we use a thresholded version of L′ to prove that E0[|L′−1|] = o(1):

L̃ :=

(
N

n

)−1 ∑

|S|=n

L′
S1ΓS

,

where ΓS is defined in (46). As in the proof of Theorem 2, we prove that any subsequence of E0[L̃−1]
has 0 as an accumulation point. This allows us to assume that p1/p0 converges to r ∈ [1,∞] and
that p21/p0 converges to r2 ∈ [0,∞]. To control E0[L̃− 1], it suffices to prove that E0 L̃ = 1 + o(1)
and that E0[L̃

2] ≤ 1 + o(1).

First moment
E0 L̃ = π

[
E0[L

′
S1ΓS

]
]
= π

[
P
′
S(ΓS)

]
= P

′
S(ΓS) .

As the proof of Theorem 2, we can show that P′
S(ΓS) = 1 + o(1) relying only on (19).

Second Moment. It remains to prove that E0[L̃
2] ≤ 1 + o(1). Let S1, S2

iid∼ π and define
K = |S1 ∩ S2|. Observe that (WS1∩S2 , WS1 + WS2 − 2WS1∩S2 , W − WS1 − WS2 + WS1∩S2) are
independent. Arguing as in the proof of Theorem 2, we decompose the square of the modified
likelihood as follows.

E0 L̃
2 = π⊗2

[
E0

(
L′
S1
L′
S2
1ΓS1

1ΓS2

)]

≤ π⊗2
[
I · II · III

]

where

I := E0 exp
[
2θp′0(W −WS1 −WS2 +WS1∩S2)− 2Λ(θp′0)

(
N (2) − 2n(2) +K(2)

)]
,

II := E0 exp
[(

θp1 + θp′0

)
(WS1 +WS2 − 2WS1∩S2)− 2

(
Λ(θp1) + Λ(θp′0)

)
(n(2) −K(2))

]
,

III := E0

[
exp

(
2θp1WS1∩S2 − 2Λ(θp1)K

(2)
)
{WS1∩S2 ≤ wK}

]
.

All these expectations only depend on S1 and S2 through K.
The term III already appeared in the proof of Theorem 2, where we saw that III ≤ exp

(
∆K(2)

)

for K ≤ kmin, and that III ≤ exp
(
∆KK(2)

)
for K > kmin where kmin is defined in (45), while ∆

and ∆k are defined in (50) and (51), respectively.
Since the expectations inside I and II are not thresholded, we easily compute these terms:

I = exp
[(

N (2) − 2n(2) +K(2)
) (

Λ(2θp′0)− 2Λ(θp′0)
)]

,

with

Λ(2θp′0)− 2Λ(θp′0) = log

(
1 +

(p′0 − p0)
2

p0(1− p0)

)
≤ (p1 − p′0)

2

p0(1− p0)

(
n(2)

N (2)

)2

;
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and

II = exp
[
2
(
n(2) −K(2)

) (
Λ(θp1 + θp′0)− Λ(θp1)− Λ(θp′0)

)]
,

with

Λ(θp1 + θp′0)− Λ(θp1)− Λ(θp′0) = log

(
1− (p0 − p′0)(p1 − p0)

p0(1− p0)

)
≤ −(p1 − p′0)(p1 − p0)

p0(1− p0)

n(2)

N (2)
.

Since (p1 − p′0) = (p1 − p0)(1− n(2)/N (2))−1, we derive

I · II ≤ exp



(p1 − p0)

2

p0(1− p0)


−(n(2))2

N (2)
+

n(2)

N (2)

(
K(2) − (n(2))2

N (2)

)
2− n(2)

N(2)(
1− n(2)

N(2)

)2





 =: VK . (67)

By Lemma 10, ∆n2/N → 0 and by (63), ∆n3/N3/2 → 0. Hence, there exists b → ∞ such that

∆ n3

N3/2 b
2 → 0 and ∆bn

2

N → 0. Define k′0 = ⌊n2

N + n
N1/2 b⌋ and k0 = ⌊bn2

N ⌋. We can take b small
enough to constrain k0 ≤ n/2.

To prove that E0 L̃
2 ≤ 1 + o(1), we only need to show the four following results

E

[
{K ≤ k′0} exp

{
∆K(2)

}
VK

]
≤ 1 + o(1) , (68)

E

[
{k′0 < K ≤ k0} exp

{
∆K(2)

}
VK

]
= o(1) , (69)

E

[
{k0 < K ≤ kmin} exp

{
∆K(2)

}
VK

]
= o(1) . (70)

E

[
{kmin < K ≤ n} exp

{
∆KK(2)

}
VK

]
= o(1) . (71)

By Lemma 10 and the definition (67) of Vk, we have log(Vk) = o(k2/N) = o(k) when k ≤ n.
As a consequence, the expectations in (70) and (71) are almost the same as the expectations
E
[
{k0 < K ≤ kmin} exp

{
∆K(2)

}]
and E

[
{kminK ≤ n} exp

{
∆KK(2)

}]
that we bounded in the

proof of Theorem 2. This is made rigorous to establish the following result.

Lemma 11. Under the entropy condition (64), the bounds (70) and (71) hold.

In fact the main difference between the proof of Theorem 2 and the current proof lies in the
control of the two expectations in (68) and (69). Here, we need to carefully upper bound VK in
order to balance ∆K(2). Using the identity log(1 + x) ≤ x, the property log(Vk) ≤ 0 for k ≤ n/2
— easily verified from the definition (67) — and k0 ≤ n/2, we get

Vk ≤ exp


∆


−(n(2))2

N (2)
+

n(2)

N (2)

(
k(2) − (n(2))2

N (2)

)
2− n(2)

N(2)(
1− n(2)

N(2)

)2





 ,

for k ≤ k0. In the sequel, we note

∆′ :=
∆

2


1 +

n(2)

N (2)

2− n(2)

N(2)(
1− n(2)

N(2)

)2


 ,
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so that 2∆′ ∼ ∆. Thus, we get for any k ≤ k0,

exp
{
∆k(2)

}
Vk ≤ exp

{
2∆′

(
k(2) − (n(2))2

N (2)

)}

≤ exp

{
∆′
(
k2 − n4

N2

)
+ 2∆′ n

3

N2

}

≤ (1 + o(1)) exp

{
∆′
(
k2 − n4

N2

)}
, (72)

since ∆′n3/N2 ≺ ∆n3/N2 ≤ (p1−p0)2

p0(1−p0)
n3

N2 = o(n/N) = o(1) by Lemma 10.

Using this upper bound (72), we consider the expectation in (68)

E

[
{K ≤ k′0} exp

{
∆K(2)

}
VK

]
≺ exp

[
∆′
(
k′20 − n4

N2

)]

≺ exp

[
∆′
(
k′0 −

n2

N

)(
k′0 +

n2

N

)]

≤ exp

[
∆′ bn

N1/2

(2n2

N
+

bn

N1/2

)]
= 1 + o(1)

since ∆′ b2n2

N ≺ ∆ b2n2

N = o(1) and ∆′ bn3

N3/2 ≪ ∆ b2n3

N3/2 = o(1) by definition of b. We have proved (68).

To prove (69), we apply the Cauchy-Schwarz inequality and we upper bound K by k0 ≤ bn2/N ,

E

[
{k′0 < K ≤ k0} exp

{
∆′
(
K2 − n4

N2

)}]
≤ E

[
{k′0 < K ≤ k0} exp

{
∆′(b+ 1)

n2

N

(
K − n2

N

)}]

≤ P
1/2(K > k′0) E

1/2

[
exp

{
2∆′(b+ 1)

n2

N

(
K − n2

N

)}]

Recall that K ∼ Hyp(N,n, n), so that EK = n2

N and Var(K) ≤ n2

N . Hence, by Chebyshev’s
inequality, P(K > k′0) ≤ 1/b2 → 0.

We know from (Aldous, 1985, p.173) that K has the same distribution as the random variable
E(W |Bp) where W is binomial random variable of parameters n, n/N and BN some suitable σ-
algebra. By a convexity argument, we apply this to get

E exp

{
2∆′(b+ 1)

n2

N

(
K − n2

N

)}
≤

[
1 +

n

N

(
e2∆

′(b+1)n
2

N − 1

)]n
e−2∆′(b+1) n4

N2

≤ exp

[
4
n6

N3
(b+ 1)2∆

′2

]
≤ 1 + o(1) ,

since ∆′b(n
2

N ∨ n3

N3/2 ) = o(1) by definition of b. All in all, we have proved (69).

7.4.1 Proof of Lemma 9

The second convergence is a straightforward consequence of the definition of p0, (18) and (19), so
that we focus on the first result. Let us compute the difference between the two entropies Hp′0

(p1)
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and Hp0(p1).

Hp′0
(p1)−Hp0(p1) = p1 log

(
p0
p′0

)
+ (1− p1) log

(
1− p0
1− p′0

)

≤ n(2)

N (2)

[
p1

p1 − p′0
p′0

− (1− p1)
p1 − p′0
1− p′0

]

≤ n(2)

N (2)

(p1 − p′0)
2

p′0(1− p′0)

Arguing as in the proof of Lemma 10, we note that, under conditions (17) and (64),

n2

N

(p1 − p′0)
2

p′0(1− p′0)
= o(1) ,

so that Hp′0
(p1)−Hp0(p1) = o(1/N) = o (log(N/n)/n), since n ≤ N .

7.4.2 Proof of Lemma 10

CASE 1: p1/p0 → 1. By condition (64),

n2

N

(p1 − p0)
2

p0(1− p0)
∼ 2H(p1)

n2

N
≺ log

(
N

n

)
n

N
= o(1) .

CASE 2: p1/p0 → c ∈ (1,∞). Similarly,

n

N

(p1 − p0)
2

p0(1− p0)
≺ p0(c− 1)2

n2

N

≺ H(p1)
n2

N
≺ log

(
N

n

)
n

N
= o(1) .

CASE 3: p1/p0 → ∞. We have

n2

N

(p1 − p0)
2

p0(1− p0)
∼ p21

p0

n2

N
.

By condition (64) and p1 log(p1/p0) ∼ H(p1) ≺ 1
n log(N/n). Dividing this inequality by p0 and

then taking the logarithm leads to log(p1/p0) ≺ log log(N/n) + log(1/np0) = o(log(N/n)) by (17).
It follows that p1/p0 = o(

√
N/n) and p1 = o(log(N/n)/n). All in all, we conclude that

p21
p0

n2

N
= o

[
log(N/n)

√
n

N

]
= o(1) .

7.4.3 Proof of Lemma 11

Let us first consider (71). Using the upper bound log(Vk) = o(k), we only have to prove that

E

[
{K > kmin} exp

(
∆KK(2) + o(K)

)]
= o(1) .

We have shown in the proof of Theorem 2 (only using the entropy condition) that

E

[
{K ≥ kmin} exp

(
∆KK(2)

)]
≤

n∑

k=⌊kmin⌋+1

exp

[
k

(
∆k

k − 1

2
− log

(
k

nρ

)
+ 1

)]
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tends to zero since all the terms ∆k
k−1
2 − log

(
k
nρ

)
+ 1 simultaneously go to −∞ for k = ⌊kmin⌋+

1, . . . , n. Consequently,

E

[
{K > kmin} exp

(
∆KK(2) + o(K)

)]
≤

n∑

k=⌊kmin⌋+1

exp

[
k

(
∆k

k − 1

2
− log

(
k

nρ

)
+ 1 + o(1)

)]

also tends to zero.

Let us turn to (70) following again the same arguments as in the proof of Theorem 2.

E

[
{k0 < K ≤ ⌊kmin⌋} exp

{
∆K(2) + o(K)

}]

≤
⌊kmin⌋∑

k=k0+1

exp

[
∆k(2) + o(k)− nHρ

(
k

n

)]

≤
⌊kmin⌋∑

k=k0+1

exp

[
k

{
∆

2
(k − 1) + o(1)− log

(
k

nρ

)
+ 1

}]
.

Hence, as in the previous proof, we only need to prove that

ω := min

[
log b−∆k0/2, log

(
kmin

nρ

)
−∆kmin/2

]

goes to ∞. By definition of k0, we have ∆k0 = o(1), while we showed in the previous proof that

log
(
kmin
nρ

)
−∆kmin → ∞. With this, we conclude.

7.5 Proof of Proposition 2

We start with a useful result for proving that a test is asymptotically powerful based on the first
two moments of the corresponding test statistic.

Lemma 12. Suppose that for testing H0 versus H1, a statistic T satisfies

RT :=
E1(T )− E0(T )

max
(√

Var1(T ),
√

Var0(T )
) → ∞. (73)

Then there is a test based on T that is asymptotically powerful.

Proof. Consider the test that rejects when T ≥ E0(T )+
√

RT Var0(T ). By Chebyshev’s inequality,
the probability of type I error tends to zero:

P0(T ≥ E0(T ) +
√

RT Var0(T )) ≤
1

RT
→ 0.

For the probability of type II error, we have

P1(T ≥ E0(T ) +
√

RT Var0(T )) = P1

(
T − E1(T )√

Var1(T )
≥ −γ

)
≥ 1− 1

γ2
,

where

γ :=
RT max

(√
Var1(T ),

√
Var0(T )

)
−
√

RT Var0(T )√
Var1(T )

→ ∞.
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We now apply Lemma 12 to the total degree test. From (12), under the null,

E0(W ) =
N(N − 1)

2
p0, Var0(W ) =

N(N − 1)

2
p0(1− p0),

while under the alternative,

E1(W ) =
N(N − 1)

2
p0 +

n(n− 1)

2
(p1 − p0),

and

Var1(W ) =
N(N − 1)

2
p0(1− p0) +

n(n− 1)

2
[p1(1− p1)− p0(1− p0)].

In any case,

max
(
Var1(W ),Var0(W )

)
≤ 1

2
N2p0 +

1

2
n2(p1 − p0).

Recalling the definition of RW in (73), under (13) we have

RW ≥ n(n− 1)(p1 − p0)√
N2p0 + n2(p1 − p0)

≍ n2

N

p1 − p0√
p0

→ ∞.

Therefore, the total degree test is powerful when (13) holds.

7.6 Proof of Proposition 3

We use the union bound, Chernoff’s bound (28) and (30) to get

P0(W
∗
[n] ≥ an(2)) ≤

(
N

n

)
exp

(
−n(2)H(a)

)

≤ exp
(
n log(Ne/n)− n(2)H(a)

)
,

which goes to zero when

log(N/n)− (n− 1)

2
H(a) → −∞. (74)

Choose a = ηp0 + (1− η)p1 with η ∈ (0, 1) fixed, sufficiently small that

lim inf
nH(a)

2 log(N/n)
> 1.

This is possible because of how H varies, which is described in Lemma 3. We then consider the
test that rejects when W ∗

[n] ≥ an(2). We just chose a so that its level tends to zero. Under the

alternative, let S denote the community. By definition, W ∗
[n] ≥ WS, and since WS ∼ Bin(n(2), p1)

and p1n
(2) → ∞, WS = p1n

(2) + OP (
√

p1n(2)). Therefore, the test is powerful when p1 − a ≫√
p1n(2). Since p1−a = η(p1− p0) and η > 0 is constant, this is the same as (p1− p0)n

2 ≫
√

p1n2.
Now, if p1/p0 is bounded away from 1, this is true because p1 − p0 ≍ p1 and p1n

2 → ∞; while if
p1/p0 → 1, we use Lemma 3 and (15) to get that (p1 − p0)

2n/p0 ≥ cst log(N/n), implying that
(p1 − p0)n

2/
√

p1n2 ∼ (p1 − p0)n/p0 → ∞.
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7.7 Proof of Proposition 4

The arguments are based on cumbersome, but pedestrian moment calculations.

Under the null. We first show that V ∗ remains bounded under the null. Rewrite V as

V =
1

N − 2

N∑

i=1

(Wi· − (N − 1)p0)
2 + (p̂0 − p0)

2(N − 1)

[
−N(N − 1)

N − 2
+

N (2)

N (2) − 1

]

+ (p̂0 − p0)(N − 1)
N (2)

N (2) − 1
(−1 + 2p0)− (N − 1)

N (2)

N (2) − 1
p0(1− p0) . (75)

Since E0(p̂0 − p0)
2 = (N (2))−1p0(1− p0) and E0(Wi· − (N − 1)p0)

2 = (N − 1)p0(1 − p0), it follows
that E0 V = 0. For the variance, we have

Var0
[
(p̂0 − p0)

2
]

≤ 2p0
2(1− p0)

2

(N (2)2
+

p0(1− p0)

(N (2))3
, and

Var0

[
N∑

i=1

(Wi· − (N − 1)p0)
2

]
= 2N(N − 1)

[
(N − 3)p0

2(1− p0)
2 + p0(1 − p0)[p0

3 + (1− p0)
3]
]
.

Hence, we get

Var0(V ) ≺ Np0
2 + p0 ≺ Np0

2 ,

since p0 ≻ 1/N . Therefore, by Chebyshev’s inequality, V = OP (
√
Np0). Under the null, N (2)p̂0 =

W ∼ Bin(N (2), p0), and because N (2)p0 → ∞, we have p̂0 ≥ 1
2p0 with probability tending to 1 as

N → ∞. We conclude that, under the null, V ∗ = OP (1).

Under the alternative. Turning to the alternative hypothesis, we shall prove that V ∗ tends
to infinity with high probability by showing that E

′
1(V ) ≫

√
Np0 ∨

√
Var′1(V ) since

√
Np̂0 =

OP
′

1
(
√
Np0). The expression (75) of V still holds.

By definition of p0 = p′0 + n(2)/N (2)(p1 − p′0), we have E
′
1(p̂0) = p0. Furthermore,

E
′
1[(p̂0 − p0)

2]− 1

N (2)
p0(1− p0) ∼ −4

n2

N4
(p1 − p′0)

2

E
′
1

[
N∑

i=1

(Wi· − (N − 1)p0)
2

]
−N(N − 1)p0(1− p0) ∼ n3(p1 − p′0)

2

Inputing this into (75), we get

E
′
1[V ] ∼ (p1 − p′0)

2n
3

N
. (76)

By (22), E′
1[V ] ≫

√
Np′0 and E

′
1[V ] ≫ n2/N3/2(p1 − p′0) and it follows that E

′
1[V ] ≫

√
Np0. To

conclude, we need to control the variance of V under P′
1. Tedious computations lead us to

Var′1 [p̂0 − p0] ≺ p0
N2

,

Var′1
[
(p̂0 − p0)

2
]

≺ p20
N4

+
p0
N6

, and

Var′1

[
N∑

i=1

(Wi· − (N − 1)p0)
2

]
≺ N2p0 +N3p0

2 + n3(p1 − p′0)
2 + n3Np0(p1 − p′0)

2 + n4(p1 − p′0)
3 ,
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so that, using the fact that p0 ≻ 1/N , we get

Var′1[V ] ≺ Np0
2 +

n3

N
p0(p1 − p′0)

2 +
n4

N2
(p1 − p′0)

3 .

We conclude that E′
1[V ] ≫

√
Var′1(V ) as soon as the following cconditions are met

(p1 − p′0)
2n

3

N
≫

√
Np0, (p1 − p′0)

n3/2

N1/2
≫ √

p0, n(p1 − p′0)
1/2 ≫ 1.

We already argued that the first one holds, while the second and third are easily seen to be implied
by the first condition and the fact that p0 ≻ 1/N .

7.8 Proof of Proposition 5

It suffices to show that the scan test is asymptotically powerful for Ĥ0 versus H1, where the model
under Ĥ0 is G(N, p̂0). In view of Proposition 3, it is therefore enough to prove that, under (23),
we have

lim inf
nHp̂0(p1)

2 log(N/n)
> 1.

First note that p̂0 = W/N (2) is concentrated around its mean. Indeed, we have

E[N (2)p̂0] = (N (2) − n(2))p0 + n(2)p1 = N (2)p0 + n(2)(p1 − p0),

and

Var[N (2)p̂0] = (N (2) − n(2))p0(1− p0) + n(2)p1(1− p1) ≤ E[N (2)p̂0].

Hence, by Chebyshev’s inequality,

p̂0 = p0 + a+OP

( 1
N

√
p0 + a

)
, a :=

n(2)

N (2)
(p1 − p0).

Since p0 ≫ N−2, we have
√
p0/N = o(p0). If a ≥ p0, then p0 ≫ N−2 impies that

√
a/N = o(a).

All in all, we get
√
p0 + a/N = o(p0 + a) and p̂0 ∼P p0 + a. As in the previous proofs, we can

assume that p1/p0 → r ∈ [1,∞]. In the three following case, we prove that

lim inf
nHp̂0(p1)

2 log(N/n)
> 1.

CASE 1: p1/p0 → 1. In that case, we have a = o(p0) and
√
p0/N = o(p1 − p0) since

(p1 − p0)
2

p0
≻ Hp0(p1) ≻

log(N/n)

n
.

Hence, p̂0 − p0 = o(p1 − p0) and we conclude that

Hp̂0(p1) ∼P
(p1 − p̂0)

2

2p0(1− p0)
≥ (p1 − p0)

2 − 2(p1 − p0)(p̂0 − p0)

2p0(1− p0)
∼P Hp0(p1) .

CASE 2: p1/p0 → r ∈ (1,∞). Hence, a = o(p0) and p0 ∼P p̂0. It follows that

Hp̂0(p1) ∼P p̂0(r log(r)− r + 1) ∼P Hp0(p1) .
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CASE 3: p1/p0 → ∞. Since p̂0 ∼P p0 + a, we derive

Hp̂0(p1) ∼P p1 log

(
p1

p0 + a

)
≥ p1 log

(
p1

2(p0 ∨ a)

)
∼P Hp0(p1) ∧ 2p1 log

(
N

n

)

It remains to prove that lim inf np1 > 1 when lim inf nH(p1)/ log(N/n) > 2. Assume that lim inf np1 ≤
1 so that there exists a subsequence satisfying

limnp1 ≤ 1 and lim inf np1
log(p1/p0)

log(N/n)
> 2.

It follows that lim inf log(1/(np0))/ log(N/n) > 2 and lim supN2p0/n ≤ 1, which contradicts the
assumption of the proposition.

7.9 Proof of Proposition 6

We prove the result when p0 is known. The situation when p0 is unknown can be dealt with in
a similar way; see, for example, the proof of Proposition 5. Let B = W

2. We first lower bound
SDPn(W

2) from below under the alternative where S is the anomalous subset of indices. We have

SDPn(B) ≥ λmax
n (B) ≥ λmax

n (BS) ≥
1

n
1⊤SW

21S =
1

n

∑

i,j∈S

N∑

k=1

WikWkj.

We have

µS :=
1

n
ES

( ∑

i,j∈S

N∑

k=1

WikWkj

)

= [(n− 1)p1 + (N − n)p0] + (n− 1)
[
(n− 2)p21 + (N − n)p20

]
,

= (N − 1)p0 + (n− 1)(p1 − p0) + (n − 1)(N − 2)p20 + (n− 1)(n − 2)(p21 − p20),

and, after some tedious but straightforward calculations,

σ2
S :=

1

n2
VarS

( ∑

i,j∈S

N∑

k=1

WikWkj

)
= O

(
(N/n)p0(1− p0)[1 + (np0)

2] + p1(1− p1)[1 + (np1)
2]
)
.

By Chebyshev’s inequality, under the alternative, SDPn(B) ≥ µS −OP (σS).
Under the null, we bound SDPn(B) from above as Berthet and Rigollet (2012) do. Specifically,

they use a result of Bach et al. (2010), which says that

SDPn(B) = min
U

λmax(B +U ) + n|U |∞,

where the minimum is over symmetric matrices U = (Uij) and |U |∞ := maxi,j |Uij |. Similar to
what Berthet and Rigollet (2012) do, we apply this identity to U = (Uij) with Uij = −Bij1{|Bij |≤z},
obtaining

SDPn(B) ≤ λmax(τz(B)) + nz.

where τz(B) is the hard thresholding of B at threshold z, meaning the matrix with (i, j) coefficient
equal to Bij1{|Bij |>z}. Under the null, we have

Bii =
∑

k

Wik ∼ Bin(N − 1, p0),
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and, when i 6= j,

Bij =
∑

k

WikWjk ∼ Bin(N − 2, p20).

Fix ε > 0. Using Bernstein’s inequality (Lemma 2) and the union bound, we find that the
following inequalities happen simultaneously with probability tending to one under the null:

max
i

Bii ≤ (N − 1)p0 + x0, x0 :=
√

(1 + ε)2Np0(1− p0) logN + (1 + ε) log(N),

max
i 6=j

Bij ≤ (N − 2)p20 + x00, x00 := 2
√

(1 + ε)Np20(1− p20) logN + 2(1 + ε) log(N).

Hence, choosing z = (N − 2)p20 + x00, we have

SDPn(B) ≤ ζ := (N − 1)p0 + x0 + n(N − 2)p20 + nx00,

with high probability under the null. In order to conclude, we need to prove that µS −O(σS) > ζ
with probability going to one.

Before proceeding, we note that (25) implies that, for some η > 0,

np21 > 2(1 + η)p0
√
N logN ,

and (1) implies that either np0 ≥ 1, or (N/n)−a < np0 < 1, for some sequence a → 0. In particular,
this implies

n2 ≥ np0
√
N log(N) ≥

√
N(n/N)a ,

so that n ≥ N1/4−a. It also follows that n
√
p0 >

√
n(N/n)−a → ∞.

We have µS − ζ ≥ (1 + o(1))n2p21 −Np20 − x0 − nx00, with

n2p21
Np20

>
2(1 + η)np0

√
N logN

Np20
≍ n

√
logN√
Np0

>
n2

√
logN(N/n)a√

N
≥
√

logN → ∞ ,

x0
nx00

≤ 1

n
√
p0

+
1

n
→ 0 ,

nx00
n2p21

≤ 2n
√

(1 + ε)Np20 logN + 2(1 + ε)n log(N)

2(1 + η)np0
√
N logN

=
1 + ε

1 + η
+

√
(1 + ε) logN

(1 + η)Np20
=

1 + ε

1 + η
+ o(1) ,

since Np20 > Nn−2(N/n)−2a > N2t−2a with 2t− 2a → 2t > 0. Assuming that η > ε, it remains to
show that n2p21 ≫ σS to prove that µS−O(σS) > ζ with probability going to one in the asymptote.

We have σ2
S ≍ Np0/n +Nnp30 + n2p31, and

n2p21√
Np0/n

≻ n
√
p0
√

n logN → ∞ ,

since n
√
p0 → ∞, and also

n2p21√
Nnp30

≻
√

n log(N)/p0 → ∞ ,

and
n2p21√
n2p31

= n
√
p1 ≥ np1 → ∞ .
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7.10 Proof of Proposition 7

The first results follows from a simple consequence of Bernstein’s inequality for binomial random
variables and the union bound. Details are omitted. Let us concentrate on the second bound. It
suffices to prove that with probability PS going to one maxi∈S Wi· < maxi∈Sc Wi· since the distri-
bution of maxi∈Sc Wi· under PS is stochastically smaller than the distribution of maxi=1,...,N Wi·
under P0. Since lim sup log(n)/ log(N) < 1, we can assume that n < N1−ǫ for some ǫ > 0. Con-
dition (1) also enforces p0 ≫ log(N)/N . Since the power of the maximal degree test is increasing
with respect to p1, we can assume that p1 satisfies Condition (27) but is still large enough so that
p1 ≫ log(n)/n.

Fix δ > 0 arbitrarily small. Applying Berntein’s inequality (Lemma 2) and using Np0 ≫ log(N)
and np1 ≫ log(n), we derive that

max
i∈S

Wi· − (N − 1)p0 + (n− 1)(p1 − p0)

≤
√

2(1 + δ)(N − 1)p0(1− p0) log(n) +
√

(2 + δ)np1(1− p1) log(n)

≤
√

2(1 + δ)(1 − ǫ)(N − 1)p0(1− p0) log(n)(1 + o(1)) . (77)

with probability going to one since we assume that n(p1 − p0) = o(
√

N log(N)p0) = o(Np0).
Let us consider a consider a subset T ⊂ Sc of size N1−κ with some κ > 0. As the Wi· are

not independent, it is not straightforward to directly lower bound their supremum. This is why
we compare it to independent variables. Let us call the i∗T the smallest i in T that achieves
maxi∈T

∑
j∈T c Wi,j

max
i∈Sc

Wi· ≥ max
i∈T

Wi· ≥ max
i∈T

∑

j∈T c

Wi,j +
∑

j∈T
Wi∗T ,j .

Observe that that the first term is supremum of |T | independent binomial variables and that the
second term follows a binomial distribution with parameters p and |T |. With probability going
to one, we have

∑
j∈T Wi∗T ,j ≥ |T |p0 −

√
|T |p0(1− p0) log(|T |). Let us turn to the supremum of

independent binomial distributions. We start from P(Bin(n, p) = k) = pk(1− p)n−k
(
n
k

)
. Consider p

bounded away from 1 and k ≥ np such that k/n is also bounded away from one. Using the stirling
formula

√
2πn(n/e)n < n! <

√
2πn(n/e)ne1/(12n), we get

P(Bin(n, p) = k + i) ≥ exp [−nHp(k/n)]
1

e2
√
2πk

(
p(1− k/n)

k/n(1− p)

)i(
1− i

k + i

)i

,

P(Bin(n, p) ≥ k) ≻ exp [−nHp(k/n)]
1√
k

k/n(1− p)

k/n− p

[
1−

(
p(1− k/n)

k/n(1 − p)

)√
k
]

,

where we have summed the first inequality for i = 0, . . . ,
√
k − 1. Applying this lower bound to∑

j∈T c Wi,j and using Lemma 3, we derive that

PS


∑

j∈T c

Wi,j ≥ (N − 1− |T |)p0 +
√

2(1− δ)(N − |T | − 1)p0(1− p0) log(|T |)


 ≻ |T |1−δ

√
(1− δ) log(|T |)

.

Since the random variables
∑

j∈T c Wi,j for i ∈ T are independent, it follows that

sup
i∈T

∑

j∈T c

Wi,j ≥ (N − 1− |T |)p0 +
√

2(1 − δ)(N − |T | − 1)p0(1− p0) log(|T |) ,
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with probability going to one. All in all, we derive that with probability going to one

max
i∈Sc

Wi· ≥ (N − 1)p0 +
√

2(1− δ)(N − 1)p0(1− p0)(1− κ) log(N)− 2
√

2N1−κp0(1− p0) log(N) ,

where the last term is negligible in front of the second term. Comparing this last lower bound with
(77) and taking κ and δ small enough allows us to conclude.

7.11 Proof of Proposition 8

By Chebyshev’s inequality h(V) ∼P0 Np0/2 with probability going to one. Since h(S) ≤ |S|/2,
we have h(S) ≤ Np0/4 for all subsets S of size smaller than Np0/2 → ∞. Note that |S|h(S) ∼
Bin(|S|(2), p0). Applying Bernstein inequality (Lemma 2) and Lemma 4 to all subsets S of size
larger than Np0/2, we derive that

|S|h(S) ≤ |S|2
2

p0 +

√
|S|3p0(1− p0) log

(
Ne2

|S|

)
+ |S| log

(
Ne2

|S|

)

with probability larger than 1− exp(−Np0/2). Comparing h(S) with Np0/2, we get

2h(S)

Np0
≤ |S|

N
+ 2

√
|S|
N

√
2 + log(N/|S|)

Np0
+ 2

2 + log(N/|S|)
Np0

=
|S|
N

+ 2

√
|S|
N

o(1) + o(1) ,

since Np0 ≫ log(N). This quantity is away from one, except if |S| ∼ N . As a consequence,
maxS h(S) ∼P0 h(V) ∼P0 Np0/2 with probability going to one.

Let us turn to the alternative distribution. Under PS , |S|h(S) ∼ Bin(|S|(2), p1). It follows that
h(S) ∼PS

np1/2 with probability going to one. The densest subgraph test is therefore powerful
when lim inf np1

Np0
> 1.

Let us now assume that np1
Np0

→ 0. For any subset T , |T |h(T ) is the sum of two independent

binomial distributions of parameters (|S ∩ T |(2), p1) and (|T |(2) − |S ∩ T |(2), p0). Applying, as
previously, Bernstein’s inequality for all subsets T of size larger than Np0/2, we derive that

|T |h(T ) ≤ |T |2p0
2

+
|S ∩ T |2

2
(p1 − p0) +

√
|T |3p0 log

(
Ne2

|T |

)
+ |T | log

(
Ne2

|T |

)

+

√
2|T ∩ S|3p1 log

(
ne

|S ∩ T | ∨ 1

)
+ 2|S ∩ T | log

(
ne

|S ∩ T | ∨ 1

)

with probability going to one. Comparing h(T ) with Np0/2 we get

2h(T )

Np0
≤ |T |

N
+

n

N

p1 − p0
p0

+ o(1) +

√
np1
Np0

o(1) .

Since we assume that np1 = o(Np0), this quantity is away from one except if |T | ∼ N .
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