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Abstract 

In this paper, theoretical and numerical formulations of plane steady-state fluid 
flow in a fractured porous rock are used to investigate its effective permeability. 
If the far field inflow is uniform, the theoretical solution shows that the pressure 
field in the matrix is a function of the discharge in the fracture network. A 
numerical resolution based on singular integral equations is employed to derive 
the general problem of many intersected fractures in order to obtain the pressure 
field in anisotropic matrix. This solution allows computing the flux in the 
fractures which is the key issue for upscalling the equivalent permeability. This 
paper presents in detail the method for deriving the equivalent permeability from 
this solution. This method is applied to two real cases: an Excavation Damage 
Zone (EDZ) around a deep underground gallery and a geological rock formation 
presenting several families of fractures. The results of the both cases show that 
the developed method provides an easy and efficient way to determine the 
equivalent permeability of the fractured porous rock medium. This equivalent 
permeability can be implemented in analytical and numerical tools for 
continuous media towards estimating the flow characteristics in the rock 
formation.  
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1 Introduction 

In the context of important industrial applications such as underground nuclear 
waste disposal in claystone, geological CO2 storage or hydrocabure reservoir, the 
numerical modelling of fluid flow in fractured porous materials is intensively 
investigated. More specifically, in damaged zones, cracks and geological faults 
generally have a great effect on the effective permeability of porous media or 
rock masses. The interest of this question also extends to other fields, such as 
hydrogeology for water resources management in aquifers, etc. 
Different approaches are used to study the problem of flow in porous media 
containing fractures with mass exchange between matrix and fracture, a review 
of which can be found in Sanchez-Vila et al.[16], Goméz-Hernandez and Wen 
[7] and Renard and de Marsily [15]. However, these works are essentially based 
on some numerical-empirical modelling. Pouya and Fouché [11] presented some 
rigorous theoretical-numerical results based on homogenisation theories for the 
equivalent permeability of heterogeneous or fractured media. The self-consistent 
scheme is investigated by Dormieux and Kondo [5] and Barthélémy [1] for 
upscalling the effective permeability of cracked porous media. In their method, 
cracks are assimilated to ellipsoidal inclusion obeying to a Darcy’s law of flow. 
Following a different way, based on theory of Cauchy integral, Liolios and 
Exadaktylos [9] studied mathematically the problem of plane steady-state flow in 
an infinite isotropic porous media with multiple non-intersecting fractures. In 
this approach, the fracture is considered as zero thickness discontinuity line and 
complex numbers are used. Recently, Pouya and Ghabezloo [14] used a direct 
approach to obtain a general potential pressure solution function of flux in the 
fracture network for anisotropic matrix containing intersecting curvilinear 
fractures. By continuing this work, Pouya and Vu [13] employed the singular 
integral equation method to establish a fast numerical calculation that can be 
used to derive the general solution and to show the fluid flow around many 
intersecting fractures.  
Using the recent theoretical and numerical advances, this paper presents a 
method to evaluate the effective permeability of the permeable rock formation 
containing a dense fracture network. The numerical solution of pressure and 
discharge in the fracture, and then, the equivalent permeability using the 
formulas of average velocity and of average pressure gradient. The numerical 
calculation is applied to two cases. The first one is an EDZ around a deep 
underground gallery where the fractures are curved surfaces with a well defined 
shape and are almost regularly distributed in this zone. The second is a fractured 
geological formation with several families of fractures in which the fractures are 
plane surfaces and their characteristic parameters (orientation, length and 
position) are defined by a stochastic law. This approach provides an easy and 
efficient tool to determine the effective permeability of fractured porous rock 
formation which includes large applied areas.  



2 Mathematical formulation 

An infinite homogeneous body Ω containing a fracture network is considered 
(fig.1). Fracture number m is denoted Γm. It is generally presented by a smooth 
curve zm of the curvilinear abscise s. The intersection points of two or more 
fractures and the extremities of fractures ending in the matrix constitute a set of 
singular point S.  
Fluid velocity v(x) in the matrix is given by Darcy’s law: 
 

Γ−Ω∈∀x  ( ) ( ). ( )v x x p x= − ∇k  (1) 

where k is the matrix permeability and p(x) the pressure field. The flow through 
the discontinuity is usually expressed in terms of the Poiseuille’s law: 

Γ∈∀s  pscsq s∂−= ).()(  (2) 

where, s is the abscise along the fracture and c is the fracture’s conductivity. 
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Figure 1: Rock mass containing fractures 

Mass conservation in the matrix reads: 

Γ−Ω∈∀x  ∇.v(x) = 0 (3) 

The fracture-matrix mass exchange law on the fracture excluding singular points 
is obtained by considering masse balance in a portion ds of the fractures (fig.2a) 

Γ∈∀s  [ ][ ] 0)()(.)( =∂+ spsnzv s
 (4) 

 
Figure 2: a. Mass exchange between matrix and fracture. b Mass 

balance in a disc around an intersection point (Pouya and 
Ghabezloo [14])  



At the intersection points of fractures (fig.2b), Pouya and Ghabezloo [14] 
analyzed the masse balance in a small disc centred on the singular point and 
deduced the following relationship:    
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with bq0  is the outgoing flow on the branch of fracture b and δ  is the Dirac 

distribution. Nevertheless, a deeper mathematical analysis allows us to go further 
than eqn. (5) (Pouya and Vu [13]) and shows that: 
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b
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In order to calculate the effective permeability, it is sufficient to impose a 
constant pressure gradient at infinity: xAxp .)( =∞ . The previous problem was 

derived rigorously by Pouya and Ghabezloo [14] and a general solution of 
potential was given: 
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where, x is a current point in the material, zm(s) is the point the Γm at the 

curvilinear abscise s, )(sqm  and )(stm  are respectively the discharge along the 

fracture and the unit vector tangent to the fracture at this point, and κ is the 
square root of determinant of k: κ = k . 

3 Numerical calculation 

When field point x is located in the fractures; we obtain a singular integral 
equation of unknown pressure field in the fracture networks by replacing eqn. (2) 
into eqn. (7). This equation was resolved numerically by collocation method 
(Bonnet [3]) which consists of enforcing exactly eqn.(7) at finite number of 
points called collocation point. 
Curvilinear fractures are approximated by a series of small linear segments and 
are discretized by E elements numbered n and denoted En (1≤n≤E). Thus, eqn.(7) 
is written as follows: 
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Two types of elements are distinguished: extremity elements and current 
elements. Linear interpolation of pressure is used for current elements. General 
theoretical results of velocity field singularity around a fracture tip lead us to 
choose an interpolation function for the flux q(s) corresponding to a variation as 
s1/2 where s is the distance on the fracture line to the extremity point. Therefore, 
interpolation function for pressure on the left extremity elements (tip at s=0), 
current element, and right extremity elements (tip at s=L) are respectively 
expressed as following: 
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At first, a collocation point x is selected per element which verifies In(x) = 0. And 
then, the set of extremity points of fracture network is added as supplementary 
collocation points. It should be noted that no matter how the fractures intersect 
and how the discretization is made, the number of nodes N is always smaller 
than number of collocation points M. Otherwise, this method of selection of 
collocation points always leads to the number of equations M larger than the 
number of nodal pressure unknown. It is interesting that all elementary integrals 
In(x) in eqn. (9) can be calculated analytically by using the variable interpolations 
in eqn. (10), which provides a very fast calculation method.  
Enforcing eqn. (7) in M collocation points leads to following matrix equation: 

 H.P=Y (11) 

where, P(Nx1) is the column of nodal pressure unknown, Y(Mx1) is the column 
of infinite pressure field at collocation points and H(MxN) is computed from the 
assembly operation after computing all elementary integrals. The approximated 
solution can be found by the least squares fitting method. Pouya and Vu [13] 
have well shown the validity of this method by comparing the numerical solution 
of a single straight fracture in an infinite homogeneous media with the known 
closed-form solution of the same problem. 
Once the eqn. (11) is solved, the nodal pressure P{pn} (1≤n≤N) are known, using 
eqn. (2), we can deduce the flux in each element. In addition, in the post-
processing stage, eqn. (11) shall be employed again to compute directly the field 
pressure in porous matrix. 
For a homogeneous rock mass Ω, containing a fractures network Γm that is 
considered as the limit case of thin permeable layers, the average velocity and 
pressure gradient in Ω is given, respectively, by:  
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Let us to suppose that a linear pressure xAxp .)( = is applied at the infinity. 

The pressure field in matrix is known, especially on the boundaryΩ∂ , hence, the 
vector G  can be deduced such as: 
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where, n is the unit outward normal onΩ∂ . Besides, Pouya and Fouché [11] 

demonstrated that 1 .kvd G
Ω

Ω = −
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. Hence, the linearity of all velocities and 

flux with respect to G implies that there exists a tensor kf that satisfies the 
following relationship:  
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Thus, under boundary condition of linear pressure, the global permeability tensor 
of Ω domain is given by kp=k+kf. In the case of weak fracture density, the Mori-
Tanaka estimation of kp is determined by neglecting the interaction between 
fractures i.e. assuming that the flux q in the left-hand side of eqn. (14) is deduced 
from the results obtained for a single fracture in an infinite body which is given 
in Pouya and Ghabezloo [14]. However, in the case of high fracture density (or 
dense fracture networks), the integral of flux on the fracture network, i.e. the 
term described in left-hand side of eqn. (13) could be computed numerically for a 
fracture network discretized by E element.  
In the next section, we shall take up some real examples for calculating the 
effective permeability in using the recent advance of theoretical development and 
numerical tools which are described above.  

4 Application 

4.1 Effective permeability of EDZ 

Excavation of underground galleries generates cracks and fractures in a zone 
around the gallery called Excavation Damaged Zone (EDZ). The effect of 
fractures on the hydraulic properties of EDZ can be estimated through a 
numerical method taking into account the complex geometry and density of 
discontinuities. Three zones around the gallery (fig. 3) can be distinguished: the 
zone crossed by fractures; damaged or micro-fractured zone beyond fractured 
zone and the zone of intact rock beyond EDZ. The first zone is considered here 
to calculate its equivalent permeability. The fractures appearing in this zone has 
more or less regular geometry with the same shape, spacing, extensions that are 
repeated along the axis of gallery. 



 
Figure 3:  Representation of the EDZ around the gallery and the shape 

of the fracture (ANDRA 2008 [18]) 

 
Figure 4: Representation of the shape of the “chevron” fractures in a 

vertical plane  
Field observations show that the section of the fracture surfaces in the plane 
orthogonal to gallery axis (Z=const) is elliptical; the trace of fracture in vertical 
plane has a curvature form as a hyperbolic tangent function; the extension 
fracture in the horizontal fracture is more or less constant. This observation leads 
to take the following expression (eqn. 15) to represent the equation of the 
fracture surface Pouya et al. [17]. 
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The parameters a, b, λ depend on the orientation of the gallery. And then, the 
values: a=b=4, λ=0.57 are determined by comparing the trace of theoretical 
surface to observed fracture in field. In addition, the last parameter d=60 cm of 
spacing between fractures is fixed by the field measurement. 
 
The above geometrical model is used to evaluate the effective permeability of 
EDZ (fig. 5) with the isotropic matrix permeability k = 10-12m/s and the 
hydraulic conductivity of fracture c=10-11m2/s. The chevron fracture form is 
discretized by series of small linear segments.  



 

 
Figure 5: Representative segment of EDZ in calculating the effective 

permeability 
 
The linear pressure xAxp .)( =  is imposed at infinity. By solving the problem 

for two vectors of pressure gradient A1=(1,0) and A2=(0,1), two average velocity 
vectors 1V , 2V  and two average pressure gradient vectors 1G , 2G  are obtained.    

The equivalent permeability kp is then deduced from the equation V = -kp.G. 
Launching the numerical program for the EDZ zone, the following effective 
permeability matrix is found: 

 
9.09 5,39

5, 26 8.19
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−
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 x 10-12(m/s)  

This result shows that the effective permeability matrix is almost symmetric 
according to the results announced by Pouya and Fouché [11]. The principal 
directions of this permeability tensor can be calculated easily. They are found to 
be approximately parallel and orthogonal to the fractures surfaces. Otherwise, 
permeability predicted in this way is smaller than that given by the Mori-Tanaka 
estimation based on theoretical results of Pouya and Ghabezloo [14]. The 
difference can be explained by the fact that the Mori-Tanaka estimation does not 
take into account the fractures interaction. 

4.2 Fracture network in a permeable rock 

The study of fluid flow in fractured permeable rocks needs, first, a geometrical 
model of fractures that may be described the deterministic models (Kolditz and 
Clauser [8]) or by stochastic approach (Cacas et al. [4];  Billaux [2]; Gervais [6] 
and Maleki and Pouya [10]). The stochastic simulation of joint network is based 
on a hierarchical probabilistic model that realistically reproduces fracture 
connectivity using minimal data such as the number of fracture sets, the fracture 
length, spacing and density. In practice, the stochastic distribution is often used 
for modelling fluid flow in hydrogeology or for natural geological reservoir since 
their large flexibility. In this work, the study introduced by Maleki and Pouya 
[10] is adopted. A square domain is characterized by two corners (Xmin,Ymin) and 
(Xmax,Ymax). Three fracture families are defined each one by a density ρ (number 
of fracture per area unit), the half of fracture length r = L/2 and the orientation θ 
(angle between fracture line and x-axis, 0 ≤ θ < π). The fracture line is 
completely determined by these parameters and the coordinates (x0,y0) of its 
center. A uniform distribution of the fracture center points and of the angle θ; 
and an exponential law of length distribution are supposed.  
In order to study the effect of fracture density on the effective permeability of 
fractured porous media, three families are generated in a domain 10x10m2 of 



rock formation. Several configurations are considered for which all the fractures 
parameters are constant except for the density that increases (fig. 6). Herein, we 
introduce the dimensionless parameter / 2c kλ π ξ= , with 1mξ = ; and then we 

use the numerical procedure to compute the equivalent permeability of fractured 
porous rock with homogeneous permeability k for matrix formation. 

 
(a) 

 
(b) 

Figure 6: Fracture network in porous rock formation: (a) non-percolated 
network, (b) percolated network. 

 
Figure 7 depicts the evolution of the determinant of the effective permeability 
tensor eff pK = k  with the fracture density for different value ofλ . 
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Figure 7: Determinant of effective permeability matrix varies with 

fracture density for different values ofλ . 
The equivalent permeability increases first linearly with the fracture density ρ, 
for small values of the density. A sharp increase is observed for a critical density 
ρ≈1.5 that represents the percolation threshold. The dimensionless density 



2
Rρ = π ρ , where R  is the mean half-length of the fractures, is found to be 

around 1.2. After percolation threshold, the effective permeability function of 
density increases with a different pace as observed also by Maleki and Pouya 
[10]. 

5 Conclusion 

The effective permeability of fractured porous rocks is studied numerically using 
analytical and numerical developments based on the singular integral equations. 
This method that is clearly presented in this paper allows taking into account the 
real geometry of the fractures and of their interactions effects. The geometrical 
shape of individual fractures may be introduced precisely in the model as it has 
been done for the case of the EDZ studied here above. In the case of great 
number of fractures, the geometry of the fractures network can be described and 
generated numerically in the model by stochastic laws. The parameters of these 
stochastic laws are deduced from observation data. The numerical program that 
has been developed using this method provides an efficient tool for quick 
evaluation of the effective permeability of fractured porous rocks. The results 
presented in this paper to illustrate this method show also the important effect of 
percolation which modifies significantly the magnitude of effective permeability. 
 

Acknowledgement 

This work is co-funded by IFSTTAR and BRGM.  

Reference 

[1] Barthélémy, J.-F., Effective permeability of media with a dense network of 
long and micro fractures. Transport in Porous Media. 76, pp.153–178, 2009. 

[2] Billaux, D., Hydrogéologie des milieux fracturés. Géométrie, connectivité et 
comportement hydraulique, Thèse de doctorat, Ecole Nationale Supérieure 
des Mines de Paris, 1990. 

[3] Bonnet, M., Equations intégrales et éléments de frontière, CNRS 
Editions/Eyrolles : Paris, 1995. 

[4] Cacas, M. C., Ledoux, E., De Marsily, G. 1 Tillie, B., Modeling Fracture 
Flow with A Stochastic Discrete Fracture Network: Calibration and 
Validation: 1. The Flow Model. Water Resources Research, 26(3), pp. 479-
489, 1990.  

[5] Dormieux, L. & Kondo D. 2004. Approche micromécanique du couplage 
perméabilité–endommagement. C.R. Mecanique, 332, pp. 135-140, 2004. 

[6] Gervais F., Modélisation géométrique d’un réseau de fractures dans un 
massif rocheux stratifié. Application aux carrières marbrières de 
Comblanchien (Côte d’Or, France), PhD dissertation. Ecole Nationale 
Supérieure des Mines de Paris, 1993. 



[7] Goméz-Hernández, J. J. & Wen, X. H., Upscaling hydraulic conductivities 
in heterogeneous media: an overview. Journal of Hydrology, 183, pp. ix–
xxxii, 1996. 

[8] Kolditz, O. & Clauser, C., Numerical Simulation of Flow and Heat Transfer 
in Fractured Crystalline Rocks: Application to The Hot Dry Rock Site in 
Rosemanowes (U.K.). Geothermics, 27, pp. 1-23, 1998. 

[9] Liolios, P.A. & Exadaktylos, G. E., A solution of steady-state fluid flow in 
multiply fractured isotropic porous media. International Journal of Solids 
and Structures, 43, pp. 3960–3982, 2006. 

[10]  Maleki, K., Pouya, A., Courtois, A. & Su, K., Modélisation numérique du 
couplage entre l’endommagement et la perméabilité des argiles raides. 
16ème Congrès Français de Mécanique, Nice, 2003. 

[11]  Pouya, A. & Fouché, O., Permeability of 3D discontinuity networks: new 
tensors from boundary-conditioned homogenization. Advance Water 
Resources, 32, pp. 303-314, 2009. 

[12]  Pouya, A., Bourgeois, E., Haxaire, A. & Poutrel, A., Continuum equivalent 
model for the fractured EDZ around underground galleries in claystone. 
Congrès ANDRA, Nante, 2010. 

[13]  Pouya, A. & Vu, M. N., Modeling steady-state flow in fractured porous 
rocks by singular integral equations method. In Proceedings of the 13th 
International Conference of the International Association for Computer 
Methods and Advances in Geomechanics, Melbourne, 2011. 

[14]  Pouya, A. & Ghabezloo, S., Flow around a crack in a porous matrix and 
related problems. Transport in Porous Media, 84(2), pp. 511-532, 2010. 

[15]  Renard, P. & de Marsily, G., Calculating equivalent permeability: a review. 
Advance Water Resources, 20 (5–6), pp. 253–278, 1997. 

[16]  Sánchez-Vila, X., Girardi, G.P. & Carrera, J., A synthesis of approaches to 
upscaling of hydraulic conductivities. Water Resources Research, 31(4), pp. 
867–882, 1995.  

[17]  Pouya, A., Bourgeois, E., Haxiare, A., Elaboration des modèles mécaniques 
et hydromécaniques homogénéisés de l’EDZ au champ proche d’un ouvrage 
de stockage, Rapport ANDRA, C.RP.0LCP.10.0003, 2010. 

[18]  ANDRA 2008, Synthèse de la réunion du 15-11-2007 sur la 
conceptualisation des  réseaux de fractures dans l’EDZ « initiale »,  
C.NT.AEAP.08.0002, 2008. 

 

 


