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Abstract

In this paper, theoretical and numerical formulasiof plane steady-state fluid
flow in a fractured porous rock are used to ingegs its effective permeability.
If the far field inflow is uniform, the theoreticablution shows that the pressure
field in the matrix is a function of the discharge the fracture network. A
numerical resolution based on singular integralagigus is employed to derive
the general problem of many intersected fracturexrder to obtain the pressure
field in anisotropic matrix. This solution allowsoroputing the flux in the
fractures which is the key issue for upscalling éagivalent permeability. This
paper presents in detail the method for deriviregefuivalent permeability from
this solution. This method is applied to two reases: an Excavation Damage
Zone (EDZ) around a deep underground gallery ageodogical rock formation
presenting several families of fractures. The ttesof the both cases show that
the developed method provides an easy and efficiey to determine the
equivalent permeability of the fractured porouskracedium. This equivalent
permeability can be implemented in analytical andmaerical tools for
continuous media towards estimating the flow charistics in the rock
formation.
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1 Introduction

In the context of important industrial applicatiosisch as underground nuclear
waste disposal in claystone, geological,G@rage or hydrocabure reservoir, the
numerical modelling of fluid flow in fractured pare materials is intensively
investigated. More specifically, in damaged zorseacks and geological faults
generally have a great effect on the effective patnlity of porous media or
rock masses. The interest of this question alsenelet to other fields, such as
hydrogeology for water resources management irfaglietc.

Different approaches are used to study the proldérfiow in porous media
containing fractures with mass exchange betweemnixrend fracture, a review
of which can be found in Sanchez-Vila et al.[16pn®&z-Hernandez and Wen
[7] and Renard and de Marsily [15]. However, theseks are essentially based
on some numerical-empirical modelling. Pouya anddhé [11] presented some
rigorous theoretical-numerical results based ondgenisation theories for the
equivalent permeability of heterogeneous or frastunedia. The self-consistent
scheme is investigated by Dormieux and Kondo [5d &arthélémy [1] for
upscalling the effective permeability of crackedqaes media. In their method,
cracks are assimilated to ellipsoidal inclusionyobg to a Darcy’s law of flow.
Following a different way, based on theory of Cauédhtegral, Liolios and
Exadaktylos [9] studied mathematically the problefiplane steady-state flow in
an infinite isotropic porous media with multiple mmtersecting fractures. In
this approach, the fracture is considered as Zeéckriess discontinuity line and
complex numbers are used. Recently, Pouya and GloabEl4] used a direct
approach to obtain a general potential pressungtisnol function of flux in the
fracture network for anisotropic matrix containirigtersecting curvilinear
fractures. By continuing this work, Pouya and V@][employed the singular
integral equation method to establish a fast nwakGalculation that can be
used to derive the general solution and to showflifid flow around many
intersecting fractures.

Using the recent theoretical and numerical advantdgis paper presents a
method to evaluate the effective permeability &f germeable rock formation
containing a dense fracture network. The numerscdlition of pressure and
discharge in the fracture, and then, the equivalgetmeability using the
formulas of average velocity and of average presgpadient. The numerical
calculation is applied to two cases. The first amean EDZ around a deep
underground gallery where the fractures are custgthces with a well defined
shape and are almost regularly distributed inzbise. The second is a fractured
geological formation with several families of fras in which the fractures are
plane surfaces and their characteristic parameferentation, length and
position) are defined by a stochastic law. Thisrapph provides an easy and
efficient tool to determine the effective permeiypibf fractured porous rock
formation which includes large applied areas.



2 Mathematical formulation

An infinite homogeneous bod® containing a fracture network is considered
(fig.1). Fracture number m is denotEg. It is generally presented by a smooth
curve 7" of the curvilinear abscise s. The intersectionnfsoiof two or more
fractures and the extremities of fractures endmthe matrix constitute a set of
singular point S.

Fluid velocityv(x) in the matrix is given by Darcy’s law:

OxO0Q-T V(X)) =-k(x.0 p(® 1)

wherek is the matrix permeability ano(x) the pressure field. The flow through
the discontinuity is usually expressed in termghefPoiseuille’s law:

UsOr a(s) = —c(s).0,p (2)
where, s is the abscise along the fracture andheifracture’s conductivity.

~ 0Q

Figure 1: Rock mass containing fractures
Mass conservation in the matrix reads:

Ox0Q-r Ov(x) =0 )

The fracture-matrix mass exchange law on the fraatcluding singular points
is obtained by considering masse balance in agrods of the fractures (fig.2a)

OsOr [v(2)]In(s) +a.p(s) =0 4)

Figure 2: a. Mass exchange between matrix and fracture. bsMas
balance in a disc around an intersection point yRoand
Ghabezloo [14])



At the intersection points of fractures (fig.2b)ouya and Ghabezloo [14]
analyzed the masse balance in a small disc cepmethe singular point and
deduced the following relationship:

0zOS Ov(x) + (Z qé’jd(z -2)=0 5)

with qg is the outgoing flow on the branch of fracturerdm & is the Dirac

distribution. Nevertheless, a deeper mathematitalyais allows us to go further
than eqn. (5) (Pouya and Vu [13]) and shows that:

2.%=0 (6)

In order to calculate the effective permeability,is sufficient to impose a
constant pressure gradient at infinify; (X) = AX. The previous problem was

derived rigorously by Pouya and Ghabezloo [14] andeneral solution of
potential was given:

P9= P9+ ZI T e a2 C R T R
TIK H /_ x 2M( 9}

where, x is a current point in the materia)\(s) is the point thel}, at the
curvilinear absciss, g™ (s) andt™(s) are respectively the discharge along the

fracture and the unit vector tangent to the fractat this point, andk is the
square root of determinant kfk =\/ﬂ :

3 Numerical calculation

When field pointx is located in the fractures; we obtain a singutdaegral
equation of unknown pressure field in the fractueevorks by replacing egn. (2)
into eqgn. (7). This equation was resolved numdsichy collocation method
(Bonnet [3]) which consists of enforcing exactlynd@) at finite number of
points called collocation point.

Curvilinear fractures are approximated by a sesfesmall linear segments and
are discretized by E elements numbered n and déiqtd <n<E). Thus, eqn.(7)
is written as follows:

P = pw(x)+iln ®)
with:
x-2"(9 -1 4n
()-Iq() 7k ds ©

= [x-2's]




Two types of elements are distinguished: extrengtgments and current
elements. Linear interpolation of pressure is usecurrent elements. General
theoretical results of velocity field singularityoand a fracture tip lead us to
choose an interpolation function for the flux g¢syresponding to a variation as
s'? where s is the distance on the fracture line éoetktremity point. Therefore,
interpolation function for pressure on the leftrertity elements (tip a$=0),
current element, and right extremity elements @ips=L) are respectively
expressed as following:

_ p1
(9= p+rPe— P = Js

p(s) = p+——"5 (10)

- P
L
_ P~ Py 3
p(9= p, - P PrT—s
\/ES

At first, a collocation poink is selected per element which veriflg) = 0. And
then, the set of extremity points of fracture netwis added as supplementary
collocation points. It should be noted that no erattow the fractures intersect
and how the discretization is made, the numberaafes N is always smaller
than number of collocation points M. Otherwise stimmethod of selection of
collocation points always leads to the number afagigns M larger than the
number of nodal pressure unknown. It is interestiveg all elementary integrals
I.(X) in eqn. (9) can be calculated analytically byngsihe variable interpolations
in egn. (10), which provides a very fast calculatinethod.
Enforcing eqgn. (7) in M collocation points leadsatiowing matrix equation:
H.P=Y (11)
where, PKIx1) is the column of nodal pressure unknownM¥Xt) is the column
of infinite pressure field at collocation pointsdaid(MxN) is computed from the
assembly operation after computing all elementatggrals. The approximated
solution can be found by the least squares fittimegthod. Pouya and Vu [13]
have well shown the validity of this method by caripg the numerical solution
of a single straight fracture in an infinite homogeus media with the known
closed-form solution of the same problem.
Once the eqgn. (11) is solved, the nodal pressupg P{<n<N) are known, using
egn. (2), we can deduce the flux in each elementaddition, in the post-
processing stage, eqn. (11) shall be employed agaiompute directly the field
pressure in porous matrix.
For a homogeneous rock maQs containing a fractures netwolik, that is
considered as the limit case of thin permeablertaythe average velocity and
pressure gradient f is given, respectively, by:

V== “mg+2jqﬂs} gsé OpdQ (12)



Let us to suppose that a linear pressyogx) = AXis applied at the infinity.

The pressure field in matrix is known, especialtytbe boundargQ , hence, the
vector G can be deduced such as:

G

1
— | p.nds 13
al (13)

where,n is the unit outward normal @f2 . Besides, Pouya and Fouché [11]
demonstrated thaljijde:—k.G- Hence, the linearity of all velocities and
QL -

flux with respect toG implies that there exists a tenskf that satisfies the
following relationship:

1
Q;rfmqtdF —k".G (14)

Thus, under boundary condition of linear presstire global permeability tensor
of Q domain is given bkP=k+k". In the case of weak fracture density, the Mori-
Tanaka estimation ok is determined by neglecting the interaction betwee
fractures i.e. assuming that the flgin the left-hand side of eqn. (14) is deduced
from the results obtained for a single fracturamminfinite body which is given
in Pouya and Ghabezloo [14]. However, in the cddeigh fracture density (or
dense fracture networks), the integral of flux be fracture network, i.e. the
term described in left-hand side of eqn. (13) cdddcomputed numerically for a
fracture network discretized tyelement.

In the next section, we shall take up some realmgkas for calculating the
effective permeability in using the recent advaottheoretical development and
numerical tools which are described above.

4 Application

4.1 Effective permeability of EDZ

Excavation of underground galleries generates sracid fractures in a zone
around the gallery called Excavation Damaged ZoeBZ). The effect of
fractures on the hydraulic properties of EDZ can dsimated through a
numerical method taking into account the complerngetry and density of
discontinuities. Three zones around the gallery. @) can be distinguished: the
zone crossed by fractures; damaged or micro-fradtmone beyond fractured
zone and the zone of intact rock beyond EDZ. Ttet fione is considered here
to calculate its equivalent permeability. The fumes appearing in this zone has
more or less regular geometry with the same shagaging, extensions that are
repeated along the axis of gallery.



Limite de la zone
micro-fissurée par
le déconfinement

Figure 3: Representation of the EDZ around the gallery aedshape
of the fracture (ANDRA 2008 [18])

Figure 4. Representation of the shape of the “chevron” fragtin a
vertical plane

Field observations show that the section of thetin@ surfaces in the plane
orthogonal to gallery axis (Z=const) is elliptictthe trace of fracture in vertical
plane has a curvature form as a hyperbolic tandemttion; the extension
fracture in the horizontal fracture is more or lesastant. This observation leads
to take the following expression (egn. 15) to reprg the equation of the
fracture surface Pouya et al. [17].

X? Y?

—t =1

a~ b°tanhdZ)
The parameters a, b,depend on the orientation of the gallery. And thitve
values:a=b=4, 1=0.57 are determined by comparing the trace of theaktic

surface to observed fracture in field. In additithe last parameter d=60 cm of
spacing between fractures is fixed by the field sneament.

(15)

The above geometrical model is used to evaluateetteetive permeability of

EDZ (fig. 5) with the isotropic matrix permeability = 10"?m/s and the

hydraulic conductivity of fracture c=1¢m?s. The chevron fracture form is
discretized by series of small linear segments.



H=0.8m

.d]
Figure 5: Representative segment of EDZ in calculating tecéfe
permeability

The linear pressurgy(x) = Ax is imposed at infinity. By solving the problem
for two vectors of pressure gradiekt=(1,0) andA,=(0,1), two average velocity
vectorsV*', V? and two average pressure gradient vec@®rsG® are obtained.

The equivalent permeabilitg® is then deduced from the equativi= -kP.G.
Launching the numerical program for the EDZ zore following effective
permeability matrix is found:

[ 9.09 -5,39

kP = x 10*(m/s)
-5,26 8.19

This result shows that the effective permeabilitatmx is almost symmetric

according to the results announced by Pouya andheéo{l1]. The principal

directions of this permeability tensor can be claltad easily. They are found to
be approximately parallel and orthogonal to thestfrees surfaces. Otherwise,
permeability predicted in this way is smaller thhat given by the Mori-Tanaka
estimation based on theoretical results of Pouyd @mabezloo [14]. The

difference can be explained by the fact that theiManaka estimation does not
take into account the fractures interaction.

4.2 Fracture network in a permeable rock

The study of fluid flow in fractured permeable redkeeds, first, a geometrical
model of fractures that may be described the détéstict models (Kolditz and
Clauser [8]) or by stochastic approach (Cacas.q4hl Billaux [2]; Gervais [6]
and Maleki and Pouya [10]). The stochastic simatatf joint network is based
on a hierarchical probabilistic model that reatialiy reproduces fracture
connectivity using minimal data such as the nundfdracture sets, the fracture
length, spacing and density. In practice, the stett distribution is often used
for modelling fluid flow in hydrogeology or for natal geological reservoir since
their large flexibility. In this work, the study tiwduced by Maleki and Pouya
[10] is adopted. A square domain is characterizetiMo corners (3n, Y min) @nd
(Xmax Ymax)- Three fracture families are defined each ona bignsityp (number
of fracture per area unit), the half of fracturadéh r = L/2 and the orientatidh
(angle between fracture line and x-axis,<00 < =). The fracture line is
completely determined by these parameters and dbedmates (¥yo) of its
center. A uniform distribution of the fracture cenpoints and of the angte
and an exponential law of length distribution anpposed.

In order to study the effect of fracture densitytbe effective permeability of
fractured porous media, three families are gendratea domain 10x10Mmof



rock formation. Several configurations are congdefor which all the fractures
parameters are constant except for the densityiribegases (fig. 6). Herein, we
introduce the dimensionless paramgterc/ 277k, withé =1m; and then we

use the numerical procedure to compute the equivaermeability of fractured
porous rock with homogeneous permeabHlifpr matrix formation.
e i S

S Eal

Figure 6: Fracture network in porous rock formation: (a) mmereolated
network, (b) percolated network.

Figure 7 depicts the evolution of the determinainthe effective permeability
tensork ¢ = ‘k F" with the fracture density for different valueAf
100

0 \ I I \
0 0.5 1 P 15 2 2.5

Figure 7: Determinant of effective permeability matrix variggh

fracture density for different values 4f.
The equivalent permeability increases first lingaxith the fracture density,
for small values of the density. A sharp increaseliserved for a critical density
p=1.5 that represents the percolation threshold. @heensionless density




E:nﬁzp, where R is the mean half-length of the fractures, is foundbe

around 1.2. After percolation threshold, the effextpermeability function of
density increases with a different pace as obsealsdl by Maleki and Pouya
[10].

5 Conclusion

The effective permeability of fractured porous ek studied numerically using
analytical and numerical developments based orsitigular integral equations.
This method that is clearly presented in this pablems taking into account the
real geometry of the fractures and of their intBoms effects. The geometrical
shape of individual fractures may be introduceccigedy in the model as it has
been done for the case of the EDZ studied here eablovthe case of great
number of fractures, the geometry of the fracturetsvork can be described and
generated numerically in the model by stochastislarhe parameters of these
stochastic laws are deduced from observation dédta.numerical program that
has been developed using this method provides ficieat tool for quick

evaluation of the effective permeability of fraadrporous rocks. The results
presented in this paper to illustrate this methoohsalso the important effect of
percolation which modifies significantly the magme of effective permeability.
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