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INF-SUP STABILITY OF THE DISCRETE DUALITY FINITE VOLUME METHOD
FOR THE 2D STOKES PROBLEM

F. BOYER∗, S. KRELL†, AND F. NABET∗

Abstract. “Discrete Duality Finite Volume” schemes (DDFV for short) on general 2D meshes, in particular
non conforming ones, are studied for the Stokes problem with Dirichlet boundary conditions. The DDFV method
belongs to the class of staggered schemes since the components of the velocity and the pressure are approximated
on different meshes. In this paper, we investigate from a numerical and theoretical point of view, whether or not the
stability condition holds in this framework for various kind of mesh families. We obtain that different behaviors may
occur depending on the geometry of the meshes.

For instance, for conforming acute triangle meshes, we prove the unconditional Inf-Sup stability of the scheme,
whereas for some conforming or non-conforming Cartesian meshes we prove that Inf-Sup stability holds up to a
single unstable pressure mode. In any cases, the DDFV method appears to be very robust.
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1. Introduction.

1.1. The Stokes problem. In this paper, we are concerned with a finite volume approxi-
mation of the following 2D incompressible Stokes problem: Find a velocity field u : Ω→ R2

and a pressure field p : Ω→ R,
−∆u +∇p = f , in Ω,

divu = 0, in Ω,

u = 0, on ∂Ω, m(p)
def
=

1

mΩ

∫
Ω

p = 0.

(1.1)

We assume that Ω is a bounded connected polygonal domain in R2, mΩ being its Lebesgue
measure, and f is a function in (L2(Ω))2.

We recall that the well-posedness of this problem is related to the validity of the so-called
inf-sup (or LBB) inequality

inf
p∈L2

0(Ω)

(
sup

v∈(H1
0 (Ω))2

b(v, p)

‖v‖H1‖p‖L2

)
> 0, (1.2)

where b(v, p) =

∫
Ω

p (divv) and L2
0(Ω) = {p ∈ L2(Ω) : m(p) = 0}. This inequality is

itself known to be equivalent to the existence of a continuous right-inverse of the divergence
operator stated in the following result (see [5, 14]).

PROPOSITION 1.1. There exists a linear continuous operator Π : L2
0(Ω) → (H1

0 (Ω))2

such that

div(Π(p)) = p, ∀p ∈ L2
0(Ω).
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1.2. Finite volume methods for the Stokes problem. Finite volume methods have
been extensively studied for a long time in several engineering fields. Indeed, they are well
suited for the numerical approximation of conservation laws appearing for instance in fluid
mechanics, petroleum engineering and many other fields. The theoretical analysis of finite
volume schemes (convergence analysis, error estimates,...) began at the end of the 1980’s
and had a rapid expansion during the 1990’s: see for instance the book by Eymard, Gallouët,
Herbin [12] and all the references therein.

Finite volume approximation of Stokes problems is a current research topic and can be
split into two families of methods: collocated and staggered. Let us cite for instance the
Mimetic Finite Difference method [3, 4], the Discrete Duality Finite Volume (DDFV for
short) schemes [8, 17], the Mixed Finite Volume schemes [10], the Scheme Using Stabiliza-
tion and Hybrid Interfaces [13]. The most celebrated staggered scheme is the MAC scheme
[15, 19] on Cartesian grids.

In this paper, we focus on a DDFV approximation of Stokes equations. It is a staggered
method since the approximate velocity field and pressure field are associated with different
control volumes. Actually, for a Cartesian grid, the scheme we propose here is equivalent
(except on the boundary) to two uncoupled MAC schemes written on two different staggered
meshes. Therefore, the DDFV method for the Stokes problem can be considered as a possible
extension of MAC to general meshes.

The DDFV scheme requires velocity unknowns on both vertices and “centers” of control
volumes. These two sets of unknowns allow to reconstitute two-dimensional discrete gradient
(defined on new geometric elements called diamond cells) and discrete divergence operators
that are in duality in a discrete sense giving its name to the method. This approach was
first introduced in [8] but some important points of the analysis were left open, such as the
question of uniform inf-sup instability of the method which is the main topic of our work.

Note that, to overcome these difficulties in the analysis, the author of [8] proposed to for-
mulate the Stokes problem in the vorticity-velocity-pressure form and then to approximate the
velocity on the diamond cells and the pressure on both vertices and centers of primal control
volumes. This dual approach does not seem to be adapted to Dirichlet boundary conditions or
more general problems such as multifluid Stokes problem for which the viscosity is no more
constant on Ω. That’s the reason why we believe that the study of the DDFV method in the
natural velocity/pressure formulation is still an important topic.

In order to cope with the absence of a suitable discrete Inf-Sup inequality for the natu-
ral DDFV formulation, it was also proposed in [17] to add a stabilization term in the mass
conservation equation. With this stabilization technique, a complete analysis of the scheme
was given. However, it was numerically observed in this reference that very accurate ap-
proximations can be computed without stabilization (or at least with very small stabilization
parameters). This is our main motivation to go further in the analysis of the inf-sup stability
of the scheme in the present paper.

We only consider here the 2D case but it is worth noticing that DDFV schemes have been
successfully extended to the 3D case in [6, 7, 16, 1] for linear anisotropic scalar diffusion
equations and in [18] for the Stokes problem.

1.3. Outline. This article is organized as follows. In Section 2, we first recall the DDFV
framework, introduce the DDFV scheme and define the associated discrete Inf-Sup condition.
In section 3, we first study three examples of different mesh families for which we are able to
prove the unconditional Inf-Sup stability of the scheme. We also provide numerical illustra-
tions for these properties.

Conversely, in Section 4, we prove that for some other mesh families (of Cartesian type),
the Inf-Sup stability does not hold. However, we can provide a precise description of the
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instability by establishing that there exists only one single unstable mode in such a way that
the Inf-Sup stability holds if we impose to the pressure fields to be orthogonal to the unstable
mode. This seems to explain why, in that cases, the Inf-Sup instability of the scheme is
sufficiently weak so that the convergence properties of the method are preserved even without
a strong stabilization term as observed in [17].

The general idea underlying our analysis is to build a kind of approximate Fortin op-
erator, since building a real Fortin operator seems to be complicated, in particular for non-
conforming meshes (see Propositions 3.1 and 4.1).

Finally, in Section 5, we propose some numerical experiments to check whether or not
the Inf-Sup stability holds for different mesh families for which we are not able yet to provide
theoretical results. The conclusion of the study is that the DDFV seems to be very robust as
far as the Inf-Sup stability property is concerned.

2. DDFV framework.

2.1. The DDFV meshes and notations. For any two vectors a,b in R2, we denote by
a · b = tab ∈ R their euclidean scalar product, by a ⊗ b = atb ∈ M2(R) their tensor
product and by a ∧ b = det(a,b) ∈ R their wedge product. Moreover, ex =

t
(1 0) and

ey =
t
(0 1) denote the canonical basis of R2.

For any two matrices ξ, ξ̃ ∈ M2(R), we denote by (ξ : ξ̃) = Tr(tξ ξ̃) ∈ R their
contracted product and by |ξ| = (ξ : ξ)1/2 the associated norm.

The meshes. We recall here the main notations and definitions taken from [2]. A DDFV
mesh T is constituted by a primal mesh M ∪ ∂M and a dual mesh M∗ ∪ ∂M∗. An example
for square locally refined primal mesh is on Figure 2.1.

Interior primal cells K ∈M

Centers xK

Dual cells K∗ ∈M∗ ∪ ∂M∗

Vertices xK∗

Fig. 2.1: (Left) The primal mesh M ∪ ∂M; (Right) The dual mesh M∗ ∪ ∂M∗.

The (interior) primal mesh M is a set of disjoint open polygonal control volumes K ⊂ Ω
such that ∪K = Ω. We denote by ∂M the set of edges of the control volumes in M included
in ∂Ω, which we consider as degenerate control volumes.

• To each control volume K ∈M, we associate a point xK. Even though many choices
are possible, in this paper, we always assume xK to be the mass center of K.
• To each degenerate control volume K ∈ ∂M, we associate the point xK equal to the

midpoint of the control volume K.



4

This family of points is denoted by X = {xK, K ∈M ∪ ∂M}.
Let X∗ denote the set of the vertices of the primal control volumes in M that we split

into X∗ = X∗int ∪X∗ext where X∗int ∩ ∂Ω = ∅ and X∗ext ⊂ ∂Ω. With any point xK∗ ∈ X∗int
(resp. xK∗ ∈ X∗ext), we associate the polygon K∗ ∈M∗ (resp. K∗ ∈ ∂M∗) whose vertices are
{xK ∈ X, such that xK∗ ∈ K, K ∈ M} (resp. {xK∗} ∪ {xK ∈ X, such that xK∗ ∈ K, K ∈
(M∪∂M)}) sorted with respect to the clockwise order of the corresponding control volumes.
This defines the set M∗ ∪ ∂M∗ of dual control volumes.

For all control volumes K and L, we assume that ∂K ∩ ∂L is either empty or a common
vertex or an edge of the primal mesh denoted by σ = K|L. We note by E the set of such edges.
We also note σ∗ = K∗|L∗ and E∗ for the corresponding dual definitions.

Given the primal and dual control volumes, we define the diamond cells Dσ,σ∗ being the
quadrangles whose diagonals are a primal edge σ = K|L = (xK∗ , xL∗) and a corresponding
dual edge σ∗ = K∗|L∗ = (xK, xL), (see Fig. 2.2). Note that the diamond cells are not
necessarily convex. If σ ∈ E ∩ ∂Ω, the quadrangle Dσ,σ∗ degenerate into a triangle. The set
of the diamond cells is denoted by D and we have Ω = ∪

D∈D
D.

Notations. For any primal control volume K ∈M ∪ ∂M, we note:
• mK its Lebesgue measure,
• EK the set of its edges (if K ∈M), or the one-element set {K} if K ∈ ∂M.
• DK = {Dσ,σ∗ ∈ D, σ ∈ EK},
• hK its diameter.

We will also use corresponding dual notations: mK∗ , EK∗ , DK∗ and hK∗ .

xK

xL

xK∗

xL∗
σσ∗

~nσ∗K∗

~nσK

Fig. 2.2: Notations in a diamond cell D

For a diamond cell D = Dσ,σ∗ whose vertices are (xK, xK∗ , xL, xL∗) (see Fig. 2.2), we note
• mσ the length of the primal edge σ,
• mσ∗ the length of the dual edge σ∗,
• ~nσK the unit vector normal to σ oriented from xK to xL,
• ~nσ∗K∗ the unit vector normal to σ∗ oriented from xK∗ to xL∗ ,
• hD its diameter,
• mD its measure.

We define the set of boundary diamond cells Dext as the set of diamond cells which
possess one side included in ∂Ω; the set of interior diamond cells is thus Dint = D\Dext.

Mesh regularity measurement. Let size(T ) be the maximum of the diameters of the
diamond cells in D. We introduce a positive number reg(T ) that measures the regularity of a
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given mesh and is useful to perform the convergence analysis of finite volume schemes:

reg(T ) := max

(
N ,N ∗,max

D∈D

mσmσ∗

mD
, max
K∈M
D∈DK

hK
hD

, max
K∗∈M∗∪∂M∗
D∈DK∗

hK∗

hD
,

max
D∈D

hD√
mD

, max
K∗∈M∗∪∂M∗

hK∗√
mK∗

,max
K∈M

hK√
mK

)
,

(2.1)

where N and N ∗ are the maximum of edges of each primal cell and the maximum of edges
incident to any vertex. The number reg(T ) should be uniformly bounded when size(T )→ 0
for the convergence results to hold.

2.2. Discrete unknowns and discrete mean-value projection. The DDFV method for
the Stokes problem requires staggered unknowns. It associates to any primal cell K ∈M∪∂M
an unknown value uK ∈ R2 for the velocity, to any dual cell K∗ ∈ M∗ ∪ ∂M∗ an unknown
value uK∗ ∈ R2 for the velocity and to any diamond cell D ∈ D an unknown value pD ∈ R
for the pressure. These unknowns are collected in the families

uT =


uM = (uK)K∈M
u∂M = (uK)K∈∂M
uM∗ = (uK∗)K∗∈M∗
u∂M

∗
= (uK∗)K∗∈∂M∗

 ∈ (R2
)T

and pD =
(
(pD)D∈D

)
∈ RD.

We specify a subset of
(
R2
)T

needed to take into account the Dirichlet boundary conditions

E0 =
{
uT ∈

(
R2
)T

such that u∂M = 0 and u∂M
∗

= 0
}
.

We define now the interior mean-value projection for any vector field v ∈ (H1
0 (Ω))2

PM

mv =

((
1

mK

∫
K

v(x) dx

)
K∈M

)
,PM∗

m v =

((
1

mK∗

∫
K∗

v(x) dx

)
K∗∈M∗

)
. (2.2)

We finally gather these projections in the following notation

PTmv =


PM

mv
0

PM∗

m v
0

 ∈ E0, ∀ v ∈ (H1
0 (Ω))2. (2.3)

2.3. Discrete operators. In this subsection, we define the discrete operators which are
needed in order to write and analyse the DDFV scheme. We begin with the discrete gradient.

DEFINITION 2.1. We define the discrete gradient operator ∇D mapping vector fields of(
R2
)T

into matrix fields of (M2(R))D, as follows

∇DuT =
1

2mD
[mσ(uL − uK)⊗ ~nσK +mσ∗(uL∗ − uK∗)⊗ ~nσ∗K∗ ] , ∀D ∈ D,

for any uT ∈
(
R2
)T

.
DEFINITION 2.2. We define the discrete divergence operator divD mapping vector fields

of
(
R2
)T

into scalar fields in RD, as follows

divD uT = Tr(∇DuT ) =
1

2mD
[mσ(uL − uK) · ~nσK +mσ∗(uL∗ − uK∗) · ~nσ∗K∗ ] ,∀D ∈ D,
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for any uT ∈
(
R2
)T

.
DEFINITION 2.3. We define the discrete divergence operator divT mapping matrix fields

in (M2(R))D into vector fields in E0, as follows
divKξD =

1

mK

∑
σ∈∂K

mσξ
D~nσK, ∀K ∈M,

divK
∗
ξD =

1

mK∗

∑
σ∗∈∂K∗

mσ∗ξ
D~nσ∗K∗ , ∀K∗ ∈M∗,

for any ξD ∈ (M2(R))D.
In order to write the DDFV scheme in a compact form, we will denote the discrete diver-

gence on the primal mesh and the one on the interior dual mesh as follows

divMξD =
(
divKξD

)
K∈M , divM∗ξD =

(
divK

∗
ξD
)
K∗∈M∗ .

DEFINITION 2.4. We define the discrete gradient operator ∇T mapping scalar fields
RD into vector fields in E0 as follows

∇T pD = divT (pDId), ∀pD ∈ RD.

REMARK 2.1. We emphasize that, by definition, divK
∗
ξD and ∇K∗pD are set to 0 for

boundary dual cells K∗ ∈ ∂M∗.
In short, we have introduced four operators

∇D :
(
R2
)T → (M2(R))D,

divD :
(
R2
)T → RD,

divT : (M2(R))D → E0,

∇T : RD → E0.

2.4. Discrete inner product and norms. First of all, we define the three following inner
products

JuT ,vT KT =
1

2

( ∑
K∈M

mKuK · vK +
∑

K∗∈M∗
mK∗uK∗· vK∗

)
, ∀uT ,vT ∈ E0,

(pD, qD)D =
∑
D∈D

mDp
DqD, ∀pD, qD ∈ RD,

(ξD : φD)D =
∑
D∈D

mD(ξD : φD), ∀ξD, φD ∈ (M2(R))D.

Then, we define the corresponding norms as follows

‖uT ‖T ,2 = JuT ,uT K
1
2
T , ∀uT ∈ E0,

‖pD‖D,2 = (pD, pD)
1
2

D, ∀pD ∈ RD,

|||ξD|||D,2 = (ξD : ξD)
1
2

D, ∀ξD ∈ (M2(R))D.

The following discrete Stokes formula holds, giving its name to the Discrete Duality
Method (see for instance, [2, 9]).
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THEOREM 2.1 (Discrete Stokes formula). For all ξD ∈ (M2(R))D, uT ∈ E0, we have

JdivT ξD,uT KT = −(ξD : ∇DuT )D.

We finally recall (see for instance, [2]) that vT ∈ E0 7→ |||∇DvT |||D,2 is a norm in E0

(actually, a suitable Poincaré inequality holds) and that for some C1 > 0 depending only on
reg(T ), we have the stability estimate

|||∇DPTmv|||D,2 ≤ C1‖v‖H1 , ∀v ∈ (H1
0 (Ω))2. (2.4)

2.5. Stokes-DDFV scheme. The DDFV scheme for Problem (1.1) reads as follows:
Find uT ∈ E0 and pD ∈ RD such that

divM(−∇DuT + pDId) = fM,

divM∗(−∇DuT + pDId) = fM∗ ,

divD uT = 0,

m(pD) =
∑
D∈D

mDp
D = 0,

(2.5)

with fM = PM

mf and fM∗ = PM∗

m f , where the projection is defined by (2.2).
This scheme is formally obtained by integrating the momentum equation in Problem

(1.1) on the primal mesh M and on the interior dual mesh M∗ and the mass conservation
equation on the diamond mesh D. The momentum and mass fluxes are then approximated
by using the DDFV gradients as defined in the previous section. The homogeneous Dirichlet
boundary conditions are specified on ∂M and on ∂M∗ through the definition of the space E0.

We also want to emphasize that the practical implementation of the scheme is easy since,
for any kind of mesh, each numerical flux that needs to be evaluated in the momentum equa-
tion depends, at most, on four velocity unknowns. Moreover, the matrix of the system (see
Section 2.6.2) can be assembled diamond cell by diamond cell.

In [8] the author shows that for an acute triangle mesh or a non-conforming rectangle
mesh, then Problem (2.5) has a unique solution. However, no stability estimate was derived
even in that cases, that is the reason why we are interested in studying the discrete Inf-Sup
condition for this scheme.

2.6. Discrete Inf-Sup constant.

2.6.1. Definition. Given a DDFV mesh T , we define the discrete Inf-Sup constant βT
associated with the scheme (2.5) as follows

βT = inf
pD∈RD

(
sup

vT ∈E0

bT (vT , pD)

|||∇DvT |||D,2‖pD −m(pD)‖D,2

)
, (2.6)

where:

bT (vT , pD) = (divD vT , pD)D = −JvT ,∇T pDKT , ∀vT ∈ E0,∀pD ∈ RD. (2.7)

For a given mesh T , we classically know that the scheme (2.5) is well-posed if and only
if we have βT > 0, see for instance [11]. Actually, since the problem is finite-dimensional, it
is easily seen that βT = 0 if and only if there exists a non-zero pressure mode pD, such that
m(pD) = 0 and ∇T pD = 0. In that case, the couple (vT = 0, pD) is a non trivial solution
to (2.5) with a zero right-hand side, which proves that the scheme is not well-posed.
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For a given family of meshes, such that size(T )→ 0, we know that the scheme is stable
if and only if

lim inf
size(T )→0

βT > 0. (2.8)

Assuming this property, it is very easy to adapt the proof of the error estimates given in [17]
to get a convergence result for our scheme without any stabilization term.

The aim of this paper is thus to investigate from a theoretical and numerical point of
view, whether or not the stability condition (2.8) holds for various kinds of mesh families.
We will see that the results depend on the particular geometry of the meshes, in particular
for non-conforming meshes, which is a case of particular interest for applying the DDFV
method.

2.6.2. Reformulation as an eigenvalue problem. In this section, we describe a practi-
cal method for computing, on a given mesh, the discrete Inf-Sup constant (2.6) for the Stokes
DDFV scheme. The key-point is to relate the value of βT to the eigenvalues of a suitable
matrix.

To be more precise, let us define NT = Card(T ), ND = Card(D) and denote by 〈·, ·〉
the Euclidean inner product on the spaces R2NT and RND and | · | the associated Euclidean
norms. We are going to rewrite (2.5) and (2.6) by means of the following matrices

• The stiffness matrix RT ∈M2NT (R) such that for any uT ∈
(
R2
)T

, we have:

RTu
T =


((
−mKdivK(∇DuT )

)
K∈M

)
u∂M((

−mK∗divK
∗
(∇DuT )

)
K∗∈M∗

)
u∂M

∗

 .

We can notice that RT satisfies

〈RTuT ,vT 〉 = (∇DuT : ∇DvT )D, ∀uT ∈
(
R2
)T
,∀vT ∈ E0.

Moreover, RT maps E0 into E0 and is symmetric definite positive on E0. Therefore,
R−1
T and R±1/2

T are well-defined operators that map E0 into itself.
• The divergence matrix BT ∈ MND,2NT (R) such that for any uT ∈ E0, pD ∈ RD,

we have

〈BTuT , pD〉 = bT (uT , pD).

We can notice that

BTu
T =

(
(mD divD uT )D∈D

)
and tBT p

D =
1

2


((
−mK∇KpD

)
K∈M

)
0((

−mK∗∇K
∗
pD
)
K∗∈M∗

)
0

 .

Observe that, by construction, tBT pD ∈ E0 for any pD ∈ RD.
• The pressure mass matrixMT ∈MND

(R) such that for any pD, qD ∈ RD, we have

〈MT pD, qD〉 = (pD, qD)D.
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The matrix formulation of the scheme (2.5) is then: Find uT ∈
(
R2
)T

and pD ∈ RD

such that 
(
RT

tBT
BT 0

)(
uT

pD

)
=

(
PTmf

0

)
〈MT pD,1〉 = 0.

(2.9)

Using the matrices defined above we can now write (2.6) as follows

βT = inf
pD∈RD

〈MT pD,1〉=0

(
sup

vT ∈E0

〈BT vT , pD〉
〈RT vT ,vT 〉

1
2 〈MT pD, pD〉

1
2

)
. (2.10)

We show in the following Lemma that, for a given mesh T , computing βT corresponds
to solving a suitable eigenvalue problem. We then solve this problem by using the subspace
iteration method with Rayleigh-Ritz projections (see for instance [20]). We are then able
to compute the actual value of βT for different meshes and thus to investigate the Inf-Sup
stability properties of the DDFV scheme.

Notation: From now on, for any square real matrix M with real eigenvalues, we define
λi(M) to be the ith smallest eigenvalue of M .

LEMMA 2.2 (Relation with the Schur complement). The discrete Inf-Sup constant βT
satisfies β2

T = λ2(ST ), where ST is the symmetric matrix defined by

ST = M
− 1

2
T BTR

−1
T

tBTM
− 1

2
T ∈MND

(R).

REMARK 2.2. If we set pD = M
1
2
T 1, we have ST pD = 0, so that the smallest eigenvalue

of the matrix ST is always λ1(ST ) = 0.

Proof. We perform the change of variable uT = R
1
2
T v
T ∈ E0 in (2.10) and we get

βT = inf
pD∈RD

〈MT pD,1〉=0

 sup
uT ∈E0

〈
BTR

− 1
2

T uT , pD
〉

〈uT ,uT 〉
1
2 〈MT pD, pD〉

1
2



= inf
pD∈RD

〈MT pD,1〉=0

1

〈MT pD, pD〉
1
2

 sup
uT ∈E0

〈
uT , R

− 1
2

T
tBT p

D
〉

|uT |



= inf
pD∈RD

〈MT pD,1〉=0

∣∣∣R− 1
2

T
tBT p

D
∣∣∣

〈MT pD, pD〉
1
2

.

Considering now β2
T and performing the change of variable qD = M

1
2
T p

D, we get

β2
T = inf

pD∈RD

〈MT pD,1〉=0

〈
BTR

−1
T

tBT p
D, pD

〉〈
M

1
2
T pD,M

1
2
T pD

〉 = inf
qD∈RD

〈M
1
2
T q

D,1〉=0

〈
ST q

D, qD
〉

|qD|2
. (2.11)

Thanks to Remark 2.2, we have actually proved that β2
T is the second smallest eigenvalue of

the matrix ST . �
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(a) Conforming triangle mesh (b) Non-conforming triangle mesh (c) Checkerboard mesh

Fig. 3.1: First series of meshes

3. Mesh families with unconditional Inf-Sup stability. In this section, we study three
families of meshes of the unit square domain Ω =]0, 1[2 for which we are able to prove the
unconditional Inf-Sup stability of the Stokes-DDFV scheme.

• The conforming triangle meshes on Fig. 3.1a: note that all the results concerning
this mesh family hold for any other connected polygonal domain Ω.

• The non-conforming triangle mesh on Fig. 3.1b: these meshes are obtained by
performing a k × k rectangle mesh of the subdomain ]0, 0.5[×]0, 1[ and a 2k ×
2k rectangle mesh of the subdomain ]0.5, 1[×]0, 1[ then by dividing each rectangle
into two triangles. We obtain a non-conforming triangle mesh. Note that the non-
conforming edges are situated along one single line, called the interface.

• The checkerboard mesh on Fig. 3.1c: we start from a uniform square mesh of Ω
then we divide half of the initial squares into 4 smaller squares as shown in the
figure. This gives a non-conforming quadrangle mesh. Note that, contrary to the
previous case, there are many non-conforming edges in this mesh (almost a constant
proportion of the total number of edges).

3.1. Numerical results. For each of the three mesh families described above, we com-
pute numerically the square root of the second smaller eigenvalue of ST obtained by the
subspace iteration method with Rayleigh-Ritz projection (see [20]).

We observe in each case the behavior of βT =
√
λ2(ST ) as a function of the mesh size

size(T ) (see Fig. 3.2).
We infer from these numerical experiments, that the DDFV scheme seems to be Inf-

Sup stable for these mesh families, since we observe that βT remains away from zero when
size(T ) goes to 0.

3.2. Theoretical results. In this section, we prove that the stability observed numeri-
cally in Figure 3.2 actually holds for these kind of meshes.

The analysis is based on the general theorem that we give below. It relies on the following
property which is proved in [17, Prop. 5.5]. It consists in proving that the projection operator
PTm is, in some sense, almost a Fortin operator.

PROPOSITION 3.1. Let T be a DDFV mesh associated with Ω. There exists a constant
C2 > 0, which depends only on reg(T ), such that for any v ∈ (H1

0 (Ω))2 and pD ∈ RD, we
have ∣∣∣∣ ∑

D∈D

∫
D

pD (divD vT − divv) dz

∣∣∣∣ ≤ C2|pD|h‖v‖H1 , (3.1)
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10−2 10−1 100
10−1

100

Conforming triangle meshes, Fig. 3.1a
Non-conforming triangle meshes, Fig. 3.1b

Checkerboard meshes, Fig. 3.1c

Fig. 3.2: Stability investigation for a first series of meshes; βT as a function of size(T )

where vT = PTmv is the mean-value projection of v on the mesh T (see (2.3)).
In this result, the following weak seminorm | · |h over RD is defined by

|pD|2h =
∑

D,D′∈D
D|D′

(h2
D + h2

D′)(p
D′ − pD)2, ∀pD ∈ RD, (3.2)

where the notation D|D′ means that D and D′ have a common side; we say that they are
neighbors.

THEOREM 3.1 (General Inf-Sup stability result). Let be T a DDFV mesh on a connected
polygonal domain Ω.

Assume that there is αT ≥ 1 such that

|pD|h ≤ αT ‖hT∇T pD‖T ,2, ∀pD ∈ RD. (3.3)

Then, there exists C3 > 0 depending only on reg(T ) such that,

C3

αT
‖pD −m(pD)‖D,2 ≤ sup

vT ∈E0

bT (vT , pD)

|||∇DvT |||D,2
, ∀pD ∈ RD, (3.4)

that is βT ≥ C3/αT .
As consequence, if we consider a regular mesh family (that is such that reg(T ) is

bounded when size(T ) → 0), then the Inf-Sup stability of the scheme will be proved if we
can obtain the norm equivalence property (3.3) with a number αT which is bounded as soon
as size(T ) → 0. Proving this last property will be for instance the aim of Propositions 3.2,
3.3 and 3.4 for different kind of mesh families.
Proof. Let us consider a fixed pD ∈ RD. By adding a constant to pD, it is clear that we can
always assume that m(pD) = 0.

Let C2 > 0 be the constant appearing in (3.1) and Π be the continuous right-inverse of
the divergence, as introduced in Proposition 1.1.

We divide the analysis into two cases in a similar way as in the classical proof of the
inf-sup stability of the Taylor-Hood element (see [11, 14]).

• First case, we assume that pD is such that

‖hT∇T pD‖T ,2 ≤
1

2‖Π‖C2αT
‖pD‖D,2. (3.5)
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Since the integral of the piecewise constant function pD =
∑
D∈D

pD1D ∈ L2(Ω) is

equal to zero on Ω, we can take v = Π(pD) so that

divv = pD and ‖v‖H1 ≤ ‖Π‖‖pD‖D,2. (3.6)

We set now vT = PTmv so that, by construction, we have vT ∈ E0. By using (2.4),
we obtain

|||∇DvT |||D,2 ≤ C1‖v‖H1 ≤ ‖Π‖C1‖pD‖D,2. (3.7)

We add and subtract
∑
D∈D

∫
D

pD divv to bT (vT , pD) and we use (3.6) to get

bT (vT , pD) = ‖pD‖2D,2 +
∑
D∈D

∫
D

pD (divD vT − divv) .

Proposition 3.1 and Estimate (3.6) imply

bT (vT , pD) ≥ ‖pD‖2D,2 − ‖Π‖C2|pD|h‖pD‖D,2.

We apply now the assumption (3.3)

bT (vT , pD) ≥ ‖pD‖2D,2 − ‖Π‖C2αT ‖hT∇T pD‖T ,2‖pD‖D,2.

By assumption (3.5), it is now clear that we have

bT (vT , pD) ≥ 1

2
‖pD‖2D,2.

Thus, according to (3.7), letting be β1 =
1

2‖Π‖C1
, we finally obtain

β1‖pD‖D,2 ≤ sup
vT ∈E0

bT (vT , pD)

|||∇DvT |||D,2
.

• Second case, we assume that pD is such that

‖hT∇T pD‖T ,2 ≥
1

2‖Π‖C2αT
‖pD‖D,2. (3.8)

In that case, we do not use the operator Π but we directly build a vT ∈ E0 as follows

{
vK = −h2

K∇
KpD, ∀K ∈M, vK = 0, ∀K ∈ ∂M,

vK∗ = −h2
K∗∇

K∗pD, ∀K∗ ∈M∗, vK∗ = 0, ∀K∗ ∈ ∂M∗.
(3.9)

For any D ∈ D, by using Definition 2.1 we have, for some C > 0 depending only
on reg(T ),

mD|∇DvT |2 ≤ C
(
|vK − vL|2 + |vK∗ − vL∗ |2

)
≤ 2C

(
|vK|2 + |vL|2 + |vK∗ |2 + |vL∗ |2

)
= 2C

(
|h2
K∇

KpD|2 + |h2
L∇
LpD|2 + |h2

K∗∇
K∗pD|2 + |h2

L∗∇
L∗pD|2

)
≤ 2Creg(T )2

(
mK|hK∇KpD|2 +mL|hL∇LpD|2

+mK∗ |hK∗∇K
∗
pD|2 +mL∗ |hL∗∇L

∗
pD|2

)
.
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It follows that, for some C4 > 0 depending only on reg(T ), we have

|||∇DvT |||D,2 ≤ C4‖hT∇T pD‖T ,2.

Moreover, by (3.9) we get

bT (vT , pD) = −JvT ,∇T pDKT = ‖hT∇T pD‖2T ,2.

Thus, we conclude with β2 =
1

2C4‖Π‖C2
, that

bT (vT , pD)

|||∇DvT |||D,2
≥ 1

C4
‖hT∇T pD‖T ,2 ≥

β2

αT
‖pD‖D,2.

Noting that αT ≥ 1 by definition, the claim is proved with C3 = min(β1, β2) which actually
only depends on reg(T ). �

Our strategy now is to investigate whether or not the inequality (3.3) holds for some αT
which is uniform with respect to size(T ) for each of the mesh families described above. It
corresponds to an estimate of differences of two pressure values on neighboring diamond cells
in terms of the DDFV pressure gradient which is defined on primal and dual meshes. The
difficulty comes from the fact that the value of the pressure gradient on a given cell depends
on the pressure values on all the diamond cells associated with that cell. Therefore, it is not
necessarily easy to deduce an estimate on the difference of two pressure values.

In order to perform this analysis, we introduce the following notations.
Notations. Let be K a primal cell, D, D′, D′′ three diamond cells of K.
• We say that pD K−→ pD

′
if there is a C depending only on reg(T ) such that

|pD − pD
′
| ≤ CmK

hK

∣∣∇KpD∣∣ .
We say that

{
pD
′

pD
′′
K−→ pD if we have both pD K−→ pD

′
and pD K−→ pD

′′
.

• We say that pD K−→

{
pD
′

pD
′′ if there exists a C depending only on reg(T ) and a

θ ∈ [0, 1] such that

|θ(pD − pD
′
) + (1− θ)(pD − pD

′′
)| ≤ CmK

hK

∣∣∇KpD∣∣ .
• Similar notations are used for dual cells K∗ ∈M∗ in place of primal cells K ∈M.

PROPOSITION 3.2 (The case of conforming triangle mesh). For a conforming triangle
mesh (see Figure 3.1a), the inequality (3.3) holds with a αT which depends only on reg(T ).

As a consequence, for a regular family of conforming triangle meshes, the DDFV scheme
is Inf-Sup stable.
Proof. For any primal control volume K, we have three diamond cells in DK (one associated
with each edge), that we note D1,D2,D3. By definition of the discrete pressure gradient we
have

mK∇KpD =

3∑
i=1

mσip
Di~nσiK and

3∑
i=1

mσi~nσiK = 0.
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This implies for instance

mK∇KpD = mσ1(pD1 − pD3)~nσ1K +mσ2(pD2 − pD3)~nσ2K.

We use now the formula

2mK =
∣∣(mσi~nσiK) ∧ (mσj~nσjK)

∣∣ , ∀i 6= j,

to get

|pD1 − pD3 | = mσ2

2

∣∣∇KpD ∧ ~nσ2K

∣∣ ≤ CmK
hK

∣∣∇KpD∣∣ .
We just proved that pD1

K−→ pD3 and the same argument gives a similar estimate for the other
two possible couples of diamond cells associated with K.

Summing these estimates over the whole domain gives the result

|pD|2h =
∑

D,D′∈D
D|D′

(h2
D + h2

D′)(p
D′ − pD)2

≤ C(reg(T ))
∑
K∈M

h2
KmK|∇

KpD|2 ≤ C(reg(T ))‖hT∇T pD‖2T ,2.

�
REMARK 3.1. Observe that, in this proof, we do not use the pressure gradient on the

dual cells. Actually, the same proof is valid if we assume that the dual cells are conforming
triangle cells.

PROPOSITION 3.3 (The case of a non-conforming triangle mesh). For the non-conforming
triangle mesh described in Figure 3.1b, the inequality (3.3) holds with a αT which depends
only on reg(T ).

As a consequence, for this particular family of non-conforming triangle meshes, the
DDFV scheme is Inf-Sup stable.
Proof. We can notice that if the control volume K has no edge on the interface or if K is of the
right-hand side of the interface, we can apply the same proof as in the previous proposition.

Thus, the only case that we need to study carefully is the one of a primal cell K just on
the left of the interface. Even though it is triangle-shaped, such a control volume is rather a
degenerated quadrangle cell since it has 4 neighboring cells and thus 4 edges and 4 associated
diamond cells. That is the reason why the situation is different, and more complicated, than
in the previous proposition.

The situation under study is described in Figure 3.3. We need to bound all the possible
neighboring pressure differences in K (that is pD1−pD2 , pD1−pD4 , pD2−pD3 and pD3−pD4 )
by some quantity depending only on values of the pressure gradient on a few (fixed) number
of cells. Here, we will absolutely need to use neighboring primal cells in order to get the
result. Indeed, the pressure difference pD1 − pD2 for instance cannot been estimated by
simply using the pressure gradient on the given primal cell K. Indeed, if pD3 = pD4 = 0 and
pD1 = −mσ2

mσ1
pD2 6= 0, then ∇KpD is zero whereas pD1 − pD2 6= 0.

• We start by proving a bound on pD1 − pD2 by using the pressure gradients on the
other primal control volumes around K. We can see on Figure 3.3, and using the
same argument as in the proof of Proposition 3.2, that the following chain holds

pD1
K̃1−−→ pD̃1

K̃2−−→ pD̃2
K̃3−−→ pD2 ,
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M

D

K

K̃1

K̃2

K̃3

D̃2

D̃1

D2

D1

D3

D4

Fig. 3.3: Notations near the interface for the mesh 3.1b

so that, by the triangle inequality, we get that

|pD1 − pD2 | ≤ C
(
mK̃1

hK̃1

|∇K̃1pD|+
mK̃2

hK̃2

|∇K̃2pD|+
mK̃3

hK̃3

|∇K̃3pD|
)
.

• We can now study the pressure gradient in the actual control volume under study K
and use that ~nσ1K = ~nσ2K, so that

|pD3 − pD4 | = mσ1
+mσ2

2

∣∣∇KpD ∧ ~nσ1K

∣∣ ≤ CmK
hK
|∇KpD|,

|pD1−pD4 | ≤ mσ3

2

∣∣∇KpD ∧ ~nσ3K

∣∣+ |pD1−pD2 | ≤ CmK
hK
|∇KpD|+ |pD1−pD2 |,

and

|pD2−pD3 | ≤ mσ4

2

∣∣∇KpD ∧ ~nσ4K

∣∣+ |pD1−pD2 | ≤ CmK
hK
|∇KpD|+ |pD1−pD2 |.

Combining all the estimates above, we see that any difference between two neighboring pres-
sure values can be bounded by using at most 4 neighboring values of the primal pressure
gradient, and we can conclude the proof as in the previous proposition. �

Finally, we are able to prove the same Inf-Sup stability property for highly non-conforming
meshes, that is to say for some meshes containing a constant proportion of non-conforming
edges. This result seems to show that the Inf-Sup stability of the DDFV method is very robust
with respect to the non-conformity of the mesh.

PROPOSITION 3.4 (The checkerboard mesh). For a checkerboard mesh as described in
Figure 3.1c, the inequality (3.3) holds with a αT which does not depend on size(T ).

As a consequence, the DDFV scheme is Inf-Sup stable for this particular family of non-
conforming meshes.
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Fig. 3.4: Possible configurations of neighboring diamond cells for the checkerboard mesh,
see Fig. 3.1c

Proof. Let us begin with some remarks. First, the smallest primal cells are square for which
it is impossible to bound all the possible associated pressure differences by simply using the
primal pressure gradient (since the pressure mode where two opposite pressures equal 1 and
the other two equal −1 clearly has a zero pressure gradient). Second, the biggest primal cells
are degenerate octagons since they are associated with 8 different edges/diamond cells. These
two reasons make the analysis quite difficult.

All the generic configurations of neighboring diamond cells are presented in Figure 3.4.
• Let us first look at the situation away from the boundary. Using that K1 is a square

primal control volume, we deduce

pD1
K1−−→ pD2 and pD3

K1−−→ pD4 .

Using that K∗T1
is a triangle dual control volume we deduce

pD1
K∗T1−−→ pD3 , pD1

K∗T1−−→ pD5 and pD3
K∗T1−−→ pD5 .

Finally, we use that K∗L is a parallelogram. Just like in a square, the difference
between opposite pressures can be controled by the pressure gradient, so that

pD2
K∗L−−→ pD6 and pD3

K∗L−−→ pD7 .

We can combine the previous arrows to obtain that

pD1
K∗T1−−→ pD3

K1−−→ pD4 , pD1
K∗T1−−→ pD5

K2−−→ pD8 ,

pD3
K∗T1−−→ pD1

K1−−→ pD2 , pD3
K∗T1−−→ pD1

K1−−→ pD2
K∗L−−→ pD6 .

Using the triangle inequality, and the symmetry properties of the mesh, we can see
that all possible pressure differences between neighboring interior diamond cells can
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be estimated by the previous computations. Notice that some estimates require both
primal and dual pressure gradient.

• It remains to cope with the case of boundary diamond cells, since we recall that
the dual pressure gradient is conventionally set to 0 on boundary dual cells (see
Remark 2.1) and therefore it cannot be used to obtain useful estimates.
We observe in Figure 3.4 two kinds of boundary diamond cells that need to be in-
vestigated.

– The terms involving the diamond cell D9 can be treated as in the interior case
by using the primal pressure gradient on K2 and the dual pressure gradient on
K∗T1

.
– Using symmetries of the mesh, we see that the only term involving the dia-

mond cell D10 that has to be carefully studied is the term pD10 − pD5 since the
corresponding dual cell is a boundary dual cell for which the corresponding
pressure gradient cannot be used.
We observe that, by definition of the dual pressure gradient on K̃, we have

mσ10

(
pD10 − 1

2
(pD6 + pD11)

)
= mK̃

(
∇K̃pD · ~nσ10K̃

)
.

It follows that the following chain holds

pD10
K̃−→

{
pD6

pD11

K∗T2−−→ pD12
K3−−→ pD7

K∗L−−→ pD3
K∗T1−−→ pD5 ,

and the proof is complete.
�

4. Codimension 1 Inf-Sup stability. In this section, we shall study the stability prop-
erties of the Stokes DDFV scheme for two families of Cartesian meshes of the unit square
domain: the usual uniform conforming meshes, and two-subdomain non-conforming Carte-
sian meshes (see Figure 4.1). Note that, the same analysis can be applied to other kinds of
Cartesian meshes as we will show in Section 5.

(a) Uniform conforming mesh (b) Non-conforming mesh

Fig. 4.1: The Cartesian meshes under study

In both cases, we prove (Theorems 4.1 and 4.2) that Inf-Sup stability does not hold. More
precisely, we prove that βT = 0 in the uniform conforming case, and that βT > 0 with

βT −−−−−−−→
size(T )→0

0,
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in the non-conforming case.
This behavior of βT proves the existence of at least one unstable pressure mode. More

precisely, we prove (Theorem 4.3) that there is in fact only one such unstable mode. It means
that, the Inf-Sup stability property holds if we impose the pressure fields to be orthogonal
to the unstable mode, or if we add a suitable rank one stabilisation term in the divergence
equation. We call this property the codimension 1 Inf-Sup stability.

Actually, this is consistent with the fact that, in practice, the DDFV scheme behaves very
well on such kind of meshes. To illustrate this fact, we show in Fig. 4.2, the L2-error for the
velocity and the pressure using the non-conforming grid of Fig. 4.1b for the smooth exact
solution given by

u(x, y) =

(
−2π sin2(πx) cos(πy) sin(πy)
2π sin2(πy) cos(πx) sin(πx)

)
and p(x, y) = x+ y − 1.

We observe the second order convergence for both velocity and pressure.

10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

slope 2

(a) L2-Error for the velocity

10−3 10−2 10−1 100
10−3

10−2

10−1

100

101

slope 2

(b) L2-Error for the pressure

Fig. 4.2: L2-error as a function of the mesh size for non-conforming mesh (see Fig. 4.1b)

4.1. Inf-Sup instability. The meshes we consider in this section are Cartesian. This
means that all primal edges are either horizontal, either vertical (note that this does not nec-
essarily hold for dual edges). Therefore, we can adopt the following notations

• Dh is the set of diamond cells whose associated primal edge is horizontal,
• Dv is the set of diamond cells whose associated primal edge is vertical.

Similarly, we denote by ∂Ωh (resp. ∂Ωv) the horizontal (resp. vertical) part of the boundary
of the domain.

We will prove in the sequel that the unstable part of the scheme is completely contained
in a pressure mode which looks like a checkerboard defined as follows.

DEFINITION 4.1 (Checkerboard mode). The checkerboard mode ψD is defined by:

ψD =

{
+1, for D ∈ Dv,

−1, for D ∈ Dh.

Observe that m(ψD) = 0 and ‖ψD‖D,2 = 1 for the two kinds of Cartesian meshes studied
in this section (see Figure 4.1).

We easily obtain the following result.
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THEOREM 4.1 (Inf-Sup instability for uniform Cartesian mesh). For a uniform Carte-
sian mesh T , the checkerboard mode ψD satisfies

bT (vT , ψD) = 0, ∀vT ∈ E0.

As a consequence, we have βT = 0.
Proof. By definition of ψD, and since every primal and interior dual cells are squares, we
have

∇KψD = 0, ∀K ∈M, and ∇K∗ψD = 0, ∀K∗ ∈M∗.

This obviously implies that

bT (vT , ψD) = −JvT ,∇T ψDKT = 0.

�
In the case of the non-conforming Cartesian meshes, the analysis is not so easy and we

will prove that ∇T ψD does not vanish but is “small” in a suitable sense. This implies that βT
is not zero in that case, but tends to 0 as size(T )→ 0. The precise result is the following.

THEOREM 4.2 (Inf-Sup instability for non-conforming Cartesian mesh). For the meshes
shown in Figure 4.1b, there exist C5, C6 > 0 which do not depend on size(T ), such that the
checkerboard mode ψD satisfies

C5size(T )
1
2 ≤ sup

vT ∈E0

bT (vT , ψD)

|||∇DvT |||D,2
≤ C6size(T )

1
2 .

This implies in particular that βT ≤ C6size(T )
1
2 .

Proof. The proof is divided into different steps. For any vT ∈ E0, we first evaluate the
contribution of the primal cells in bT (vT , ψD), then of the one of dual cells in order to get
(4.1). The definition 4.1 of the checkerboard mode ψD then leads to the upper bound. To
conclude, with a particular choice of the discrete velocity vT , we are able to prove the lower
bound.

To simplify the notations in this proof, we denote by h the length of the primal edges of
the coarse part of the mesh.

• We first show that, for any vT ∈ E0, the primal control volumes do not contribute
to bT (vT , ψD).
We can notice that if K ∈ M has exactly four primal edges, then the same compu-
tation as the one for uniform Cartesian meshes shows that ∇KψD = 0. It remains
to study the case of primal control volumes with five edges, that is the ones situated
just on the left-side of the interface (see Figure 4.3). For such a primal cell Kli, we
have

mKli∇
KliψD = h(ψD

l
i+1/2 − ψD

l
i−1/2)ey +

h

2
(ψD

+
i + ψD

−
i − 2ψD

l
i)ex.

Since D+
i ,D

−
i ,D

l
i are vertical diamond cells and Dli+1/2

,Dli−1/2
are horizontal dia-

mond cells, we have

ψD
+
i = ψD

−
i = ψD

l
i = 1, and ψD

l
i+1/2 = ψD

l
i−1/2 = −1,

so that we also have in that case ∇K
l
iψD = 0.
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M

D

M∗
KliDli

Dli−1/2

D−i

D+
i

Dli+1/2

Dri

Dri+1/2

D−i+1

K∗i

K∗i+1/2

K
+
i

K
−
i+1

Fig. 4.3: Some notations near the interface for the non-conforming Cartesian mesh, Fig. 4.1b

• Let us now consider dual control volumes. For a K∗ ∈M∗ whose associated vertex
xK∗ is not on the interface I , we have ∇K∗ψD = 0. This is the same proof as for
uniform Cartesian meshes.
It remains to study the contributions of dual cells associated with vertices located on
the interface. The geometry of the mesh is such that, there are two kinds of such dual
cells. Some of them are triangle cells K∗i , for i = 1, . . . , N , the others are trapeze
cells K∗i+1/2

, for i = 1, . . . , N − 1 (see Figure 4.3). Here, we have set N = ne/2, ne
being the total number of primal edges which constitute the interface.

– A straightforward computation shows that in triangle dual cells K∗i we have,

mK∗i∇
K∗i ψD =

h

2

(
ψD

r
i − 1

2
(ψD

−
i + ψD

+
i )

)
ex +

3h

4
(ψD

+
i − ψD

−
i )ey

= −hex, ∀i = 1, . . . , N.

– For trapeze dual cells K∗i+1/2
, we immediately get

mK∗
i+1/2

∇K
∗
i+1/2ψD =h

(
1

2
ψD

r
i+1/2 − ψD

l
i+1/2 +

1

4
(ψD

+
i + ψD

−
i+1)

)
ex

+
3h

4
(ψD

−
i+1 − ψD

+
i )ey

=hex, ∀i = 1, . . . , N − 1.

We observe that the orientation of the two gradients are exactly opposed; this is
precisely the reason why we are able to prove that the contribution of these terms in
bT (vT , ψD) is small. More precisely, for any vT ∈ E0, we have

bT (vT , ψD) = −h
2

N∑
i=1

(
vK∗

i+1/2
− vK∗i

)
· ex, (4.1)
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where, we recall that, the boundary value vK∗
N+1/2

is equal to 0 since vT ∈ E0.
• For any 1 ≤ i ≤ N , we consider the diamond cell D+

i . By definition of the velocity
discrete gradient on D+

i , we have

(vK∗
i+1/2

− vK∗i ) · ex =
h

2
tex.∇D

+
i vT .ey.

Therefore, for some C > 0 independent of the mesh size, we get

h

2

∣∣∣(vK∗
i+1/2

− vK∗i

)
· ex

∣∣∣ ≤ CmD+
i
|∇D

+
i vT |.

It follows, by the Cauchy-Schwarz inequality that

b(vT , ψD) ≤ C
N∑
i=1

mD+
i
|∇D

+
i vT | ≤ C|||∇DvT |||D,2

(
N∑
i=1

mD+
i

) 1
2

≤ C|||∇DvT |||D,2 size(T )
1
2 ,

and the upper bound is proved.
• It remains to prove the lower bound. To this end, we build a particular discrete veloc-

ity field vT ∈ E0 parallel to ex, which is zero everywhere except for its horizontal
component on each triangle dual cell on the interface K∗i , i = 1, . . . , N , for which
we choose vK∗i = ex.
From (4.1) and straightforward computations we get

b(vT , ψD) =
hN

2
=

1

2
, and |||∇DvT |||D,2 ≤

C

size(T )
1
2

,

which imply the required lower bound.
�

4.2. Inf-Sup stability up to the checkerboard mode. Despite the Inf-Sup instability
of the DDFV scheme on Cartesian meshes that we established in the previous section, it is
observed that the scheme is very accurate (see Figure 4.2). Note that, in the case of uniform
Cartesian meshes, it is needed to add some stabilization term (if not the scheme is not well-
posed since βT = 0), but the magnitude of this stabilization term does not seem to have any
influence on the accuracy of the method.

We propose an interpretation of this surprisingly good behavior by proving that there is
essentially one single unstable mode and that, in the orthogonal of this mode, the uniform
Inf-Sup inequality holds. Moreover, this unstable mode is close to (but not always equal to)
the checkerboard mode ψD that we identified just before (see Theorem 4.4).

We first illustrate numerically this phenomenon in Figure 4.4, by plotting as a function
of size(T )

• the value of βT ,
• the value of

√
λ3(ST ) which is the next eigenvalue of the Schur complement of the

system,
• the value of the following co-dimension 1 Inf-Sup constant

β̃T = inf
pD∈{ψD}⊥

m(pD)=0

(
sup

vT ∈E0

bT (vT , pD)

|||∇DvT |||D,2‖pD‖D,2

)
(4.2)
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where {ψD}⊥ = {pD ∈ RD : 〈MT pD, ψD〉 = 0}. Note that β̃T can also be
computed by solving a suitable modified eigenvalue problem for which we do not
give the details here.

10−3 10−2 10−1 100
10−2

10−1

100

slope 0.5

βT√
λ3(ST )

β̃T

(a) Comparison between βT ,
√
λ3(ST ) and β̃T (b) The unstable mode

Fig. 4.4: Inf-Sup instability for the non-conforming Cartesian mesh, see Fig. 4.1b

We observe on Figure 4.4a that, in accordance with Theorem 4.2, we have βT → 0 when
size(T ) → 0. We also observe that

√
λ3(ST ) is bounded from below, which confirms the

presence of a single unstable mode. Moreover, β̃T also appears to be bounded from below
and seems to almost coincide with

√
λ3(ST ). This suggests that the unstable mode (that

is the pressure mode for which the Inf-Sup inequality is an equality, which is related to the
eigenvector of ST associated with λ2(ST )) should be not too far from the checkerboard mode
ψD that we introduced below. This is confirmed in Figure 4.4b where we plot the computed
unstable mode, refered to as qD.

Even if we do not have an explicit formula for this mode, we will prove in Theorem 4.4
that ‖qD − ψD‖D,2 ≤ Csize(T )

1
2 .

We are now in position to provide a theoretical justification of these observations in the
following result.

THEOREM 4.3 (Codimension 1 Inf-Sup stability). Let be T a uniform or non-conforming
Cartesian DDFV mesh as described in Figure 4.1. There exists a C7 > 0 which does not de-
pend on size(T ) such that for any pD ∈ RD we have[

(pD, ψD)D = 0 and m(pD) = 0

]
=⇒

[
C7‖pD‖D,2 ≤ sup

vT ∈E0

bT (vT , pD)

|||∇DvT |||D,2

]
,

which means that β̃T ≥ C7.

This theorem relies on the following proposition which is a suitable generalisation of
Proposition 3.1 adapted to the framework under study.

PROPOSITION 4.1. Let be T a uniform or non-conforming Cartesian DDFV mesh as
described in Figure 4.1. There exists a αT > 0, independent of size(T ), such that for any
vh,vv ∈ (H1

0 (Ω))2 satisfying

divvh = 0 on
⋃
D∈Dv

D, and divvv = 0 on
⋃
D∈Dh

D, (4.3)
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there exists a vT ∈ E0 such that

|||∇DvT |||D,2 ≤ αT (‖vh‖H1 + ‖vv‖H1), (4.4)

and, for any pD ∈ RD∣∣∣∣∑
D∈D

∫
D

pD
(

divD(vT)−div

(
vh + vv

2

))∣∣∣∣ ≤αT (‖vh‖H1 + ‖vv‖H1

)
‖hT∇T pD‖T ,2. (4.5)

Let us first give the proof of Theorem 4.3 using this proposition.
Proof. Let be pD ∈ RD such that m(pD) = 0 and (pD, ψD)D = 0. We define the “vertical”
and “horizontal” parts of this pressure field defined by

pD
v

=
∑
D∈Dv

pD1D, and pD
h

=
∑
D∈Dh

pD1D,

where 1D is the indicator function of D. By definition of the checkerboard mode ψD (see
Definition 4.1) we observe that∫

Ω

pD
v

+

∫
Ω

pD
h

= m(pD) = 0, and
∫

Ω

pD
v −

∫
Ω

pD
h

= (pD, ψD)D = 0.

It follows that both pDh and pDv have a zero mean-value so that we can apply Proposition 1.1
and set vh = Π(pD

h
), vv = Π(pD

v
).

We can notice that, by construction, divvh = 0 on all the vertical diamond cells,
divvv = 0 on all the horizontal diamond cells, and that divvh + divvv = pD. We take now
vT ∈ E0 given by Proposition 4.1 which satisfies

|||∇DvT |||D,2 ≤ αT (‖vh‖H1 + ‖vv‖H1) ≤ 2αT ‖Π‖‖pD‖D,2.

We can now compute

bT (vT , pD) =
1

2
‖pD‖2D,2 +

∑
D∈D

∫
D
pD
(

divD(vT )− div

(
vh + vv

2

))
.

According to Proposition 4.1 we deduce

bT (vT , pD) ≥ 1

2
‖pD‖2D,2 − 2αT ‖Π‖‖pD‖D,2‖hT∇T pD‖T ,2. (4.6)

• In the case where ‖hT∇T pD‖T ,2 ≤ 1
8αT ‖Π‖‖p

D‖D,2, the estimate (4.6) directly
gives

bT (vT , pD)

|||∇DvT |||D,2
≥ 1

4

‖pD‖2D,2
|||∇DvT |||D,2

≥ 1

8αT ‖Π‖
‖pD‖D,2,

and the claim is proved.
• Assume now that ‖hT∇T pD‖T ,2 ≥ 1

8αT ‖Π‖‖p
D‖D,2. In that case, defining vT by

(3.9) as in Theorem 3.1, gives the claim in the same way.
�

It remains to give a proof of the preliminary proposition. To this end, we use the fol-
lowing approximation lemma which is a straightforward consequence of usual results in the
finite volume framework (see for instance [2, Lemma 3.3]).
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LEMMA 4.1.
There exists a C > 0, such that if σ1 and σ2 are two segments in R2 contained in a

bounded convex set P with non empty interior, we have∣∣∣∣ 1

mσ1

∫
σ1

v − 1

mσ2

∫
σ2

v

∣∣∣∣ ≤ C ( 1

mσ1

+
1

mσ2

)
diam(P)2

mP

∫
P
|∇v| , (4.7)

for any v ∈W 1,1(R2).
Proof of Proposition 4.1. In order to simplify the presentation of the proof, we set vv,h def

=
vv+vh

2 .
The proof is divided into different steps. We first deal with the conforming case (which

is simpler) and then with the non-conforming one for which a specific care is needed for the
control volumes near the interface.

We will first start by giving an explicit formula (4.8) for the discrete velocity vT ∈ E0

that will fulfill all the requirements. Note that we will need to apply Proposition 1.1 twice.
The stability estimate (4.4) will then be a simple consequence of Lemma 4.1.

The difficult part will be to prove (4.5). In the case of uniform meshes, we will obtain
that only the boundary diamond cells actually contribute to the estimate and that the sum of
all the contributions can be bounded by some quantity depending on the velocity gradient and
the discrete pressure gradients. For non-conforming meshes, additional contributions coming
from diamond cells near the interface have to be taken carefully into account.

• For any K ∈ M (resp. K∗ ∈ M∗), we consider two segments γvK and γhK (resp. γvK∗
and γhK∗ ) in Ω passing through the point xK (resp. xK∗ ) as described in Figure 4.5.
Notice that γvK∗ is horizontal and γhK∗ is vertical; this is due to the fact that the
superscript indicates the kind of diamond (horizontal or vertical) for which each γ••
will contribute and not its orientation.
We can now build vT ∈ E0 by setting

vK · ex =
1

mγvK

∫
γvK

vv · ex, vK · ey =
1

mγhK

∫
γhK

vh · ey, ∀K ∈M,

vK∗ · ex =
1

mγhK∗

∫
γhK∗

vh · ex, vK∗ · ey =
1

mγvK∗

∫
γvK∗

vv · ey, ∀K∗ ∈M∗.

(4.8)

• Let us prove the stability estimate (4.4). We observe that

mD|∇DvT |2 ≤ C(reg(T ))
(
|vK − vL|2 + |vK∗ − vL∗ |2

)
,

and, with Lemma 4.1,

|vK − vL|2 ≤ C(reg(T ))

∫
K̂∪L

(
|∇vv|2 + |∇vh|2

)
,

|vK∗ − vL∗ |2 ≤ C(reg(T ))

∫
K̂∗∪L∗

(
|∇vv|2 + |∇vh|2

)
,

Using that the set of all the convex hulls of the kind K̂ ∪ L, for instance, covers the
domain Ω at most 5 times, we can sum all these inequalities in order to finally get

|||∇DvT |||2D,2 =
∑
D∈D

mD|∇DvT |2 ≤ C(reg(T ))(‖vv‖2H1 + ‖vh‖2H1).
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γv
•

∂Ω

γh
K

γv
K

γv
K∗

γh
K∗

γv
L∗

γv
L

xK

xK∗

xL

xL∗

(a) Conforming mesh

γh
•

γh
Kli

γv
Kli

γv
K∗
i−1/2

γh
K∗
i−1/2

γh
K+
i

γv
K+
i

γh
K∗
i+1γv

K∗
i+1

xKli

xK+
i

xK∗
i−1/2

xK∗i+1

(b) Non-conforming mesh

Fig. 4.5: Definition of the segments γ••

• Let us prove (4.5) in the case of a uniform Cartesian mesh. Let pD ∈ RD and D be
any diamond cell. We need to consider different cases.

– The case where D is not a boundary diamond cell. We assume for instance that
D ∈ Dv \Dext, the case of an horizontal diamond cell being similar. We refer
to Figure 4.5a for the notations.
Using the definition of the discrete divergence operator divD (see Definition 2.2)
and the one of vT given in (4.8), we get

mD divD vT =
1

2
[mσ(vL · ex − vK · ex) +mσ∗(vL∗ · ey − vK∗ · ey)]

=
1

2

[ ∫
γvL

vv · ex −
∫
γvK

vv · ex +

∫
γvL∗

vv · ey −
∫
γvK∗

vv · ey
]
.

We use the Stokes formula on the rectangle RD whose sides are γvK, γvK∗ , γ
v
L

and γvL∗ and we get

mD divD(vT ) =
1

2

∫
RD

divvv.

Since D is a vertical diamond cell, we observe that RD \ D is included in the
union of all the horizontal diamond cells. By assumption (4.3), we deduce that
divvv is zero on RD \ D. Moreover, using again (4.3) we get divvh = 0 on
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D. It follows that

mD divD(vT ) =

∫
D

div

(
vv + vh

2

)
=

∫
D

divvv,h.

Therefore, the corresponding term in the left-hand side of (4.5) is simply zero.
– The case where D is a boundary diamond cell. We assume for instance that
D ∈ Dv∩Dext, since the case of a boundary horizontal diamond cell is similar.
We refer to Figure 4.6 for the notations.

M
D
M∗

K2

K1

K∗

L∗

K∗2

D′

D

D2

D1

Fig. 4.6: Notations for the study of the contribution of boundary diamond cells

Since vT ∈ E0, we have vK∗ = vL∗ = 0 and moreover, since vv is supposed
to be zero on ∂Ω and γvL ⊂ ∂Ω, we have

vK1 · ex =
1

mγvK1

∫
γvK1

vv · ex, and vL · ex = 0 =
1

mγvL

∫
γvL

vv · ex.

It follows that

mD divD vT =
1

2

[
−
∫
γvL

vv · ex +

∫
γvK1

vv · ex

]

=
1

2

∫
RD

divvv +
1

2

(∫
γvK∗

vv · ey −
∫
γvL∗

vv · ey

)
,

where RD is the rectangle whose sides are γvK1
, γvK∗ , γ

v
L and γvL∗ . By the same

argument as in the previous case, using (4.3), we get

∫
D

pD(divD vT − divvv,h) =
1

2
pD

(∫
γvK∗

vv · ey −
∫
γvL∗

vv · ey

)
.
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Summing all the contributions of the boundary vertical diamond cells, we get

∑
D∈D

∫
D∈Dv∩Dext

pD(divD vT − divvv,h)

=
1

2

∑
D∈Dv∩Dext

pD

(∫
γvK∗

vv · ey −
∫
γvL∗

vv · ey

)

=
1

2

∑
K∗∈∂M∗
xK∗∈∂Ωv

(pD − pD
′
)

(∫
γvK∗

vv · ey

)
,

where D and D′ are the two diamond cells touching xK∗ as shown on Figure 4.6.
Using the notations of Figure 4.6, for any K∗ ∈ ∂M∗ such that xK∗ ∈ ∂Ωv we

see that the chain pD K1−−→ pD1
K∗2−−→ pD2

K2−−→ pD
′

holds. It follows that

|pD − pD
′
| ≤ C(reg(T ))size(T )(|∇K1pD|+ |∇K2pD|+ |∇K

∗
2pD|).

Moreover, for any D ∈ Dv ∩ Dext, and according to (4.7) in Lemma 4.1, we
have∣∣∣∣∣∣∣∣∣

1

mγvK∗

∫
γvK∗

vv · ey −
1

mγvL

∫
γvL

vv · ey︸ ︷︷ ︸
=0

∣∣∣∣∣∣∣∣∣ ≤
C(reg(T ))

mγvK∗

∫
K1∪K2

|∇vv|

so that finally, by using the Cauchy-Schwarz inequality∣∣∣∣∣∣∣
∑

K∗∈∂M∗
xK∗∈∂Ωv

(pD − pD
′
)

∫
γvK∗

vv · ey

∣∣∣∣∣∣∣ ≤ C‖vv‖H1‖hT∇T pD‖T ,2.

– In conclusion, we proved that∣∣∣∣ ∑
D∈D

∫
D

pD
(
divD vT − divvv,h

)∣∣∣∣ ≤ C (‖vh‖H1 + ‖vv‖H1

)
‖hT∇T pD‖T ,2.

• Let us now prove (4.5) in the case of the non-conforming Cartesian mesh defined in
Figure 4.1b. We begin by writing the term under study as follows

∑
D∈D

∫
D

pD
(
divD vT − divvv,h

)
=

1

2

∑
K∗∈∂M∗
xK∗∈∂Ωv

(pD − pD
′
)

(∫
γvK∗

vv · ey

)

+
1

2

∑
K∗∈∂M∗
xK∗∈∂Ωh

xK∗ 6∈I

(pD − pD
′
)

(∫
γhK∗

vh · ex

)
+ TI . (4.9)

The first two terms contain the contributions of the boundary diamond cells away
from the interface, this is the same computation as in the conforming case. Those
terms can be estimated as we did before.
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It remains to compute and estimate the contributions of the diamond cells near the
interface that we gathered in the term TI .
We denote by DI the set of the diamond cells having at least one vertex on the
interface. This set contains both horizontal and vertical diamond cells and we need
to distinguish the two cases. A particular numbering of those diamond cells is given
in Figure 4.7. In the same figure, we define vertical segments denoted by ω±• and
σ±• that will be useful in the proof.
Associated with each of these segments we introduce the following fluxes

F+
i+1/2

=

∫
σ+
i+1/2

vh · ex, F+
i =

∫
σ+
i

vh · ex,

F−i−1/2
=

∫
σ−
i−1/2

vh · ex, F−i =

∫
σ−i

vh · ex,

G+
i =

∫
ω+
i

vv · ex, G−i =

∫
ω−i

vv · ex.

(4.10)

We conventionally set, for simplicity

F−N+1/2
= F+

N+1/2
, F+

1/2 = F−1/2, and F−N+1 = F+
N .

M

D

σ+
i−1

σ+
i−1/2

σ−i−1/2

σ−i

σ+
i

σ+
i+1/2

σ−i+1/2

σ−i+1

ω+
i

ω−i

Dli−1/2

D−i

D+
i

Dli+1/2

Dli Dri

Dri+1/2

Dri−1/2

Fig. 4.7: Definition of σ±• and ω±• for the non-conforming Cartesian mesh

– We begin with the contribution of the diamonds in Dv ∩DI . For instance, we
consider the case where D = D+

i for some i ∈ {1, . . . , N − 1}, according to
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Figure 4.8a and to the definition of the discrete divergence, we have

mD+
i

divD
+
i vT =

1

2

(
mγv
K+
i

vK+
i
· ex −mγv

K+
i

vKli · ex

+mγvK∗i
vK∗

i+1/2
· ey −mγvK∗i

vK∗i · ey

− 1

2
mγv
K+
i

vK∗
i+1/2

· ex +
1

2
mγv
K+
i

vK∗i · ex
)
.

γv
Kli

γv
K∗i

γv
K+
i

γv
K∗
i+1/2

γh
K∗i

γh
K∗
i+1/2

D+
i

(a) The case of D+
i

γh
Kli

γh
Kl
i+1

γh
K∗
i+1/2

Dli+1/2

(b) The case of Dl
i+1/2

Fig. 4.8: Computation of the vertical interface diamond cells

By definition of vT given in (4.8), we obtain

mD+
i

divD
+
i vT =

1

2

(∫
γv
K+
i

vv · ex −
1

2

∫
γv
Kli

vv · ex

+

∫
γvK∗

i+1/2

vv · ey −
∫
γvK∗i

vv · ey

+
1

2

∫
γhK∗i

vh · ex −
1

2

∫
γhK∗

i+1/2

vh · ex
)
.

If we denote by R+
i the rectangle whose sides are γvK∗i , γv

K+
i

, γvK∗
i+1/2

, ω+
i , and

using (4.3), we get∫
D+
i

divvv =

∫
R+
i

divvv

=

∫
γv
K+
i

vv · ex −
∫
ω+
i

vv · ex +

∫
γvK∗

i+1/2

vv · ey −
∫
γvK∗i

vv · ey.

By subtraction, and using that divvh = 0 in D+
i which is a vertical diamond

cell and the definition of the fluxes (4.10), it follows that∫
D+
i

(divD
+
i vT−divvv,h) =

1

4

(
G+
i −G

−
i + F+

i + F−i − F
+
i+1/2

− F−i+1/2

)
.
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In the case where D = D−i for i ∈ {2, . . . , N}, we obtain by similar computa-
tions that∫
D−i

(divD
−
i vT−divvv,h) =

1

4

(
−G+

i +G−i + F+
i + F−i − F

+
i−1/2

− F−i−1/2

)
.

Finally, for the two boundary diamond cells D−1 and D+
N we get∫

D−1

(divD
−
1 vT − divvv,h) =

1

4
(−G+

1 +G−1 + F+
1 + F−1 ),

∫
D+
N

(divD
+
N vT − divvv,h) =

1

4

(
G+
N −G

−
N + F+

N + F−N
)
.

– Let us consider now the horizontal diamond cells touching the interface. We
can easily see that, by definition of the segments γhK∗ , such interior diamond
cells located on the right of the interface (namely Dri , i = 1, ..., N and Dri+1/2

,
i = 1, ..., N − 1, see Figure 4.7) do not contribute to the sum under study. Ac-
tually, the computation is exactly the same as in the case of a uniform Cartesian
mesh.
It remains to study the contributions of the interface horizontal diamond cells
located on the left of the interface and refered to as Dli+1/2

for i = 1, ..., N − 1,
see Figure 4.8b.
Similar computations as the ones above give∫
Dl
i+1/2

(
divD

l
i+1/2 vT − divvv,h

)
=

1

2

(
F+
i+1/2

+ F−i+1/2
− F+

i − F
−
i+1

)
.

Gathering all these terms, we are led to the following expression of the interface
term

TI =
1

4

N∑
i=1

pD
+
i

(
G+
i −G

−
i + F+

i + F−i − F
+
i+1/2

− F−i+1/2

)
+

1

4

N∑
i=1

pD
−
i

(
−G+

i +G−i + F+
i + F−i − F

+
i−1/2

− F−i−1/2

)
+

1

2

N−1∑
i=1

pD
l
i+1/2

(
F+
i+1/2

+ F−i+1/2
− F+

i − F
−
i+1

)
− 1

2
pD

l
1/2(F−1/2 + F−1 ) +

1

2
pD
−
1 F−1/2 +

1

2
pD

r
1/2F−1/2

− 1

2
pD

l
N+1/2(F+

N+1/2
+ F+

N ) +
1

2
pD

+
NF+

N+1/2
+

1

2
pD

r
N+1/2F+

N+1/2
.

In this computation, we have taken care of the fact that a part of the contribution of
the boundary diamonds Dl1/2, Dr1/2, DlN+1/2

and DrN+1/2
have already been taken into

account in the second term of the right hand-side of (4.9).
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We can now reorganize all these terms in the following way

4TI =

N∑
i=1

(pD
+
i − pD

−
i )(G+

i −G
−
i )

+

N−1∑
i=1

(2pD
l
i+1/2 − pD

+
i − pD

−
i+1)(F+

i+1/2
+ F−i+1/2

− F+
i − F

−
i+1)

+

N−1∑
i=1

(F−i+1 − F
+
i )(pD

−
i+1 − pD

−
i )

+

N∑
i=1

(F−i − F
−
i+1)(pD

+
i − pD

−
i )

+ 2F−1 (pD
−
1 − pD

l
1/2) + 2F−1/2(p

Dr1/2 − pD
l
1/2)

+ 2F+
N (pD

+
N − pD

l
N+1/2) + 2F+

N+1/2
(pD

r
N+1/2 − pD

l
N+1/2).

(4.11)

In this formula, the difference of fluxes can be estimated, as before, in terms of
velocity gradients thanks to Lemma 4.1. It thus remains to bound all the pressure
differences involved in this formula by means of DDFV pressure gradients.
For i ∈ {1, . . . , N}, according to the Figure 4.3 we have

mK∗
i+1/2

∇K
∗
i+1/2pD =

(
−hpD

l
i+1/2 +

h

2
pD

r
i+1/2 +

h

4
(pD

−
i+1 + pD

+
i )

)
ex

+
3h

4
(pD

−
i+1 − pD

+
i )ey

(4.12)

so that

2pD
l
i+1/2 − pD

+
i − pD

−
i+1 =

1

2
(pD

r
i+1/2 − pD

+
i ) +

1

2
(pD

r
i+1/2 − pD

−
i+1)

− 2

h
mK∗

i+1/2
∇K

∗
i+1/2pD · ex.

Moreover, the following chains hold

pD
−
i+1

K∗i+1/2−−−−→ pD
+
i

K∗i−−→ pD
−
i ,

pD
r
i+1/2

K+
i−−→ pD

r
i

K∗i−−→ pD
+
i ,

pD
r
i+1/2

K−i+1−−−→ pD
r
i+1

K∗i+1−−−→ pD
−
i+1 .

We also have to bound the differences pD
−
1 − pD

l
1/2 , pD

r
1/2 − pD

l
1/2 , pD

+
N − pD

l
N+1/2

and pD
r
N+1/2 − pD

l
N+1/2 , corresponding to boundary terms. Let us for instance detail

the reasoning for pD
−
1 − pD

l
1/2 and pD

r
1/2 − pD

l
1/2 . We simply write

pD
l
1/2 − pD

−
1 =

(
pD

l
1/2 − pD

l
3/2

)
+

1

2

(
pD

l
3/2 − pD

r
3/2

)
+

1

2

(
pD

l
3/2 − pD

+
1

)
+

1

2

(
pD

+
1 − pD

−
1

)
+

1

2

(
pD

r
3/2 − pD

r
1

)
+

1

2

(
pD

r
1 − pD

−
1

)
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and

pD
l
1/2 − pD

r
1/2 =

(
pD

l
1/2 − pD

l
3/2

)
+

1

2

(
pD

l
3/2 − pD

r
3/2

)
+

1

2

(
pD

l
3/2 − pD

+
1

)
+

1

2

(
pD

+
1 − pD

r
1

)
+

1

2

(
pD

r
3/2 − pD

r
1

)
+
(
pD

r
1 − pD

r
1/2

)
.

According to (4.12), specified to the dual cell K∗3/2, we have

1

2

(
pD

l
3/2 − pD

r
3/2

)
+

1

2

(
pD

l
3/2 − pD

+
1

)
=

1

h

(
1

3
mK∗

3/2
∇K

∗
3/2pD · ey −mK∗

3/2
∇K

∗
3/2pD · ex

)
.

Furthermore, the following relations hold

pD
l
1/2

Kl1−−→ pD
l
3/2 ,

pD
+
1

K∗1−−→ pD
r
1 , pD

r
1

K∗1−−→ pD
−
1 ,

pD
r
3/2

K+
1−−→ pD

r
1 , pD

r
1

K−1−−→ pD
r
1/2 .

To conclude, we use all the above estimates of pressure differences and Lemma 4.1
in formula (4.11) as well as the Cauchy-Schwarz inequality to obtain

|TI | ≤ C
(
‖vh‖H1 + ‖vv‖H1

)
‖hT∇T pD‖T ,2,

and the theorem is proved by coming back to (4.9).
�

We are now able to prove that, asymptotically, the unstable mode qD is essentially equal
to the checkerboard mode. We recall that, according to (2.6), the unstable mode qD is com-
pletely characterized by the formula

βT = sup
vT ∈E0

b(vT , qD)

|||∇DvT |||D,2
, (4.13)

withm(qD) = 0 and ‖qD‖D,2 = 1 and, for instance, the orientation condition (qD, ψD) > 0.
The following result implies in particular that qD converges weakly (but not strongly) to 0 in
L2(Ω).

THEOREM 4.4 (Unstable mode asymptotics). Let be T a non-conforming Cartesian
DDFV mesh as in Figure 4.1b and qD be the unstable mode numerically observed in Fig-
ure 4.4b. There exists C8 > 0 which does not depend on size(T ) such that

‖qD − ψD‖D,2 ≤ C8size(T )
1
2 .

Proof. We set

pD = qD − (qD, ψD)ψD, (4.14)

so that we get (pD, ψD) = 0 and m(pD) = 0. We apply Theorem 4.3 to obtain, with (4.13)
and (4.14), that

C7‖pD‖D,2 ≤ sup
vT ∈E0

b(vT , pD)

|||∇DvT |||D,2
≤ βT + (qD, ψD) sup

vT ∈E0

b(vT , ψD)

|||∇DvT |||D,2
.
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By observing that ‖ψD‖D,2 = ‖qD‖D,2 = 1 and (qD, ψD) ≤ 1, Theorem 4.2 implies

‖qD − (qD, ψD)ψD‖D,2 ≤ 2
C6

C7
size(T )

1
2 . (4.15)

Furthermore, we have (qD, ψD)2 = ((qD, ψD)ψD−qD, qD)+‖qD‖2D,2, and since (pD, ψD) =
0 and (4.15), we get

(qD, ψD)2 = 1− ‖qD − (qD, ψD)ψD‖2D,2 ≥ 1− 4
C2

6

C2
7

size(T ).

We conclude by observing that

‖qD − ψD‖D,2 ≤ ‖qD − (qD, ψD)ψD‖D,2 +
(
1− (qD, ψD)

)
.

�

5. Further numerical results and conclusion.
1. We first consider other kinds of non-conforming Cartesian meshes of the unit square

Ω =]0, 1[2 as shown in Figure 5.1. Note that these meshes present more than one
non-conformity interface.
We observe the same results as in the previous case, namely that the Inf-Sup constant
βT tends to 0 and that

√
λ3(ST ) is bounded from below when size(T ) tends to 0. In

both cases, we deduce that the codimension 1 stability property also holds. We also
observe that the unstable mode in each case has again the shape of a checkerboard
mode. Actually, one can check that the theoretical results proved in Section 4 can be
adapted to these geometries.

2. We investigate now the Inf-Sup stability property for two families of conforming
meshes corresponding to various subdomains with either a uniform Cartesian mesh,
or a triangle mesh (see Figures 5.2a and 5.2b).
Our results (see Figure 5.3) show that βT remains away from 0 when size(T ) tends
to 0, and therefore that the DDFV scheme is Inf-Sup stable for such families of
meshes. However, it seems that the adaptation of the previous proofs to those cases
is not straightforward and thus will be the object of a forthcoming work.
We also observe in Figure 5.3 that the DDFV method seems to be Inf-Sup stable for
mixed triangle/quadrangle meshes (Figure 5.2c) but also for more general polygonal
meshes constituted by hexagons for instance (Figure 5.2d).

6. Conclusion. In this paper, we have investigated from a numerical and theoretical
point of view whether or not the Inf-Sup stability condition for the DDFV scheme holds for
various kinds of mesh families. We observe that the DDFV scheme seems to be very robust as
far as this stability property is concerned, in particular in the case of non-conforming meshes.
We managed to prove this property for different mesh families but the proof strongly depends
on the geometry of the meshes. Up to now, we are not able to prove the stability for very
general polygonal meshes, even though we have given numerical evidences that it should be
true.
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