
HAL Id: hal-00795252
https://hal.science/hal-00795252v1

Submitted on 27 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-aware schedulers for Real-Time Energy
Harvesting systems with Quality of Service requirements

Maissa Abdallah, Maryline Chetto, Audrey Queudet

To cite this version:
Maissa Abdallah, Maryline Chetto, Audrey Queudet. Energy-aware schedulers for Real-Time Energy
Harvesting systems with Quality of Service requirements. 2nd International Conference on Advances
in Computational Tools for Engineering Applications (ACTEA), 2012, Dec 2012, beirut, Lebanon.
pp.342 - 347, �10.1109/ICTEA.2012.6462898�. �hal-00795252�

https://hal.science/hal-00795252v1
https://hal.archives-ouvertes.fr


Energy-aware schedulers for Real-Time Energy
Harvesting systems with Quality of Service

requirements
Maissa Abdallah, Maryline Chetto and Audrey Queudet

IRCCyN
LUNAM University

Nantes, France
e-mail: Firstname.Lastname@irccyn.ec-nantes.fr

Abstract—Our study concerns energy harvesting embedded
systems that have real-time constraints. We present two energy
aware scheduling algorithms, namely Green-RTO and Green-
BWP which aim to optimize the quality of service of the system
measured in terms of deadline success ratio. Such algorithms
permit to gracefully cope with processing overload and energy
starvation. A simulation study permits to show their performance
in comparison with the scheduling algorithm EDeg.

Index Terms—firm real-time embedded systems; energy har-
vesting scheduling; Quality of Service.

I. INTRODUCTION

Embedded system technologies can be found in different
areas of human activities (e.g. telecom, satellites, sensor
nodes, smart cards, computer networking, etc...). They have
augmented the quality of human lives by making them more
comfortable and safe. Power-aware design has become a cen-
tral issue in high performance embedded systems that require
the optimum use of available power sources. Consequently,
these systems must achieve continual functioning without
the necessary periodical maintenance due to replacing or
recharging batteries. However, non-renewable energy sources
are limited and bound to expire eventually. In contrast, re-
newable energy sources are available in an unlimited quantity.
Therefore, environmental energy harvesting (i.e. the process
of extracting energy from the surrounding environment) is
considered as a promising approach to provide power for long-
term applications.

Most of embedded systems have real-time performance re-
quirements that must be met for reasons of usability and safety.
More precisely, a deadline is attached to a task execution.
In this paper, we assume that the computing system receives
energy in limited and variable quantity from the environment.
The energy received is stored in an energy reservoir formed by
a battery or a super-capacitor. Such energy reservoir is required
because the embedded system needs to continue operation
even when no energy can be drawn from the environment.
We deal with the problem of scheduling periodic skippable
tasks under both timing and energy constraints. We propose
two energy-aware scheduling algorithms called Green-RTO
and Green-BWP. The objective is to enhance the Quality of

Service (QoS) i.e. to maximize the success deadline ratio of
the system.

The remainder of the paper is organized as follows. Section
II gives background materials. Related works are described in
Section III. Section IV describes the two schedulers Green-
RTO and Green-BWP which are illustrated in Section V.
Simulation results are presented in Section VI. Finally, section
VII concludes the paper.

II. BACKGROUND MATERIAL

A. Real-time computing

Real-Time Systems (RTS) are defined as those systems in
which time constraints, mainly deadlines, have to be consid-
ered. They are usually classified as being hard, soft, or firm,
depending on the degree of missed deadlines that the system
can tolerate. In hard RTS, any deadline violation may lead
to a system failure and a catastrophic consequence. In firm
RTS, some deadline violations are allowed but they may lead
to a system performance degradation without inducing serious
consequences.

B. Quality of service in firm RTS

1) Skip-Over model: The Skip-Over model [4] deals with
the problem of scheduling firm periodic task set (i.e. it allows
occasional deadline violations) on a uniprocessor system. A
task τi is characterized by a worst-case computation time Ci,
a period Ti, a relative deadline equal to its period Di = Ti,
and a skip parameter si. si gives the tolerance of this task
to miss deadlines in the sense that the distance between two
consecutive skips must be at least si periods. According to
this model, a task is characterized by two kinds of jobs,
red ones and blue ones. A red job must complete before
its deadline whereas a blue job can be aborted at any time.
Consequently, for a task τi, (si − 1) consecutives jobs are
red and the next job is blue. If si equals to infinity, no
skips are allowed and τi is a hard periodic task. In [6], the
authors define the equivalent utilization processor U∗

p given by

U∗
p = maxL≥0

{∑
iD(i, [0, L])

L

}
(1)



Where,

D(i, [0, L]) = (

⌊
L

Ti

⌋
−
⌊
L

Tisi

⌋
)Ci. (2)

L represents periods end points.
They proved that a set τ of skippable periodic tasks, which

are deeply-red (i.e synchronous activation at time t=0), is
schedulable under EDF if and only if U∗

p ≤ 1.
2) RTO and BWP Scheduling algorithms : Koren and

Shasha introduced two scheduling algorithms in [4]. The first
algorithm called Red Tasks Only (RTO) is the simplest one.
It consists in scheduling only red jobs according to either the
Earliest Deadline First (EDF) or the Rate-Monotonic (RM)
algorithms [1]. Blue ones are systematically rejected. The
second algorithm introduced is the Blue When Possible (BWP)
algorithm which is an enhancement of the first one. Indeed,
BWP schedules blue jobs whenever possible (i.e. when no red
job is ready for execution). In other words, blue jobs are served
in background relatively to red jobs.

C. Problem definition

Environment harvesting energy is being considered as a
promising approach to replace the current power supplies for
energy constrained embedded systems. However the power
source can be unstable and lead to a possible processing
overload. Therefore, we propose to extend the scheduling
algorithms of the Skip-over approach in order to process tasks
in a best effort manner. The objective is to provide the highest
QoS (i.e. the highest deadline success ratio) for the system.

III. RELATED WORKS

The EDeg scheduler:
El Ghor et al. proposed a real-time scheduling algorithm
called Earliest Deadline with energy guarantee (EDeg) in
[3]. It is based on the work presented in [2]. It consists in
scheduling a hard periodic task set (i.e. all jobs must meet
their deadline) on a uniprocessor system which uses the energy
stored in a rechargeable battery and the energy harvested
from the environment. Every task is characterized by the
energy consumption Ei in addition to the traditional timing
parameters (i.e. Ci, Di, Ti).

All jobs are executed according to the EDF algorithm, as
soon as possible and as long as the energy level in the battery
is sufficient to provide energy for current and future occurring
tasks without involving deadline violations. Hence, the system
starts executing a job only if the so-called slack energy (i.e.
the energy surplus that can be consumed by a job while
still satisfying energy constraints of highest priority jobs) is
positive and the battery is not empty.

Slack energy enables us to quantify the energy consumed
by future jobs and prevents from violating deadlines in case
of energy shortage. If energy is not sufficient to execute
current or future occuring jobs, the system stops its activity
as long as the slack time is positive and the battery is not
fully replenished.

IV. CONTRIBUTIONS:

A. Model and terminology

We consider a uniprocessor system that consists of n firm
periodic tasks. This system is powered by a rechargeable
battery. We assume that firm periodic tasks comply with the
skip-over model so each task exhibits computation, energy
and QoS requirements. Let T be a firm periodic task set
defined as follows: T = {τi(Ci, Di, Ti, si, Ei), i = 1...n}.
Ei is the Worst Case Energy Consumption (WCEC). Tasks
are independent, preemptable and deeply-red (i.e. synchronous
activation at time t=0).

Let us define:

g∗i (0, L) = (
⌊
L

Ti

⌋
−
⌊

L

Ti.si

⌋
)Ei (3)

as the energy consumed by red jobs of task τi in the interval
[0, L]. We define the equivalent energy factor U∗

e , as follows:

U∗
e = maxL≥0

{ ∑n

i=1
g∗i (0, L)

E(0) + Er(0, L)

}
. (4)

E(0) represents the initial level of energy in the battery,
Er(0, L) represents the energy received by the battery during
the interval [0,L]. In this paper, we assume that the power
received by the environment is constant during an hyperperiod
P (i.e. P = LCM(T1s1, .., Tisi, .., Tnsn)). Then as Pr(t) = Pr

∀t, Er(0, L) = Pr.L where L represents the red job end points
during the interval [0,P[.

B. Feasibility test

Theorem IV.1. A skippable periodic task set T is schedulable
only if
∀L|

∑n
i=1 g

∗
i (0, L) ≤ E(0) + Er(0, L).

Proof:
We suppose that there is a value t for which

∑n
i=1 g

∗
i (0, t) >

E(0) + Er(0, t).
∑n

i=1 g
∗
i (0, t) represents the total energy

required by tasks to feasibly execute in [0,t]. E(0) +Er(0, t)
represents the maximum energy which is available between 0
and t.

∑n
i=1 g

∗
i (0, t) > E(0)+Er(0, t) clearly implies that at

least one task will not be able able to complete execution due
to energy starvation. Then T is not feasible.

Theorem IV.2. A set of skippable periodic tasks T is schedu-
lable only if U∗

p ≤ 1 and U∗
e ≤ 1

Proof:
Suppose that U∗

p > 1 or U∗
e > 1. Assume that U∗

p > 1.
Considering only timing constraints, Caccamo and Buttazo
proved in [6] that a set of skippable periodic tasks is
schedulable only if U∗

p ≤ 1. Consequently, U∗
p > 1 implies

that T is no feasible.
Assume that U∗

e > 1: The previous theorem proves that T is
no feasible.



C. Green-RTO Scheduler

We propose the Green-RTO scheduler which is based on
RTO and EDeg algorithms. Under EDeg all jobs must com-
plete before their deadlines while under Green-RTO only red
jobs have to be executed before their deadlines.
Green-RTO runs as follows:

• When the battery is not empty, the processor is active if
there is a pending red job and the system has enough
slack energy. Ready red jobs are processed according to
the EDF algorithm.

• The processor is inactive if the slack time is not null or
there is no red jobs ready to be executed.

The slack time of the system at time t represents the
maximum time available from t to postpone red jobs while
still satisfying all timing constraints. Hence, it permits to put
the processor to an idle state and recharge the battery. Its
computation uses the Earliest Deadline as Late as possible
(EDL) algorithm [2].

The slack energy of the system at time t will be given by
the lowest slack energy of red jobs with a priority greater than
that of the highest priority job ready at time t.

The slack energy of a red job Ji of the task τi at time t
represents the maximum amount of energy that can be used
from t by higher priority jobs (i.e. jobs with a deadline less
than or equal to Ji’s deadline, di):

SlackEnergy(t, Ji) = E(t) +

∫ di

t

Pr(x)dx−Ai (5)

where E(t) is the residual capacity at time t, Pr(x) is the power
of the fluctuating energy source at time x and Ai is the total
energy required by red jobs ready to be executed after t with
a deadline less than or equal to di.

D. Green-BWP Scheduler

The Green-BWP scheduler is a mixture of BWP and Green-
RTO algorithms. According to BWP algorithm, red jobs are
executed in priority according to the EDF rule and blue jobs
are executed whenever possible (i.e. when there is no ready
red job) by taking into consideration both timing and energy
constraints of red jobs.

The Green-BWP algorithm has the same framework as
Green-RTO and uses the same dynamic data. Accordingly, the
main differences between Green-RTO and Green-BWP can be
summarized as follows:

• Under Green-RTO, the slack time is computed only on
basis of the current and future occurring red jobs.
Under Green-BWP, the sequence is also constructed
upon the execution of current and future occurring red
jobs. As a completed blue job is always followed by a
blue one, a shift is introduced (or offset) in the activation
pattern of red jobs. Therefore the computation of slack
time requires the determination of the red jobs’ releases
according to the current status of blue jobs (i.e. either
they are aborted or totally executed). Blue jobs are

always aborted with Green-RTO.

• Under Green-RTO, the slack energy represents the max-
imum amount of energy that can be consumed by a red
job while still guaranteeing all timing constraints of red
jobs only.
Under Green-BWP, the slack energy at time t is defined
as the maximum amount of energy that can be consumed
by either a red or a blue job while still guaranteeing all
red job constraints. If the current job in execution is red
at time t, the computation of the slack energy is the same
as Green-RTO. Otherwise, if the current job in execution
at time t is blue with deadline di, the slack energy of
the system represents the minimum between the slack
energy of this job and the slack energy of all red jobs
with deadline less than or equal to di.

V. ILLUSTRATIVE EXAMPLE

We consider a task set T = {τi(Ci, Di, Ti, si, Ei)} with
τ1(3, 6, 6, 2, 10), τ2(4, 10, 10, 2, 13) and τ3(5, 15, 15, 2, 16).

We give E(0) = Emax = 5 and Pr = 3.
U∗
p = 0.833 < 1. As U∗

p < 1, red tasks are schedulable,
abstracting from energy constraints.
U∗
e = 0, 831 < 1. As U∗

e < 1, red tasks are schedulable,
abstracting from timing constraints.

Figure 1 depicts both Green-RTO and Green-BWP sched-
ules. As Green-BWP does best effort for blue jobs execution,
it will give a better QoS than Green-RTO: 70% of jobs are
completely executed with Green-BWP whereas 50% of jobs
are executed with Green-RTO.

Regarding Figure 1(b):
The battery is full at time t = 0. Red jobs are scheduled
according to EDF until time t = 15. As there is no ready red
job, τ2’s blue job is executed since it has the earliest deadline
among blue jobs.
At time t = 19, the residual capacity becomes 0, no job can
be processed thus the battery must be recharged. The slack
time is computed using the EDL method. Then, the processor
is put in the idle state as long as the system has slack.
At time t = 21, the battery is fulfilled. Nevertheless, no red
job is ready then τ1’s blue job, which has the earliest deadline
among all ready blue jobs, is executed.
As it is completely processed , τ1’s next job is blue. Since
no red job is ready and τ3’s blue job has the earliest deadline
among all ready blue jobs, it begins its execution as the slack
energy of the system is positive and the battery is not empty.
At time t = 29, τ2’s blue job has the highest priority however
as the slack energy of the system is negative then the processor
remains idle during the time interval given by the slack time
computation.

VI. EXPERIMENTAL EVALUATION

A. Set up

In order to experimentally evaluate the effectiveness of
the proposed algorithms on performance improvement, we



Fig. 1. (a) Green-RTO and (b) Green-BWP scheduling

develop a discrete-event simulator in C language. In the
simulator, we implement Green-RTO and Green-BWP. For the
sake of comparison, we also implement EDeg proposed in [3].
Task sets used for evaluations are randomly generated. Each
task set is characterized by the following parameters:

• The relative deadline Di is equal to the period Ti.
• The period Ti of each task is randomly chosen in an

interval [Tmin, Tmax], so that the least common multiple
of the task set (LCM) be less than a given LCMmax.

• The skip parameter si is the same for each task.
• The energy consumption Ei is randomly based on the

average power consumption Pe given by the following
expression:
Pe =

∑n
i=1

Ei

Ti

. We define also Re =
Pe

Pr
as the energy criticity ratio.

• The simulator generates 100 task sets for a given pro-
cessor utilization Up and an energy utilization factor Pe.
Each set generated is composed of 10 tasks.

• The battery is initially fully charged and the power
received Pr is constant.

B. Experimental result

The goal of the simulation is to comparatively measure
the QoS performance (i.e. the average of success ratio)
according to different values of Up, Pe and Pr. Hereafter, we
fix a value of Re and we vary Up. As depicted in Figure 2,
Figure 3 , Figure 4, Figure 5 and Figure 6, the X-axis shows
the processor utilization Up and the Y-axis shows the QoS
percentage.

Case 1 : Re = 1 (i.e. the average power consumption is
equal to the power received)

In Figure 2 and Figure 3, Re is equal to 1 and we vary
Up. We assume that E(0)=300. Figure 2 and Figure 3 show
that EDeg gives the best QoS when Up is less than 1 (i.e.
there is no processing overload). However when Up exceeds
1, EDeg behaves badly and Green-BWP gives a better QoS
than Green-RTO. As shown in Figure 2, for low skip values
(i.e. when many instances are skipped) the performance of
Green-BWP is much better than Green-RTO because it tries
to execute blue jobs. In addition to that, when Up is less than
1, the QoS under Green-BWP tends to be similar to the one
under EDeg. However, because of red jobs priority, Green-
BWP always executes red jobs first then blue jobs may not
complete their deadlines even if Up < 1 this is why the QoS
is not equal to 100%.
As shown in Figure 3, higher is the skip parameter, higher is
the effectiveness of Green-RTO. Moreover under Green-BWP,
if the skip value equals 10, the QoS performance tends to
100%.

Case 2 : Re = 1.2 (i.e the average power consumption
is greater than the power received) and si = 2 In Figure 4,
Figure 5 and Figure 6, Re is equal to 1.2 and si = 2. In each
Figure, we fix E(0) and we vary Up. As the average power
consumption is greater than the power received, we compare
the QoS performance between Green-RTO, Green-BWP and
EDeg algorithms according to the battery capacity.

As depicted in Figure 4, the battery energy storage is large,
E(0) = P∗Pr, then EDeg gives the best QoS while Up is less
or equal to 1.
Green-BWP gives a QoS performance that tends to 100%
when Up is less or equal to 1. Moreover, it still gives an
acceptable QoS (between 60% and 80%) when Up is greater
than 1. Green-RTO gives a constant QoS (50%) for all values



Fig. 2. QoS Performance comparison (Re = 1 and si = 2)

Fig. 3. QoS Performance comparison (Re = 1 and si = 10)

of Up.
As depicted in Figure 5 and Figure 6, when the battery

energy storage is not very large, Green-BWP and Green-RTO
still give an acceptable QoS in contrast to EDeg. Green-BWP
gives the best QoS while Green-RTO gives a constant QoS
(50%) which depends on si.
Higher is Re, closer are the performances of Green-BWP and
Green-RTO.

VII. CONCLUSION AND FUTURE WORKS

Energy harvesting is one of the most promising solutions
for increasing the lifespan of autonomous systems. Conse-
quently, energy-aware schedulers should consider the variation
of energy drawn from the environment and make tradeoffs
between performance and energy consumption. In this paper,
we have proposed two scheduling strategies namely Green-
RTO and Green-BWP. The proposed algorithms are based on
the skip-over model and permit to gracefully cope with both
processing overload and shortage of energy. The simulation
study has shown that given a task set T , Green-RTO gives
the least acceptable QoS for all values of the energy criticity
ratio (Re) and the processor utilization (Up). When Re is less

Fig. 4. QoS Performance comparison (E(0) = P ∗ Pr)

Fig. 5. QoS Performance comparison (E(0) = P∗Pr
10

)

Fig. 6. QoS Performance comparison (E(0) = P∗Pr
100

)

or equal to 1 (i.e. the average power consumption is less or
equal to the power received), EDeg gives the best QoS only if
there is no processing overload. Whereas Green-BWP gives a
QoS that tends to 100% when there is no processing overload
and still gives an acceptable QoS when there is a processing



overload. However, when the energy criticity ratio is greater
than 1, EDeg works only if the battery energy storage is quite
large in constrast to Green-RTO and Green-BWP which give
acceptable QoS with smaller battery energy storages. For the
future, we would like to consider aperiodic tasks or extend our
model to dependent tasks.

ACKNOWLEDGMENT

The work presented in this paper was partially realized in
the framework of the GreenEmbedded project (2011-2012),
supported by the CEDRE Programme Hubert Curien.

REFERENCES

[1] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. In Journal of the ACM, 1973.

[2] H. Chetto and M. Chetto. Some results of the earliest deadline scheduling
algorithm. In IEEE Transactions on Software Engineering, 1989.

[3] H. El Ghor, M. Chetto and R. Hajj Chehade, A Real-Time Scheduling
Framework for Embedded Systems with Environmental energy Harvest-
ing. In Computers & Electrical Engineering, 2011.

[4] G. Koren and D. Shasha. Skip-over algorithms and complexity for
overloaded systems that allow skips. In Proceedings of the 16th IEEE
Real-Time Systems Symposium (RTSS’95), 1995.

[5] J.W.S. Liu. Real-Time Systems, Prentice-Hall, 2000.
[6] M. Caccamo and G. Buttazo, Exploiting Skips In Periodic Tasks For

Enhancing Aperiodic Rsponsiveness. In Proceedings of the 18th IEEE
Real-Time Systems Symposium, 1997.


