N
N

N

HAL

open science

Scheduling with Quality of Service requirements in

Real-Time Energy Harvesting sensors
Maissa Abdallah, Maryline Chetto, Audrey Queudet

» To cite this version:

Maissa Abdallah, Maryline Chetto, Audrey Queudet.
ments in Real-Time Energy Harvesting sensors. Green Computing and Communications (GreenCom),
2012 IEEE International Conference on, Nov 2012, Besancon, France. pp.644 - 646, 10.1109/Green-

Com.2012.101 . hal-00795242

HAL Id: hal-00795242
https://hal.science/hal-00795242
Submitted on 27 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Scheduling with Quality of Service require-


https://hal.science/hal-00795242
https://hal.archives-ouvertes.fr

Scheduling with Quality of Service requirements
in Real-Time Energy Harvesting sensors

Maissa Abdallah, Maryline Chetto and Audrey Queudet
IRCCyN
LUNAM University
Nantes, France
e-mail: Firstname.Lastname @irccyn.ec-nantes.fr

Abstract—This paper is concerned with the problem of periodic
task scheduling in sensor nodes powered by energy harvesters.
We address this issue by proposing two energy-aware scheduling
algorithms, respectively called Green-RTO and Green-BWP.
They aim to guarantee an acceptable Quality of Service (QoS)
measured in terms of deadline success ratio.

Index Terms—embedded systems; energy harvesting schedu-
ling; deadlines; energy reservoir; Quality of Service.

I. INTRODUCTION

Nowadays, embedded systems are in consumer electronics,
homes, cars, wearable devices, etc. Consequently, research
is very active for designing both very low power embedded
platforms and very high energy-density batteries. Nevertheless,
the amount of energy that must be available on board still
limits their lifespan and prevents their miniaturization. Energy
harvesting is a promising approach to solve this problem.
Part or all of the operating energy is drawn from ambient
energy sources and consequently, the embedded system o-
perates perennially until its hardware failure. Every energy
harvesting system must be provided with a power manager that
makes the best effort to adapt the power consumption coming
from the execution of software processing. Moreover, most of
embedded systems are real-time in the sense that a deadline
is attached to the execution of every program called task. The
goal of a scheduler is then to assign tasks to time slots such
that all timing and energy constraints are satisfied. That means
that we have to introduce energy-aware scheduling strategies
that not only could improve real-time performance but also
make a better utilization of ambient energy. In this paper,
we focus on energy aware scheduling for uniprocessor energy
harvesting systems with strict timing constraints. Our purpose
is to gracefully reduce the deadline miss ratio according to
specified QoS requirements.

The remainder of the paper is organized as follows. Section
II gives background materials on real-time systems. Section III
presents energy harvesting technology. Section IV deals with a
QoS approach, namely Skip-over. Related works are described
in Section V. Section VI describes two novel schedulers which
are illustrated in Section VII. Finally Section VIII concludes
the paper.

II. BACKGROUND AROUND REAL-TIME
COMPUTING

Real-time systems are defined as those systems in which
the overall correctness of the system depends on both the
functional and the timing correctness. Real-time systems can
be classified in three categories: hard, soft and firm [5]. What
differenciates them are the degree of tolerance of missed
deadlines, usefulness of computed results after missed dead-
lines, and severity of the penalty incurred for failing to meet
deadlines. A firm real-time system must meet its deadlines but
with a degree of flexibility. This is in contrast to hard real-time
systems where all deadlines have to be met imperatively.

III. ENERGY HARVESTING: WHAT AND WHY?

The goal of any autonomous system such as sensor node is
to achieve perpetual functioning without a necessary periodical
maintenance due to replacing or recharging battery. Alternative
energy sources present in our environment could be exploited
to achieve this goal: this is energy harvesting (or scavenging).
It consists in supplying and converting energy from the sur-
rounding environment and refilling an energy reservoir formed
by a battery or by a super-capacitor. Such energy reservoir
is required because the embedded system needs to continue
operation even when no energy can be drawn, for example at
night for a solar-powered system. Possible energy harvesting
sources are solar, thermal, vibrational and kinetic energy.

IV. QUALITY OF SERVICE IN FIRM REAL-TIME
SYSTEMS

A. Skip-Over: a suitable model

The Skip-Over model [4] deals with the problem of schedu-
ling periodic tasks which allow occasional deadline violations
(i.e. firm periodic tasks), on a uniprocessor system. A task 7;
is characterized by a worst-case computation time C;, a period
T;, a relative deadline D; equal to its period (D; = T;), and
a skip parameter s;. This parameter represents the tolerance
of this task to miss deadlines. That means that the distance
between two consecutive skips must be at least s; periods.
When s; equals to infinity, no skips are allowed and 7; is a
hard periodic task. Every job of a task is either red or blue
[4]. A red job must complete before its deadline whereas a
blue job can be aborted at any time.



B. Scheduling strategies

Two scheduling algorithms were introduced about fifteen
years ago by Koren and Shasha in [4]. The first one is the Red
Tasks Only (RTO) algorithm. Red jobs are scheduled as soon
as possible according to the Earliest Deadline First (EDF)
algorithm [1], while blue ones are always rejected. The second
one is the Blue When Possible (BWP) algorithm which is an
improvement of RTO. BWP schedules blue jobs whenever
their execution does not prevent the red ones from completing
within their deadlines. In other words, blue jobs are served in
background relatively to red jobs.

C. Problem definition

The performance of the application cannot be predetermined
a priori because of the power source that is not entirely
predictable and because of possible processing overload. As a
consequence, we base the scheduling algorithm on the Skip-
over approach in order to process tasks in a best effort manner
at runtime and tend to provide the highest QoS (i.e. the least
deadline miss ratio).

V. RELATED WORKS
A. The EDeg scheduler

Based on the work presented in [2], El Ghor et al. proposed
a real-time scheduling algorithm called Earliest Deadline with
energy guarantee (EDeg) in [3]. Every task is characterized
by an energy consumption in addition to its traditional timing
parameters. According to EDeg, the processor executes tasks
as soon as possible according to the EDF rule. However, the
system starts executing a task only if the so-called slack energy
is positive and the battery is not empty. Slack energy enables
us to quantify the energy consumed by future jobs and to
prevent them from violating their deadlines because of energy
shortage. Besides the system stops its activity as long as the
slack time is positive and the battery is not fully replenished.
The key issues in this algorithm are properly predicting the
energy production and measuring the current energy level of
the battery.

VI. CONTRIBUTIONS: GREEN-RTO AND
GREEN-BWP

In this section, we extend the Skip-over approach to the
context of energy harvesting applications with real-time
constraints. We consider a firm periodic task set 7 defined
as follows: 7 = {7;(C;, D;, T}, s;, F;),i = 1..n} where E;
is the Worst Case Energy Consumption (WCEC). Tasks are
deeply-red (i.e. synchronous activation at time t=0) and all
task deadlines are equal to periods. We define:

don-(E]-ls o

as the energy consumed by red jobs of task 7; during the
interval [0, L]. This leads to define the equivalent energy factor

> 1 97(0,L) } '

E()+ E-(0,L)

e

U; = mazr>o { ?2)

E(0) represents the initial level of energy in the battery and
E.(0,L) represents the energy received during the interval

[0,L]. In this paper, we assume that the power received
by the energy source is constant during an hyperperiod.
Then FE,.(0,L) = P..L where L represents the periods’
end points of red jobs not beyond the hyperperiod P (i.e.
P=LCM(T\s1,.,T;8;i, .., Tnspn)). We deduce the following
necessary feasibility conditions: U < 1 and U; < 1 where
U, is the equivalent utilization processor defined in [6].

Our approach consists in using the spare time saved by the
skipped jobs to recharge the battery whenever necessary as
described hereafter.

A. Green-RTO Scheduler

We propose the Green-RTO scheduler as a fusion of RTO
and EDeg algorithms. EDeg considers hard real-time periodic
task sets in the sense that all jobs must complete before their
deadlines. Under Green-RTO only red jobs have to be executed
before their deadlines.

Green-RTO runs as follows:

- The processor is active if the system has enough slack energy
and the battery is not empty. It will execute ready red jobs
according to the EDF algorithm.

- The processor is inactive if the slack time is not null or if
there is no ready red jobs to be executed.

Slack time at time ¢ corresponds to the maximum time avail-
able from # to postpone red jobs while still satisfying all timing
constraints. Its computation uses the Earliest Deadline as Late
as possible (EDL) algorithm [2] and permits to determine the
maximum time interval for recharging the battery while putting
the processor to an idle state.

We define the slack energy of a red job J; of the task 7; at
time ¢ as the amount of energy surplus that can be used from
t by higher priority jobs i.e. jobs with a deadline less than or
equal to J;’s deadline d;.

d;
SlackEnergy(t,J;) = E(t) + / P.(z)dx —A; Q)
t

where E(t) is the residual capacity at time ¢, P,.(x) is the power
of the fluctuating energy source at time x and A; is the total
energy required by red jobs ready to be executed after ¢ with
a deadline less than or equal to d;.

The slack energy of the system at time ¢ will be given by
the lowest slack energy of red jobs that should be executed
between ¢ and d (i.e. the deadline of the highest priority job
at time t).

B. Green-BWP Scheduler

The Green-BWP scheduler is based on BWP and Green-
RTO algorithms. Blue jobs are executed whenever possible
(i.e. when no red job is pending for execution) by taking into
account both timing and energy constraints of red jobs. Red
jobs are executed in priority according to the EDF rule.

The Green-BWP algorithm has consequently the same
framework as Green-RTO and uses the same dynamic data.
However, the main differences between Green-RTO and
Green-BWP can be summarized as follows:



- Under Green-RTO, the slack time is computed only from
the current and future occurring red jobs. Under Green-BWP,
the sequence is also constructed upon the execution of current
and future occurring red jobs but its computation requires to
determine the red jobs’ releases according to the current status
of blue jobs (i.e. whether they are completed or not). Let us
recall that a completed blue job is always followed by a blue
one thus introducing a shift (or offset) in the activation pattern
of red jobs. In the case of Green-RTO, blue jobs were always
considered as uncompleted.

- Under Green-RTO, the slack energy is the maximum amount
of energy that can be consumed by a red job while still
satisfying all constraints of red jobs only. Under Green-BWP,
the slack energy at time ¢ is the maximum amount of energy
that can be consumed by either a red or a blue job while still
satisfying all red job constraints. If the job in execution is red
at time ¢, the slack energy is computed as with Green-RTO.
If the current job in execution at time ¢ is blue with deadline
d;, the slack energy of the system represents the minimum
between the slack energy of this job and the slack energy of
all red jobs with deadline less than or equal to d;.

VII. ILLUSTRATIVE EXAMPLE

We consider a task set 7 = {7;(C;, D;,T;, s, E;)} with
71(3,6,6,2,12), 72(4, 10, 10,2, 12) and 73(6, 15, 15,2, 18).
We give E(0) = Epqp =6 and P, = 3.
U; = 0,889 < 1. As U; < 1, red jobs are schedulable,
abstracting from energy considerations.
Uy = 0,871 < 1. The equivalent energy utilization is less
than the energy received by the battery.

(a)

l i B 12 18 j?A ' 30 jSB ' 2 48 o4 60
- I TWD I - I 20 30 40 I TSD I 60
. _ _
3 t YWE 30 YAE * B0
— | ] [
Residual ©
Capacity
8 16 b 2 40 48 % 60y
(b)
b 12 18 24 a0 3 42 45 54 60
: H I 10 I ‘ I 20 H 30 H 40 I __H I IBU
7 o I # H I

T3 V

%/ ; : \/ﬁ

R: There is no more energy |n the battery
S: The slack energy of the system is negative.

Residual
Capacity

4
u red jobs
W blue jobs

Fig. 1. (a) Green-RTO and (b) Green-BWP scheduling

Figure 1 depicts both the Green-RTO and the Green-BWP
scheduling Under Green-RTO only red jobs are executed
and L job of each task is systematically rejected. Under
Green BWP all red jobs are executed and some blue jobs
are completely executed. It shows that Green-RTO gives a
minimale QoS while Green-BWP’one is better. 60% of jobs
are completely executed with Green-BWP whereas 50% of
jobs are executed with Green-RTO.

Let us comment Figure 1(b): At time ¢ = 0, the battery is
full. Red jobs are scheduled according to EDF until there is
no more energy in the battery (i.e at time ¢ = 16). As the
residual capacity becomes 0, no job can be processed thus the
battery must be recharged. We compute the slack time using
the EDL algorithm to put the processor in an idle state and
recharge the battery. At time ¢ = 18, the battery is fulfilled.
As no red job is ready, 72’s blue job, which has the earliest
deadline among all ready blue jobs, is executed. However at
time ¢ = 20, it misses its deadline. Consequently, 7»’s next
job is red. Since 7»’s red job has the earliest deadline among
all ready red jobs, it begins its execution as the slack energy
of the system is positive and the battery is not empty. At time
t = 24, 11’s red job has the earliest deadline and starts its
execution as the slack energy of the system is positive. At
time ¢ = 27, no red job is ready for execution so 73’s blue job
can be processed. However, as the slack energy of the system
at time ¢ = 27 is negative, the processor remains idle during
the time interval given by the slack time computation.

VIII. CONCLUSION AND FUTURE WORKS

Energy harvesting appears as a promising approach to power
systems where replacing or recharging batteries is manually
impractical. The energy constraint comes to be the main
obstacle for increasing the lifespan of autonomous systems
such as sensor nodes deployed in hostile surroundings. Energy-
aware scheduling becomes an important issue especially in
critical real-time applications. The objective is to make the best
use of available energy sources and deliver high performance
at the same time. In this paper, we presented a real-time
energy harvesting model that incorporates energy and timing
constraints. We targeted the scheduling problem with periodic
tasks with QoS and timing constraints. We proposed two novel
scheduling strategies. Several interesting issues need further
attention. We would like to incorporate aperiodic tasks in the
model as well as task dependencies.

ACKNOWLEDGMENT

The work presented in this paper was partially realized in
the framework of the GreenEmbedded project (2011-2012),
supported by the CEDRE Programme Hubert Curien.

REFERENCES

+ [1] C.L.LiuandJ. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. In Journal of the ACM, 1973.

H. Chetto and M. Chetto. Some results of the earliest deadline scheduling
algorithm. In IEEE Transactions on Software Engineering, 1989.

H. El Ghor, M. Chetto and R. Hajj Chehade, A Real-Time Scheduling
Framework for Embedded Systems with Environmental energy Harvest-
ing. In Computers & Electrical Engineering, 2011.

G. Koren and D. Shasha. Skip-over algorithms and complexity for
overloaded systems that allow skips. In Proceedings of the 16th IEEE
Real-Time Systems Symposium (RTSS’95), 1995.

J.W.S. Liu. Real-Time Systems, Prentice-Hall, 2000.

M. Caccamo and G. Buttazo, Exploiting Skips In Periodic Tasks For
Enhancing Aperiodic Rsponsiveness. In Proceedings of the 18th IEEE
Real-Time Systems Symposium, 1997.

(2]
[3]

[4]

[3]
(6]



