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Abstract

FANOVA graphs have a broad range of application in model interpretation,
sensitivity analysis and analysis of computer experiments. They give a clear
and easy to understand visualization of function structures, reveal block-
additive decompositions and also effectively improve Kriging model predic-
tions by kernel adaption. These several fields are combined in a new released
R package fanovaGraph. This tutorial presents the implemented methods
step by step together with theoretical background and illustrations. Addi-
tionally it includes methods in simulation and the crucial question of thresh-
old decision, where graphical solutions are suggested.

Keywords: Sensitivity analysis, FANOVA decomposition, Sobol indices,
High-order interactions, Superset importance, Additive structure

1. Introduction

Many computer experiments behave like black box functions in the sense
that relations between input and output factors are not obvious from the
function. If the experiment is expensive, usually a meta model like a Kriging
emulator (but also other models like Neural Networks or Random Forests) is
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estimated from a low number of runs as a replacement for the experiment.
Then again, the meta model provides a function which needs to be explored.
To analyse and interpret those black box functions, common approaches are
scatterplots or sensitivity analysis methods, which become problematic in
the presence of interactions (see for instance [11] for a review). This problem
has recently been approached by using graphical displays of the interaction
structure (see [5] and [7]).

The R package fanovaGraph [3] is an efficient tool for a clear and easy
to understand graphical visualization of the global interaction structure of a
black box function. Interactions are depicted by a so-called FANOVA graph,
whose edge thicknesses indicate the interaction strength. Estimators for these
interactions, based on the superset importance estimation in [6], have been
shown to be asymptotical normal and efficient in [4].

Following the procedure suggested in [7], the detected interaction struc-
ture (block-additive decomposition) by the FANOVA graph can further be
used to construct block-additive Kriging models. The package fanovaGraph

therefore contains in a second part all methods for block-additive Kriging
analysis based on the package DiceKriging [10]. This includes estimation,
prediction and simulation of those models.

The paper is organised as follows. At first the main procedure is demon-
strated at an example function allowing an easy access and short overview.
Section 3 then gives detailed information about the procedure’s steps and ex-
plains the statistical background. New confidence intervals for the estimators
are presented. In Section 4, the question of choosing the right threshold value
for the graph edges is adressed and a graphical decision plot for the thresh-
old is suggested. Finally Section 5 shows how further models, here Neural
Networks and Support Vector Machines can be analyzed by the package.

Throughout this paper, we use the following six dimensional function as
a toy example for the “unknown” black box function.

f(x) = cos((1, x1, x3, x5)β
T ) + sin((1, x2, x4, x6)γ

T )

with β = (−0.8,−1.1, 1, 1.1) and γ = (−0.5, 1, 0.9,−1.1) and x ∈ [−1, 1]6.
The function has the block-additive form

f(x) = g(x1, x3, x5) + h(x2, x4, x6).
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> d <- 6

> domain <- c(-1, 1)

> fun <- function(x) {

+ beta <- c(-0.8, -1.1, 1, 1.1)

+ gamma <- c(-0.5, 1, 0.9, -1.1)

+ g <- cos(cbind(1, x[, c(1, 3, 5)]) %*% beta)

+ h <- sin(cbind(1, x[, c(2, 4, 6)]) %*% gamma)

+ return(g + h)

+ }

2. A demo

Before detailing the functions of fanovaGraph, it is worth giving an
overview of their usage in a practical case study. We presume basic knowledge
about Kriging and sensitivity analysis and refer to [11], [2].

There are two main goals of fanovaGraph:

1. To provide a description of the interaction structure of a black box
function, say f , visualized in a so-called FANOVA graph, which at the
same time gives a block-additive decomposition of the function.

2. To use the block-additive decomposition given by the FANOVA graph
to build an advanced Kriging type metamodel fapp.

Of course the steps 1 and 2 can be done independently: When only the in-
teraction structure of the function f is of interest (step 1) or when external
information is available to construct a block-additive kernel (step 2). This
section shows the frequent situation where both steps 1 and 2 are done se-
quentially: the modeling of a costly black box function, e.g. a finite element
computer experiment. This situation is presented carefully in fanovaGraph

by the way of two demos. We detail it here by means of the 6D example
presented in Section 1.

When dealing with a costly function, even the first step requires a meta-
model of f . Such functional approximation can be built in different ways, by
using linear models, neural networks, polynomial chaos expansion, Kriging
models (or equivalently Gaussian process regression), splines, etc. In the fol-
lowing, the metamodel is based on a Kriging model built from the package
DiceKriging based on a maximin design sampled with the package lhs [1],
but other solutions might have been chosen as well. The code corresponding
to the initialization step is shown below.
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> library(lhs)

> L01 <- maximinLHS(100, d)

> x <- L01 * (domain[2] - domain[1]) + domain[1]

> y <- fun(x)

> KM <- km(~1, design = data.frame(x), response = y)

Obviously, the accuracy of the first metamodel should be verified before
continuing further. This step is not shown here, for the sake of brevity. The
model’s prediction function now serves as a metamodel. It is in fanova-

Graph implemented by the kmPredictWrapper function, based on predict

from DiceKriging. The model (here KM) must be given as an extra argument.

The usual first step of a sensitivity analysis, estimation of first order
Sobol indices, can then be done with the package sensitivity [8]. The
result, visualized in Figure 1, shows that all 6 variables are influent, and
indicates the presence of interactions.

> i1 <- fast99(model = kmPredictWrapper, factors = d,

+ n = 3000, q = "qunif", q.arg = list(min = domain[1],

+ max = domain[2]), km.object = KM)

> plot(i1)

However, this analysis does not show the way how variables interact and
the functions two additive blocks are not revealed. To do so, we estimate
a FANOVA graph. This is done in fanovaGraph by the estimateGraph

function. The obtained graph object g can then be plotted:

> g <- estimateGraph(f.mat = kmPredictWrapper, d = d, n.tot = 30000,

+ q.arg = list(min = domain[1], max = domain[2]), km.object = KM)

> plot(g, plot.i1=FALSE)

The corresponding figure can be seen in Figure 2, on the left. Clearly,
two groups of variables are visible, and can be identified by choosing an ap-
propriate threshold. How to choose the threshold value is detailed in Section
4. Here δ = 0.01 seems to be a suitable value, as shown on the same figure,
on the right.

> g.cut <- threshold(g, delta = 0.01, scale = TRUE)

> plot(g.cut, plot.i1=FALSE)
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Figure 1: Main effects (white box) and total effects (large box) for the 6D-function f ,
obtained with the package sensitivity ([8]).
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Figure 2: The estimated FANOVA graph for the 6D function f .

We can use the information for the second part to build up a block-
additive Kriging model. Mathematically, the two unconnected (additive)
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parts are the two cliques of the graph g

> Cliques <- g.cut$cliques

> print(Cliques)

[[1]]

[1] 1 3 5

[[2]]

[1] 2 4 6

The clique structure suggests that a good kernel for this function, among
kernels of stationary processes, has the block-additive structure:

k(h) = k135(h135) + k246(h246)

with the set notation hI = {hi, i ∈ I} for all set I, and where k135, k246 are ker-
nels defined over 3-dimensional subspaces. Several kernel types are available,
and we choose for both the Gaussian tensor-product kernel, assuming that
f is a smooth function. The estimation of the corresponding Kriging model
can now be done with the MLoptimConstrained function of fanovaGraph,
and predictions computed with yhat. Finally, the results are compared to
the ’standard’ Kriging model, based on a 6D Gaussian tensor-product kernel,
and confirm the clear improvement in prediction of the new Kriging model
(Figure 3). Note that at no point we made any priori assumptions about the
block-additive form of the black-box function.

> parameter <- kmAdditive(x, y, cl = Cliques)

> xpred <- matrix(runif(d * 1000, domain[1], domain[2]), ncol = d)

> y_new <- predictAdditive(xpred, x, y, parameter, cl = Cliques)

> y_old <- kmPredictWrapper(xpred, km.object = KM)

> y_exact <- fun(xpred)

> par(mfrow = c(1, 2))

> plot(y_exact, y_old, asp = 1, xlab="y, exact",

+ ylab="y, predicted", main="Standard Kernel")

> abline(0, 1)

> plot(y_exact, y_new[, 1], asp = 1, xlab="y, exact",

+ ylab="y, predicted", main="Modified Kernel")

> abline(0, 1)
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Figure 3: Predictions over a 1000-point uniform test set of two Kriging models: A standard
one, based on a 6D Gaussian tensor-product kernel, and a new one, based on a sum of two
3D Gaussian tensor-product kernels k135 + k246.

3. Detailed description of functions

Let us now generally introduce the procedure and its implementation in
fanovaGraph. Say that the function under investigation f is defined over d
factors x1, . . . , xd, which can be described as independent random variables
with probability measure ν. Usually, if no special distribution is predeter-
mined, a uniform distribution in the factor domain is chosen for ν.

3.1. Estimation of indices

The key point in building the FANOVA graph is the estimation of the
edge thicknesses. An edge shall represent the interaction strength of the two
factors that are represented by the vertices it combines. Therefore a Sobol-
based index is chosen, that measures the overall influence of the two factors,
called total interaction index (TII) in [4]. For two factors xi and xj it is
defined by the sum of all Sobol indices that contain both indices:

Dij :=
∑

I ⊇{i,j}

DI , (1)
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where DI is the unscaled Sobol index of the group of factors (Xk)k∈I . Liu
and Owen (2006) show, that this index can be computationally obtained by

Dij =
1

4
E
[
∆i,j(zi,j, xi,j, x−{i,j})

2
]

=
1

4

∫ [
∆i,j(zi,j, xi,j, x−{i,j})

]2
dνi,j(zi,j)dν(x) (2)

with ∆i,j(zi,j, xi,j, x−{i,j})) =

f(xi, xj, x−{i,j})− f(xi, zj, x−{i,j})− f(zi, xj, x−{i,j}) + f(zi, zj, x−{i,j})

and where zi (resp. zj) is an independent copy of xi (resp. xj).
Since f is assumed to be a black box function, the total interaction index
can not easily be computed by (2). One way to estimate it is by partly fixed
Monte Carlo integration of the integrals. Denote by xk and zk, k = 1, . . . , N
two independent samples of (sufficiently large) size N drawn from ν. Then
the total interaction index is estimated by

D̂ij =
1

4
× 1

N

N∑
k=1

[
f(xki , x

k
j , x

k
−{i,j})− f(xki , z

k
j , x

k
−{i,j})

−f(zki , x
k
j , x

k
−{i,j}) + f(zki , z

k
j , x

k
−{i,j})

]2
. (3)

In fanovaGraph the TII are estimated by estimateGraph and can be
extracted from the output by $ tii or respectively $ tii.scaled for the
TII scaled by the overall variance. To get insight about the certainty of the
estimates, asymptotic 95% confidence intervals are computed additionally ex-
ploiting the estimator’s asymptotic normal distribution of the Liu and Owen
estimator in (3). Here an example code for the previously defined prediction
function of the 6D example. Interactions of variables of the same block (e.
g. X1 and X3) are clearly higher than from different blocks:

> g <- estimateGraph(f.mat = kmPredictWrapper, d = d,

+ n.lo = 1000, q.arg = list(min = domain[1],

+ max = domain[2]), method = "FixLO", km.object = KM)

> head(g$tii)

totalInt Std.Error lower upper

X1*X2 0.0007741586 6.330495e-05 0.0006500832 0.0008982341
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X1*X3 0.0411745532 3.110340e-03 0.0350783986 0.0472707078

X1*X4 0.0010549226 1.050348e-04 0.0008490582 0.0012607871

X1*X5 0.0553378302 4.649570e-03 0.0462248410 0.0644508194

X1*X6 0.0013846099 1.167610e-04 0.0011557626 0.0016134572

X2*X3 0.0009118153 1.316350e-04 0.0006538154 0.0011698151

Due to the consistency of the estimator, the higher the sample number,
the more exact is the estimation. In estimateGraph the number of Monte
Carlo samples can be specified directly by n.lo or in terms of overall function
evaluations by n.tot. Further parameters are the dimension size d, the input
distribution q (defaults to uniform distribution) with parameters q.arg and
the estimation method method. Beside the one from Liu and Owen, three
further estimation methods, based on FAST, RBD-FAST and Sobol’s pick
and freeze method, are implemented. See [4] for a detailed description.

3.2. Plots

Total interaction indices are easily visualized in the FANOVA graph. In-
put variables are represented by the graph’s vertices and are connected by
an edge if the total interaction index is positive. The thickness of an edge
is relative to the size of the corresponding total interaction index. With
the plotiGraph function, graph objects obtained from estimateGraph can
directly be plotted. There are several modifications for the graph plotting.
The position of the indices in the plot is determined by the layout argu-
ment, adopted from igraph0, which searches by default for the best way. To
compare graphs, the layout can be fixed. Standard main effect Sobol indices
can be represented additionally by the vertex thicknesses. Moreover, pure
second order Sobol indices (Dij) can be added as additional inner edges since
Dij < Dij by definition. They can give insight about the amount of active
interactions of orders higher then two.

> plot(g, ploti1 = FALSE, layout = layout.circle)

> plot(g, ploti1 = TRUE, layout = layout.circle)

> plot(g, ploti1 = FALSE, i2 = c(0, 0.03222, 0, 0.04093,

+ 0, 0, 0.0135, 0, 0.023, 0, 0.03222, 0, 0, 0.01753, 0),

+ layout = layout.circle)
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Figure 4: Different modifications of FANOVA graph plots.

3.3. Block additive Kriging

As shown in Section 2, the information brought by the FANOVA graph
about total interactions can be used to build a suited Kriging model. More
precisely, the clique decomposition of the graph provides a block-additive
kernel of the form (see [7] for details):

k(h) =
L∑
i=1

kCi
(hCi

) (4)

where C1, . . . , CL are the cliques, and kC1 , . . . , kCL
the corresponding

kernels, associated to independent stationary centered Gaussian processes
ZC1 , . . . , ZCL

. Note, that the cliques can have common vertices. In fanova-

Graph, each kernel kCi
has a tensor-product structure:

kCi
(hCi

) = σ2
Ci

∏
j∈Ci

k1(hj; θCi,j) (5)

where σ2
Ci

is the variance of ZCi
, k1 is a 1-dimensional kernel, and the

θCi,j’s (j ∈ Ci) denote the other covariance parameters.
The implementation of kCi

relies on DiceKriging. In particular, k1 can
be chosen among a list of stationary kernels (at present time: Exponential,
power-exponential, Matérn 3/2, Matérn 5/2 or Gaussian (Default)), accord-
ing to the smoothness of the function of interest. We refer to [9] for more
details.
All covariance parameters (including the variance one) are estimated by
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maximum likelihood (see [7]). However, the number of parameters equals∑L
i=1(1 + |Ci|), and can be large. Hence, a useful option is to constrain

the parameters in one clique to have a common value. We call such cliques
isotropic.
It is often a good idea in practice to consider isotropic cliques, and several
examples are provided in [7]. To illustrate its usage in fanovaGraph, let us
consider again the 6-dimensional function f of Section 2. Looking at the es-
timated FANOVA graph, it seems reasonable to consider an isotropic kernel
for the clique C1 = {1, 3, 5}, since both total effects and total interaction
indices are similar in between the variables of the clique. Hence, we add the
constraint θC1,1 = θC1,3 = θC1,5 in equation 5, which gives only 6 parameters
to estimate instead of 8. This change is done in kmAdditive by setting the
argument iso, which is a vector of Boolean whose TRUE coordinates indicates
the isotropic cliques. Looking again at the cliques order (see Section 2):

> print(Cliques)

[[1]]

[1] 1 3 5

[[2]]

[1] 2 4 6

we see that C1 is indeed the first clique in the list. Hence, to make C1

isotropic and leave C2 unchanged, we must choose:

> iso <- c(TRUE, FALSE)

Parameter estimation is then done by writing:

> param <- kmAdditive(x, y, cl = Cliques, covtype = "gauss",

+ iso = iso)

The accuracy of the corresponding Kriging metamodel can be compared to
the one based on an anisotropic block-additive kernel (see Section 2). The
RMSE value shows that the predictive power looks similar, with the benefit
of reducing the number of parameters.

[1] 0.006851003
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Actually, for this example, the predictive power is also very good when
the two cliques are assumed to be isotropic, which reduces the number of
parameters to 4 only :

> iso <- c(TRUE, TRUE)

> param <- kmAdditive(x, y, cl = Cliques, covtype = "gauss",

+ iso = iso)

> y_block_iso <- predictAdditive(xpred, x, y, param,

+ cl = Cliques, iso = iso)

> sqrt(mean((y_block_iso[, 1] - y_exact)^2))

[1] 0.006463344

Finally generating samples from block-additive kernels for simulation pur-
poses can be done by the function simAdd. Here for a given kernel the Kriging
covariance matrix R at desired data points x of size nsim is computed together
with its Cholesky decomposition R = CTC. A simulation with mean µ and
covariance matrix R is then obtained by

y = µ+ CT ε

with εi ∼ N (0, 1), i = 1, . . . , nsim independent random numbers.
In the following code two simulations are generated to compare graph-

ically a standard tensor-product kernel and an additive kernel (see Figure
5).

> x1 <- x2 <- seq(-1, 1, , 20)

> x.grid <- expand.grid(x1, x2)

> parameter <- list(list(alpha = 1, theta = c(0.5, 0.5)))

> y.sim <- simAdditive(x.grid, mu = 0, parameter, covtype = "matern5_2",

+ cl = list(1:2))

> persp(x1, x2, matrix(y.sim, 20), theta = -40, col = "lightgreen",

+ zlab = "y.sim")

> parameter <- list(list(alpha = 0.5, theta = 0.5),

+ list(alpha = 0.5, theta = 0.5))

> y.sim <- simAdditive(x.grid, mu = 0, parameter, covtype = "matern5_2",

+ cl = list(1, 2))

> persp(x1, x2, matrix(y.sim, 20), theta = -40, col = "lightgreen",

+ zlab = "y.sim")

12



x1

x2

y.sim

(a) Tensor-product kernel

x1

x2

y.sim

(b) Additive kernel

Figure 5: Simulations from Kriging kernels.

4. Thresholding decision

4.1. The problem

Errors in the initial metamodel and in the index estimation usually per-
tubate the FANOVA graph, so that inactive indices are not necessarily zero.
Therefore a thresholding cut is necessary to separate high from low indices
and thus find inactive interactions. This separation can easily be done within
the package by applying the threshold function to the graph object with a
given cut value delta. See below for a graphical support to find a suitable
value. By default, the cut is performed at the scaled indices. This can be
changed through the argument scaled=FALSE. Here we perform a threshold
cut at δ = 0.01, which sets all indices that are smaller then δ to zero.

> g.cut <- threshold(g, delta = 0.01)

> head(g.cut$tii)

totalInt Std.Error lower upper

X1*X2 0.00000000 0.00000000 0.00000000 0.00000000

X1*X3 0.04117455 0.00311034 0.03507840 0.04727071

X1*X4 0.00000000 0.00000000 0.00000000 0.00000000

X1*X5 0.05533783 0.00464957 0.04622484 0.06445082
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X1*X6 0.00000000 0.00000000 0.00000000 0.00000000

X2*X3 0.00000000 0.00000000 0.00000000 0.00000000

4.2. Decision plot

Decision plots are a popular way to help the user find data dependent
values. We present a decision plot called delta jump plot that helps finding
a suitable threshold value δ (see Figure 6).

> plotDeltaJumps(g)

0
1

2
3

4
5

6

1:length(delta)

nu
m

be
r 

of
 c

liq
ue

s

0.
00

0.
02

0.
04

0.
06

1:length(delta)

ju
m

ps

0

9e
−

04

0.
00

1

0.
00

12

0.
00

13

0.
00

13

0.
00

14

0.
00

16

0.
00

18

0.
00

32

0.
02

65

0.
03

09

0.
03

36

0.
05

5

0.
06

06

0.
07

39 1

steps in delta

Delta Jump Plot

Figure 6: Delta jump plot.

On the x-axis it shows all relevant threshold values, i.e. the ordered values
of indices in the FANOVA graph in equal distances. In the bottom part of the
graph, the real distances of the indices are shown, so that high jumps point to
big differences between successive indices. In a moderately pertubated graph,
the difference between inactive and active indices should be high and thus
be revealed by a jump. High jumps are additionally highlighted by shading
of the relevant interval, the darker the shading the higher the jump. Values
of delta that lie inside dark intervals indicate good choices for the threshold.
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Simultaneously the upper part of the plot shows the number of cliques a
threshold would lead to. A small number of cliques might be preferable in
order to obtain a clearer structure and less parameters to estimate. Figure 6
reveals that in this case a suitable δ lies between 0.0021 and 0.025, because
the jump to right of this interval is the highest and the number of cliques is
very low.

5. fanovaGraph with further initial metamodels

As mentioned in Section 2 the metamodel is not restricted to Kriging but
can be any prediction model, chosen suitable for the underlying problem.
Here we show how further fitted models can easily be analyzed by fanova-

Graph. Using the same data as before, we exemplary fit a Neural Network
model and a Support Vector Machine (SVM) regression model, using stan-
dard R functions. First, for Neural Networks the output has to be scaled to
lie between 0 and 1.

> data <- data.frame(y,x)

> data$y <- (data$y-min(data$y))/(max(data$y)-min(data$y))

Now we fit the models and construct a prediction function wrapper wrapp,
that can be used for both functions.

> library(nnet)

> library(e1071)

> nnet.mod <- nnet(y ~ ., data=data, size=2)

> svm.mod = svm(y ~ ., data=data)

> wrapp <- function(newdata, object) {

+ colnames(newdata) <- c("X1","X2","X3","X4","X5","X6")

+ as.numeric(predict(object, newdata = newdata))

+ }

From the prediction functions the FANOVA graph can be estimated and
plotted as before (see Figure 7). Both metamodels discovered the interaction
structure of function f very good, though not as good as Kriging. But of
course the choice of the metamodel always depends on the situation.

> nnet.g <- estimateGraph(f.mat = wrapp, d = d, n.tot = 30000,

+ q.arg = list(min = domain[1], max = domain[2]), object = nnet.mod)
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> svm.g <- estimateGraph(f.mat = wrapp, d = d, n.tot = 30000,

+ q.arg = list(min = domain[1], max = domain[2]), object = svm.mod)

> plot(nnet.g, plot.i1=FALSE)

> plot(svm.g, plot.i1=FALSE)

1

2

3

4

5

6

(a) Neural Network

1

2

3

4

5

6

(b) SVM regression

Figure 7: Estimated FANOVA graph for two other metamodels on the 6D function f .

6. Conclusion

The FANOVA graph is a useful tool for visualization of interaction struc-
tures of various functions, and can especially be used for Kriging model im-
provement via block-additive decomposition. The R package fanovaGraph

provides a user friendly implementation of FANOVA graphs and their ap-
plication including estimation, plotting, block-additive Kriging analysis and
threshold decision graphs.

One point for further improvement of the package is the metamodel error.
Kriging models with second order polynomial trend have proven to better
catch the interaction structure than standard Kriging models. Other Krig-
ing kernels can be taken into consideration like FANOVA kernels, where each

16



interaction is modelled explicitely. Also iterative repetition of model fitting
and graph fitting could be a possible alternative. Furthermore, other fields of
application of the block-additive structure can be implemented like dimen-
sion reduction and optimization problems, where special clique structures are
necessary.
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